Machine Learning (934G5)

15 credits, Level 7 (Masters)

Spring teaching

In this module, you explore advanced techniques in machine learning.

You use a systematic treatment, based on the following three key ingredients:

  • tasks
  • models
  • features.

As part of the module, you are introduced to both regression and classification, and your studies emphasise concepts such as model performance, learnability and computational complexity.

You learn techniques including:

  • probabilistic and non-probabilistic classification and regression methods
  • reinforcement learning approaches including the non-linear variants using kernel methods.

You are also introduced to techniques for pre-processing the data (including PCA).

You will then need to be able to implement, develop and deploy these techniques to real-world problems.

In order to take this module, you need to have already taken the 'Mathematics & Computational Methods for Complex Systems' module (817G5), or have taken an equivalent mathematical module or have equivalent prior experience.

Teaching and assessment

We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.

Contact hours and workload

This module is approximately 150 hours of work. This breaks down into about 33 hours of contact time and about 117 hours of independent study. The University may make minor variations to the contact hours for operational reasons, including timetabling requirements.

This module is running in the academic year 2020/21. We also plan to offer it in future academic years. It may become unavailable due to staff availability, student demand or updates to our curriculum. We’ll make sure to let our applicants know of such changes to modules at the earliest opportunity.