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I. Introduction
The valuation of firms by shareholders is a very important but not completely understood
economic phenomenon. The empirical studies that have been carried out on the firm’s
market value point to three types of explanatory variables: current market opportunities,
such as sales, profits, factor prices, etc.; tangible assets, measured by the value of firm’s
assets at replacement cost; and intangible assets – past and current R&D investments,
patent portfolio and most recently the citations a firm has received for the patents it owns.
In contrast to physical assets it is impossible for all the components of intangible capital to
be accurately described. In this paper, we concentrate on intangible assets but we add to
the scale of the research effort and to the patent stock of the firm a measure of the
coherence of its knowledge base, defined as the way in which different components of the
knowledge base of a firm are combined in a complementary manner.

In a previous study we found coherence of the knowledge base to be an important
determinant of firms’ innovative performance (Nesta and Saviotti, 2003). It follows that
two firms with equivalent knowledge stocks may well have a different market value
depending on their differential ability to combine the various pieces of knowledge that they
have acquired by means of their R&D activities. This valuation need not result from a
lengthy process of converting intangible resources into sales. It may be based on the current
valuation of expected returns from the firm’s research efforts and knowledge integration. In
this paper, we will refer to this measure as either coherence of the knowledge base or
knowledge integration, for coherence is itself the result of those integration activities that
combine complementary knowledge in a non-random way. Knowledge integration is
related to other economic issues such as the search for economies of scope, the division of
innovative labour and the coordination of productive activities.

Little is known about the valuation by shareholders of knowledge integration, although
previous work has repeatedly revealed some statistical relationships between some
measures of related diversification and some measures of performance. We bring new
evidence regarding the extent to which the coherence of the knowledge base is a
discriminating determinant of the firms’ market valuation. The use of knowledge integration
as an explanatory variable in firms’ market value is used together with more traditional
variables, such as R&D expenditures, patent stocks and profit. These additional variables
provide competing explanations that potentially may invalidate our intuition that more
coherent firms are more valuable.

We study a sample of biotechnology firms, defined as active in biotechnology research and
able to obtain future revenue from their subsequent innovation. Biotechnology firms belong
to three main industries, namely the pharmaceutical, chemical and the agro-food industries,
but are also seen as dedicated biotechnology firms (DBFs). DBFs were created to
explicitly explore and develop new biotechnology products and services and thus are
newer and smaller than traditional industries. Biotechnology is one of the technologies that
emerged at the end of the 1970s and that have created enormous expectations of future
economic development in several industrial sectors, the three mentioned above being the
earliest to benefit. The period that we studied, the 1980s and most of the 1990s, covers the
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early emergence of a set of new technologies, including biotechnology, to the stock market
bubble of the 1990s.

This paper is structured as follows. Section II presents alternative specifications for the
valuation functions. In section III, the econometric specification used to estimate the
parameters is presented. In section IV, we provide details of the dataset and of the metrics
used to measure knowledge integration. Section V discusses the main results and section VI
concludes.

II. The Stock Market Valuation Function
Questions relating to the market valuation of firms have gained momentum in the past two
decades, providing growing evidence that intangible capital has become a very important
determinant of firms' market value. This is consistent with the fact that, since the 1950s,
intangible capital has overtaken physical capital (Abramowitz and David, 1996; Kendrick,
1994). In particular, this progression of intangible capital becomes understandable as we
move towards the so-called knowledge based economy. Amongst the main components of
intangible capital studied are R&D stocks, patent stocks and advertising (Griliches, 1981;
Pakes, 1985; Jaffe, 1986; Cockburn and Griliches, 1988; Connolly and Hirschey, 1988;
Hall, 1993; Hall, Jaffe, Trajtenberg, 2000). Other authors have pointed to the importance of
focus in firm diversification (Wernerfelt and Montgomery, 1988; Scott and Pascoe, 1987),
structure-performance relationship (Smirlock, Gilligan and Marshall, 1984) and degree of
unionisation (Salinger, 1984). Each of these studies examines a subset of the potential
components of intangible capital over relatively short periods of time. However, our
understanding of the components and valuation of the firm’s intangible capital remains very
partial and imperfect.

An ambitious attempt to understand the behaviour of the stock market over the period 1947-
2000 was made by R.E. Hall (2001). He found that intangible capital is responsible for
most of the variation in the market values of firms quoted in the Dow Jones index.
However, the ratio of intangible to tangible capital swings very widely during the period
studied and, at a given time (1988), the distribution of the same ratio amongst industrial
sectors is extremely broad. Hall attempts to explain the inter-temporal swings of the stock
market by means of the rational behaviour of economic agents valuing intangibles on the
basis of the level and especially the growth of their cash flow. An entirely different
hypothesis about the nature and fluctuations in the stock market value of firms is adopted by
Perez (2003). In her view stock market crashes, such as those of 1929 or of 2000, are due
to the decoupling of financial and industrial capital occurring systematically at particular
stages of economic development. Perez espouses the long wave hypothesis (Freeman and
Louça, 2001), according to which recurrent patterns of economic development can be seen
at roughly 50 year intervals, starting with the emergence of new technologies and
continuing through their subsequent diffusion and maturation.

The abovementioned contributions show that our understanding of the determinants of the
firm’s market value comes down to three sets of questions: (i) What are the necessary
components of a firm’s intangible capital and what are their roles as determinants of stock
market value at a given time? (ii) How can we explain the distribution of the ratios of
tangible and intangible capital amongst industrial sectors at a given time? (iii) How can we
explain the inter-temporal variation of stock market values in the long run? In this paper,
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we will concentrate exclusively on the first question and rely on the following intuition:
two firms with equivalent knowledge stocks might have a different market value depending
on their differential ability to combine different pieces of knowledge coherently, that is,
depending on their degree of knowledge integration.

The problem of the coherence of the firm was first raised in studies on firm diversification.
In one of the earliest examples Rumelt (1974) showed that diversification is more likely to
be successful within related activities sharing similar business lines and production chains.
Later, Scott (1993) showed that diversification in related markets is purposive and tightly
linked to higher profit rates. That a firm is not a collection of unrelated activities has been
further demonstrated by the concept of coherence of the firm, as proposed by Teece,
Rumelt, Dosi and Winter (1994). These authors argue that the non-random organisation of
activities has its very roots in the firm’s competencies. When entering into new business
lines, firms move into activities with similar scientific and technical competencies and
common complementary assets. Thus, diversification strategy is not a free game; hazardous
and aggressive diversification may threaten the overall coherence of the firm and even its
viability. Diversification inherently calls for some sort of integration, to increase the
coherence of the firm’s activities and the underlying knowledge base.

We are concerned with the coherence of the knowledge base, but coherence can be
manifested at other levels within firms. Firms may be coherent in terms of their product
portfolio or of the markets in which they operate. Alternatively, firms may use coherent
production activities, e.g. by sharing capital goods, or similar types of knowledge. It is
possible that the achievement of coherence in one aspect may entail a reduction in the
coherence of other aspects in the firm. One example is the concept of the life science
company using a common knowledge base to produce products sold in highly
heterogeneous markets (pharmaceuticals, agriculture, food, etc.) where the coherence of the
knowledge base might have been obtained at the expense of coherence in outputs. The
preferential achievement of coherence in a particular aspect of the firm can be considered
an example of structural change within the firm. The particular aspect of a firm's activities
in which coherence is differentially more important is likely to depend on the sector
involved. In a highly knowledge intensive industry one would expect the coherence of the
knowledge base to be a determinant of the general performance of the firm, including its
stock market value.

We argue that knowledge integration is likely to be a particularly important aspect of a
firm's activities in knowledge intensive sectors. We expect the market valuation of the firm
to depend on a few particular aspects: knowledge integration, knowledge capital, R&D
investment and profit. Like Griliches (1981), Salinger (1984) and Jaffe (1986), we start
from a simple representation of the firm’s market value V, where the latter is a linear
function of sum of the current value of the firm’s conventional assets C and the current
value of its intangible resources IR:

[ ]ntntntnt IR,CqV ⋅= (1)

Eq.(1) says that the market value of firm n, n = 1,…,N, at time t, t = 1,…,T, depends on the
weighted sum of its conventional tangible assets C and intangible resources IR. The firm’s
tangible and intangible assets are valued at price q as follows:
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( )ntntntnt uexpRAq ⋅⋅⋅= λβΠ (2)

where A is a constant, Π and R are respectively firm’s profit and firm’s research intensity.
In Eq.(1) stock variables are entered while Eq.(2) introduces flow variables, which reflect
current profitability and R&D investments. The term u is an individual and annual
disturbance or error term, whose anatomy will be discussed later. While the
representation, interpretation and measure of the firm’s conventional assets are relatively
straightforward, the representation of the firm’s intangible resources demands more
attention. Our baseline model follows previous contribution by viewing the firm’s current
value as:

[ ]ntntntnt KCqV ⋅+⋅= γ (3a)

where K is a measure of the firm’s knowledge stock, weighted by some rate of knowledge
depreciation. No coefficient is associated with C. This is equivalent to assuming unity in
the C coefficient, which in turn implies constant returns to scale in the valuation function.
Alternatively, one could argue that in science intensive industries, a more integrated
knowledge stock yields higher levels of innovation so that the value of the firm’s intangible
assets becomes:

[ ]ntntntnt ICqV ⋅+⋅= τ (3b)

where I is a measure of knowledge integration. Eq.(3b) says that the stock market valuation
of the firm depends exclusively on the way firms combine their technological portfolio.
While we can find reasons to believe that knowledge integration is economically valuable,
a perhaps more realistic representation of the firms’ stock market value is:

[ ]ntntntntnt IKCqV ⋅⋅+⋅= φ (3c)

Eq.(3c) says that the stock market valuation of the firm depends on the interactions between
the firm’s knowledge stock and integration, what might be called its intangible resources.
The previous models are very simplistic regarding the firm’s stock market valuation
function. The variables of knowledge capital and knowledge integration are exclusive of
one another (3a and 3b) while the interactive model (3c) does not allow for independent
estimations. A more sophisticated alternative is to model the firm’s knowledge stock as
follows:

( )[ ]ntntntntnt KiCqV ⋅⋅++⋅= τγ (4a)

( )[ ]ntntntntnt IkCqV ⋅⋅++⋅= γτ (4b)
τγ
ntntntntnt IKCqV ⋅⋅⋅= (4c)

where i is (the log of) a quantitative measure of knowledge integration, k is (the log of) a
measure of the firm’s knowledge stock. Eq.(4a) says that the relative value of a unit of
knowledge may vary a great deal depending on how knowledge is integrated within the
firm. Eq.(4b) assumes implicitly that shareholders view the firm’s intangible resources as a
stock of knowledge, in which different pieces of knowledge play an important yet
secondary role. Alternatively, we could assume that investors look primarily at the level of
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knowledge integration within firms. Eq.(4b) says that the value at which shareholders price
knowledge integration also depends on the stock of intangible resources. Assume two firms
achieve similar levels of knowledge integration, but one has a stock of knowledge that is
twice as large as that of the other, it seems plausible that the intangible resources of the
first firm should be valued at twice as much as the second firm. Lastly, we may model the
firm’s complete set of tangible and intangible assets in a more interactive way, where all
variables C, K and I enter multiplicatively rather than additively. Eq.(4c) implies that a
given degree of knowledge integration spreads over each unit of capital and of the
knowledge stock. Alternatively, an additional unit of knowledge will also spread over all
units of capital, given knowledge integration.

Substituting Eq.(2) into Eqs.(3a)-(4c), dividing through by Cit, taking logs, and using the
approximation log (1 + x) ≈ x, yields respectively:

ntntnt
nt

nt
ntnt urC

Kacv +⋅+⋅+⋅+=− λπβγ (5a)

ntntnt
nt

nt
ntnt urC

Iacv +⋅+⋅+⋅+=− λπβτ (5b)

( )
ntntnt

nt
nt

ntnt urC
IKacv +⋅+⋅+⋅⋅+=− λπβφ (5c)

The same applies to models (4a)-(4c) yielding:

ntntnt
nt

nt
nt

nt
nt

ntnt urC
KiC

Kacv +⋅+⋅+⋅⋅+⋅+=− λπβτγ (6a)

ntntnt
nt

nt
nt

nt
ntntnt urC

I
C

Ikacv +⋅+⋅+⋅+⋅⋅+=− λπβτγ (6b)

ntntntntntntnt urikacv +⋅+⋅+⋅⋅+⋅+=− λπβτγ (6c)

where the dependent variable (v – c) is equivalent to (the log of) Tobin’s q (V / C), and the
terms γ, τ, β and λ are the parameters to be estimated. Note that the β and λ parameters
grasp the elasticity of the dependent variable with respect to the firm’s current profit p and
research intensity r. Through Eqs.(3a)-(4c), different models provide competing
representations of the firm’s intangible resources. In fact, we have no prior belief about the
best model for the firm’s market value, with the exception that: the degree of integration of
the firm’s heterogeneous stock of knowledge is economically valuable and, therefore, is
reflected in its stock market valuation. Thus, the interest of a manifold formulation lies
more in the search for a reliable representation of the firm’s tangible and intangible assets.
Depending on our estimations, we will be able to see: (1) what representation of the firm’s
total assets is best adopted by investors and thus whether our conclusions are model-
specific or, on the contrary, hold for all models; (2) whether knowledge integration
provides shareholders with economically valuable information.

III. Econometric Issues
Turning to estimation issues, we need to consider the panel nature of our dataset and the
complex issues it introduces. Three problems need to be tackled in order to come up with
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reliable estimates of the parameters of interest: (1) cross sectional heterogeneity and
heteroskedasticity; (2) serial correlation and the introduction of a lagged dependent
variable as a possible regressor; (3) the possible endogeneity of the explanatory variables.

We develop a two-way error component model in which the error term uit is decomposed
into ηi, ϕt and vit, where ηi ~ IID(0,σ 2

η) is a 1×1 scalar constant capturing the individual
heterogeneity across firms, ϕt ~ IID(0,σ2

ϕ) is a 1×1 scalar constant representing the time
fixed effect and vit ~ IID(0,σ2

v) is the individual disturbance:

nttnnt vu ++= ϕη (7)

In panel datasets where the number of firms is large, as is the case here, within group
transformations may be preferred to the inclusion of a large matrix of dummy variables,
which account for the firms’ fixed effect. Ignoring for the moment the time specific effect
ϕt, the within group estimations may be performed by expressing all variables as
deviations from the firm mean:

( ) ( ) ( )
( ) ( ) 








−+−+

−⋅+−⋅+−⋅
=−

⋅

⋅⋅⋅
⋅

nntnn

nntnntnnt
nnt vv

rr'x'x
qq

ηη

λππβϖ
(8)

where q = v – c, x’ is any of the knowledge resource variables in Eqs.(3a) to (4c) and ϖ
represents the set of parameters γ,τ and φ to be estimated. Eq.(8) can easily be extended to
perform between regressions, as will be the case in this paper, where all variables are
expressed as deviations from the group, i.e. the firm, means. The advantage of this is that it
exploits differences across individuals that are by construction stable over time. While this
specification properly controls for cross sectional heterogeneity, robust standard errors
must correct for panel heteroskedasticity using the consistent variance-covariance matrix
and applying White’s correction.

The second issue of serial correlation is more tricky. Eq.(8) relies on the critical
assumption that the error term is serially uncorrelated. We can relax this assumption by
adopting a dynamic representation of the model of the following form:
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where x&  represents the within transformation of the explanatory variables k, i, p and r. The
parameter ρ represents the common factor representation for first order autocorrelation.
Note that Eq.(9) forces the autoregressive estimator to be equal for all firms. Another
model is to relax this assumption and to estimate autoregressive processes that are firm
specific, what we call a firm-specific autoregressive model of order 1, or FSAR1. Eq.(9)
is characteristic of a dynamic panel data model in which a lagged dependent variable is
included in regressors. If ρ = 0, then Eq.(9) reduces to a simple static model in which the
current market value of the firm is a function of its contemporaneous profit, research



8

intensity and knowledge integration. If ρ  = 1, the model is equivalent to the first difference
model.

The inclusion of a lagged dependent variable makes the standard panel estimation
techniques, i.e. Ordinary Least Squares (OLS), biased and inconsistent. The problem arises
because the lagged dependent variable induces a correlation between the explanatory
variables and the error term. A standard procedure for dealing with variables that are
correlated with the error term is to instrument them and apply the instrumental Generalised
Method of Moment (GMM) estimator. Anderson and Hsiao (1981) suggest first-
differencing Eq.(3a)–(4c) in order to eliminate the firm specific effects ηn:

( ) ( ) ( )
( ) ( ) ( ) 
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In the differenced form, the transformed error term becomes (vnt – vnt-1) and is by
construction negatively correlated with the transformed lagged dependent variable (qnt-1 –
qnt-2). Anderson and Hsiao recommend instrumenting for (qnt-1 – qnt-2) with either qnt-2 or
(qnt-2 – qnt-3), which are uncorrelated with the disturbance in (11) but correlated with (qnt-1

– qnt-2). Relying on the findings of Arellano and Bond (1991) and Kiviet (1995), we prefer
to use lagged differences as instruments. We define the following set of moment conditions:

( )[ ]
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for j =2, t =2,…,T. (12)

While the AH estimator is consistent as ∞→N , its efficiency can be improved by using
all possible lags of regressors as instruments. Arellano and Bond (1991) suggest using the
matrix of instruments Z = [Z’1,…,Z’N]’ where:
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The instrument matrix Z can be expanded to take advantage of the additional independent
explanatory variables. The instrument matrix that is optimal (i.e. efficient) differs
according to whether the additional explanatory variables x are correlated with the fixed
effects or not, and whether they will be treated as endogenous, predetermined or strictly
exogenous. If x is to be treated as strictly exogenous, x is uncorrelated with past, current
and future realisations of v. If x is to be treated as predetermined, x is uncorrelated with
current and future values of v but is correlated with earlier shocks v. If x is to be assumed
as endogenous, then it must be treated symmetrically with the dependent variable. Against
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little evidence of endogeneity and predeterminedness,1 we assume that all explanatory
variables are predetermined. The Generalised Method of Moment (GMM) estimator takes
the form:

( ) QZZAXXZZAX n
1

n ′′′′= −
GMMλ̂ (14)

where An is an appropriately chosen weight matrix. To estimate the optimal weight matrix
of the GMM estimate, two different approaches can be used. Arellano and Bond propose
one- and two-step estimators, respectively GMM1 and GMM2, that are computed as:
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where vn is the residual vector ∆vn = (∆v3,…,∆vT) obtained from a consistent first step
estimation of the model. The above GMM specifications evidently rely on the absence of
correlation between the instruments and the error term. The Sargan statistic (1958) is used
to test the validity of the overidentified restrictions, under the H0 hypothesis of no
asymptotic correlation between the instruments and the perturbation. If the model is
correctly specified, the statistic is chi-square distributed. Moreover, the GMM estimator is
consistent if there is no second-order serial correlation in the error term of the first-
differenced equation. Arellano and Bond propose to test the autocorrelation of the first and
second of the residuals. They note that if the errors are uncorrelated, then the first
differenced perturbations shall have negative first-order correlation but no second or
higher order correlation. Thus, a test for the validity of the instruments (and the moment
restrictions) is a test of second-order serial correlation in these residuals.

                                                
1 A conventional though not satisfactory method (Maddala, 2002) of testing for endogeneity is to test for
Granger causality. Appendix A tests for Granger causality between the dependent and the explanatory
variables. We show that, under GMM estimations, the financial variables behave as endogenous to the
system of equations: both profit p and the research effort r are affected and affect past, current and future
realisations of the dependent variable q. The variables characterising the knowledge base, k and i, Granger
cause the firm’s market value but not vice versa. Thus, the so-called explanatory variables characterising
the firm’s knowledge base may well be affected by past and current values of performance (the firm’s
market value), but not by future ones.



10

IV. Data and Measurements
The variable called either coherence or knowledge integration constitutes the main new
contribution of this paper to previous knowledge. Thus, we expose its underlying logic in
greater detail than for the other variables.

The measure of knowledge integration is based on the degree of technological relatedness
within the firm. Relatedness has been investigated in several publications (Sherer, 1982,
Jaffe, 1986, amongst others). In this paper, we use the survivor measure of relatedness
developed by Teece et al. (1994). Their measure is based on the idea that economic
competition leads to the disappearance of relatively inefficient combinations of businesses.
But, instead of applying it to industry SIC codes, we apply it to technologies (Breschi,
Lissoni et al., 2003). Thus, we assume that the frequency with which two technology
classes are jointly assigned to the same patent documents may be thought of as the strength
of their technological relationship, or relatedness.

The analytical framework departs from the square symmetrical matrix obtained as follows.
Let the technological universe consist of K patent applications. Let Pik = 1 if patent k is
assigned to technology i, i = {1,…,n}, 0 otherwise. The total number of patents assigned to
technology i is thus Oi = ΣkPik. Now let Pjk = 1 if patent k is assigned to technology j, 0
otherwise. Again, the total number of patents assigned to technology j is Oj = ΣkPjk. Since
two technologies may co-occur within the same patent document, then Oi ∩ Oj ≠ ∅ and thus
the number Jij of observed joint occurrences of technologies i and j is ΣkPikPjk. Applying the
latter to all possible pairs, we then produce the square matrix Ω (n*n) whose generic cell
is the observed number of joint occurrences Jij.
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This count of joint occurrences is used to construct our measure of relatedness, relating it
to its expected value µij under the hypothesis of random joint occurrence. Given this
scheme, we consider the number xij of patents assigned to both technology i and j as a
hypergeometric random variable of mean and variance (Population K, special members Oi,
and sample size Oj):
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If the actual number Jij of co-occurrences observed between two technologies i and j
greatly exceeds the expected value µij of random technological co-occurrence, then the two
technologies are highly related: there must be a strong, non-casual relationship between the
two technology classes. Inversely, when Jij < µij, then technology classes i and j are poorly
related. Hence, the measure of relatedness is defined as:

ij

ijij
ij

J

σ

µ
τ

−
= (20)

The relatedness square matrix Ω’ with elements τij has been computed for each year
between 1981 and 1997. Calculations depart from all biotechnology patent applications
assessed in the Derwent Biotechnology Abstracts (DBA). Today, more than 90 thousand
patents are reported in the DBA, from 1965 to 1999, covering 40 intellectual property
authorities. Over the period, the number of patent applications has increased almost every
year. Because three years are needed for inventory purposes, and the curve drops
precipitously after 1997, the analysis will be exclusively concerned with the period before
1997, and will thus be based on 80,163 patents. Each patent is described by its year of
approval and by a vector of 30 technology classes, taking value 1 if a technology occurs in
the patent, 0 if otherwise. For example, if technologies A and B occur within patent P, P
can be described by the 30 dimensional vector I = {1,1,0…0}.2 The matrix Ω’ is
symmetrical, with 435 possible linkages between pairs of technologies. It is of importance
that it displays the outcome of a large diversity of actors, differing in type (universities,
research institutes or firms), country and size. Thus, the matrix Ω’ provides us with some
sort of objectified biotechnological relatedness, being the outcome of the interactions of a
wide variety of actors.

Our measure of coherence is based on the degree of technological relatedness within the
firm. Similar to what Teece et al. (1994) found, the weighted average relatedness WARi of
technology i with respect to all other technologies within the firm is defined as: the degree
to which technology i is related to all other technologies present within the firm, weighted
by patent count pj. It is thus a measure of the expected relatedness of technology i with
respect to any given technologies randomly chosen within the firm. WARi may be either
positive or negative, the former (latter) indicating that technology i is closely (weakly)
related to all other technologies within the firm. For a firm developing competencies in a
number - say five - technological DBA classes, five corresponding measures of WARi are
computed. Consequently, the coherence of the firm’s knowledge base is defined as the
weighted average of the WARi measures:
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Eq.(21) estimates the average relatedness of any technology randomly chosen within the
firm with respect to any other technology. As in the previous cases, this measure can be
either negative or positive, the latter indicating that the firm’s technologies are globally

                                                
2 Within one patent, a maximum of six technologies may be assigned, which leads to a maximum of
768,211 possible combinations in a thirty-dimensional technological space.
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well related, while a negative value shows a poor average relatedness amongst the
technologies in which the firm has developed competencies. Firms with a higher degree of
knowledge relatedness are supposedly more integrated. We posit that the more integrated
knowledge bases are also more coherent because they can better exploit the synergies, i.e.
the complementarities, between the technologies.

In order to reduce the noise induced by changes in technological strategy, patent counts pj

are summed for the previous five years. This compensates for the fact that learning
processes are time-consuming, due to certain rigidities in firms’ technological
competencies. Knowledge capital measures apply a similar correction by summing R&D
expenditures over the same time span. Note that Eq.(21) involves two elements that might
affect I. As already mentioned, relatedness is determined by the interactions of all actors
for a given year, while patent count pj clearly follows the firms’ internal learning
strategies. Therefore, a disconnection exists between the yearly-objectified
biotechnological relatedness and the firm’s knowledge base. Increases or decreases in
technological relatedness might cause corresponding changes in the firm’s coherence, even
in the absence of any change in the firm’s technological portfolio. This convincingly
illustrates the fact that firms are embedded in a technological environment that they only
marginally affect, while being substantially affected by it.3

The measure of coherence of the knowledge base developed is derived from the procedure
used by Teece et al. (1994). While our procedure is formally similar to theirs, it differs in
that it applies to the knowledge base rather than to outputs, and to the interpretation of the
meaning of coherence. Teece et al. define coherence as relatedness. We think that both
similar and complementary components of the knowledge base are related, but that we are
more likely to find complementary than similar pieces of knowledge in a firm's knowledge
base. We can expect a firm's competitive advantage in a knowledge intensive sector to rely
on its ability to integrate different but complementary pieces of knowledge. This means not
only choosing pieces of knowledge that are complementary in the sense of being jointly
required to produce the firm's overall output, but also combining them effectively. The
construction of a coherent knowledge base depends both on choosing the right pieces of
knowledge and on integrating them effectively. Thus we use the terms coherence and
knowledge integration interchangeably.

Besides knowledge integration, we measure knowledge capital K as the cumulated stock of
past patent applications, using a 15 per cent depreciation rate. Obviously, patents are a
noisy measure of knowledge capital for the distribution of the value of patented knowledge
is highly skewed: few patents capture most of the returns from knowledge appropriation. A
solution would be to use citation-weighted patent counts. Hall, Jaffe and Trajtenberg
(2000) show that citation-weighted patent counts are more highly correlated with the firm’s
stock market value than mere patent counts. While we acknowledge the advantage of such a
measure, the citation-weighted count is not applicable in our case. Most citation databases
come from legal authorities such as the US, the World or the European patent offices. The
Derwent database covers 40 patent authorities so that the gathering of citation-weighted
patent counts would be almost impossible. Consequently, we use a simple patent count to
                                                
3 Of course, the nature and causes of such changes in the technological environment involve a great range
of phenomena. To discuss them at length goes well beyond the scope of this paper.
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proxy the firm’s knowledge capital, bearing in mind that this rudimentary metric is likely to
bias downwards its potential impact on the firm’s market value.

An alternative solution would be to rely on input variables such as R&D figures, since not
all knowledge is patented or is patentable. Thus, focusing on the number of patents rules
out additional knowledge that does not follow the path of appropriation. Conventional
wisdom suggests that patent-based and R&D-based figures are alternative measures of the
firm’s knowledge capital. In this paper, we assume that each provides us with
complementary information. Patent applications equate with past successes in R&D, while
current research efforts supposedly predict future inventions. Thus we associate the former
with the revealed knowledge capital while the latter informs us about the intensity of use of
this knowledge capital. We will consistently use measures of R&D intensity, rather than
mere R&D figures, to indicate the intensity of exploitation of the knowledge capital.
Finally, data on the firms’ research and development expenditures RD, operating income
Π, market capitalisation V and real assets C were collected from Worldscope Global
Researcher (WGR), which provides financial information on public companies since 1989.
All variables have been deflated in constant 1990 US dollars.

{TABLE I ABOUT HERE}

Descriptive statistics of the variables are presented in Table I. The empirical models (5a)-
(6c) are estimated using a sample of 84 firms active in biotechnology. These firms were
chosen on the basis of both patent activity and data availability. The sample is composed of
33 pharmaceutical firms, of which 17 are large chemical firms and 12 are active in agro-
food industries. These industries have all benefited from biotechnology at different levels
and for different purposes. However, for all these industries biotechnology has been a
radical technological opportunity, the exploitation of which should be shown to be related
to their innovative performance. Our sample also includes 22 firms categorised as DBFs,
i.e. firms that were created on the basis of their distinctive competencies in biotechnology.
In fact, the technological discontinuity induced by biotechnology created favourable
conditions for the entry of these new actors into the competition (Kenney, 1986; Orsenigo,
1989; Grabowski and Vernon, 1994; Saviotti, 1998). Yet, the consequent rise in the number
of DBFs has not led to the expected replacement of incumbents. For example, whilst large
pharmaceutical firms invested heavily in building in-house research capabilities in
biotechnology, DBFs found it very difficult to integrate complementary assets such as
distribution channels, production facilities, etc. Consequently, successful integration for
DBFs has been the exception rather than the rule. In our case, the DBFs chosen represent a
particular sample of the entire DBF population. Because firms were chosen on the basis of
availability of data between 1989 and 1997, all DBFs here are publicly held. Thus, they
are generally the older DBFs - established before the mid-eighties, and as a result of
integrative strategies, employing considerably more than 1,000 employees. The final
database is an unbalanced panel indexed by firm and by year with 709 effective
observations.

V. Results
We first ran four independent ordinary least square (OLS) regressions explaining (the log
of) Tobin’s q using alternatively six explanatory variables: knowledge capital over assets
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(K/C), (the log of) knowledge capital (k), knowledge integration over assets (I/C), (the log
of) knowledge integration (i), (the log of) profit (π) and (the log of) R&D intensity (r). The
results are presented in table II.

Looking firstly at the R-square, the firm’s profit is more highly correlated with the firm’s
market value than with R&D intensity, knowledge integration and knowledge capital. More
generally, the financial-based variables of profit and R&D intensity have a higher
explanatory power than the variables describing the characteristics of the firm’s knowledge
base in terms of capital and integration. This is consistent with the fact that patents are a
noisy measure of innovation due to a great discrepancy in their economic value. Thus the
use of patent stocks as a proxy for knowledge stocks brings measurement errors that are
likely to attenuate the parameter estimate for knowledge capital.

The variables Profit and R&D intensity have a straightforward meaning in terms of
elasticity of the dependent variable: a 1% increase in the firm’s operating income, i.e.
profit, raises the firm’s valuation by .32%, while a 1% increase in the firm’s research
intensity yields a .22% rise. Using the fact that q = log(V/C), β =(∂V/V)/(∂Π/Π) and λ
=(∂V/V)/(∂R/R), we derive the expected effect of a dollar increase in profit and research
expenditures on the stock market valuation of firms. We find that a $1 rise in profit
produces a $4.75 increase in the firm’s market value, while a $1 rise in its research
spending is valued at $6.10. These estimates are somewhat higher than those of Connolly
and Hirschey (1988) and Griliches (1981) who found that an extra dollar of R&D
expenditures adds $3.60 to the firm’s excess value4 and $2 to its market value. A similar
level of inflation is found when analysing the value of an additional patent to the firm’s
knowledge stock (model 1 of table II). For the representative firm with mean assets and
mean market capitalisation, our results suggest that an additional patent in the firm’s
knowledge stock is valued at $880,000. Previous estimations indicate that an additional
patent is valued at approximately $200,000 (Connolly and Hirschey,1988; Griliches, 1981;
Hall, Jaffe and Trajtenberg, 2000) and $810,000 (Pakes, 1985).

{TABLE II ABOUT HERE}

Why are our estimates biased upwards in comparison with earlier studies? A possible
explanation could be the science-based character of biotechnology. Firms that invest less in
R&D are likely to lose track of the latest developments in biotechnology, while more
research intensive firms are better positioned to come up with successful innovations.
Likewise, the expected aggregate revenue derived from royalties ought to reach higher
levels in firms with a larger knowledge stock, though more uncertainty should also be
associated with significantly higher expected returns from patent applications. Thus our
estimate may well reveal the peculiar scientific and technical intensity of biotechnology as
distinct from less technology-based sectors. Knowledge capital and R&D intensity do
provide investors with key information on the current expected value of firms.

But is knowledge integration valuable? In table II, the parameter estimates of knowledge
integration are both positive and significant, suggesting that more integrated knowledge

                                                
4 The excess value is defined as the market value of common assets plus book value of debts minus the
book value of tangible assets.
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bases are associated with higher market capitalisation. It is interesting, but, alas, difficult
to compare the parameter estimates of knowledge integration with those of knowledge
capital. Even in the case of model (4) where the parameter t does indeed represent
elasticity, little meaning can be attached to it. Instead, we use the F-statistic that provides a
measure of the explanatory power of the variables. We observe that in model (4) the
explanatory power of the knowledge integration variable (F-statistic = 29.50) is twice as
large as that of the more conventional variable of knowledge capital (model 2, F-statistic =
15.26). When normalised by the firm’s stock of capital, the explanatory power of the
knowledge capital variable K/C is twice as large as that of I/C (model 3). These
preliminary and indicative results suggest that knowledge integration as measured in this
paper is economically valuable, the extent to which this is so remains difficult to assess.5

Albeit satisfactory, the previous results draw on oversimplified specifications. As
specified in Eqs.(5a) to (6c), all variables must enter the model simultaneously and, thus,
the “horse-race” specification where all variables compete for the highest explanatory
score (Hall, Jaffe and Trajtenberg, 2000) is likely to conceal additional insights. We
investigate the relevance of the six empirical models (5a) to (6c) relating the firms’ market
value to its characteristics. Because the dependent variable is the same and the number of
explanatory variables is the same, the R-squares are directly comparable for models (5a)-
(5c) and models (6a)-(6c). Table III presents the results of Eqs.(5a)-(5c) for different
econometric specifications reported in rows, respectively the OLS specification, Least
Square Dummy Variable (LSDV) or fixed effect specification, the between (BTW-
deviations from firm means) estimates, the first difference (FD) estimates (ρ = 1), the
autoregressive models of order 1 (0 < ρ < 1 ), the AH two-stage estimators, and the GMM1
and GMM2. Their purpose was to test the robustness of the results, particularly regarding
the introduction of a radically new explanatory variable of knowledge integration.

{TABLE III ABOUT HERE}

We find evidence that knowledge integration better explains the variance in the firms’ stock
market value than its knowledge capital counterpart, although statistically model (5b) is not
significantly different from model (5a). We observe that the joint effect of knowledge
capital and integration is positively and significantly linked to the firms’ stock market value
(model 5c). When controlling for firm specific effects (LSDV model), the least square
estimator becomes positive as opposed to the OLS estimator, showing that after controlling
for firm heterogeneity, there is a relationship between the characteristics of the knowledge
base and the firm’s market value. As expected, the FD specifications yield insignificant
estimates for both the knowledge capital and knowledge integration variables, but are
reassuringly of the same signs as those produced in other specifications. This suggests that
the knowledge variables are not spuriously correlated with the dependent variables. The
more traditional variables of R&D and profit perform equally well in most types of
specification. Firms with higher profits, which devote a substantial share of their resources
to research, reach higher stock market values.
                                                
5 A possibility is to regress the dependent variable on the ranked values of knowledge integration. The
results show that a one-point increase in the ranked value of knowledge integration is associated with a
$m32.8 increase in the stock market valuation of the firm. Given that little is known about investments by
firms to improve knowledge integration, this remains not very informative.
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The estimates of the financial variables profit and R&D intensity remain robust both in
terms of the model considered (5a) to (5c) and of the various estimators. Assuming that the
estimated elasticities ß and λ of the firm’s stock market value with respect to profit π and
R&D intensity r average respectively around .290 and .235,6 we find that a $1 rise in the
firm’s profit produces a $4.30 increase in the firm’s market value, while a $1 rise in its
research spending is valued at $6.50. These figures compare well with those in table II,
showing strong robustness of the parameter estimates. Focusing on the parameter estimates
γ and τ, similar conclusions cannot be drawn. Model (5a) witnesses a drop in the estimate
of knowledge capital γ stabilising at approximately .220,7 implying that the average value
of a biotechnology patent is $330,000. This estimate is somewhat closer to the estimates of
Connolly and Hirschey (1988), Griliches (1981) and Hall, Jaffe and Trajtenberg (2000).
Model (5b) also shows a drop in the estimate of knowledge integration τ to approximately
.280. Therefore, more complete models, where the knowledge variables are entered with
supposedly more robust variables, do downwardly influence the value of the knowledge
estimates. An intuitive and tentative explanation is that although the characteristics of the
knowledge base explain a significant portion of the variance in firm’s market value, the
primary drivers for shareholders, unsurprisingly, continue to be financial, i.e. profitability
and research-intensity.

This evidence supports the view that the diversification in the firm’s knowledge base must
exploit the complementarities between the various technologies mastered by firms. This
corroborates the findings of Scott (1993) where the author notes that purposive
diversification leads to productivity growth, and those of Nesta and Saviotti (2003), who
empirically found that coherent diversification leads to higher levels of productivity in
pharmaceutical research. As expected, the stock market valuation of firms does eventually
reflect the productive value of their intangible assets and, more particularly, that coherent
knowledge bases are considered by shareholders to be economically valuable. In order to
investigate further the interactive play between both the variables of knowledge capital and
integration, we estimated models (6a)-(6c). In these models, both variables are entered
simultaneously as independent explanatory variables, on the reasonable assumption that
both measures grasp distinctive features of the firm’s knowledge base. Table V reports the
results of Eqs.(6a)-(6c).

{TABLE IV ABOUT HERE}

Models (6a) and (6b), which have been constructed along the same lines as Jaffe’s (1986)
model, perform poorly in terms of the explanatory power of the knowledge variables.
While K/C and I/C are not significant (γ in model 6a and τ  in model 6b), the significance
of the interaction variables (K/C · i in model 6a and I/C · k in model 6b) is significant in
the GMM specifications only. Thus, it is neither the stock of knowledge only nor its
coherence only that is valued by shareholders. Rather, firms with both a large and a
coherent knowledge base enjoy a higher market valuation. The previous remarks should be

                                                
6 These averages have been calculated using all models (5a) to (5c) and all estimators, where the estimate
is found to be significant at the 10% level. Lower levels of significance do not affect the means.
7 See footnote 6.



17

treated with caution because the induced multicollinearity between the explanatory
variables produced insignificant and inconsistent estimations. Thus, the interpretation
advanced is exploratory, and by no means satisfies the more conservative criteria of
econometric methods.

More satisfactory is the multiplicative model (6c), which carries the highest explanatory
power in four of the least square estimators, namely the OLS, the fixed effect or LSDV, the
firm mean or between (BTW) and the autoregressive (AR1) estimators. Most parameter
estimates, which in model (6c) are all elasticities, contribute positively and significantly to
the firms’ stock market value. Our measure of knowledge integration remains significantly
different from zero in most regressions. Typically, two firms having an equal patent stock
may well be valued differently on the basis of their technological coherence: those having a
higher degree of knowledge integration will reach higher market valuations than their less
coherent counterparts. In all models where the firm’s fixed effect is grasped (LSDV, FD,
AR1, FSAR1, AH, GMM1 and GMM2) the estimated elasticity τ reduces sharply. This
suggests that the measure of knowledge integration is not only stable over time, but also
captures a lot of the firm’s specificity. A univariate analysis of the variance of I shows that
two-thirds of the variance is found between rather than within firms. The mean elasticities
ß and λ are to some extent inferior to prior estimations with mean values of approximately
.250 and .175.8 This means that a $1 increase in the firm’s profit yields a $3.50 increase in
the firm’s market value, while a $1 rise in its research spending translates into a $4.85
increase in value. Model (6c) also shows a striking decrease in the average value of a
patent. Using the mean value of γ ( 135.=γ ), the average value of a biotechnology patent
drops to $16,000.

The previous comments shed doubt on the validity of models (5a), (5b), (5c), (6a) and
(6b). Additive linear specification of these models is predominant in most papers dealing
with the value of firms’ intangible assets. Their advantage is to assume constant returns to
scale of the firm’s stock market value with respect to its tangible capital. All variations in
the firms’ valuation become imputable to the firm’s intangible assets, provided that we
control for other phenomena that may affect the firm’s Tobin’s q. However, while the
elasticities of financial variables Π and R are quite robust from one model to another, we
notice that our estimations of the contribution of the knowledge variables K and I are all the
more model dependent, that is, the parameter estimates depend mostly on the functional
representation of valuation function. Looking exclusively at the explanatory power of our
specification, model (6c) is the best model representing the firms’ stock market valuation.
It is what we have called the multiplicative model because all stock variables enter the
valuation function multiplicatively rather than additively. Similar formulation of models
(5a) and (5b), entering the logarithm of the knowledge variables, proved to systematically
explain a higher share of the variance of the firm’s Tobin’s q. The elegance of the logic
found in the predominant additive model vanishes when compared to a more conventional
Cobb-Douglas representation of the valuation function.

To further address the question of the validity of the model, we explore the robustness of
our results using different sub-samples of the original dataset. Table V displays the results

                                                
8 See footnote 6.
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using model (6c). For comparison purposes, the left hand side of table V presents again the
results for the whole sample as found in table IV.

{TABLE V ABOUT HERE}

We first test the robustness of the results on the balanced panel. A balanced panel is a
panel dataset for which observations are kept for only those firms that are observed every
year. Those firms that enter or exit the panel are not kept as observations and we thus
introduce a selectivity bias for more stable, surviving firms. 603 observations (67 × 9 =
603) remain. We observe that the parameter estimates of the knowledge variables become
insignificant in almost all models, while the financial variables of profit and R&D have
inflated parameter estimates. A plausible explanation is that the more stable companies are
also large and diversified firms. The short-term performance of larger firms is likely not to
be linked to the qualitative characteristics of their knowledge base while the financial
results and behaviour of the firms is likely to provide shareholders with vital information
on the financial performance of their investment. This also implies that the characteristics
of the knowledge base of the remaining firms provide shareholders with key information on
their real value, i.e. other than replacement costs.

The above remarks suggest that higher levels of knowledge capital and integration equate
with lower survival chances. However, we do not concur with this assessment. Most of the
firms that disappear in the time span of our sample were acquired by, or merged with,
larger firms. Mergers and acquisitions have increased significantly over the past decade, as
they have proved an efficient way to acquire expertise in the realm of biotechnology. Thus
our conjecture is that the characteristics of the firm’s knowledge base have gained value in
the most recent years of the period. Table V tests the presence of such structural change
during the period 1989-1997 in two ways. Firstly, we ran the regression for post-1993
observations only. 334 observations were left. As expected, most parameter estimates are
inflated, although the extent of this inflation is limited as the F-statistics reveal. This
confirms our intuition that the characteristics of the knowledge base have gained momentum
as the technology has developed. Firms that have reached higher levels of knowledge
capital and knowledge integration are valued more highly on the stock market, and this
relationship becomes more relevant when the technology cycle reaches more mature
phases. Secondly, we ran similar regressions on post-1993 observations retaining only the
stable firms (i.e. those that are present for the whole sample). We achieved 268 (67 × 4 =
268). We observe that the knowledge integration variables remain significant in most
models, thus confirming our initial intuition. More profitable and research-intensive firms
are highly valued on the stock market. But firms that diversify their knowledge base
coherently, that is, firms that exploit complementary technologies, enjoy higher market
values than do less coherent firms.

VI. Discussion and Conclusion
Our paper has dealt with the determinants of the market value of biotechnology firms in the
period 1989-1997. In particular, we were interested in the role played by the coherence of
the knowledge base of firms. We found evidence that the degree of knowledge integration
within firms is a significant explanatory variable of firms’ stock market value. This means
that knowledge integration is economically valuable, as our initial intuition suggested. We
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found additional evidence that the explanatory power of knowledge integration is at least
as great as the variable for knowledge stock. While knowledge stock is indeed important,
the way firms combine their technology is equally valuable for shareholders.

As was pointed out in the introduction, the relationship between different components of
intangible capital and the market value of firms cannot be considered constant over time.
The precise mechanisms and the extent to which given elements of intangible capital
contribute to the market value of firms can be expected to vary cyclically and at any given
time across industrial sectors. For example, we doubt that our results would apply to
mature industries. In this case we would expect firm strategies to switch from knowledge
integration to product-market integration in related businesses as technologies moved into
later stages of development. Moreover, the mechanisms of knowledge creation and
utilisation may vary amongst sectors of equivalent knowledge intensity.

There is little systematic knowledge about the relationship of different components of
intangible capital to the market value of firms and about their inter-temporal and inter-
sectoral variation. We hope that our study makes a valuable contribution to the construction
of such knowledge.

On a more methodological note, we found a multiplicative model, similar to a Cobb-
Douglas representation of the valuation function, to be more effective than the predominant
additive model, although the latter may be may be intellectually more elegant. Our results
suggest that while the knowledge variables are not sensitive to the model chosen, their
contribution, or impact, changes considerably. The additive model yields estimates that
inflate by a factor of 20 the average value of a patent in biotechnology when compared with
the more conventional Cobb-Douglas type of model.
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TABLE I.

DESCRIPTIVE STATISTICS FOR SAMPLE REGRESSION (1989-1997, N=709)

Variables Meaning and measure Mean Std.Dev. Min Max

V Stock Market Valuea 9,006,474.00 1.35 × 107 9,836.70 9.95 × 107

C
Firm’s Total assets
Value at replacement costs a 6,046,695.00 7,460,181.00 4,422.20 3.62 × 107

Π Operating incomea 620,021.00 920,055.00 -426,524.90 4,510,622.00

RD Research and Development expenses a 324,234.00 389,324.60 858.50 1,918,850

K Knowledge Stock (Patent Accumulation) 75.60 69.05 2.08 491.53

I Degree of Knowledge Integration 3.18 5.54 -6.35 35.12835

a Thousand of 1990 US dollars.

TABLE II.
LEAST SQUARES REGRESSIONS COMPARING THE EXPLANATORY POWER OF KNOWLEDGE
CAPITAL, KNOWLEDGE INTEGRATION, PROFIT, R&D INTENSITY.
DEPENDENT VARIABLE: LOG OF TOBIN’S Q.

Explanatory variable γ t β λ
Standard.
Parameter

F-stat. of
variable

R2 Model F SEE

Knowledge Capital K/C (1)
596.0
(.00)

.173
(.00)

39.02
(.00)

.402
46.76
(.00)

.595

Knowledge Capital k (2)
.103
(.00)

.125
(.00)

16.21
(.00)

.415
54.54
(.00)

.589

Knowledge Integration I/C (3)
587.3
(.03)

.132
(.03)

12.17
(.00)

.401
46.64
(.00)

.595

Knowledge Integration i (4)
.320
(.00)

.200
(.00)

29.50
(.00)

.426
52.91
(.00)

.583

Profit π (5)
.327
(.00)

.290
(.00)

79.80
(.00)

.463
59.75
(.00)

.563

R&D intensity r (6)
.220
(.00)

.293
(.00)

44.88
(.00)

.437
50.18
(.00)

.576

Number of observations: 709. Heteroskedastic-consistent standard errors computed for all regressions. P-values in parentheses.
All regressions include a complete set of year and sectoral dummies.
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TABLE III.
MARKET VALUATION AS A FUNCTION OF KNOWLEDGE CAPITAL (?), KNOWLEDGE INTEGRATION (t), KNOWLEDGE RESOURCES (φ), PROFIT
(ß) AND R&D INTENSITY (?).

Eq.(5a) Eq.(5b) Eq.(5c)

γ β λ R2 SEE Sarg m2 t β λ R2 SEE Sarg m2 φ β λ R2 SEE Sarg m2

OLS
.061

(.57)
.301

(.00)
.179

(.00)
.488 .551 - -

-.045
(.62)

.297
(.00)

.185
(.00)

.488 .551 - -
.010

(.07)
.303

(.00)
.174

(.00)
.490 .549 - -

LSDV
.219

(.02)
.211

(.03)
.206

(.00)
.135 .386 - -

.329
(.00)

.218
(.02)

.214
(.00)

.144 .384 - -
.014

(.02)
.221

(.02)
.209

(.00)
.136 .386 - -

BTW
-.062
(.82)

.269
(.00)

.221
(.00)

.683 .415 - -
-.393
(.26)

.264
(.00)

.233
(.00)

.688 .411 - -
.003

(.88)
.274

(.00)
.215

(.00)
.682 .414 - -

FD
.228

(.14)
.131

(.10)
108

(.22)
.166 .340 - -

.078
(.30)

.132
(.10)

.128
(.15)

.164 .340 - -
.009

(.51)
.133

(.09)
.130

(.15)
.162 .341 - -

AR1
.242

(.07)
.217

(.00)
.135

(.08)
.139 .314 - -

.276
(.00)

.221
(.00)

.156
(.05)

.141 .314 - -
.014

(.07)
.224

(.00)
.147

(.06)
.138 .315 - -

FSAR
.199

(.05)
.188

(.01)
.197

(.10)
.203 .286 - -

.248
(.00)

.190
(.00)

.212
(.05)

.205 .286 - -
.010

(.25)
.197

(.00)
.207

(.06)
.194 .287 - -

AH
.290

(.06)
.065

(.59)
.409

(.00)
.226 .299 - -

.098
(.55)

.078
(.52)

.441
(.00)

.252 .300 - -
.051

(.00)
.086

(.48)
.315

(.00)
.255 .299 - -

GMM1
.126

(.37)
.490

(.01)
.236

(.02)
- .345

288.1
(.00)

-2.25
(.02)

.269
(.00)

.445
(.00)

.219
(.00)

- .351
251.3
(.00)

-1.94
(.05)

.053
(.00)

.556
(.00)

.193
(.06)

- .341
279.7
(.00)

-1.78
(.07)

GMM2
.159

(.05)
.542

(.00)
.292

(.00)
- .347

73.2
(.96)

-1.22
(.22)

.293
(.00)

.439
(.00)

.231
(.00)

- .351
74.70
(.48)

-1.19
(.25)

.054
(.00)

.594
(.00)

.227
(.00)

- .363
75.14
(.94)

-.87
(.39)

The OLS, LSDV, AR and PSAR models have 709 observations. The BTW (group means) model has 84 observations. The FD (first difference) model has 625 observations. The AH, GMM1 and GMM2
models have 374 observations using three lags. All models include year dummy variables. The OLS, BTW, AR1, FSAR1, AH, GMM1 and GMM2 include industry dummy variables. In GMM1 and
GMM2, all explanatory variables are considered as predetermined, while the year dummy variables are entered as instruments. All standard errors are adjusted for panel heteroskedasticity using the
White’s correction. The parameter γ, t and φ have been multiplied by 10-3 for convenience only.
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TABLE IV.
MARKET VALUATION AS A FUNCTION OF KNOWLEDGE CAPITAL (?), KNOWLEDGE INTEGRATION (t), PROFIT (ß) AND R&D INTENSITY (?).

Eq.(6a) Eq.(6b) Eq.(6c)

γ t β λ R2 SEE Sarg m2 γ t β λ R2 SEE Sarg m2 γ t β λ R2 SEE Sarg m2

OLS
-.732
(.07)

.274
(.04)

.297
(.00)

.178
(.00)

.491 .550 - -
.036

(.89)
-.144
(.85)

.298
(.00)

.185
(.00)

.487 .551 - -
.119

(.00)
.440

(.00)
.325

(.00)
.175

(.00)
.540 .522 - -

LSDV
-.365
(.42)

.195
(.19)

.221
(.02)

.212
(.00)

.136 .386 - -
-.146
(.41)

7.22
(.08)

.215
(.02)

.217
(.00)

.145 .384 - -
.141

(.00)
.150

(.01)
.185

(.05)
.211

(.00)
.149 .384 - -

BTW
-.380
(.79)

.117
(.82)

.269
(.00)

.218
(.00)

.683 .417 - -
.616

(.22)
-2.09
(.33)

.271
(.00)

.216
(.01)

.691 .412 - -
.105

(.07)
.660

(.00)
.323

(.00)
.204

(.00)
.747 .372 - -

FD
-.264
(.84)

.172
(.69)

.134
(.09)

117
(.17)

.168 .340 - -
.337

(.35)
-.730
(.42)

.135
(.09)

111
(.24)

.166 .340 - -
.146

(.07)
.060

(.46)
.133

(.09)
.134

(.13)
.166 .341 - -

AR1
-.455
(.62)

.237
(.41)

.227
(.01)

.145
(.06)

.143 .314 - -
.114

(.65)
.028

(.97)
.222

(.01)
.149

(.05)
.141 .314 - -

.175
(.00)

.125
(.05)

.191
(.02)

.143
(.07)

.151 .312 - -

FSAR1
-.009
(.99)

.068
(.79)

.194
(.01)

.201
(.08)

.198 .286 - -
-.052
(.83)

.111
(.85)

.193
(.01)

.211
(.05)

.206 .287 - -
.142

(.00)
.083

(.28)
.172

(.01)
.190

(.10)
.203 .287 - -

AH
-3.64
(.00)

1.40
(.00)

.068
(.56)

.438
(.00)

.243 .292 - -
1.79

(.00)
-4.73
(.00)

.076
(.53)

.432
(.00)

.229 .296 - -
.042

(.73)
.085

(.37)
.024

(.88)
.308

(.00)
.220 .307 - -

GMM1
-3.76
(.00)

1.43
(.00)

.522
(.00)

.233
(.02)

- .336
309.8
(.00)

-1.68
(.09)

2.63
(.00)

-7.23
(.00)

.455
(.01)

.356
(.00)

- .330
397.6
(.00)

-2.21
(.02)

.060
(.72)

. 200
(.10)

.298
(.12)

.166
(.09)

- .347
270.6
(.00)

-1.71
(.09)

GMM2
-3.53
(.00)

1.37
(.00)

.580
(.00)

.274
(.00)

- .338
75.3

(.99)
-1.11
(.27)

2.66
(.00)

-7.30
(.00)

.495
(.00)

.330
(.00)

- .332
76.30
(.54)

-1.16
(.24)

.111
(.04)

. 152
(.01)

.360
(.00)

.174
(.00)

- .363
74.11
(.99)

-1.14
(.25)

The OLS, LSDV, AR and PSAR models have 709 observations. The BTW (group means) model has 84 observations. The FD (first difference) model has 625 observations. The AH, GMM1 and GMM2
models have 374 observations using three lags. All models include year dummy variables. The OLS, BTW, AR1, FSAR1, AH, GMM1 and GMM2 include industry dummy variables. In GMM1 and
GMM2, all explanatory variables are considered as predetermined, while the year dummy variables are entered as instruments. All standard errors are adjusted for panel heteroskedasticity using the
White’s correction. The parameter γ and t in Eq.(6a) and Eq.(6b) have been multiplied by 10-3 for convenience only.
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TABLE V.
TESTING FOR STABILITY USING MODEL 6C

Unbalanced Panel
N = 709

Balanced Panel
N = 603

Panel > 1993
N = 334

Balanced Panel > 1993
N = 268

γ t β λ
F

(p-va)
γ t β λ

F
(p-va)

γ t β λ
F

(p-va)
γ t β λ

F
(p-va)

OLS
.119

(.00)
.440

(.00)
.325

(.00)
.175

(.00)
-

.088
(.00)

.392
(.00)

.328
(.00)

.203
(.00)

3.45
(.00)

.098
(.00)

.514
(.00)

.454
(.00)

.122
(.00

26.2
(.06)

.089
(.01)

.532
(.00)

.456
(.00)

.158
(.01)

46.95
(.00)

LSDV
.141

(.00)
.150

(.01)
.185

(.05)
.211

(.00)
-

.121
(.03)

.056
(.33)

.305
(.05)

.281
(.00)

5.61
(.00)

.246
(.05)

.141
(.09)

.389
(.13)

-.085
(.38)

29.45
(.00)

.192
(.10)

.064
(.53)

.677
(.00)

.282
(.04)

23.66
(.00)

FD
.146

(.07)
.060

(.46)
.133

(.09)
.134

(.13)
-

.090
(.31)

-.042
(.51)

.174
(.02)

.267
(.01)

4.37
(.00)

.200
(.06)

.046
(.69)

.163
(.23)

.206
(.16)

.398
(.98)

.138
(.22)

.058
(.60)

.192
(.12)

.622
(.00)

3.35
(.00)

AR1
.175

(.00)
.125

(.05)
.191

(.02)
.143

(.07)
-

.158
(.05)

.007
(.89)

.272
(.00)

.262
(.00)

5.32
(.00)

.200
(.01)

.226
(.03)

.287
(.10)

.230
(.06)

1.39
(.18)

.162
(.11)

.152
(.10)

.428
(.00)

.520
(.00)

6.70
(.00)

FSAR
.142

(.00)
.083

(.28)
.172

(.01)
.190

(.10)
-

.116
(.05)

-.018
(.79)

.262
(.02)

.288
(.00)

4.82
(.00)

.142
(.01)

.160
(.07)

.267
(.00)

.177
(.23)

2.93
(.00)

.027
(.72)

.115
(.09)

.504
(.00)

.473
(.00)

9.18
(.00)

AH
.042

(.73)
.085

(.37)
.024

(.88)
.308

(.00)
-

-.048
(.69)

.019
(.83)

.049
(.66)

.418
(.00)

-
.231

(.20)
.120

(.39)
.252

(.23)
.223

(.05)
-

.225
(.22)

.089
(.47)

.374
(.04)

.502
(.00)

-

GMM1
.060

(.72)
. 200
(.10)

.298
(.12)

.166
(.09)

-
-.199
(.13)

. 090
(.40)

.355
(.02)

.330
(.00)

-
.135

(.43)
. 232
(.18)

.202
(.38)

.111
(.34)

-
-.115
(.26)

. 054
(.68)

.280
(.12)

.395
(.00)

-

GMM2
.111

(.04)
. 152
(.01)

.360
(.00)

.174
(.00)

-
-.154
(.13)

. 173
(.10)

.207
(.04)

.335
(.00)

-
.050

(.56)
. 240
(.00)

.238
(.00)

.122
(.00)

-
-.099
(.39)

.101
(.09)

.251
(.00)

.500
(.00)

-

The OLS, LSDV, AR and PSAR models have 709 observations. The BET (group means) model has 84 observations. The FD (first difference) model has 625 observations. GMM1 and GMM2 have 457
observations using two lags. All models include year dummy variables, and industry dummy variables when the variables are entered in levels (OLS, BET, GMM1 and GMM2). In GMM1 and GMM2,
the financial variables are considered endogenous while the variables characterising the firms’ knowledge base are entered as predetermined. The year dummy variables are entered as instruments in
the GMM specifications. All standard errors are adjusted for panel heteroskedasticity using the White’s correction.
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APPENDIX A

A particularly important question in using GMM estimators is the endogeneity of the
explanatory variables. This challenges the conventional wisdom that the firm’s set of
characteristics (its profit, its research intensity, its knowledge stock and level of
integration) drives its market value but that the reverse is not true. With increased access to
information, shareholders and other institutional investors may well have an effect on the
firm’s decisions in the short run, thus influencing future levels of R&D investment, ultimate
profit and knowledge characteristics. In other words, these potential reverse relationships
between the dependent and explanatory variables suggest that the latter are likely to behave
as endogenous variables.

To address the potential endogeneity, predeterminedness or exogeneity of the explanatory
variables, we perform a Granger test for causality. Granger’s notion of causality states that
x Granger causes q if we are better able to predict q using lagged values of x and lagged
values of q. In the presence of endogenous variables, a feedback loop is expected to occur,
such that x causes q and, symmetrically, that q causes x. If we observe that x causes q but q
does not cause x, this latter variable x is meant to be predetermined. The test for causality
is performed by estimating the following system:

(1A)

(2A)

where x is the log of any of the variables K, I, ?  and R, and thus d = {γ, t, β, λ}. Because
Granger causality tests are sensitive to the chosen lags, we present the results for different
lag structures, where p = 2 to p = 4. The choice of a maximum of four lags is dictated by
the size of the sample and the availability of a sufficient number of observations. The
results are reported in table III. On the left-hand side of the table, results for Eq.(1A) are
reported. On the right-hand side of the table, results for Eq.(2A) are reported. For each
estimation, evidence of the validity of instruments (Sargan specification test), the first and
second order test for autocorrelation of the residuals (m1 and m2, respectively) is
reported. The joint significance test of ?2 refers to the causality test “does x Granger cause
q?” for Eq.(1A) and “does q Granger cause x?” for Eq.(2A). The last column of table III,
shows the direction of the Granger causality.

{TABLE T1A ABOUT HERE}

Table III presents strong evidence of the endogeneity of the currency-based variables of
research intensity and profit. This reflects the fact that the current valuation of firms by the
market is quite likely to influence current and future decisions such as  investment in R&D.
This offers essential insights into the decision making process of firms. Of particular
importance is that firms may decide on higher levels of R&D investment to capitalise on
their current valuation rather than to benefit from expected revenues derived from future
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innovations. Note that this may well reconcile the inherent dilemma of firms as to whether
to explore future avenues of research or to exploit their current technologies. Further
probing of such an interpretation would require additional insights from the firms
themselves, for little can be concluded from the available data.

The behaviour of the knowledge variables is rather different. No evidence of endogeneity
is found when allowing for a two-year or three-year lag: the valuation of firms by the
market is not likely to affect future levels of knowledge stocks or integration. The reverse
causation applies however: current levels of knowledge stocks and integration do affect the
current valuation of the firm by the market. This is consistent with the fact that knowledge
acquisition and integration is particularly time demanding. In fact, there is a considerable
level of irreversibility in the technological strategies pursued by firms. While the
characteristics of the firms’ knowledge base do affect the current valuation of firms,
changes in the value of the firm are likely to affect the degree of knowledge integration
over a four-year time period. Examples of such shocks are the release of the human genome
into the public domain, affecting the market value of firms such as Celera, which had relied
extensively on appropriating returns from human genetic sequences. Our results suggest that
ceteris paribus, recovering previously achieved levels of market valuation is likely to take
on average, four years.

The discussion should be read with caution. The most consistent specification occurs when
allowing for three lags only, for which we can safely reject the null hypothesis of second
order autocorrelation of the residuals (m2). There is, however, little evidence of the
validity of instruments (Sargan Test) for Eqs.(1A) and (2A), while second-order
autocorrelations arise when allowing for two-year and four-year lags. In the face of little
evidence of endogeneity and predeterminedness, we would adopt the milder assumption of
predeterminedness of all the explanatory variables in the subsequent GMM regressions.
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TABLE T1A.
GRANGER CAUSALITY TESTS.

Eq.(1A)
Market value as dependent

Eq.(2A)
Market value as explanatory

Granger
Causality

Lags (2). N=457

Sarg. m1 m2 ?2 Sarg. m1 m2 ?2

Knowledge Capital
58.0

(.005)
-3.05

(.002)
-2.74

(.006)
12.92

(.006)
16.06

(.327)
-1.62

(.105)
.94

(.345)
5.18

(.159)
k → q

Knowledge Integration
58.7

(.004)
-3.11

(.001)
-2.43

(.015)
16.0

(.001)
22.7

(.359)
1.12

(.264)
.66

(.508)
4.16

(.125)
i → q

Profit
58.5

(.004)
-3.26

(.001)
-2.74

(.006)
4.6

(.201)
38.7

(.227)
-2.74

(.006)
-1.31

(.197)
33.21

(.000)
p ← q

R&D intensity
58.3

(.004)
-3.10

(.001)
-3.52

(.004)
24.8

(.000)
62.3

(.002)
-2.38

(.002)
-1.36

(.175)
13.73

(.003)
r ↔ q

Lags (3). N = 374

Sarg. m1 m2 ?2 Sarg. m1 m2 ?2

Knowledge Capital
52.9

(.006)
-2.87

(.004)
-1.19

(.233)
21.7

(.000)
34.9

(.106)
-1.72

(.085)
-1.42

(.154)
3.98

(.408)
k → q

Knowledge Integration
56.9

(.002)
-2.91

(.003)
-.82

(.413)
10.3

(.035)
39.0

(.126)
-4.70

(.000)
-2.73

(.006)
3.52

(.474)
i → q

Profit
57.5

(.002)
-2.98

(.002)
-1.16

(.248)
9.94

(.041)
34.6

(.258)
-2.13

(.033)
-1.48

(.140)
12.95

(.012)
p ↔ q

R&D intensity
48.8

(.017)
-2.48

(.013)
-1.62

(.104)
130.8

(.000)
52.0

(.008)
-.82

(.413)
-.71

(.480)
65.63

(.000)
r ↔ q

Lags (4). N = 292

Sarg. m1 m2 ?2 Sarg. m1 m2 ?2

Knowledge Capital
43.2

(.018)
-2.63

(.008)
3.34

(.000)
24.52

(.000)
26.0

(.461)
-.14

(.89)
-1.37

(.169)
9.78

(.082)
k ↔ q

Knowledge Integration
46.7

(.009)
-2.50

(.004)
3.79

(.000)
28.5

(.062)
29.2

(.299)
-1.08

(.278)
-1.17

(.248)
47.45

(.001)
i ↔ q

Profit
46.0

(.009)
-2.91

(.004)
3.72

(.000)
44.8

(.000)
30.1

(.265)
-2.45

(.015)
-1.92

(.053)
17.79

(.003)
p↔ q

R&D intensity
46.3

(.008)
-1.74

(.082)
2.24

(.025)
150.5

(.000)
46.7

(.007)
-3.00

(.003)
-2.13

(.034)
70.62

(.000)
r ↔ q

GMM two-step estimator. The explanatory variables x and q are entered as endogenous. All estimations include year dummy
variables, entered as instruments in the GMM specifications.
P-values in parentheses.
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