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1. Introduction

This paper explores the contribution of the firm knowledge base, defined as knowledge

capital, diversity and relatedness, to productivity. A firm’s knowledge base is

considered well related when its set of scientific and technological competencies

conforms to a priori information on how technologies relate to one another. As Penrose

(1959) pointed out, firm performance depends not only on the stock, or capital, of its

competencies but also on how diverse competencies are combined. I test for the

importance of these three characteristics – knowledge capital, diversity and relatedness –

using financial and patent data from the top 156 of the world’s largest manufacturing

corporations between 1986 and 1996.

The next Section reviews relevant theoretical and empirical literature. In Sections 3 to 5, I

present the model, measures and data used to measure firm knowledge. The results are

discussed in Section 6, leading to the conclusion in Section 7.

2. Theoretical background

The literature investigating the econometric relationship between knowledge and

productivity has produced convincing evidence of the positive contribution of

knowledge capital to productivity (Griliches, 1979 and following papers).

Supplementary studies have yielded similar results, observing a quasi-systematic

econometric relationship between some sort of knowledge capital and the general

productivity of the firm. However, these studies have failed to address the relationship
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between some characteristics of firm knowledge in terms of diversity and relatedness with

firm economic performance. The reasons for this is that knowledge is generally

considered homogeneous and that, as a consequence, firm knowledge capital equates

with the sum of homogeneous pieces of knowledge.

Instead, I argue that knowledge is intrinsically heterogeneous in nature because it refers

to various scientific disciplines and is embodied in diverse technical devices. Such

scientific and technical knowledge may further yield a variety of services, the

exploitation of which is far from given. As argued by Penrose (1959), firms must devote

additional efforts to combine their resources, comprising their knowledge capital, in a

non-random and non-obvious way. The integration of heterogeneous scientific and

technical resources gives rise to ad hoc, local arrangements, thus leading to a persistent

heterogeneity amongst competing firms.

Teece et al. (1994) argue that the non-random organisation of activities has its very roots

in the firm’s competencies. When entering into new business lines, firms move into

activities with similar scientific and technical competencies and common

complementary assets. Thus, diversification strategy is not a free game; hazardous and

aggressive diversification may threaten the overall coherence of the firm and even its

viability. Diversification inherently calls for some sort of integration, to increase the

coherence of the firm’s activities and the underlying knowledge base (Breschi et al.,

2003).

The economic justification for diversifying in related activities is that diversification

comes at a cost, stemming from increases in agency costs, sub-optimal choices in

investments across divisions, imperfect internal capital market, etc. (Rajan et al., 2000;
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Lamont and Polk, 2001; Graham et al., 2002). An additional cost is that diversification is

likely to momentarily decrease the level of knowledge relatedness at both the plant and

conglomerate level, thereby disrupting existing co-ordinating mechanisms. In turn, firms

must devote part of their focus towards integrating these new sets of activities,

competencies and technological knowledge with pre-existing ones.

Knowledge relatedness is in fact tightly linked with technological and/or business

diversification and firm performance. In one of the earliest examples Rumelt (1974)

showed that diversification is more likely to be successful within related activities

sharing similar business lines and production chains. Later, Scott (1993) showed that

diversification in related markets is purposive and tightly linked to higher profit rates.

Schoar (2002) shows that although increases in diversification lead to a net reduction in

total factor productivity, diversified firms enjoy higher productivity levels than single

segment firms. Firms seek to benefit from economies of scope by diversifying their

activities in related businesses (Montgomery, 1982; Ramanujam and Varadarajan, 1989;

Montgomery and Hariharan, 1991, Teece et al., 1994). Importantly, related diversification

has been shown to be positively associated with higher growth rates of profits (Palepu,

1985). Scott and Pascoe (1987) demonstrate that R&D diversification in large U.S.

manufacturing firms exploits complementarities across research programmes that

consolidate around related categories of products.

A tentative interpretation is that related diversification not only builds upon similar

competencies, when similar sequences of productive activities are shared amongst

several business lines, but also stems from vertical diversification, where the productive

activities across businesses integrate complementary activities and competencies.
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Arguably, the cost of co-ordinating a set of productive activities decreases as the

knowledge used in these activities becomes integrated efficiently. Thus activities based

on a related set of technological knowledge should prove more productive than

activities based on a heterogeneous and unrelated set of activities. In the following, I test

the hypothesis that there is a positive link between knowledge relatedness and firm

productivity, but remain agnostic regarding the contribution of knowledge diversity to

productivity.

3. The model

Similarly to Griliches (1979), I start by using an augmented Cobb-Douglas production

function. Firm output is a function of its traditional factor endowment of capital and

labour and knowledge stock:

(1) itu
itititit eKLCAQ ⋅⋅⋅⋅= δαβ

where subscripts i and t refer to the firm i and the current year t, Q is output measured by

sales, A is a constant, C is the gross value of plant and equipment, L is the number of

employees. Traditionally in Eq.(1), K is defined as the firm’s stock of knowledge.

Suppose instead that knowledge stock K builds upon heterogeneous pieces of scientific

and technical knowledge. These encompass specific technical artefacts, human capital,

scientific principles guiding research activities (such as in the biopharmaceutical

industry), etc. Assume for simplicity that activity k calls mainly on the stock of

knowledge e dedicated to activity k: ek may be thought of as the level of scientific and

technical expertise dedicated to the kth activity. Importantly, activity k may also benefit
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from knowledge associated with other activities l (l≠k) held within the firm, depending

on their associated level of relatedness lkτ . Now let D be the number of productive

activities within a firm: D represents the scope, or diversity, of the firm’s knowledge

base. It follows that:

(2) � ⋅+=
≠

D

kl
lklkk eek τ

Eq.(2) means that the total knowledge stock k available to activity k is knowledge stock

ek and all other knowledge stocks el (l≠k), weighted by their associated relatedness lkτ .

Generalising Eq.(2) to all productive activities within the firm yields the aggregate

knowledge base K:
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For simplicity, I hold lkτ constant across activities k’s and l’s, so that lkτ = R. Since �
D

i
ie is

firm knowledge capital, Eq.(3) simplifies down to:

(4) ( )[ ]itititit RDEK ⋅−+⋅= 11

Eq.(4) states that firm knowledge is a function of its total knowledge capital or expertise

E, the number D of productive activities implemented within the firm and relatedness I

across activities. Note that as D becomes larger, [1 +(D - 1) ⋅ R] ≈ [1+ D ⋅ R], so that for

large firms a reasonable approximation of the firm’s knowledge base is

K = E ⋅ [1 + ( D ⋅  R ) ]. The amendment of K as done traditionally leads to two

supplementary properties of firm knowledge being inserted: knowledge diversity and

knowledge relatedness. The existence and relevance of this property is due to the
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collective nature of knowledge: in order to produce aggregate outcomes, diverse

knowledge must be combined in a non-random and non-obvious way and integrated

into a coherent base. Suppose for instance that firm i is composed of a set of entirely

unrelated activities, implying no spillovers across activities (R = 0), the knowledge base

K is reduced to its mere knowledge stock E. Conversely if firm i is composed of a set of

related activities (R > 0), knowledge base K increases with the numbers D of productive

activities implemented inside the firm weighted by their average relatedness R. In what

follows I assume that:

(5) itititit RDEK ⋅⋅≡

Substituting (5) into (1), noting θK = δ ⋅ ϖK, where ϖK is the weight attributed to each of

the three properties of firm knowledge base, and K = {E, D, R}, yields:

(6) [ ]
itK

itRDE

u
K ititit

u
itititititit

eKLCA

eRDELCAQ

⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅=

∏ θαβ

δϖϖϖαβ

or in the log form:

(7) itK itKititit uklcaq +� ⋅+⋅+⋅+= θαβ

where k = {e, d, r} and β, α and θK are the parameters of interest. The error term uit is

decomposed into ηi, λt and εit ( ittiitu ελη ++= ), where ηi ~ IID(0,σ 2η) is a 1×1 scalar

constant capturing persistent but unobserved individual heterogeneity across firms such

as managerial capabilities, firm propensity to collaborate, the type of economic

environment, etc., λt ~ IID(0,σ2λ) is a 1×1 scalar constant representing the time fixed effect

which would capture positive or negative trends common to all corporations and εit ~

IID(0,σ2ε) is the individual disturbance. Eq.(7) can be estimated by least squares.
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4. Measures of firm knowledge

Perhaps the starting point of any work on knowledge should simply state that unlike

physical assets, it is impossible for all the components of intangible capital to be

accurately described. Therefore the observer must compromise and find only indirect

traces of knowledge. For example, the contributions by Griliches have repeatedly used

past R&D investments as a proxy for knowledge capital. Patent data have also been used

for similar purposes and I base the three measures of knowledge capital, diversity and

relatedness on the use of patent statistics. There are several pitfalls in using patent

statistics, ranging from persistent sectoral differences in firm patenting to the quite

heterogeneous economic value of patents (Archibugi, 1992; Pavitt, 1988). However, these

criticisms lose their relevance when one uses patents statistics as a proxy for

competencies.

Importantly, patent statistics provide information on technology classes in which firms

develop technological competencies. This information is essential in experimenting for

the expected positive role of knowledge diversity and knowledge relatedness. First, I

measure knowledge capital using the so-called permanent inventory method, and

measure it as the cumulated stock of past patent applications using a rate of knowledge

obsolescence of 15% per annum: ( ) 11 −⋅−+= ititit EpE δ , where p is the number of

patents applied for by firm i in year t and δ represents the rate of knowledge

obsolescence.

Second, I define knowledge diversity as the breadth of the firm knowledge base. Let pkit

be the number of patents applied for by firm i at time t in technology class k. In order to
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compensate for abrupt changes in firm learning strategies and introduce some rigidities

in firm set of technological competencies, Pkit sums patent applications over the past five

years: �= = −
5

0τ τt,kikit pP . Now let dkit = 1 if the firm has developed competencies in

technology k, (Pkit > 0), 0 otherwise. Knowledge diversity D is simply the number of

technology classes in which firms develop scientific competencies: �= k kitit dD , over the

past five years.

It should be pointed out, however, that as the patent stock increases, the likelihood of

developing competencies in auxiliary technologies increases correspondingly. Thus

measures E and D, namely knowledge capital and knowledge diversity, are likely to be

highly correlated, which may induce multicollinearity problems when estimating their

associated elasticities. I correct for it by computing the difference between the observed

diversity D and the expected diversity D̂ , conditional on patent stocks E:

[ ] itititititit D̂DEDDD −=−=′ E . By its very construction, itD ′  can be either negative or

positive. A positive (negative) measure of knowledge diversity informs on the relatively

high (low) degree of knowledge diversity, given the firm’s knowledge capital.

Third, the measure of knowledge relatedness within the firm is based on the idea that

the set of technologies held by the firm must conform to what one would expect having

prior information on how technologies relate to one another. This is done in two steps: in

a first step, I quantify technological relatedness klτ between any two technologies k and l ;

in a second step, I enter into the firm and use relatedness measures klτ to compute the

weighted average relatedness of all technologies held within the firm.
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In the first step, I estimate the relatedness measures klτ between any two technologies k

and l by comparing the observed frequency klf with which two technologies k and l are

used together with the expected frequency klf̂ of their co-use. The observed frequency of

technological co-occurrences may be derived from patent documents, describing their

technological content, or by counting the number of agents (firms, universities, etc.)

developing competencies in two technologies simultaneously. The computation of the

expected frequency klf̂  may be grounded on several methods (parametric vs. non

parametric) but in any case it must be based on the hypothesis that the two technologies

are randomly used together. The outcome of the comparison between klf  and klf̂

produces the relatedness measures klτ . Typically, klτ  is a real number that can be positive

or negative and may be thought of as the strength of the technological relationship

between technologies k and l, or relatedness. In this paper, I calculate the expected

frequency klf̂ on the assumption that the distribution of random technological co-

occurrences is hypergeometric. Thus, I use the parametric technological relatedness

measure P
klτ (see Appendix 1).

In the second step, I compute the weighted average relatedness WARk of technology k

with respect to all other technologies within the firm. Similarly to Teece et al. (1994), the

weighted average relatedness WARk of technology k is defined as the degree to which

technology k is related to all other technologies present within the firm, weighted by

patent count Pkit.:

(8)
�

⋅�=
≠

≠

kl kit

klkl kit
k P

PWAR τ
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WARk is a measure of the expected relatedness of technology k with respect to any given

technologies randomly chosen within the firm. WARk may be either positive or negative,

the former (latter) indicating that technology k is closely (weakly) related to all other

technologies within the firm. Consequently, knowledge relatedness at the firm level is

defined as the weighted average of the WARk measures:

(9) [ ]
�

� =×=
k kit

kit
k

K
k kk P

P
ffWARR where

Eq.(9) estimates the average relatedness of any technology randomly chosen within the

firm with respect to any other technology. Again, this measure can be either negative or

positive, the latter indicating that the firm’s technologies are globally well related, while

a negative value shows a poor average relatedness amongst the technologies in which

the firm has developed competencies.

Applied to technology classes, the relatedness measure implies a different interpretation

than when applied to activities, as done in Teece et al. (1994). For Teece et al., the

prominent reason for related diversification lies in the similarity of activities amongst

the firm’s various production lines. Diversification is related when common

competencies are shared in a (bounded) variety of business lines. This differs from my

own interpretation of relatedness as applied to technologies. Technological relatedness

klτ assesses the statistical intensity of the joint use of two given technologies and thus

indicates that the utilisation of technology k implies that of technology l in order to

perform a specific set of activities. In other words, technologies are related when their

combination leads to specific technological functions that are not reducible to their

independent use. Hence a reasonable interpretation of technological relatedness is that it



12

indicates primarily the complementarity of the services rendered by two technologies. In

the remainder of the paper, the term “relatedness” refers to complementarity between

two technologies.1

5. Data

The dataset used in this study is the compilation of a patent data set combined with a

financial data set. Concerning the former, I used the US Patent and Trademark Office

(USPTO) patent dataset provided by the National Bureau of Economic Research (Hall et

al, 2001). This dataset comprises more than 3 million US patents since 1963, but requires

some additional manipulations to convert it into a workable tool. First, using the

information on the company name and year of application2, I selected the most

abundantly patenting manufacturing firms using Fortune 500 (August 1998). Because

many of the world’s largest companies operate outside the manufacturing sectors, such

as banking or insurance, the selection yielded a sample of 162 companies, meant to be

the world’s largest manufacturing corporations. Second, the lack of data on firm

consolidation in the USPTO patent dataset was overcome using the Who owns whom 2000

Edition.3

Third, the USPTO dataset provides one U.S. Patent technology class for each patent.  An

appealing opportunity is to use patent citations to link technologies to each other. But as

emphasised by Jaffe et al. (1998), citations are rather noisy, because they may be used to

comply with various legal matters regarding the validation of technological novelty. As

an alternative, information on the technological content of patents was completed by

collecting all international technology classes (IPC) assigned to each US patent
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document.4 The six-digit technology classes proved to be too numerous and I therefore

use them at the three-digit level, analogous to a technological space of 120 technologies.5

Because more than one technology may be listed within one single patent document, it is

then possible to calculate the frequency with which two technologies are listed together.6

This patent dataset further enhances the computation, at the firm level, of the variables

measuring knowledge capital (E), knowledge diversity (D) and knowledge relatedness

(I) between 1968 and 1999.

The other data set, the 1997 edition of Worldscope Global Researcher (WGR), provides

the financial variables required. Firm sales are used as a proxy for output (Q), gross

value of property plant and equipment measures firm capital (C), whereas the number

of employees is used to proxy labour (L). Ideally, one would like to measure value-

added to measure output (Q) more accurately, and control for labour quantity and

quality by having data on the number of hours worked and on wages and

compensation. Unfortunately, companies do not disclose such information

systematically and the resulting figures proved too scarce to be of any use. Information

on value-added and the number of hours worked or on education is not systematically

provided in company SEC filings. Therefore, the variable on labour input can only be

used in ratio yielding the following functional form:

(10)
( ) ( )

( )1−+=
⋅∏⋅⋅⋅=

βαϕ

θϕβ

with

itK u
K itititit eKLLCALQ

The parameter ϕ is used as an assessment for constant returns to scale. If the parameter

ϕ is not significantly different from nullity, i.e. ϕ  = 0, the world’s largest manufacturing

firms enjoy constant returns to scale in production. However if ϕ  is significantly



14

different from zero, the production of the representative firm in the sample departs from

an equilibrium of constant returns to scale, leaving the potential to either downsize

(ϕ < 0) or expand (ϕ  > 0) the scale of productive activities. Taking logs yields:

(11) ( ) ( ) itK itKititit ukllcalq +� ⋅+⋅+−⋅+=− θϕβ

where k = {e, d, i}. The left hand side of Eq.(11) is the logarithm of labour productivity,

and β, ϕ and θK are the parameters of interest and can be estimated by ordinary least

squares.

Additional data on the net value of property plant and equipment (NC), R&D

investments(R), main industry group (two-digit SIC) and secondary industry groups are

also used to control for the age of capital by calculating the ratio of net over gross capital

(NC/C)7, R&D intensity(R/Q), industry specific effects and product diversification,

respectively. Financial data originally expressed in national currency have been

converted into US dollars using the exchange rates provided by the Organisation for

Economic Co-operation and Development (OECD). All financial data were then deflated

into 1996 US dollars using the Implicit Price Deflator provided by the U.S. Department

of Commerce, Bureau of Economic Analysis.

{Tables I & II Approximately Here}

Compiling data from both the patent and financial datasets produced an unbalanced

panel dataset of 156 companies observed between 1986 and 1996, yielding 1,608

observations. Tables I and II display the descriptive statistics for the set of variables and

provide general information on the various industry groups of the sample (Standard

Industry Classification – SIC two digit). The sample is composed of firms from 11
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industry groups. These are rather heterogeneous, as they differ significantly in terms of

their aggregate productivity levels, research intensity, and knowledge characteristics

(Table II). The largest sectors in the sample are: Chemicals and Allied Products,

including Drugs (SIC 28, 29 corporations); Transportation Equipment (SIC 37, 27

corporations) Electronic and Other Electric Equipment (SIC 36, 17 corporations);

Industrial Machinery and Equipment (SIC 35, 16 corporations). These sectors are

generally highly intensive in R&D activities (see Table II), with more than 5% of their

sales invested in research. Thus, our findings are likely to be biased towards more

research-intensive sectors, which is in line with the selection procedure of selecting the

most abundantly patenting firms in the set of the world’s largest manufacturing

corporations. Consistently with Eq.(11), all variables are entered in logs, and their

correlation coefficients are displayed in Table III.

{Table III Approximately Here}

6. Results

6.1 Main Results

Several econometric specifications have been used to estimate Eq.(11) and Table IV

reports the main results. In Column (1), the results of Ordinary Least Squares (OLS) on

the pooled sample show that all explanatory variables have a significant effect on labour

productivity. Not surprisingly, the effect of physical capital (c – l) is quite large (0.690)

and in line with previous findings that the omission of materials in the production

function overestimates the effect of physical capital (Griliches and Mairesse, 1984). The
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estimate for labour l is significant and negative (-0.197), which implies that the world’s

largest manufacturing corporations cope with steep decreasing returns to scale. This is

hardly surprising, for the size of the world’s largest corporations offers little scope for

productivity gains related to increases in their scale of operations. The effect of the

newness of capital (NC/C) is significant (1.005), suggesting a positive contribution of

embodied technical progress to firm productivity.

{Table IV Approximately Here}

The effects related to firm knowledge base are all significant. Consistently with the

works of Griliches, knowledge capital e contributes positively to firm productivity

(0.035), although knowledge capital as measured here differs from measures of R&D

stocks. The negative sign of knowledge diversity (- 0.101) is in line with, but not identical

to, the so-called “diversification discount”. Similar to product diversification, diversified

knowledge bases impact negatively on firm productivity owing to increased agency

costs and sub-optimal choices in investments across divisions. Knowledge relatedness is

highly significant (0.894). This conforms to the initial intuition that knowledge

relatedness is related to coordination costs: firms diversifying in related activities are

more productive because the cost of co-ordinating a heterogeneous set of productive

tasks is simply lower to that of combining unrelated activities.

In columns (2)-(7), I explore alternative specifications of Eq.(7) in order to test for the

robustness of these preliminary findings. Column (2) introduces a firm specific effect ηi

by converting all variables as differences from group (firm) means. This wipes out the

unobservable and persistent heterogeneity across firms, which may alter the consistency

of the estimates. The specification (Least Square Dummy Variable – LSDV) produces
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fairly robust estimates for most explanatory variables: large corporations cope with

decreasing returns to scale; the effect of knowledge capital and relatedness remain

highly significant whereas the effect of knowledge diversity to productivity becomes

largely insignificant.

Eq.(7) relies on the critical assumption that the error term εit is serially uncorrelated. One

can relax this assumption by adopting a dynamic representation of Eq.(7). First in

column (3)-(5), all variables are expressed as differences from their value at time t – 1

weighted by parameter ρ representing first order autocorrelation (AR1): 1−⋅− t,iit xx ρ ,

where x is any of the dependent and independent variables. The autoregressive model of

column (3) produces a high ρ, which is near unity (ρ = 0.968).  In column (4) all variables

are entered as deviations form firm means. As a result, the estimated ρ decreases to a

more standard value of slightly above 0.5. In the first difference where ρ is set to unity,

knowledge capital and relatedness keep their high significance levels. This observation

is quite satisfactory, as the autoregressive model with firm fixed effects is a fairly

conservative method, where a substantial share of the information available in the

dataset is swept away before the actual estimation.

The inclusion of a lagged dependent variable makes the standard panel estimation

techniques, i.e. Ordinary Least Squares (OLS), inconsistent because the lagged

dependent variable induces a correlation between the explanatory variables and the

error term. A standard procedure for dealing with variables that are correlated with the

error term is to instrument them and apply the instrumental Generalised Method of

Moment (GMM) estimator along the lines suggested by Arellano and Bond (1991). In the

one-step estimator (Column 6), all the knowledge variables lose their significance,
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although the sign of knowledge capital and relatedness remains consistent with

previous estimates. In the two-step estimator (Column 7), these variables recover their

significance. This implies that in a dynamic setting, positive changes to the knowledge

variables, notably knowledge capital and relatedness, lead to positive changes in firm

productivity Altogether, the various specifications show that: (i) large corporations face

steep decreasing returns to scale; (ii) the stock of knowledge is a prime determinant of

firm productivity; (iii) knowledge relatedness plays a significant and positive role in

firm productivity. This is consistent with the proposition that effective knowledge

relatedness lowers coordination costs across the productive activities within firms; (iv)

positive changes in the previously mentioned variables entail positive changes in firm

productivity; (v) knowledge diversification remain insignificant, suggesting that the

breadth of firm knowledge is not linked to productivity.

Sub-sections 6.2 to 6.4 address three issues that may potentially affect the results: the

characteristics of the sample; alternative measurement of firm knowledge; alternative

econometric specification overcoming the simplification that RDEK ⋅⋅≡ .

6.2 Sample biases

I deal with the first issue by decomposing the sample in several ways (reported in Table

V). The parameter estimates reveal their usual robustness, but interesting insights

emerge from the results. In column (8), I control for the possible contamination of results

introduced by outliers located in the top and bottom 5 percentiles of observations for the

dependent variables. The results are consistent with Table IV, although the estimated

parameters, while keeping their significance levels, are all closer to zero. In column (9), I

control for the R&D intensity of firms and include only observations with the ratio (R/Q)
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above 5%. The knowledge variables are fairly stable, but the estimate of knowledge

relatedness is higher than for the whole sample. This suggests that high-technology

firms rely more heavily on knowledge relatedness than less R&D-intensive firms.

{Table V Approximately Here}

This is further illustrated in columns (9)-(11) where observations have been grouped

according to the sectoral aggregate R&D intensity as displayed in Table II. High-

technology sectors comprise 53 large corporations from Chemicals (29 firms), Electronics

(17 firms) and Instruments (7 firms), with an aggregate (R/Q) ratio above 6%. Medium-

technology sectors comprise 50 large corporations from Industrial Machinery (16 firms),

Transportation Equipment (27 firms) and Communications (7 firms), with an aggregate

(R/Q) ratio between 4% and 6%. The low-technology sectors consist of 31 firms (Oil, 5

firms; Food, 6 firms; Primary Metal, 11 firms; Petroleum, 9 firms) but exclude the

miscellaneous category entitled “Others”.

The results show that capital productivity is fairly stable across sectors, but the values of

the labour estimate l suggests that decreasing returns to scale are not as steep in high-

technology sectors as for others. This in turn may be due to several factors but it is

consistent with the idea that such sectors constantly introduce new products that may

keep the scale of productive activities closer to equilibrium. The knowledge variables

exhibit an interesting steady pattern, where knowledge capital and relatedness are

significantly higher in high-technology sectors, while in low-technology sectors, the

source of superior productivity does not seem to rely on the characteristics of firm

knowledge base. In fact, one should be careful in rejecting the role of knowledge in low-

technology sectors: it may well be that these firms have all achieved a satisfactory level
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of knowledge capital and relatedness that is a pre-requisite for their productive

operations. More fundamentally, it may also be the case that patents do not capture used

or useful knowledge, the latter being embodied in other, unobserved, technical artefacts

and human capital. Since knowledge is supposedly more stable, the knowledge

variables are no more a discriminating criterion for high productivity, but remain a

criterion for firm survival. Failure to accumulate related knowledge in a productive

fashion may lead to firm exit.

In columns (13) - (17), I experiment with several decompositions of the sample. First, I

test for the presence of a time effect by grouping the observations into two sub-periods:

1990 and previous years and strictly after 1990. The results suggest that all aspects of

firm knowledge become increasingly important through time. In the late eighties, all the

knowledge variables are insignificant (Column 13), whereas in the nineties, knowledge

capital and knowledge relatedness become positive and significant (Column 14). This

echoes positively the rise of the so-called knowledge-based economies in the nineties.

Second, I investigate the effect of geography on the production function by grouping

firms into three sets: North America, including Canada (Column 15), Europe (Column

16) and Asia (Column 17). All groups have a peculiar production function. American

firms conform mostly to the general results. Firm productivity in European corporations

is mainly based on knowledge capital. Asian corporations exhibit an unlikely production

function since both diverse and integrated knowledge bases impact negatively on firm

productivity. These regional particularities reflect the sectoral endowment of the

geographic decomposition.
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6.3 Mismeasurements of knowledge

The second issue is related to the measures used for the knowledge variables, the choice

of which may affect the significance and sign of the coefficients. Table VI provides the

results of alternative measures of firm knowledge. For comparison the first column

displays the results from the basic specifications (Column 2 of Table IV). In column (18),

I follow Griliches and Mairesse (1983) and Griliches and Clark (1984) and use the ratio

(R/Q) to proxy knowledge capital. The results are as expected, positive and significant,

although the estimate for knowledge relatedness loses its significance, due to its co-

linearity with R&D investments.

In columns (19) and (20), I introduce additional measures of knowledge diversity. In

Column (19), I introduce directly (the log of) knowledge diversity D, without correcting

for firm patent stock. In column (20), I introduce knowledge diversity computed as the

dispersion of firm competencies across technological areas: 2
kitkit PPitD σµ=′′ . This ratio

increases as firm competencies are distributed evenly across technologies.8

{Table VI Approximately Here}

The results show a persistent non-significance of technological diversification with firm

productivity, whereas the other estimates are consistent with previous results. I do not,

however, rule out the significant role of technological diversity in firm activities. First,

diversification has been shown to be a major input for innovative activities, simply

because new ideas are more likely to emerge from a stock of diversified knowledge

(Henderson and Cockburn, 1996). Switching the dependent variable with innovative

output would certainly depict the positive and significant contribution of knowledge

diversity to firm innovation. Second, technological diversification is being increasingly
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viewed as being a major characteristics of modern productive activities: firms differ

more on the basis of their product portfolio than they do in terms of their technological

competencies, precisely because the share of scientific and technical knowledge in

productive activities has increased substantially, keeping the number of productive

activities constant (Patel and Pavitt, 1997; Gambardella and Torrisi, 1998). Finally firms

must develop technical competencies other than those they directly exploit in their

productive activities, first to benefit from technical spillovers from competitors (Jaffe,

1986), and second, to cope with the technological developments of their most direct

partners (Brusoni et al., 2001).

In columns (21)-(23), I develop several measures of knowledge relatedness. Echoing

Section 4, there are two main choices one must make when measuring knowledge

relatedness within firms: in the first step, the choice of a relatedness measure klτ ; in the

second step, the choice of how to measure knowledge relatedness within the firm, given

technological relatedness. Concerning the former, Appendix 1 suggests that there are no

authoritative metrics for quantifying relatedness between technologies. Instead of

relying on a parametric setting that produces relatedness P
klτ , one can also develop a

non-parametric measure of technological relatedness NP
klτ , based on information theory.

Regarding the latter choice, one can start by representing firm knowledge as forming a

graph G=(K,R), where K is the set of vertices, i.e. firm technological competencies, and R

is the set of edges, i.e. technological relatedness, that links technologies together. In fact,

Eq.(8) assumes firm competencies to form a fully connected graph; in a corporation with

k technological competencies, all k × (k - 1) / 2 pairs of technologies are included in the

computation of WAR. Quite likely however, not all technologies within the firm are
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related to all other ones: only subsets of technologies relate to other subsets of

technologies. To account for this, I follow Teece et al. (1994) and Breschi et al. (2003) and

include only the (m - 1) strongest links that are needed to create a connected graph that

comprises all firm competencies. This captures the strongest associations across technical

areas k and l and is equivalent to depicting the maximum spanning tree from graph

G=(K,R). I thus rewrite Eq.(8) as follows:

(12)
( )
( )� ⋅

� ⋅⋅=′
≠

≠

kl lkkit

kl klkitlk
k P

PRWA
λ
λτ

where klλ  = 1 if the link between technological competencies k and technological

competence l is part of the tree. Because WAR’ only includes the strongest links within

the firm, WAR’ is likely to produce measures of firm knowledge relatedness that are

biased upwards, whereas conversely the previous measure is biased downwards.

The results show that the measure of knowledge relatedness is generally robust. In

column (21), knowledge relatedness based on NP
klτ remains both highly significant and

positive, while in column (22), knowledge relatedness based on WAR’ is positive and

significant at 5% level. In column (23) however, knowledge relatedness based on both

NP
klτ and WAR’ becomes non significant, raising the issue regarding the measurement of

knowledge relatedness. Clearly, knowledge relatedness embodies a large firm-specific

element that is not captured by the methodology developed in this paper, and it goes

beyond the means of the metrics suggested here. In all instances, this measure is likely to

embody significant noise, which in turn should bias the parameter estimate of

knowledge relatedness θI downwards with respect to its unknown true value Rθ̂ . Thus

globally, the positive and significant relation between knowledge relatedness and firm
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productivity is quite supportive for the theory that more integrated knowledge is

associated with lower coordination costs, thereby increasing significantly firm

productivity.

6.4 Mispecifications

The last issue investigates the validity of the linear specification, relying on the

simplification that RDEK ⋅⋅≡  whereas the original model implies that

( )[ ]RDEK ⋅−+⋅= 11 . Additionally, one wants to distinguish the overall knowledge base

effect from the weighted contribution of the three associated dimensions {E, D, R}. One

can investigate these issues by first rewriting Eq.(10) as follows:

(13) ( ) ( ) ( )[ ] itRREE u
itititititit eRDELLCALQ ⋅⋅′⋅⋅⋅⋅= −− δϖϖϖϖϕβ 1

Eq.(13) is strictly analogous to Eq.(10), but the parameters ϖE and ϖI represent the

weights associated with knowledge capital and knowledge relatedness respectively,

whereas δ represents the overall effect of firm knowledge base on firm productivity.

Consistently with the previous results, I consider the estimate of knowledge diversity ϖD

as being a residual, so that ϖD = 1 - ϖE - ϖR. From Eq.(13), one can recover the elasticities

of firm productivity with respect to the knowledge variables by computing θE = ϖE × δ;

θR = ϖR × δ; ϖD = (1 - ϖE - ϖR) × δ. One can then relax the simplifying assumption that

RDEK ⋅⋅≡ . Substituting (4) into (1) yields:

(14) ( ) ( ) ( ) ( )[ ][ ] itIIEE u
itititititit eRDELLCALQ ⋅⋅−′+⋅⋅⋅⋅= −− δϖϖϖϖϕβ 111

where the parameters δ,ϖE and ϖR are defined as previously and the estimate of

knowledge diversity ϖD remains a residual: ϖD = 1 - ϖE - ϖR. In the log form, Eqs.(13) and
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(14) become:

(15) ( ) ( ) ( )[ ] ititRitREitEititit urdellcalq +⋅+′⋅−−+⋅⋅+⋅+−⋅+=− ϖϖϖϖδϕβ 1

(16) ( ) ( ) ( )( )[ ][ ] ititititititit uRDEllcalq IREE +⋅−′+⋅⋅+⋅+−⋅+=− −− ϖϖϖϖδϕβ 111log

Eqs.(15) and (16) can be estimated by non-linear least squares. All variables are

expressed as deviations from firm means, wiping out the unobservable heterogeneity

across firms. Importantly, ( )[ ]RDE ⋅−′+⋅ 11  can be negative, implying that Eq.(16) cannot

be estimated. To deal with this issue, all knowledge variables are standardised in such a

way that {E, D, R} ∈  [ 2 ; 3 ].9

{Table VII Approximately Here}

Table VII reports the results for Eqs.(15) and (16), for the whole sample and for the high-

technology sectors. It also distinguishes between the two measures of knowledge

relatedness based on the WAR and WAR’ computations. Although the parameter

estimates for knowledge relatedness are at the borderline of significance (Columns 25

and 28), the results remain globally consistent with the previous remarks. First, the

elasticity of deflated sales with respect to physical capital, although overestimated,

remains quite stable across the specifications. The parameter for returns to scale is

consistently negative for the sample as a whole, whereas firms active in high technology

sectors operate in constant returns to scale.

The estimates depicting the elasticity of output with respect to firm knowledge are

globally satisfactory. In column (24), parameter δ is largely significant and positive,

suggesting that a 1% increase in the firm total knowledge implies a 0.62% percent in firm

output per employee. The weights ϖE and ϖR imply that θR = 0.456 and θE = 0.175, which
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is slightly lower than the basic specification from column (2). The weights ϖE and

ϖR estimated from the identical specification using WAR’ (Column 27) are more in line

with the primary role of knowledge stocks over knowledge relatedness. They also

suggest that the effect of knowledge diversity on firm productivity may not be a simple

residual (columns 25 and 28). Computing ϖD = (1 − ϖE − ϖR) shows that the role of

knowledge diversity becomes quite large (0.223 in column 25 and 0.210 in column 28) for

the whole sample of firms.

The comparison of columns (25) with (26) and (28) with (29) suggests that in high-

technology sectors, the role of knowledge relatedness is essential in boosting firm

productivity. This is further compatible with the last estimates relating to the newness of

physical capital (NC/C). Its large and significant effect in high-technology sectors

suggests that much of firm productivity gains arise from investments in high-technology

equipment. The supposedly higher technological turbulence in sectors such as chemicals

(including the highly turbulent pharmaceutical industry), instruments and electronics

challenges the ability of large corporations to assimilate and exploit new technical

knowledge by integrating it into their own production function.

Globally, the non-linear specifications produce estimates that compare well with

previous estimations. There is an issue regarding the role of knowledge relatedness but

the associated parameter estimate remains at the borderline of significance. By and large,

its value is consistent with previous estimations: knowledge capital and knowledge

relatedness are active components of firm productivity, especially in high-technology

sectors.



27

7. Conclusion

This paper has aimed to generalise intriguing insights into the importance of knowledge

in firm performance. It has analysed the relationship between output, physical capital,

employment and three characteristics of firm knowledge – knowledge capital, diversity

and relatedness – in a sample of 156 of the world’s largest corporations. The major

finding is that knowledge capital and relatedness are important sources of productivity

at the firm level. In fact, knowledge capital is insufficient to explain the contribution of

intangibles to firm productivity. The intrinsically heterogeneous nature of knowledge

implies that the way scientific and technical knowledge is combined impacts on firm

productivity. The econometric results show that more integrated, better-articulated

knowledge bases reach higher levels of productivity. The theoretical justification lies at

the heart of economic theory: the cost of co-ordinating coherent knowledge bases is

simply lower than that of co-ordinating unrelated pieces of knowledge.

Several issues relate to the heterogeneous nature of the sample, across time, industries

and regions. Although there are important differences, these apply to the knowledge

base as a whole more than they question the economic relevance of knowledge

relatedness. Globally, the role of knowledge relatedness becomes stronger in

knowledge-intensive sectors such as chemicals, drugs, electronics and instruments. In

other sectors, its contribution remains positive and significant but significantly lower,

even after controlling for probable mismeasurements in the knowledge variables and

possible mispecifications in the econometric model.

There is also the possibility of improving the statistical methodology in several ways.

First, one can extend the data collection process to include the quality and quantity of
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physical equipment and labour, to use value-added instead of gross output (sales), etc.

Alternatively, one can refine the patent data methodology by using citations in order to

test whether technological relatedness is sensitive to the methods used to link

technologies to one another. Moreover, the panel nature of our data suggests extending

the work on simultaneity amongst the variables, notably on R&D expenditures as and

explanatory variable for the knowledge variables.

The analysis has uncovered interesting relationships and left a number of issues open for

further research. This suggests addressing the issue of knowledge relatedness as the

dependent variable and the quantitative and qualitative efforts necessary in achieving

desirable levels of relatedness. These encompass firm investments in research to pursue

a given technological strategy; the set of partners involved in firm productive activities;

and, not least, the investments in managerial resources themselves.

Finally, one should bear in mind that firms seek several goals simultaneously, some

conflicting with others. Unquestionably in the short run, firms need to generate

revenues. In the long run, they must anticipate as accurately as possible the potential

technological opportunities that may impact directly on their productive operations. In

other words, firms must invest in several research avenues, but only a few may prove to

be highly profitable. This tension between profitability and survival has long been

identified (March, 1991). I suspect that the characteristics of firm knowledge must reflect

these diverging goals, and future work should investigate more systematically the

behaviour of the knowledge variables with respect to alternative measures of firm

economic performance.
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TABLE I

DESCRIPTIVE STATISTICS – POOLED SAMPLE

Variable Obs Mean Std. Dev. Min Max

Sales Q 1608 21,713.4 21,950.4 38.1 167,038.9

Gross Value of Plant and Equipment C 1608 16,969.2 18,613.3 41.2 126,372.3

Net Value of Plant and Equipment NC 1608 8,070.4 9,629.9 26.6 72,567.3

R&D expenditures R 1337 949.5 1,234.6 1.1 8,900.4

Number of employees L 1608 91,432.5 96,541.4 647 876,000

Knowledge Capital E 1608 1,697.2 2,001.0 2.6 12,171.3

Knowledge Diversity D 1608 49.3 20.7 3.0 98.0

Unexpected Knowledge Diversity D’ 1608 0.0 14.3 -50.5 43.9

Knowledge Relatedness I 1608 12.5 79.2 -66.1 1,943.4
Q, C, NC, R:  Millions of 1996 US Dollars



TABLE II

SECTORAL DECOMPOSITION OF THE MAIN VARIABLES, 1986-1996

Sectors N Q L (Q/L) ∆(Q/L) (R/Q) E D D’ I

Chemicals and allied products (Including drugs) 29 13.0 55.9 232.6 4.83 6.47 1,705.5 46.2 -3.2 32.2
Communications 7 23.3 185.0 126.4 6.33 4.02 1,282.0 38.0 -8.2 67.4
Electronic and other electrical equipment 17 22.7 129.9 174.7 5.99 6.67 3,162.1 60.1 -0.1 0.6
Food and kindred 6 21.7 135.1 160.8 6.12 1.42 359.9 29.2 -10.1 19.1
Instruments and related products 7 12.1 75.6 160.4 2.63 6.38 2,672.7 64.2 7.6 -5.7
Industrial machinery and equipment 16 21.6 98.2 219.6 5.24 5.05 3,134.2 54.9 -5.1 -5.0
Primary metal industries 11 13.0 34.9 372.6 5.75 1.67 501.9 46.4 6.1 -2.8
Oil & Gas Extraction 5 41.4 50.2 824.7 5.79 2.60 1,776.2 44.4 -5.5 16.2
Others 22 14.7 61.1 241.7 4.24 2.90 513.5 40.5 0.0 6.0
Petroleum and coal products 9 29.9 63.4 471.1 4.16 1.17 1,686.2 58.6 9.4 -5.9
Transportation equipment 27 35.4 141.2 251.4 6.78 4.50 1,434.4 51.2 3.9 17.5
Mean (Total) (156) 21.7 91.4 237.4 5.31 4.59 1,697.2 49.3 0.0 12.5
F-Stat 8.35*** 36.08*** 5.55*** 0.60 58.48*** 44.80*** 29.53*** 24.00*** 8.22***
R-Square 0.050 0.184 0.034 0.004 0.303 0.219 0.156 0.125 0.049
N: Number of Firms
Q: Deflated Sales (In Billions of 1996 US Dollars)
L: Number of Employees (In thousands)
(Q/L):  Deflated Sales (Thousand of 1996 US Dollars) per Employee
∆(Q/L): Annual growth rate of labour productivity
(R/Q): R&D intensity
E: Knowledge Capital
D: Knowledge Diversity
D’: Unexpected Knowledge Diversity
I: Knowledge Relatedness



TABLE III
CORRELATION MATRIX, 1986-1996

( q – l ) ( c – l ) l e d d' i (NC/C)

Deflated sales per employee ( q – l ) 1.000 0.852 -0.551 -0.065 -0.049 -0.032 0.021 -0.079

Gross Capital per employee ( c – l ) 1.000 -0.452 -0.017 0.027 0.037 0.016 -0.196

Labour l 1.000 0.487 0.432 0.194 -0.042 0.009

Knowledge capital e 1.000 0.806 0.282 -0.173 -0.195

Knowledge diversity d 1.000 0.701 -0.420 -0.337

(Knowledge diversity)’ d' 1.000 -0.372 -0.263

Knowledge relatedness i 1.000 0.223

Age of Capital (NC/C) 1.000



TABLE IV
KNOWLEDGE AND PRODUCTIVITY – POOLED SAMPLE

DEPENDENT VARIABLE: DEFLATED SALES PER EMPLOYEE ( q – l )

 OLS LSDV AR1 LSDV AR1 FD GMM1 GMM2
 (1) (2) (3) (4) (5) (6) (7)

0.690 0.503 0.589 0.564 0.558 0.535 0.589Capital per employee [0.037]*** [0.020]*** [0.046]*** [0.044]*** [0.049]*** [0.029]*** [0.030]***
-0.197 -0.345 -0.340 -0.347 -0.379 -0.439 -0.373Employee [0.019]*** [0.018]*** [0.042]*** [0.039]*** [0.051]*** [0.029]*** [0.033]***
0.035 0.206 0.108 0.153 0.104 0.069 0.119Knowledge capital [0.012]*** [0.014]*** [0.022]*** [0.032]*** [0.031]*** [0.044] [0.022]***
-0.101 -0.033 -0.022 -0.023 0.025 0.037 0.040(Knowledge diversity)’ [0.026]*** [0.024] [0.021] [0.041] [0.045] [0.038] [0.021]*
0.894 0.589 0.127 0.285 0.133 0.336 0.285Knowledge relatedness [0.282]*** [0.158]*** [0.060]** [0.120]** [0.067]** [0.360] [0.135]**
1.005 0.208 0.204 0.144 0.160 -0.260 -0.211Age of Capital [0.124]*** [0.086]** [0.133] [0.128] [0.147] [0.111]** [0.093]**
-0.410 4.346 7.404 0.033 0.012 0.002 0.002Intercept [2.480] [1.236]*** [0.939]*** [0.016]** [0.021] [0.003] [0.003]

Observations 1,608 1,608 1,608 1,608 1,448 969 969
Number of firms 156 156 156 156 155 134 134
Adjusted R-squared 0.780 0.780 0.982 0.813 0.788
Rho (Wald) 0.968 0.554 1.000 (7,408***) (16,941***)
Sargan 114.6*** 56.2*
Ar1 -2.928*** -2.199**
Ar2 -0.804 -1.422
Standard errors in brackets
significant at 10%; ** significant at 5%; *** significant at 1%
All models include the full set of year dummies. The OLS specification includes a full set of (SIC two-digit) industry dummies. In  GMM1 and
GMM2, the set of explanatory variables is instrumented using two lags and using the log of R&D intensity (R/Q) as a supplementary instrument.
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TABLE V
TESTING FOR THE PRESENCE OF SAMPLE BIAS – WITHIN REGRESSIONS

DEPENDENT VARIABLE: DEFLATED SALES PER EMPLOYEE ( q – l )

 
90%

Sample
Scientific

firms
High-tech

Sectors
Middle-tech

Sectors
Low-tech
Sectors Pre-1990 Post-1990 AM EUR ASIA

 (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
0.339 0.470 0.474 0.493 0.464 0.328 0.584 0.580 0.285 0.467Capital per employee [0.023]*** [0.040]*** [0.037]*** [0.034]*** [0.046]*** [0.042]*** [0.028]*** [0.036]*** [0.032]*** [0.065]***
-0.254 -0.302 -0.122 -0.407 -0.471 -0.210 -0.371 -0.305 -0.201 -0.491Employee [0.019]*** [0.031]*** [0.032]*** [0.032]*** [0.042]*** [0.039]*** [0.027]*** [0.035]*** [0.025]*** [0.056]***
0.160 0.178 0.208 0.253 0.068 -0.013 0.239 0.223 0.145 0.039Knowledge capital [0.013]*** [0.019]*** [0.025]*** [0.024]*** [0.041] [0.037] [0.020]*** [0.023]*** [0.022]*** [0.035]
0.019 -0.157 -0.002 -0.005 -0.043 -0.030 -0.063 -0.007 -0.034 -0.192(Knowledge diversity)’ [0.022] [0.056]*** [0.055] [0.032] [0.082] [0.074] [0.028]** [0.034] [0.058] [0.046]***
0.578 0.635 1.296 0.588 1.352 -0.338 0.628 0.790 0.150 -3.127Knowledge relatedness [0.144]*** [0.156]*** [0.438]*** [0.197]*** [1.304] [0.698] [0.137]*** [0.199]*** [0.247] [1.549]**
0.143 0.519 0.599 0.272 -0.407 0.076 0.239 0.119 -0.006 0.005Age of Capital [0.080]* [0.130]*** [0.152]*** [0.142]* [0.214]* [0.145] [0.119]** [0.139] [0.108] [0.196]
5.619 4.469 -3.619 4.811 1.700 13.377 3.216 1.293 9.317 36.297Intercept [1.125]*** [1.276]*** [3.323] [1.631]*** [10.182] [5.361]** [1.177]*** [1.523] [1.903]*** [11.764]***

Observations 1,446 544 549 508 326 704 904 639 512 457
Number of firms 152 90 53 50 31 150 156 61 52 43
Adjusted R-squared 0.621 0.715 0.691 0.855 0.815 0.401 0.876 0.836 0.769 0.782
F-Stat 158.6*** 91.8*** 80.9*** 191.1*** 92.5*** 63.0*** 593.2*** 207.7*** 110.4*** 106.0***
Standard errors in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%
All models include the full set of year dummies
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TABLE VI
ALTERNATIVE MEASURES OF KNOWLEDGE CAPITAL, DIVERSITY AND RELATEDNESS

WITHIN REGRESSIONS ON POOLED SAMPLE
DEPENDENT VARIABLE: DEFLATED SALES PER EMPLOYEE ( q – l )

 
Basic

Specification R&D intensity Diversity Dispersion Non-Param.
WAR

Parametric
WAR’

Non-Param.
WAR’

 (2) (18) (19) (20) (21) (22) (23)
0.503 0.573 0.498 0.499 0.509 0.513 0.512Capital per employee [0.020]*** [0.024]*** [0.020]*** [0.020]*** [0.020]*** [0.020]*** [0.020]***
-0.345 -0.157 -0.349 -0.348 -0.339 -0.336 -0.336Employee [0.018]*** [0.018]*** [0.018]*** [0.018]*** [0.018]*** [0.018]*** [0.018]***
0.206 0.111 0.203 0.206 0.204 0.191 0.195Knowledge capital [0.014]*** [0.014]*** [0.017]*** [0.015]*** [0.014]*** [0.014]*** [0.014]***
-0.033 -0.040 0.012 -0.001 -0.037 -0.037 -0.039(Knowledge diversity)’ [0.024] [0.027] [0.035] [0.028] [0.024] [0.024] [0.024]
0.589 0.130 0.610 0.604 0.992 0.038 -0.020Knowledge relatedness [0.158]*** [0.344] [0.159]*** [0.158]*** [0.277]*** [0.015]** [0.019]
0.208 0.010 0.204 0.205 0.211 0.184 0.180Age of Capital [0.086]** [0.103] [0.086]** [0.086]** [0.086]** [0.086]** [0.086]**
4.346 7.015 4.153 4.199 3.771 8.641 8.763Intercept [1.236]*** [2.639]*** [1.239]*** [1.233]*** [1.438]*** [0.375]*** [0.374]***

Observations 1,608 1,338 1,608 1,608 1,608 1,608 1,608
Number of firms 156 139 156 156 156 156 156
Adjusted R-squared 0.780 0.765 0.780 0.780 0.780 0.779 0.778
F-Stat 366.7*** 282.3*** 366.2*** 366.2*** 366.4*** 364.4*** 362.7***
Standard errors in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%
All models include the full set of year dummies
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TABLE VII
NON-LINEAR LEAST SQUARES WITH FIRM AND YEAR FIXED EFFECTS

DEPENDENT VARIABLE: DEFLATED SALES PER EMPLOYEE ( q – l )

Parametric WAR Parametric WAR’

Eq.(15) Eq.(16) Eq.(16) Eq.(15) Eq.(16) Eq.(16)
 (24) (25) (26) (27) (28) (29)

0.521 0.592 0.519 0.525 0.593 0.514Capital per employee [0.019]*** [0.018]*** [0.036]*** [0.019]*** [0.018]*** [0.036]***
-0.324 -0.234 -0.044 -0.321 -0.234 -0.057Employee [0.017]*** [0.016]*** [0.031] [0.017]*** [0.016]*** [0.031]*
0.618 1.935 4.990 0.200 1.966 15.615Knowledge Base [0.156]*** [0.490]*** [1.441]*** [0.041]*** [0.475]*** [3.475]***
0.284 0.549 0.184 0.826 0.539 0.066Knowledge Capital [0.069]*** [0.122]*** [0.053]*** [0.154]*** [0.115]*** [0.017]***
0.739 0.233 0.746 0.221 0.251 0.910Knowledge Relatedness [0.072]*** [0.175] [0.078]*** [0.067]*** [0.167] [0.025]***
0.177 0.082 0.626 0.161 0.080 0.585(NC/C) [0.082]** [0.085] [0.154]*** [0.082]* [0.085] [0.152]***
0.043 -2.513 -6.064 0.042 -2.550 -18.770Intercept [0.012]*** [0.588]*** [1.733]*** [0.012]*** [0.572]*** [4.161]***

Observations 1,608 1,608 549 1,608 1,608 549
Number of firms 157 157 53 157 157 53
Adjusted R-squared 0.795 0.777 0.687 0.795 0.777 0.693
F-Stat 390.3*** 350.8*** 76.3*** 390.2*** 350.8*** 78.3***
Standard errors in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%
All models include the full set of year dummies



Appendix 1. Measuring technological relatedness

Technological relatedness has been investigated in several publications (Scherer, 1982,

Jaffe, 1986, Breschi et al., 2003). Similarly to Teece et al. (1994), I rely on the so-called

survivor principle that less efficient pairs of technologies are called to disappear

ultimately and assume that the frequency with which two technology classes are jointly

assigned to the same patent documents may be thought of as the strength of their

technological relationship, or relatedness..

The analytical framework is similar to Breschi et al. (2003) and departs from the square

symmetrical matrix obtained as follows. Let the technological universe consist of a total

of N patent applications. Let nkp = 1 if patent n is assigned to technology k, k = {1,…,K}, 0

otherwise. The total number of patents assigned to technology k is thus �= n nkk pf . Now

let nlp = 1 if patent n is assigned to technology l, 0 otherwise. Again, the total number of

patents assigned to technology l is �= n nll pf . Since two technologies may co-occur

within the same patent document, then ∅≠∩ lk ff and thus the number klf  of

observed joint occurrences of technologies k and l is �= n nlnkkl ppf . Applying the latter

to all possible pairs, we then produce the square matrix Ω (n*n) whose generic cell is the

observed number of joint occurrences klf . This count of joint occurrences is used to

construct our measure of relatedness, relating it to some measure of its expected

frequency klf̂ under the hypothesis of random joint occurrence.
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There is no authoritative measure of klf̂ , and I shall consider below a parametric and

non-parametric setting. In a parametric setting, one can consider the number klf  of

patents assigned to both technologies k and l as a hypergeometric random variable. The

probability of drawing f patents with both technologies k and l follows the

hypergeometric density function (Population K, special members kf , and sample

size lf ):
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where f is the hypergeometric random variable. Its expected frequency is:

(A2) ( )
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ffEf̂ lk

klkl
⋅

===

If the actual number klf  of co-occurrences observed between two technologies k and l

greatly exceeds the expected frequency klf̂ of random technological co-occurrence

( 0>− klkl f̂f ), then the two technologies are highly related: there must be a strong, non-

casual relationship between the two technology classes. Inversely, when 0<− klkl f̂f ,

then technologies k and l are poorly related. Hence, a parametric-based measure of

relatedness P
klτ  is:

(A3) klkl
P
kl f̂f −=τ

Eq.(A3) may further be designed to control for the variance of the population defined.

Assuming a hypergeometric distribution, the variance and relatedness measures are:
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Eq. (A5) has three attractive features. First, relatedness P
klτ is a real number that can be

either positive or negative, the sign being a straightforward and intuitive indication of

the relatedness between any two pairs of technologies.1 Second, relatedness P
klτ  is similar

to a t-student, so that if ] [1.961.96 +−∈ ;P
klτ , one can safely accept the null hypothesis H0

of no relatedness between technologies k and l. Third, P
klτ is a symmetric measure of

technological relatedness so that relatedness P
klτ  between k and l is strictly equal to

relatedness P
lkτ between l and k.2 This may go some way against the intuition that

knowledge and technologies form a hierarchical tree (Popper, 1972) but it offers the

advantage of simplicity when dealing with multi-technology organisations.

In a non-parametric setting, one makes no assumption about the form of the distribution

of technological co-occurrences across patents applications. A straightforward way to

measure relatedness is then to compare the observed probability of any patent to

combine technologies k and l with the expected probability, under the assumption that

                                                     

1 Relatedness measure P
klτ  has no lower or upper bounds: ] [+∞∞−ℜ∈ ;kl :τ ..

2 This is the case if one assumes that N ≈ N – 1, so that �
�

�
�
�

� −
�
�

�
�
�

� −
≈

N
fN

N
fN

f̂ lk
klkl

2σ .

Considering the number of patent N applied for each year, it is a reasonable approximation.
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the event “patent with technology k” is independent from the event “patent with

technology l”. Let kls , ks  and ls denote the shares of number of patent applications with

respectively both technologies k and l, technologies k, technology l in the total number of

patents applications N:  Nfs klkl = ; Nfs kk = ; Nfs ll = . By definition, l..k ss ×  is

the share of patents with technologies k and l under the assumption that both

technologies are independent, so that l..k ss × represents the expected share klŝ with

random technological co-occurrences. Using information theory (Theil, 1972), one can

then define the non-parametric technological relatedness NP
klτ as follows:

 (A6) ( )klkl
NP
kl ŝslog=τ

The interpretation of Eq(A6) is straightforward. If 1>klkl ŝs , then 0>NP
klτ : the

technologies k and l are rather well related. If 1<klkl ŝs , then 0<NP
klτ : the technologies

k and l are rather poorly related. Again, relatedness NP
klτ is a real number that can be

either positive or negative and is symmetric, so that relatedness NP
klτ between k and l is

strictly equal to relatedness NP
klτ between l and k.
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1 For a thorough discussion and empirical analysis on the various foundations for

technological relatedness, see Breschi et al. (2003)

2 Because the USPTO only advertise granted patents, I have only information about

successful patent applications.

3 The consolidation exercise proved extremely useful, inflating the number of patents

held by the firms in the sample by more than 300,000. The number of patents held by the

world’s largest manufacturing firms reached 500,000 prior to consolidation, but

increased to 800,000 after controlling for consolidation. This illustrates the need for such

exercise as well as indicating the difficulty of the task. I am very thankful to Parimal

Patel for providing me with these data.

4 This was completed using the IPC code as displayed on the Internet Web Site of the

European Patent Office. I am indebted to Bart Verspagen and Paola Criscuolo for their

assistance during the automated process.

5 The aggregation of technology classes into larger categories is a necessary but

delicate exercise, because it influences negatively the variance of knowledge diversity

and relatedness across firms. Prior literature (e.g. Jaffe, 1986; Hall et al., 2001), suggests

that a thirty-dimensional technological space may be an appropriate aggregation. But

since this paper deals with the largest manufacturing firms, using such a level of

aggregation is likely to reflect product more than knowledge diversification while
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decreasing too severely the variance of knowledge diversity and relatedness across

firms.

6 Altogether, 751,935 US patents have more than one technology class, which proves

adequate for measuring technological relatedness.

7 The ratio (NC/C) is in fact a measure of the newness of capital, for the higher the

ratio, the less depreciated the capital.

8  Thus, measure itD ′′  is the inverse of the coefficient of variation, so that when

0→2
kitPσ , ∞→′′itD .  This measure is not based directly on the number kitP  of patents

held by the firm over the past 5 years. Ideally, one wants to base itD ′′  on firm distinctive

technological skills. Define the revealed technological advantage (RTA) as:

( ) ( )���= ik kiti kitk kitkitit PPPPRTA

The numerator is the share of patents in technology k in the total patent stock of firm

i. Likewise, the denominator represents the share of patents in technology k in the total

patent stock of all actors. Therefore for a given technology, if the share of patents of firm

i exceeds that of all actors, RTA will be greater than unity and firm i will have a Revealed

Technological Advantage in technology k. See also Fai (2003) for a detailed analysis of

the world’s largest corporation based on the RTA.

9 The transformation was done to exclude any possibility for the logarithm of firm

knowledge K = ( )[ ]IDE ⋅−′+⋅ 11  being negative or null, implying that K > 1. To do so,

all the knowledge variables have been transformed as follows:
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( ) ( ) ( ) ( )[ ] 2std +−−= KminKmaxKminKk

where K ∈  {E, D, I}; ( ) ( ) ( )[ ]KminKmaxKminK −−  implies that std(k) ∈  [0 ; 1]. The

transformation does not modify the distances between two different observations,

leaving their correlation coefficients unaffected. Moreover, adding 2 secures the positive

sign of the log (aggregate of K), but leaves the value of the parameter estimates ϖE and ϖI

unchanged.
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