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Abstract 

 
The multidimensional character and inherent conflict with categorisation of 
interdisciplinarity makes its mapping and evaluation a challenging task. We 
propose a conceptual framework that aims to capture interdisciplinarity in the 
wider sense of knowledge integration, by exploring the concepts of diversity 
and coherence. Disciplinary diversity indicators are developed to describe the 
heterogeneity of a bibliometric set viewed from predefined categories, i.e. 
using a top-down approach that locates the set on the global map of science. 
Network coherence indicators are constructed to measure the intensity of 
similarity relations within a bibliometric set, i.e. using a bottom-up approach, 
which reveals the structural consistency of the publications network. We carry 
out case studies on individual articles in bionanoscience to illustrate how 
these two perspectives identify different aspects of interdisciplinarity: 
disciplinary diversity indicates the large-scale breadth of the knowledge base 
of a publication; network coherence reflects the novelty of its knowledge 
integration. We suggest that the combination of these two approaches may be 
useful for comparative studies of emergent scientific and technological fields, 
where new and controversial categorisations are accompanied by equally 
contested claims of novelty and interdisciplinarity. 
 
 
Keywords 
Interdisciplinary research; nanotechnology; nanoscience; diversity; indicators; 
network analysis. 
  
 
1. Introduction 
 
In policy discourse interdisciplinarity is often perceived as a mark of ‘good’ 
research: interdisciplinary research is seen as more successful in achieving 
breakthroughs and relevant outcomes, be it in terms of innovation for 
economic growth or for social needs. This has led to policies aimed at 
fostering interdisciplinarity, particularly in fields, such as biotechnologies or 
nanotechnologies, regarded as emerging through technological convergence. 
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However, the concept of interdisciplinarity and its variants (multi, trans, 
crossdisciplinarity)1 is problematic, if not controversial (Weingart and Stehr, 
2000). First, given its polysemous and multidimensional nature (Sanz-
Menéndez et al., 2001), there is no agreement about pertinent indicators, or 
the appropriateness of categorisation methods (Bordons et al., 2004). 
Second, although the etymology of inter-, multi-, trans- and cross-disciplinarity 
suggests that this is a property that is between, beyond or across various 
disciplines, interdisciplinarity is widely and ambiguously used to mean 
research spanning a variety of areas - academic disciplines, technological 
fields and/or even industrial sectors. Consequently, interdisciplinarity has 
been declared to be ‘no longer adequate’ (Klein 2000, p.3) or a misnomer 
(Glaser, 2006). Thus, the process of integrating different bodies of knowledge 
rather than transgression of disciplinary boundaries per se, has been 
identified as the key aspect of so-called ‘interdisciplinary research’ (National 
Academies, 2005).  
 
How can this knowledge integration be assessed? While some sort of 
taxonomy is necessary to ‘shrink’ and locate on a manageable map the 
integration occurring in the gigantic landscapes of scientific knowledge, any 
categorisation entails the adoption of ‘rigid’ boundaries, which hinders 
accurate description of the ‘fluid’ dynamics of science (Zitt, 2005). This 
tension between taxonomy and dynamics is particularly acute in emergent 
fields, and often produces conflicting views. For example, in nanotechnology, 
coarse-grained studies tend to emphasize the interdisciplinary nature of the 
field (Meyer and Persson, 1998; Leydesdorff and Zhou, 2007), whereas lower 
level studies suggest that, below the re-labelling, genuine knowledge 
integration is occurring at a slower pace (Schummer, 2004; Rafols, 2007). 
 
Policies fostering interdisciplinarity, therefore, sometimes appear to be based 
more on conventional wisdom and arbitrary classification than on empirical 
evidence. This investigation aims to inform policy-making on the dynamics of 
emerging fields by providing measures that capture the intensity of 
interdisciplinarity in the wider sense of knowledge integration. We do so by 
combining macro and micro level perspectives. We use as case studies 
individual publications in biomolecular motors, a research specialty of 
bionanoscience, and analyse interdisciplinarity as revealed from the set of 
references. 
 
The paper is organised as follows. Section 2 presents the concepts of 
diversity and coherence, relates them to the literature on interdisciplinarity and 
proposes an analytical framework to investigate knowledge integration. 
Section 3 describes the empirical data and the operationalisation of diversity 
and coherence as bibliometric indicators. Section 4 applies the diversity-
coherence framework to case studies of individual articles in biomolecular 
motors. Section 5 summarises the results and discusses their implications.  
 
 

                                            
1 In this study interdisciplinarity refers to all these types of cross-disciplinary research.  
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2. Conceptual framework 
 

2.1. Review of bibliometric studies on interdisciplinarity 
 
Several bibliometric studies have addressed the issue of interdisciplinarity, 
directly (see review by Bordons et al., 2004) or through discussion of related 
issues such as mapping knowledge flows among fields (see review by Zitt, 
2005). Its study involves the choice of a disciplinary taxonomy, and/or 
relational properties (similarities, co-occurrences, flows) to characterise the 
interactions between elements or categories. 
 
Most investigations use a top-down approach and predefined categories 
(typically ISI Subject Categories - SCs) to study their proportions and/or 
relations. For example, van Raan and van Leeuwen (2002) describe 
interdisciplinarity in an institute in terms of the percentage of publications and 
citations received to and from each SCs. In the following three sections, we 
explore how these studies can be conceptualised as expressing disciplinary 
diversity.  
 
Some investigations adopt a bottom-up approach, in which the low-level 
elements investigated (e.g. publications, papers) are clustered or classified 
into factors on the basis of multivariate analyses of similarity measures 
(Small, 1973; Braam et al., 1991; van den Besselaar and Leydesdorff, 1994; 
Schmidt et al., 2006). These clusters are then projected in 2D or 3D maps to 
provide an insight into the structure of the field and estimate the degree of 
network-level similarity. Similarity measures have also been used to compute 
network properties, such as centralities, to identify interdisciplinarity (Otte and 
Rousseau, 2002; Leydesdorff, 2007). Following Nesta and Saviotti (2005), in 
this study, we conceptualise network-level properties as network coherence. 
 
We build on top-down and bottom-up approaches, to develop a methodology 
combining (i) diversity measures using large-scale disciplinary categories, 
with (ii) network measures based on similarities among publications. 
 

2.2. Definition of interdisciplinarity 
 
In line with a number of works (National Academies, 2004, Porter et al., 2006, 
p.3), interdisciplinarity is defined here as a mode of research that integrates 
concepts or theories, tools or techniques, information or data from different 
bodies of knowledge. As highlighted by Porter et al., the key concept is 
‘knowledge integration’. In order to capture the process of integration in 
research, we need to investigate two aspects: 

 
Diversity:  number, balance and degree of difference between the 
bodies of knowledge concerned;  
 
Coherence:  the extent that specific topics, concepts, tools, data, etc. 
used in a research process are related.  
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In this framework, we view the knowledge integration process as being 
characterised by high cognitive heterogeneity (diversity) and increases in 
relational structure (coherence); in other words as a process in which 
previously different and disconnected bodies of research become related.  
 

2.3. Diversity: concept and measures  
 
The concept of diversity is used in many scientific fields, from ecology to 
economics and cultural studies, to refer to three different attributes of a 
system comprising different categories (Stirling, 1998, 2007; Purvis and 
Hector, 2000): 
 

• variety: number of distinctive categories; 
• balance: evenness of the distribution of categories; 
• disparity or similarity 2 : degree to which the categories are 

different/similar.  
 
Figure 1 depicts how an increase in any of these attributes results in an 
increase in the diversity of the system examined.  
 

Variety:
Number of 
disciplines

Balance:
Evenness of 
distribution

Disparity or 
Similarity:
Degree of difference

Increasing
Diversity

 
 
Figure 1. Schematic representation of the attributes of diversity, based on Stirling 
(1998, p. 41). 
 
Stirling (2007) shows that classic indices of diversity, such as Shannon’s or 
Simpson’s (also known as Herfindahl’s), measure a combination of variety 
and balance, but fail to account for the distances or similarities between 
categories. On the basis of a set of criteria, he proposes a general diversity 

                                            
2 Hereafter we will use only the term similarity, which is the one commonly used in 
bibliometrics. 
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heuristic in order to explore how diversity indices differ when more or less 
emphasis is given to variety, balance and similarity. Stirling’s heuristic can be 
formulated in a generalised diversity index which reduces to the traditional 
indices for specific set of parameters α, β (Stirling, 2007, p.7). For parsimony, 
here we define Stirling index Δ as the variant for α=1, β=1, the simplest form 
incorporating variety, balance and similarity. Table 1 presents the notation 
and diversity indices used in our study. 
 
As the formulae show, Stirling index Δ can be understood as a Simpson 
diversity in which the products of proportions of categories are weighted by 
distance/similarity. Our interest in using Stirling’s framework to track 
interdisciplinarity is twofold. First, since Stirling’s generalised formulation 
needs a metric (dij) and has open values for the parameters α and β, it 
highlights that the mathematical form of any diversity index includes some 
prejudgement of the aspect of diversity that is considered important. High 
values for β give more weight to the contribution of large categories, and high 
values for α see the co-occurrence of distant categories as more important. 
The choice of the metric used to define distance is inevitably value laden. 
Second, and very importantly for emerging fields, the inclusion of distance 
among categories lessens the effect of inappropriate categorisation changes: 
if a new category i is very similar to an existing category j, their distance dij will 
be close to zero, and its inclusion in categories list will result in only slightly 
increased diversity.3  
 

Table 1. Selected measures of diversity. 

Notation:  
Proportion of elements in category i: pi 
Distance between categories i and j: dij 
Similarity between categories i and j: sij = 1- dij 
Indices:  
N = Variety N 

H = Shannon ∑−
i

ii pp ln  

I = Simpson diversity4  ∑ ∑
≠

−=
)(,

21
jiji i

iji ppp  

Δ = Stirling (α=1, β=1) ∑∑ −=
ji

jiij
ji

jiij ppsppd
,,

1  

Generalised Stirling ( )βα∑
ji

jiij ppd
,

 

 

                                            
3 One example could be ‘Nanoscience&Nanotechnology’ (N&N) from the ISI categorisation: 
according to Leydesdorff’s and Rafols’ metric (forthcoming), N&N has a distance of only 
0.0354 with ‘Materials Science, multidisciplinary’, whereas the distance between the latter and 
a relatively related field, such as ‘Physics, applied’, is 0.1916. 
 
4 Simpson diversity is defined as (1-Simpson Index), where the Simpson index is the 
commonly used measure of concentration. 
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In the next section, we explore how these measures relate to already 
developed measures of interdisciplinarity. 
 

2.4. Use of diversity in studies of interdisciplinarity 
 
In this section, we present some illustrations of how bibliometric studies 
explicitly or implicitly address the properties of diversity, namely variety, 
balance and similarity, when investigating interdisciplinarity:  
 
Variety: Morillo et al. (2003, p. 1241) for each SC, counted the number of 
other SCs with which it shared journals. Presentations of disciplinary profiles, 
e.g. in bar charts, provide visual cues for this variety (e.g. van Raan and van 
Leeuwen, 2001, p. 611). 
 
Balance: Since Porter and Chubin’s (1985) seminal contribution, perhaps the 
most common indicator of interdisciplinarity has been the percentage of 
citations outside the discipline of the citing paper. Van Leeuwen and Tijssen 
(2000) showed that this could be as high as 69% on average. Similarly, 
Schummer (2004, p. 449) uses the percentage of co-occurrences of 
affiliations based on different disciplines as indicator. 
 
Similarity:  Measures of similarity among predefined categories have been 
widely used to visualise the relative positions of different scientific disciplines 
(Moya-Anegón et al., 2004, 2007). Although in most cases associated 
dissimilarity values are not presented, the visualisation implicitly conveys the 
degree of diversity.5 
 
In some instances, these three properties are explicitly addressed in the same 
study. An interesting case is Morillo et al.’s work on the multi-assignation of 
journals to SCs (Morillo et al., 2003; Bordons et al., 2004, pp. 447-453). For 
each category, these studies looked at: 
 

• the balance, in terms of percentage of multi-assigned journals for one 
SC; 

• the variety of links with other SCs, namely the number of different SCs 
with which a given SC shares journals;  

• the strength of linkages (or similarities) given by number of co-assigned 
journals for two SCs.  

 
This multidimensional approach, covering different aspects of disciplinary 
diversity, allowed Morillo and co-workers to develop an elaborate taxonomy of 
interdisciplinarity types across science fields. 
 

                                            
5 Matrices of knowledge flows among disciplines are another way to present interdisciplinarity. 
E.g. Bourke and Butler (1998), calculated the number of publications from discipline-based 
departments associated to discipline-based journals. These matrices can then be used to 
compute similarity measures. 
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Finally, some studies use more complex indicators, such as the Pratt number 
(similar to Simpson’s; see Morillo, 2001), or Shannon entropy (Barjak, 2006), 
which combine the properties of variety and balance.6 
 
While the bibliometric studies referred to above touch on particular aspects of 
diversity, to our knowledge, only the recent paper by Porter et al. (2007) 
actually integrates the attributes of variety, balance and similarity into one 
index. Interestingly, Porter’s indicator of Integration is a particular 
parameterisation of Stirling’s index Δ (see Table 1), where the similarities sij 
are Salton’s cosines for co-citation patterns among ISI SCs. Here, we 
operationalise Stirling’s diversity following Porter’s indicator, as described in 
the Data and Methods section. 
  

2.5. Coherence: concept and measures 
 
The concept of coherence aims to capture the extent to which of a system’s 
elements are consistently articulated and form a meaningful constellation 
(Stirling, personal communication). Hence, coherence is a general property 
that addresses the functionality of a system. In our bibliometric context, 
coherence expresses the extent to which publication networks form a more or 
less compact structure. If we take degree of cognitive similarity as the linkage 
between publications (e.g. by using co-citation, co-word or bibliographic 
coupling), a more clustered network is seen as having higher cognitive 
coherence.  
 
Coherence, or cognate concepts such as cohesion or compactness, have 
been extensively investigated in information sciences (see Egghe and 
Rousseau, 2003, for a bibliometric discussion). In the context of economic 
studies of innovation, coherence has been utilised to account for the 
aggregated relatedness (or similarity) of the firm’s technological base, with the 
idea that “coherent firms are more likely to be successful than incoherent 
ones” (Nesta and Saviotti, 2005, p.124). Here, we introduce coherence in 
order to express the degree of integration already in place in a body of 
research. However, since the key aspect of interdisciplinary research has 
been argued to be the process of knowledge integration (Section 2.2), 
interdisciplinarity should ideally be assessed in terms of a temporal derivative, 
i.e. a change in coherence. 
 
Depending on the unit of analysis used in the study of interdisciplinarity, 
coherence can take different meanings. High coherence within the reference 
set in a publication means that its referencing practices are highly specialised 
and hence, that it builds on an already established research specialty. High 
coherence in the publication set of an interdisciplinary centre would suggest 
that it is achieving its integrative mission. 
 
Since our definition of coherence is in terms of the network of relations among 
the basic elements (publications), it has to be operationalised using bottom-up 

                                            
6 Other publications use measures of diversity in bibliometrics, to examine not the diversity of 
disciplines, but diversity/concentration of research in institutions (e.g. Rousseau, 2000).  
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approaches. This avoids the use of previous categorisations but requires 
spiralling computing efforts for large data sets. 
 
In our view, bibliometric studies related to network coherence fall into the 
areas of mapping and associated methods of clustering, along with other 
multivariate analyses based on low level categories such as single articles, 
authors or journals. An example is Small’s (1977) study of a research 
specialty over five years. Using co-citation analysis, Small tracked the 
appearance and disappearance of clusters in the research specialty and 
proposed a ‘Stability Index’, based on degree of overlap between the clusters, 
that described the coherence of the network. Other examples are 
combinations of co-citation and co-word analysis (Braam et al., 1991), and 
large scale mapping using inter-citation flows among journals (Boyack et al., 
2005). Methodologies from network analysis continue to be experimented with, 
as shown by Hellsten et al.’s (2007) adoption of an Optimal Percolation 
Method, and Schmidt et al.’s (2006) clustering of research fronts. The 
connection between interdisciplinarity and network structure, as shown by 
factor analysis, was made explicit by van den Besselaar and Heimeriks (2001). 
More recently Leydesdorff (2007) explored network centralities as indicators 
of interdisciplinarity. Building on these network approaches, we use simple 
network analysis measures for the operationalisation of coherence, as 
described in the Data and Methods section. 
 

2.6. Disciplinary diversity vs network coherence 
 
We introduced the concepts of diversity and coherence in relation to 
interdisciplinarity and have shown how they are related to previous 
bibliometric investigations. Table 2 presents a summary of this conceptual 
framework. In this subsection we argue for the need to combine disciplinary 
diversity and network coherence analyses to achieve a more nuanced view of 
knowledge integration. 
 

Table 2. Summary of conceptual framework. 

 Diversity Coherence 

General concept: 
Heterogeneity in terms 
of variety, balance and 
similarity of categories 

Functional articulation and 
structural compactness of 

elements in system   
Main research 
tradition: Ecology Network Analysis 

Type of approach: Top-down Bottom-up 

Categorisation: Pre-defined Unnecessary 

Metric: Optional  
(needed for Stirling)   Necessary 

Indices: 

N = Variety 
H = Shannon 
I = Simpson 
Δ = Stirling 

S = Mean Linkage Strength 
L = Mean Path Length 
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As discussed above, the problem with disciplinary diversity is that it relies on 
predefined and ‘rigid’ categories, which may miss emergent or dynamic 
phenomena in science. The inclusion of metrics between categories (as in 
Stirling’s index) lessens the effect of creating very similar categories, but does 
not solve the problem of hidden divides within existing categories.  
 
Coherence approaches might be seen as being more accurate, but 
unfortunately they present a very problematic trade-off between size and level 
of analysis. For micro- or meso-level investigations, bottom-up network 
approaches are more accurate for describing direct knowledge flows or other 
explicit relations. However, they cannot capture the position of local elements 
in the global map of science, and thus miss the large-scale perspective of the 
integration process. At the other extreme, in macro-level studies using 
complicated metrics, the direct relations between elements become opaque. 
In addition, the use of large bibliometric sets requires access to expensive 
databases and computational resources that are beyond the reach of most 
researchers.  
 
Given these constraints, we propose to combine disciplinary diversity (top-
down) and network coherence (bottom-up) perspectives to track knowledge 
integration in small and medium sized studies. Figure 2 provides a schematic 
representation of this twofold perspective, after Porter et al.’s (2007, p. 139) 
proposal. Since in this study we take individual publications and study 
knowledge integration through their reference sets, each of the nodes in the 
networks represents a reference, and each link the degree of similarity 
between references (we use bibliographic coupling). There are four possible 
combinations:  
 
(i) Low diversity - High coherence is a case of specialised disciplinary 

research –all the references are from the same discipline and are 
related. 

(ii) Low diversity - Low coherence is a case of a publication relating 
distant research specialties within one discipline.  

(iii) High diversity - Low coherence is a case of a publication citing 
references that were hitherto unrelated and belong to different 
disciplines: a potential instance of interdisciplinary knowledge 
integration. 

(iv) High diversity - High coherence is a case of a publication citing across 
several disciplines, to references that are similar. This similarity 
suggests that the references belong a single research specialty. 
Hence, although the publication is interdisciplinary, it does not involve 
new knowledge integration. 
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Figure 2. Disciplinary diversity vs network coherence. 
 
Figure 2 provides a simple heuristics to trace knowledge integration. 
However, as discussed above, although low coherence suggests potential 
integration, we would need to examine the process, i.e. the trajectory over the 
matrix, to confirm this. Knowledge integration trajectories should move from 
left to right, from less to more coherence. 
 
This scheme is partly based on Porter et al.’s (2007) framework. They rely on 
the combination of two indicators based on ISI SCs: Integration and 
Specialisation. Integration captures the diversity of SCs in the references of 
the set of papers; specialisation is the reverse of diversity (i.e. 1-Δ, in its most 
recent formulation) for the SCs of the journals in which the papers are 
published. The distinction between diversity in referencing and publishing is 
insightful and useful to differentiate between multidisciplinary and 
interdisciplinary research. However, since both integration and specialisation 
are based on ISI SCs, they are correlated. The complement of network 
coherence is useful; since its indicators are based on data and methods 
independent of SCs, they contribute an ‘orthogonal’ perspective on knowledge 
integration.  
 
3. Data and methods 
 

3.1. Data 
 
This study builds on previous investigations of interdisciplinary practices in 
laboratories of biomolecular motors, one of the specialties in bionanoscience 
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(Rafols and Meyer, 2007). From the keynote speakers at a 2005 international 
conference on biomolecular motors, we selected the Japanese researchers 
and interviewed them about a specific project, as perceived in the light of two 
or three major publications. We inquired into their affiliations, backgrounds, 
the techniques and instruments used and how they were acquired, their 
collaborations, and the story of the research process. These data were 
complemented by information from scientific publications, miscellaneous 
documentation and homepages. Detailed data for these case studies was 
presented in Rafols and Meyer (2007) and discussed in Rafols (2007).  
 
From the ISI Web of Science we downloaded full bibliometric records for the 
publications on which we had based our interviews. These records were 
processed using the bibliometric programme Bibexcel (Persson, 2008), the 
statistical packet R (2007), and the network analysis software Pajek (Batagelj 
and Mvar, 2008). For each publication, diversity and coherence measures 
were computed as summarised in Figure 3 and described in the following two 
subsections.  
 

Object of Study Bibliometric Set Analytical Unit

Article

Ref 1
Ref-of-Ref 1

Ref 2
Ref-of-Ref 2
Ref-of-Ref 3
Ref-of-Ref 4
Ref-of-Ref 5

Ref 3

References 
in Article

Distribution of 
Subject Categories

in Ref-of-Refs

Network of References
linked by

Bibliographic Coupling 
(i.e. linkages depend on 

shared Ref-of-Refs)

Disciplinary Diversity

N = Variety
H = Shannon
I = Simpson
Δ = Stirling

Network Coherence

S = Mean Linkage Strength
L = Mean Path Length

Article

Concept and Measures

 
 

Figure 3. Scheme of operationalisation of disciplinary diversity and network 
coherence for one article. 

 
3.2. Operationalisation of disciplinary diversity 

 
The disciplinary diversity of an article was constructed from the distribution of 
ISI SCs in the references of references (ref-of-refs in Figure 3, and hereafter) 
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of an article.7 To compute this distribution, we constructed a frequency list of 
the journals in which the ref-of-refs were published, and converted it into a 
frequency list of ISI SCs using the SC attribution of each journal as given in 
the Journal Citation Reports. The mean for each article was 30 references 
(range 17 to 55), and 1,290 ref-of-refs (range 601 to 2,227). We cleaned the 
list for misnamed journals until at least 90% of the ref-of-refs in each list were 
attributable (average attribution rate: 95%). 
 
The distribution of SCs in the ref-of-refs list allowed us to compute variety N 
as the number of SCs that appeared at least once, and the Shannon H and 
Simpson I diversities (see Table 1). All indicators were normalised to a value 
between zero and 1.8 In order to compute the Stirling Δ diversity, a similarity 
matrix sij for the SCs must be constructed. To do so, we created a matrix of 
citation flows matrix between SCs, and then converted it into a Salton’s cosine 
similarity matrix in the citing dimension. The sij describes the similarity in the 
citing patterns for each pair of SCs in 2006, for the SCI set (175 SCs). A 
detailed description and analysis of this sij SC-similarity matrix is provided 
elsewhere (Leydesdorff and Rafols, forthcoming). By combining the ref-of-refs 
SC proportions pi and similarities sij, we computed Δ as shown in Table 1. This 
particular operationalisation of the Stirling Δ diversity yields an indicator that is 
almost identical to Porter et al.’s (2007) Integration.  
 
Using the sij similarity matrix we constructed science maps in terms of SCs 
(Figure 4), similar to those reported in Moya-Anegón et al. (2004, 2007). The 
labels in Figure 4 describe clusters of similar SCs derived from factor analysis 
(Leydesdorff and Rafols, forthcoming). Following Klavans and Boyack (2008), 
we used the science map as a ‘backbone’ on which to overlay the distribution 
of SCs from each article, to provide an intuitive perspective of the position of 
its knowledge base in the scientific landscape (Scharnhorst, 1998). 
 
 

                                            
7 If the initial bibliometric set is large enough for statistical purposes, diversity can be 
computed directly from the SCs of the references.  
8 Simpson I and Stirling Δ,  by definition, satisfy this condition. Variety N and Shannon H are 
normalised by dividing by their maximum values, Nmax and ln(Nmax), respectively, with Nmax 
being the total number of ISI SCs. 
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Pajek

Neurosciences

Computer Sciences

Geoscience
Agriculture

Ecology

Biomedical Sciences

Chemistry

Physics

Engineering

Environ. Sci.

Materials Sci.

Infectious Diseases

Clinical Medicine

General Medicine 

 
 
Figure 4. Map of science  for 2006 based on similarities in citing patterns between ISI 
Subject Categories. Based on Leydesdorff and Rafols (forthcoming). 
 
 

3.3. Operationalisation of network coherence 
 
In order to operationalise network coherence for our bibliometric set, we 
chose first, a similarity metric between network elements (articles) in order to 
measure the strength of their linkages; second, an indicator of structural 
coherence of the network. Since the aim was to map the breadth of 
knowledge sources, similarity was measured in terms of bibliographic 
couplings9 between articles (co-occurrences of references), and normalised 
using Salton’s cosine (Ahlgren et al., 2003). Then, basic network measures 
were used as indicators for network coherence: 
 

• Mean linkage strength, S: the mean of the bibliographic coupling 
matrix, excluding the diagonal - equivalent to network density in binary 
networks. In valued networks, it describes both realised links and 
intensity of similarities. By definition, S has a value between zero and 
1. 

 

                                            
9  Although co-citation analysis is the most extended technique to measure similarities 
between publications, it is impractical for our purposes for two reasons: first, it cannot be for 
used for recently published papers, due to lack of citations; second, it reflects similarities in 
the audience, rather than in the knowledge sources.  
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• Mean path length, L: the path length between two articles is defined 
as the minimum number of links crossed to go from one article to the 
other over the network. Mean path length describes how ‘spread’ the 
network is; it is computed after binarising similarities. 

 
These measures can be interpreted in terms of network centralities, which 
were introduced in bibliometrics to study research communities (Otte and 
Rousseau, 2002) and interdisciplinarity in journal sets (Leydesdorff, 2007). 
Mean linkage strength S is the mean degree centrality normalised by network 
size; mean path length L is equal to the mean of closeness centrality. More 
sophisticated measures of network ‘compactness’ or cohesion (Egghe and 
Rousseau, 2003) are not used in this study, but deserve further exploration 
within the conceptual framework proposed.  
 
Given that network measures are generally highly size dependent, it is 
necessary to check the scale invariance of S and L. Since the bibliometric 
networks in these case studies are small (between 17-55 articles), we tested 
empirically the scale invariance of S in an independent sample of 1,275 
articles related by research topic (kinesin). It was found that S was size 
independent and that the distribution of bibliographic couplings could be 
approximated to a log-normal distribution.10 This result is in accordance with 
Havemann et al. (2007), who used a similar approach. Since S and L are 
highly correlated in our sample (Pearson = 0.95), L’s size dependence 
appears to be negligible as well in this study. 
 
A possible drawback to bibliographic coupling is that it relates articles that 
share only one or two very general references, e.g. classical methodological 
handbooks, which do not necessarily inform about shared expertise. In order 
to minimise these spurious connections, we set a threshold of linkage strength  
to 0.05=1/20 when computing path length -as a result  even in the smallest 
reference sets (20), at least two common references are needed for two 
papers to be linked.11  
 
4. Case studies in molecular motors  
 
The objective of this study is to assess the degree of interdisciplinarity of 
individual contributions in the specialty of molecular motors. As explained in 
the Data and Methods section, we build on previous investigations that carried 

                                            
10 Details of the scale invariance test are presented below.  
 

Network size 10 51 255 637 1275 
Mean linkage strength  0.022 0.023 0.024 0.025 0.024 
Standard deviation per network 0.045 0.046 0.047 0.047 0.046 
Network realisations 10 9 7 1 1 
Standard deviation over realisations 0.007 0.004 0.002 -- -- 

 
From a network of 1,275 publications on kinesin research, random subnetworks of different 
sizes were extracted. Mean linkage strength and standard deviation were computed for each. 
For small networks, multiple realisations were carried out to minimise statistical fluctuations. 
11 In one case, Noji 1997, we had to set the threshold at 0.025 in order to keep the network 
connected. 
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out detailed case studies on interdisciplinary practices in five research 
projects (Rafols and Meyer, 2007; Rafols, 2007). It emerged from interviews 
that while the techniques and concepts in all cases came from a variety of 
disciplines (hence, they were highly and similarly interdisciplinary in this 
respect), in some cases the projects were a continuation of a well-established 
research tradition and built on a narrow literature, and in others the projects 
brought together different research traditions and previously unrelated 
literatures. Can the indicators of disciplinary diversity and network coherence 
capture these differences?  
 
We present the results of five case studies based on analysis of 12 articles. 
Table 3 shows the distribution of SCs in the ref-of-refs for each article. 
Biochemistry and Molecular Biology is the dominant discipline, but there are 
also important contributions from Cell Biology and Biophysics. Records in 
Multidisciplinary Sciences journals constitute almost 25% of the total, thus 
obscuring the actual distribution of references among the top SCs.12 After the 
four top SCs, the proportions are much smaller, and the distribution tails of 
some articles differ, e.g. Funatsu (1995) has a ‘fatter’ tail for the physical and 
chemical disciplines. 
 
Table 3. Distribution of Subject Categories for each article. 
 

Subject Category 
(% ref-of-refs) 

Fun 
95 

Koj 
97 

Ish 
98 

Noj 
97 

Yas 
98 

Oka 
99 

Kik 
01 

Sak 
99 

Bur 
03 

Tom 
00 

Tom 
02 

Yil 
04 

Cum 
Ave. 

Biochem. & M. Biol. 31.1 23.9 45.5 49.2 51.9 32.2 36.7 30.5 30.8 32.4 30.8 27.4 36.2 
Multidiscip. Sci. 29.0 32.6 20.7 17.2 13.0 32.4 25.5 22.3 15.6 26.9 24.0 26.7 59.4 
Cell Biology 10.4 19.2 6.6 8.8 8.9 21.2 21.0 29.2 37.5 26.3 30.7 28.7 80.4 
Biophysics 9.8 7.9 12.5 14.2 15.8 6.0 6.6 6.0 4.5 5.6 4.3 5.6 88.5 
Physiology 4.3 2.5 6.8 1.7 2.5 1.2 0.8 1.2 0.5 0.9 0.6 0.9 90.5 
Bio. Res. Meth. 1.5 2.6 1.7 1.7 1.9 1.8 1.4 3.5 1.6 1.2 1.1 0.9 92.1 
Gen. & Heredity 0.2 0.4 0.0 0.6 0.2 0.3 0.8 0.8 1.7 0.9 1.2 2.1 92.9 
Neurosciences 0.2 0.4 0.1 0.1 0.1 1.5 0.6 0.4 0.5 1.1 3.1 1.9 93.7 
Biology 0.6 0.2 1.1 0.8 1.5 0.3 0.7 1.0 1.3 0.4 0.3 0.0 94.5 
Crystallography 0.0 0.1 0.5 0.2 0.1 0.6 3.0 0.0 0.0 0.5 0.2 0.3 95.1 
Develop. Biology 0.2 0.1 0.0 0.0 0.0 0.3 0.7 0.2 1.1 1.1 1.5 1.3 95.7 
Chem., Analytical 1.2 0.6 0.3 0.4 0.8 0.8 0.1 1.4 0.6 0.2 0.1 0.1 96.2 
Optics 1.5 1.9 0.5 0.4 0.1 0.1 0.0 0.3 0.0 0.2 0.2 0.8 96.5 
Chem., Phys. 2.6 0.1 0.4 0.4 0.4 0.1 0.0 0.1 0.2 0.0 0.0 0.5 96.8 
Chem., Multidisc. 1.2 0.1 0.8 0.1 0.2 0.1 0.1 0.2 0.4 0.1 0.0 0.2 97.1 
Phys,A.Mol.&Chem. 1.7 0.2 0.3 0.8 0.6 0.0 0.1 0.0 0.1 0.0 0.0 0.2 97.3 
Physics, Multidisc. 1.1 1.1 0.3 0.2 0.1 0.3 0.0 0.0 0.0 0.3 0.2 0.5 97.6 

Legend: Columns show the distribution of ref-of-refs for one article. Those in the 
same box belong to the same project. The last column is the cumulative percentage 
averaged over all cases. 
 
 
 
 

                                            
12 This might explain, in part, the large difference between the SC distribution of ref-of-refs in 
Table 4 and the distribution of references among four selected disciplines reported in Rafols 
and Meyer (2007). 
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4.1. Comparison between indicators 
 
Table 4 presents the measures for disciplinary diversity and network 
coherence for each article; Table 5 presents the correlations between the 
different diversity and coherence measures. Figure 5 plots diversity Δ vs 
coherence S for each article.  
 
We compare, first, indicators, and, second, articles. Diversities H, I and Δ 
were found to be correlated. Interestingly, the highest correlation was 
between Shannon H and Stirling Δ, although Stirling Δ and Simpson I (rather 
than Shannon) have similar mathematical formulations. Since Shannon H 
gives more weight to the small terms in its sum through its logarithmic factor, 
while Stirling Δ gives more weight to the combinations of disparate SCs, we 
believe that the high correlation between H and Δ is due to the fact that many 
SCs with small proportions happen also to be distant from the core SCs. 
 
Indicators of coherence, S and 1/L, were also highly correlated with one 
another, but not with the diversity measures. Hence, we are capturing two 
different aspects of the same bibliometric set. Variety N was not correlated 
with any other measure, and it does not seem to be a good indicator of 
knowledge integration. Given this set of correlations, and in order to simplify 
the analysis, the discussion that follows is based on Stirling’s Δ for diversity 
and mean linkage path S for coherence. 
 
Table 4. Measures of disciplinary diversity and network coherence  
 

Disciplinary Diversity Network Coherence 
Articles 

N H I Δ S 1/L 
Funatsu 1995 0.16 0.39 0.79 0.27 0.054 0.54 
Kojima 1997 0.20 0.38 0.79 0.24 0.074 0.70 
Ishijima 1998 0.22 0.34 0.72 0.18 0.042 0.53 
Noji 1997 0.18 0.32 0.70 0.15 0.024 0.43 
Yasuda 1998 0.19 0.31 0.68 0.14 0.039 0.54 
Okada 1999 0.14 0.32 0.74 0.15 0.107 0.73 
Kikkawa 2001 0.20 0.33 0.75 0.16 0.072 0.63 
Sakakibara 1999 0.15 0.34 0.77 0.16 0.029 0.47 
Burgess 2003 0.20 0.34 0.74 0.14 0.050 0.59 
Tomishige 2000 0.19 0.33 0.75 0.14 0.104 0.69 
Tomishige 2002 0.16 0.33 0.75 0.15 0.113 0.79 
Yildiz 2004 0.18 0.35 0.77 0.17 0.065 0.58 
Mean 0.18 0.34 0.75 0.17 0.064 0.60 
Stand. Deviation 0.02 0.02 0.03 0.04 0.030 0.11 

 
Legend: N =variety of disciplines, H = Shannon, I = Simpson, Δ = Stirling, S = mean 
sinkage strength, L = mean path length. Indicators are normalised to a value 
between zero and 1. Highest diversity and lowest coherence values are highlighted. 
 
 



 17

Table 5. Pearson correlations between diversity and coherence measures  
 

Disciplinary Diversity Network 
Coherence Pearson’s 

Correlations N H I Δ S 1/L 
N 1.00 0.04 -0.20 -0.01 -0.23 -0.10 
H  1.00 0.81 0.95 -0.12 -0.06 
I   1.00 0.71 0.32 0.31 
Δ    1.00 -0.10 -0.06 
S     1.00 0.95 

1/L      1.00 
 
Legend: N = variety of disciplines, H = Shannon, I = Simpson, Δ = Stirling, S = mean 
linkage strength, L = mean path length. Highest correlations are highlighted. 
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Figure 5. Disciplinary diversity vs network coherence. Same shape and colour 
indicate same project. Data is presented in arbitrary units (a.u.) obtained by dividing 
a series by the largest value. 
 
 

4.2. Comparison among articles 
 
Since we do not have benchmarks for diversity or coherence from other areas 
of science, we cannot investigate whether this field is (or is not) particularly 
diverse or coherent. However, this does not preclude comparison within our 
set. To do so, we combine the data presented in Table 4 and Figure 5, with 
visualisations of the SC distributions and network structures respectively in 
Figures 6 and 7.   
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Figure 6 visualises the relative contribution of SCs to an article over the 
backbone map of science, on the basis of the ref-of-refs distribution. Here the 
size of each SC node is arbitrarily set to a logarithmic factor of its SC 
proportion (i.e. ( )ipArea ⋅+= 10001ln ) in order to facilitate visualisation of 
small SCs. The map shows that the most highly cited SCs are in the area of 
biomedical sciences and closely related to one another. There are a few 
contributions from nearby areas such as neuroscience, and a tail of 
contributions spanning from chemistry to some areas of physics.  
 
In line with information gleaned from the interviews, the disciplinary 
distributions in the science map are very similar for all the articles. The 
exceptions are Funatsu 1995 and Kojima 1997, which have thicker tails – see 
Figure 6 and compare maps for Funatsu 1995 (top) with that of Noji 1997 
(bottom). This is congruent with the indicators in Figure 5. Funatsu 1995 and 
Kojima 1997 are publications from a research group composed mainly of 
biophysicists, which made major contributions to the development of single 
molecule microscopy and manipulation. The distribution in Table 3 shows that 
the share of biophysics is not particularly high, but there are sizeable 
proportions of physics and chemistry related disciplines. Ex-post, it could be 
argued that the physics tail is consistent with the type of physics-based 
insights and techniques needed to develop single molecule microscopy and 
manipulation. Since physics and biological sciences have a large cognitive 
distance (see Figure 4), their interaction would have a larger weight in Stirling 
Δ.  
 
However, ex-ante, based on the qualitative investigation, we did not assess 
Funatsu and Kojima’s group to be any more interdisciplinary than the others 
on this axis, and we remain cautious in claiming higher disciplinary diversity 
for this group. For example, Yildiz 2004 is a publication that also developed 
single molecule microscopy based on biophysics, yet it does not present a 
physics related tail in its SC distribution. Hence, the two exception cases 
showing higher Δ,  cast doubt on the reliability of the disciplinary diversity 
indicator. Our unit of analysis, individual publication, may be too small for the 
ISI SC categorisation, which is known to be coarse-grained; e.g. Boyack et 
al., 2005, report a more than 50% disagreement between journal-based 
clustering and SCs. We expect improved reliability from use of finer-grained 
and/or more accurate taxonomies, e.g. based on bottom-up large-scale 
mapping efforts (Boyack et al., 2005). 
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Engineering

Physics

 
Figure 6. Distribution on the map of science of Subject Categories (SCs) of ref-of-refs 
in an article. The area of nodes is a logarithmic factor of a SC proportion in the ref-of-
refs distribution, i.e. ln(1+1000pi). 
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Network coherence values, on the other hand, vary widely among case 
studies, as shown in Figure 5. Figure 7 illustrates the differences in network 
structure associated with increasing values for coherence, for four articles. 
The first, Noji 1997, is an interesting case of convergence of two strands of 
research by two laboratories in one collaborative project spawned by a PhD 
student (Noji). Noji’s lab was mainly based in biochemistry and worked on F1-
ATPase, a protein complex in the mitochondria studied by a research 
community focused on bioenergetics. The publication Noji 1997 was the result 
of a close collaboration with a biophysics laboratory specialised in linear 
molecular motors (myosin and kinesin). The network of Noji’s references 
depicted in Figure 7, neatly illustrates the divide in the literature between the 
two research communities: on the right hand side, are publications on linear 
molecular motors; on the left, are publications on bioenergetics (F1-ATPase). 
The only (weak) link between the two is due to a review with more than 311 
references.13 The low value for network coherence captures the fact that this 
article brought together distant bodies of knowledge, i.e. it would fall in the 
upper left quadrant in Figure 2. 
 
 

PajekPajek

Pajek

Pajek

Noji 1997 (S=0.024) Funatsu 1995 (S=0.054)

Tomishige 2002 (S=0.113)Yildiz 2004 (S=0.065)

 
 
Figure 7. Bibliographic coupling networks for the reference set of various articles. 
The figures are ordered from lower to higher network coherence S (from top left to 
bottom right); thicker lines indicate greater similarity. 
 

                                            
13 The historical anecdote is that Paul D. Boyer, the author of this long review, was awarded 
the Nobel Prize precisely in 1997, thanks, in part, to the evidence provided by Noji and co-
authors on his model of ATPase as a rotary motor. 
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Figure 8 illustrates the disciplinary mix of the Noji 1997 reference set by 
locating the SC where references were published. Given that Noji’s project 
was a collaboration between a biophysics and a biochemistry laboratory, it 
could be expected that the bioenergetics cluster would publish mainly on 
biochemistry, and the molecular motors cluster on biophysics. However, both 
clusters have publications in biochemistry, biophysics and cell biology, 14 
which suggests that bioenergetics research on its own, and molecular motors 
on its own scored high for disciplinary diversity prior to Noji’s paper. In other 
words, this is a case of convergence of two bodies of knowledge that were 
already interdisciplinary. 
 

Pajek

Pajek

Pajek

Biochemistry

Pajek

Pajek

Pajek

Biophysics

Cell Biology

Noji 1997 Yildiz 2004

 
 
Figure 8. Distribution of SCs for publications in bibliographic coupling networks. Black 
nodes indicate the papers published in a given ISI subject category. 
 
The second case of network coherence we examine is Yildiz 2004 (Figure 7 - 
bottom left). This article was also the result of a collaborative project, between 
a biophysics laboratory with expertise in fluorescent microscopy and Vale’s 

                                            
14 Two caveats apply to Figure 8: (i) on average 30% of the references were published in 
Multidisciplinary Sciences journals; (ii) about 25% of the references are published in journals 
that are attributed to at least two SCs (which is why the publication SCs cannot be presented 
in one unique network). 
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laboratory, one of the leading molecular motors groups, which has an eclectic 
knowledge mix of cell biology and biophysics (including fluorescent 
microscopy expertise). Vale’s lab contributed a genetically modified protein 
that they had engineered in a previous study, and Yildiz’s lab contributed a 
new type of single molecule microscopy. Since both teams were working in 
the same specialty (molecular motors) and had some overlapping expertise in 
single molecule microscopy, they already shared a cognitive base. Hence, the 
references in their joint publication form a coherent cluster. Nevertheless, the 
cluster contains publications in biochemistry, cell biology and biophysics – the 
three main areas of molecular motors research, as shown in Figure 8 (right). 
Therefore, Yildiz 2004 appears to be a case of research within an already 
integrated (or specialised) interdisciplinary body of knowledge (upper right 
quadrant in Figure 2). Tomishige 2002 (a previous publication from Vale’s lab, 
see Figure 7, bottom right) is an even more ‘compact’ example of an already 
specialised interdisciplinary publication – although, as explained, Vale’s 
approach is integrative in the disciplinary sense: he draws on knowledge and 
recruits researchers from biophysics, cell biology and related fields. 
 
Finally, we have Funatsu 1995 (top right in Figure 8), which is an intermediate 
case between Noji 1997 and Yildiz 2004. This article reports a technical 
breakthrough in single molecule visualisation by a team mainly based in 
biophysics and well established within the research specialty of molecular 
motors. Hence, not surprisingly, molecular motors constitutes the main body 
of the literature in the dense cluster, in the lower left of Figure 8. However, the 
group also drew on its unique microscopy expertise, which extended beyond 
molecular motors. This ‘external’ expertise is exemplified by the three 
detached papers in the network which dealt exclusively with microscopy from 
a physical science perspective.  Thus, Funatsu 1995 would be a case of 
acquisition of external supplementary knowledge from one literature (technical 
studies of microscopy) into the main cluster of molecular motors research. 
This limited integration effort would locate this publication in the upper middle 
part of Figure 2. 
 
These examples suggest that bibliographic coupling networks and the 
network coherence indicators derived from them, provide a suitable tool for 
examination of the processes of knowledge integration at local level. The 
limitation, as discussed in Section 2.6, is that these micro perspectives cannot 
assess how different are the bodies of knowledge integrated in the larger 
context of science.  
 
From the dual perspective of diversity and coherence, the case studies 
investigated provide empirical evidence that publications with similar levels of 
disciplinary diversity could be at very different stages of knowledge 
integration: Noji 1997 would be an example of an incipient interdisciplinary 
knowledge integration process (upper left in Figure 2), Tomishige 2002, an 
example of interdisciplinary specialised research (upper right) and Funatsu 
1995, an intermediate case. Hence, molecular motors research appears to be 
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spread over the upper part of Figure 2 (relatively high disciplinary diversity),15 
covering the left and right quadrants.  
 
5. Conclusions 
 

5.1. Summary of analytical framework and results 
 
In this article, we proposed a novel conceptual framework to investigate 
interdisciplinary processes in the wider sense of knowledge integration. The 
framework is based on the concepts of diversity and coherence, borrowed 
respectively from ecology and network analysis (Table 2 and Figure 2), and 
already used implicitly in previous bibliometric studies on interdisciplinarity 
(e.g. Morillo et al., 2003). Diversity was used to capture the disciplinary 
heterogeneity of our bibliometric set as seen through the filter of predefined 
categories, i.e. taking a top-down perspective in order to locate the set on the 
global map of science (Figure 6). Coherence was used to apprehend the 
intensity of similarity relations within the bibliometric set, i.e. using a bottom-
up approach to reveal the structural consistency and cognitive articulation of 
the publications network (Figure 7). 
 
Disciplinary diversity indicators were constructed from diversity indices 
(Shannon H and Simpson I) and a recently developed indicator (Stirling Δ, 
parameterised as Porter’s Integration), which takes account of the similarities 
between SCs (Stirling 1998, 2007; Porter et al., 2007). ISI SCs were used as 
disciplinary categories. Network coherence was operationalised in terms of 
the network measures Mean linkage strength and mean path length, in 
bibliographic coupling networks (see Havemann et al., 2007 for a similar 
approach). These indicators were applied to the reference set of publications 
in a bionanoscience research specialty, biomolecular motors, for which we 
had detailed information from interviews (Rafols and Meyer, 2007; Rafols, 
2007). 
 
First, we found that the indicators for disciplinary diversity and network 
coherence were not correlated (Table 4), thus providing ‘orthogonal’ 
perspectives of the knowledge integration process. Among diversity 
indicators, Shannon H and Stirling Δ made more salient the contributions of 
small or disparate categories.  
 
Second, disciplinary diversity took similar values for most of the publications 
examined, in line with our previous qualitative investigations (Table 4 and 
Figure 5). However, unexpected high values for two publications (out of 12) 
cast some doubt on the reliability of this indicator. Since there is a trade-off 
between accuracy and simplicity of a taxonomy, it is possible that the unit of 
analysis (the article) in this study is too small for the coarse-grained 
description of science provided by ISI SCs. Comparative studies using 
different disciplinary taxonomies (e.g. provided by other bibliometric 

                                            
15 This is an inference from the qualitative interviews. Without quantitative benchmarks from 
other areas of science, the position of the case studies on the disciplinary diversity axis 
cannot be determined. 
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databases or categories derived from large-scale clustering) would be needed 
to ascertain the scope of reliable application. 
 
Third, we found that measures for network coherence could discriminate 
among articles according to their different degrees of knowledge integration at 
micro level. For example, the case of lowest network coherence (Noji 1997), 
was the result of a collaboration between two laboratories based on two 
different bodies of knowledge (bioenergetics vs linear molecular motors). On 
the contrary, those cases with high network coherence (such as Tomishige 
2002) were based on only one research tradition (molecular motors), although 
they still relied on several disciplines. We believe that the discrimination 
between these two different phases of knowledge integration (seminal 
integration vs specialisation in already integrated areas, depicted in Figures 2 
and 7), is important in emergent fields such as nanotechnology and systems 
biology, in order to distinguish pioneering integrative efforts from less risky 
rides on ‘interdisciplinary bandwagons’. 
 
The operationalisation of network coherence in terms of mean linkage 
strength of bibliographic coupling appeared to work well, both for our small 
sets and in larger studies reported by Havemann et al. (2007). Moreover, it 
has the advantage of simplicity. However, there is scope for exploring more 
sophisticated measures of network coherence (e.g. Egghe and Rousseau, 
2003), and more nuanced cognitive similarities between publications (e.g. 
including co-word analysis, as in Braam et al., 1991). 
 
Fourth, the visualisations of diversity (through the overlay of disciplinary 
proportions on the map of science, Figure 6), and of coherence (by means of 
the bibliographic coupling network, Figure 7), proved more valuable than 
expected. Although initially developed to support the indicators, the maps and 
networks provide a richer and subtler representation of the different aspects of 
diversity (variety, balance and similarity) and coherence (linkage strength, 
density, clustering), which characterise the knowledge integration process.  
 
Fifth, the differences in network coherence observed for publications with 
similar disciplinary diversity, support the view that interdisciplinarity is an 
inadequate term or a misnomer (Klein, 2000, p.3; Gläser, 2006). In focusing 
on knowledge integration, adopting a bottom-up approach and looking at 
emergent structures, we encounter fuzzy and overlapping bodies of 
knowledge, as illustrated in Figure 7, that do not conform to established 
categories. In our view, the crucial dynamics of knowledge integration lies in 
the interactions between these local bodies of knowledge. The use of macro 
(disciplinary) categories only provides information on the position of these 
local bodies on the science map. 
 

5.2. Future research and possible applications 
 
This study has developed a conceptual framework and methodology for 
capturing knowledge integration in research, which we applied to small case 
studies. How robust and generalizable is this approach? We think that this 
pilot study should be extended in the following directions for the method to be 
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fully validated. First, benchmarks with other areas of science need to be 
established in order to gauge the range of high/low values on the diversity and 
coherence axes; second, investigations employing larger bibliometric sets are 
needed to check scalability; and third, studies using different taxonomies 
should test the sensitivity of disciplinary diversity to differences in 
categorisations. The approach proposed could easily be adopted and 
adapted, at least for small and medium sized bibliometric sets (e.g. 104 
records), given that it is based on simple indicators and standard similarity 
measures. Most of these can be computed using very simple bibliometric 
tools (freeware) and publicly available data.16 
 
Regarding the degree of general applicability, we believe the approach could 
be directly utilised, with little modification, for a number of science policy 
issues, including: 
 
1) Evaluation of interdisciplinary programmes: Porter et al. (2007) report 
the use of the Integration indicator (equivalent to our development of Stirling 
Δ) for evaluation of interdisciplinary performance of researchers involved in 
the National Academies Keck Future Initiative, on the basis of their publication 
records. The inclusion of an indicator for network coherence may add an 
orthogonal perspective; 
 
2) Emergence and diffusion of research topics: We have conducted 
preliminary studies on quantum dots (with A.L. Porter) and kinesin research, 
investigating diffusion and knowledge integration patterns from their 
appearance in a narrow field of science to their spread into broader research 
areas. Here the aim is to identify the key integrative research communities in 
the diffusion/translation process. We think that this use of diversity and 
coherence indicators can be valuable in comparative studies of emergent and 
‘hyped’ fields such as nanotechnology, where claims of novelty and 
interdisciplinarity are rife, but not always substantiated.  
 
3) Evaluation of diversity in science: Concerns have been expressed that 
diversity in the science system might be declining as a result of the increasing 
dependence of funding on performance evaluation (Schmidt et al., 2006). 
Diversity and coherence indicators offer the possibility to address this issue 
through longitudinal or national comparative studies, as in Havemann et al. 
(2007). 
 
Finally, we would point to the benefits of basing our approach on a general 
conceptual framework. First, in using a general framework, the concepts 
underlying the current indicators of interdisciplinarity are rendered more 
transparent. This, in turn, facilitates discussion of their inevitable biases, and 
adaptation to social and policy needs. Second, the generality of the 
formulation allows its application and cross-fertilisation among distinct 
research areas. Thus, we expect insights and enriching perspectives of the 

                                            
16 The only processed input needed is the SC similarity matrix used to create the science map 
and compute Stirling Δ. This is available at: http://www.leydesdorff/map06/data.zip as a Pajek 
input file (Leydesdorff and Rafols, forthcoming). 
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diversity-coherence framework from ongoing investigations on technological 
diversification in firms, biodiversity, energy portfolio and similar system 
approaches (Nesta and Saviotti, 2005; Stirling, 2007). 
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