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ABSTRACT

The central tenet of reinforcement learning (RL) is that agents seek to maximize
the sum of cumulative rewards. In contrast, active inference, an emerging frame-
work within cognitive and computational neuroscience, proposes that agents act
to maximize the evidence for a biased generative model. Here, we illustrate how
ideas from active inference can augment traditional RL approaches by (i) furnish-
ing an inherent balance of exploration and exploitation, and (ii) providing a more
flexible conceptualization of reward. Inspired by active inference, we develop and
implement a novel objective for decision making, which we term the free energy of
the expected future. We demonstrate that the resulting algorithm successfully bal-
ances exploration and exploitation, simultaneously achieving robust performance
on several challenging RL benchmarks with sparse, well-shaped, and no rewards.

1 INTRODUCTION

Both biological and artificial agents must learn to make adaptive decisions in unknown environ-
ments. In the field of reinforcement learning (RL), agents aim to learn a policy that maximises the
sum of expected rewards (Sutton et al., 1998). In contrast, the framework of active inference (Friston
et al., 2009; Friston, 2019a) suggests that agents aim to maximise the evidence for a biased model of
the world. This framework extends influential theories of Bayesian perception and learning (Knill &
Pouget, 2004; L Griffiths et al., 2008) to incorporate action, and comes equipped with a biologically
plausible process theory (Friston et al., 2017a) that enjoys considerable empirical support (Walsh
et al., 2020).

In the current paper, we explore whether insights from active inference can inform the develop-
ment of novel RL algorithms. We focus on two aspects of active inference which are of particular
relevance for RL. First, active inference suggests that agents embody a generative model of their pre-
ferred environment and seek to maximise the evidence for this model. In this context, the concept
of reward is replaced with prior probabilities over observations. This allows for greater flexibil-
ity when specifying an agent’s goals (Friston et al., 2012), provides a principled (i.e. Bayesian)
method for learning preferences (Sajid et al., 2019), and is consistent with neurophysiological data
demonstrating the distributional nature of reward representations (Dabney et al., 2020). Second,
casting adaptive behavior in terms of model evidence naturally encompasses both exploration and
exploitation under a single objective, obviating the need for adding ad-hoc exploratory terms.

Translating these conceptual insights into practical benefits for RL has proven challenging. Current
implementations of active inference have generally been confined to discrete state spaces and toy
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problems (Friston et al., 2015; 2017b;c), although see (Tschantz et al., 2019a; Millidge, 2019; Catal
et al., 2019; Ueltzhffer, 2018). Therefore, it has not yet been possible to evaluate the effectiveness
of active inference in challenging environments; as a result, active inference has not yet been widely
taken up within the RL community.

In this paper, we consider active inference in the context of decision making1. We propose and
implement a novel objective function motivated by active inference - the free energy of the expected
future - and show that this quantity provides a tractable bound on established RL objectives. We
evaluate the performance of this algorithm on a selection of challenging continuous control tasks,
and show strong performance on environments with sparse, well-shaped, and no rewards, demon-
strating our algorithm’s ability to effectively balance exploration and exploitation.

2 ACTIVE INFERENCE

Both active inference and RL can be formulated in the context of a partially observed Markov deci-
sion process POMDPs (Murphy, 1982). The goal of RL is to learn a policy that maximises the ex-
pected sum of rewards E[

∑∞
t=0 γ

trt] (Sutton et al., 1998). In contrast, the goal of active inference is
to maximise the Bayesian model evidence for an agent’s generative model pΦ(o, s, θ), where o ∈ O
denote observations, s ∈ S denote latent or hidden states, and θ ∈ Θ denote model parameters. Cru-
cially, active inference suggests that an agent’s generative model is biased towards favourable states
of affairs (Friston, 2019b), such that the model assigns probability to events that are both likely and
beneficial for an agent’s success. We use the notation pΦ(·) to represent a distribution biased by an
agent’s preferences.

Given a generative model, agents can perform approximate Bayesian inference by encoding an ar-
bitrary distribution q(s, θ) and minimising variational free energy F = DKL

(
q(s, θ)‖pΦ(o, s, θ)

)
.

From observations, F can be minimized through standard variational methods (Bishop, 2006; Buck-
ley et al., 2017), causing q(s, θ) to tend towards the true posterior p(s, θ|o). Note that treating model
parameters θ as random variables casts learning as a process of inference (Blundell et al., 2015).

In the current context, agents additionally maintain beliefs over policies π = {at, ..., aT }, which are
themselves random variables. Policy selection is then implemented by identifying the q(π) which
minimizes F , thus casting policy selection as a process of approximate inference (Friston et al.,
2015). While the standard free energy functional F is generally defined for a single time point t,
π refers to a temporal sequence of variables. Therefore, we augment the free energy functional F
to encompass future variables, leading to the free energy of the expected future F̃ . This quantity
measures the KL-divergence between a sequence of beliefs about future variables and an agent’s
biased generative model 2.

2.1 FREE ENERGY OF THE EXPECTED FUTURE

Let xt:T denote a sequence of variables through time, xt:T = {xt, ..., xT }. We wish to minimize the
free energy of the expected future F̃ , which is defined as:

F̃ = DKL

(
q(o0:T , s0:T , θ, π)‖pΦ(o0:T , s0:T , θ)

)
(1)

where q(ot:T , st:T , θ, π) represents an agent’s beliefs about future variables, and pΦ(ot:T , st:T , θ)
represents an agent’s biased generative model. Note that the beliefs about future variables include
beliefs about future observations, ot:T , which are unknown and thus treated as random variables.

In order to find q(π) which minimizes F̃ we note that (see Appendix F):

F̃ = 0⇒ DKL

(
q(π) ‖

(
− e−F̃π

))
= 0

F̃π = DKL

(
q(o0:T , s0:T , θ|π) ‖ pΦ(o0:T , s0:T , θ)

) (2)

1A full treatment of active inference would consider inference and learning, see (Buckley et al., 2017) for
an overview.

2For readers familiar with the active inference framework, we highlight that the free energy of the expected
future differs subtly from expected free energy (Friston et al., 2015). We draw comparisons in Appendix E.
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Thus, the free energy of the expected future is minimized when q(π) = σ(−F̃π), or in other words,
policies are more likely when they minimise F̃π .

In order to provide an intuition for what minimizing F̃π entails, we factorize the agent’s generative
models as pΦ(o0:T , s0:T , θ) = p(s0:T , θ|o0:T )pΦ(o0:T ), implying that the model is only biased in
its beliefs over observations. To retain consistency with RL nomenclature, we treat ‘rewards’ r as a
separate observation modality, such that pΦ(ot:T ) specifies a distribution over preferred rewards and
q(ot:T |st:T , θ, π) specifies beliefs about future rewards, given a policy. We describe our implemen-
tation of pΦ(ot:T ) in Appendix I. Given this factorization, it is straightforward to show that −F̃π
decomposes into an expected information gain term and an extrinsic term (see Appendix D)3:

−F̃π ≈− Eq(o0:T |π)

[
DKL

(
q(s0:T , θ|o0:T , π)‖q(s0:T , θ|π)

)]
︸ ︷︷ ︸

Expected information gain

+ Eq(s0:T ,θ|π)

[
DKL

(
q(o0:T |s0:T , θ, π)‖pΦ(ot:T )

)]
︸ ︷︷ ︸

Extrinsic term

(3)

Maximizing Eq.3 has two functional consequences. First, it maximises expected information gain,
which quantifies the amount of information an agent expects to gain from executing some policy,
both in terms of beliefs about parameters and states. Second, it minimizes the extrinsic term - which
is the KL-divergence between an agent’s (policy-conditioned) beliefs about future observations and
their preferred observations. In the current context, it measures the KL-divergence between the
rewards an agent expects from a policy and the rewards an agent desires. In summary, selecting
policies to minimise F̃ invokes a natural balance between exploration and exploitation.

Evaluating F̃π To select actions, we optimise q(π) at each time step, and execute the first action
specified by the most likely policy. This requires (i) a method for evaluating beliefs about future vari-
ables q(st:T , ot:T , θ|π), (ii) an efficient method for evaluating Fπ , and (iii) a method for optimising
q(π) such that q(π) = σ(−Fπ). We list our design choices and describe the full implementation in
Appendix B.

3 EXPERIMENTS

To determine whether our algorithm can successfully balance exploration and exploitation, we in-
vestigate its performance in domains with (i) well-shaped rewards, (ii) extremely sparse rewards and
(iii) a complete absence of rewards.
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Figure 1: (A & B) Mountain Car / Cup Catch: Average return after each episode on the sparse-
reward Mountain Car & Cup Catch tasks. (C & D) Half Cheetah: Average return after each episode
on the well-shaped Half Cheetah environment, for the running and flipping tasks, respectively. Dot-
ted line shows SAC performance after 2000 episodes. Each curve is the mean of 5 seeds and filled
regions show +/- std.

3The approximation in Eq. 3 arises from the approximation q(s0:T , θ|o0:T , π) ≈ p(s0:T , θ|o0:T , π), which
is justifiable given that q(·) represents a variational approximation of the true posterior (Friston et al., 2017a).
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Sparse reward We use the Mountain Car and Cup Catch environments, where agents only
receive reward when the goal is achieved (see Appendix K for details on all environments). We
compare our algorithm to two baselines, (i) a reward algorithm which only selects policies based
on the extrinsic term (i.e. ignores expected information gain), and (ii) a variance algorithm that
seeks out uncertain transitions by acting to maximise the output variance of the transition model (see
Appendix I). Note that the variance agent is augmented with the extrinsic term to enable comparison.

In the Mountain Car task (Fig. 1A), our algorithm is able to efficiently explore and solve the
environment within a single trial. We visualize the exploration in Fig. 2, which plots the points
in state space visited with and without exploration, and demonstrates that the free energy of the
expected future objective allows the agent to explore the state space while still solving the task. Our
algorithm performs comparably to the baselines in the Cup Catch environment, shown in Fig. 1B.
We hypothesize that this is because, while the reward structure is technically sparse, it is simple
enough to reach the goal with random actions, and thus the directed exploration afforded by our
method provides little benefit.

Well-shaped reward For well-shaped rewards, we use the challenging Half Cheetah environ-
ment, using both the running and flipping tasks. We compare the performance of our algorithm
to the soft-actor-critic (SAC) (Haarnoja et al., 2018), which encourages exploration by seeking to
maximise the entropy of the policy distribution. Figure 1 C&D demonstrate that our algorithm
exhibits robust performance in environments with well-shaped rewards and provides considerable
improvements in sample-efficiency, relative to SAC.

No reward For domains without reward, we use the Ant Maze environment, where there are no
rewards and success is measured by the percent of the maze covered. We compare our algorithm to
a baseline which conducts actions at random. Fig. 2B shows that our algorithms rate of exploration
is substantially higher, demonstrating that minimising the free energy of the expected future leads
to directed exploration. Taken together, these results show that our proposed algorithm - which
naturally balances exploration and exploitation - can successfully master challenging domains with
a variety of reward structures.
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Figure 2: (A & B) Mountain Car state space coverage: State space plots from the FEEF and
reward agent over 20 episodes. (C) Ant Maze Coverage: We plot the percentage of the maze
covered after 35 episodes, comparing the FEEF agent to an agent acting randomly. These results are
the average of 4 seeds.

4 DISCUSSION

Despite originating from different intellectual traditions, both active inference and RL address funda-
mental questions about adaptive decision-making in unknown environments. Exploiting this concep-
tual overlap, we have applied an active inference perspective to the reward maximization objective
of RL, recasting it as minimizing the divergence between desired and expected futures. We derived
a novel objective that naturally balances exploration and exploitation and instantiated this objective
within a model-based RL context. Our algorithm exhibits robust performance and flexibility in a
variety of environments and reward structures known to be challenging for RL. By implementing
active inference using tools from RL, such as amortising inference with neural networks, deep en-
sembles and sophisticated algorithms for planning, we have demonstrated that active inference can
scale to high dimensional tasks with continuous state and action spaces.
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A RELATIONSHIP TO PROBABILISTIC RL

In recent years, there have been several attempts to formalize RL in terms of probabilistic inference
(Levine, 2018), such as KL-control (Rawlik, 2013), control-as-inference (Kappen et al., 2012), and
state-marginal matching (Lee et al., 2019). In many of these approaches, the RL objective is broadly
conceptualized as minimising DKL

(
p(o0:T |π)‖ pΦ(o0:T )

)
4. In Appendix H, we demonstrate that

the free energy of the expected future F̃ provides a tractable bound on this objective:

F̃ ≥ DKL

(
p(ot:T |π)‖ pΦ(ot:T )

)
(4)

These results suggest a deep homology between active inference and existing approaches to proba-
bilistic RL.

B IMPLEMENTATION

In this section, we describe an efficient implementation of the proposed objective function in the
context of model-based RL. To select actions, we optimise q(π) at each time step, and execute the
first action specified by the most likely policy. This requires (i) a method for evaluating beliefs about
future variables q(st:T , ot:T , θ|π), (ii) an efficient method for evaluating Fπ , and (iii) a method for
optimising q(π) such that q(π) = σ(−Fπ).

Evaluating beliefs about the future We factorize and evaluate the beliefs about the future as:

q(st:T , ot:T , θ|π) = q(θ)

T∏
t=τ

q(oτ |sτ , θ, π)q(sτ |sτ−1, θ, π)

q(oτ |sτ , θ, π) = Eq(sτ |θ,π)

[
p(oτ |sτ )

]
q(sτ |sτ−1, θ, π) = Eq(sτ−1|θ,π)

[
p(sτ |sτ−1, θ, π)

] (5)

where we have here factorized the generative model as p(oτ , sτ , θ|π) =
p(oτ |sτ , π)p(sτ |sτ−1, θ, π)p(θ). We describe the implementation and learning of the likeli-
hood p(oτ |sτ , π), transition model p(sτ |sτ−1, θ, π) and parameter prior p(θ) in Appendix I.

4We acknowledge that not all objectives follow this exact formulation.
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Evaluating F̃π Note that −F̃π =
∑t+H
τ=t −F̃πτ , where H is the planning horizon. Given beliefs

about future variables, the free energy of the expected future for a single time point can be efficiently
computed as (see Appendix G):

−F̃πτ ≈ Eq(sτ ,θ|π)

[
DKL

(
q(oτ |sτ , θ, π)‖pΦ(oτ )

)]
+ H[q(oτ |π)]− Eq(sτ |π)

[
H[q(oτ |sτ , π)]

]
︸ ︷︷ ︸

State information gain

+ H[q(sτ |sτ−1, θ, π)]− Eq(θ)
[
H[q(sτ |sτ−1, π, θ)]

]
︸ ︷︷ ︸

Parameter information gain

(6)

In the current paper, agents observe the true state of the environment st, such that the only partial
observability is in rewards rt. As as a result, the second term of equation 6 is redundant, as there is
no uncertainty about states. The first (extrinsic) term can be calculated analytically (see Appendix
I). We describe our approximation of the final term (parameter information gain) in Appendix G.

Optimising the policy distribution We choose to parametrize q(π) as a diagonal Gaussian. We
use the CEM algorithm (Rubinstein, 1997) to optimise the parameters of q(π) such that q(π) ∝
−Fπ . While this solution will fail to capture the exact shape of −Fπ , agents need only identify the
peak of the landscape to enact the optimal policy.

Algorithm 1: Inference of q(π)

Input: Planning horizon H — Optimisation iterations I — Number of candidate policies J —
Current state st — Likelihood p(oτ |sτ ) — Transition distribution p(sτ |sτ−1, θ, π) — Parameter
distribution P (θ) — Global prior pΦ(oτ )

Initialize factorized belief over action sequences q(π)← N (0, I).
for optimisation iteration i = 1...I do

Sample J candidate policies from q(π)
for candidate policy j = 1...J do

π(j) ∼ q(π)

−F̃ jπ = 0
for τ = t...t+H do

q(sτ |sτ−1, θ, π
(j)) = Eq(sτ−1|θ,π(j))

[
p(sτ |sτ−1, θ, π

(j))
]

q(oτ |sτ , θ, π(j)) = Eq(sτ |θ,π(j))

[
p(oτ |sτ )

]
−F̃ jπ ← −F̃ jπ + Eq(sτ ,θ|π(j))

[
DKL

(
q(oτ |sτ , θ, π(j))‖pΦ(oτ )

)]
+

H[q(sτ |sτ−1, θ, π
(j))]− Eq(θ)

[
H[q(sτ |sτ−1, π

(j), θ)]
]

end
end
q(π)← refit(−F̃ jπ)

end
return q(π)

C RELATED WORK

Active inference There is an extensive literature on active inference in discrete state-spaces, cov-
ering a wide variety of tasks, from epistemic foraging in saccades (Parr & Friston, 2017; Friston,
2019b; Schwartenbeck et al., 2019), exploring mazes (Friston et al., 2015; Pezzulo et al., 2016; Fris-
ton et al., 2016), to playing Atari games (Cullen et al., 2018). Active inference also comes equipped
with a well-developed neural process theory (Friston et al., 2017a; Parr et al., 2019) which can ac-
count for a substantial range of neural dynamics. There have also been prior attempts to scale up
active inference to continuous RL tasks (Tschantz et al., 2019a; Millidge, 2019; Ueltzhffer, 2018),
which we build upon here.
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Model based RL Model based reinforcement learning has been in a recent renaissance, with im-
plementations vastly exceeding the sample efficiency of model-free methods, while also approaching
their asymptotic performance (Ha & Schmidhuber, 2018; Nagabandi et al., 2018; Chua et al., 2018a;
Hafner et al., 2018). There have been recent successes on challenging domains such as Atari (Kaiser
et al., 2019), and high dimensional robot locomotion (Hafner et al., 2018; 2019) and manipulation
(Nagabandi et al., 2019) tasks. Key advances include variational autoencoders (Kingma & Welling,
2013) to flexibly construct latent spaces in partially observed environments, Bayesian approaches
such as Bayes by backprop (Houthooft et al., 2016a), deep ensembles (Shyam et al., 2018; Chua
et al., 2018a), and other variational approaches (Okada & Taniguchi, 2019; Tschiatschek et al., 2018;
Yarin Gal et al., 2016), which quantify uncertainty in the dynamics models, and enable the model
to learn a latent space that is useful for action (Tschantz et al., 2019b; Watter et al., 2015). Finally,
progress has been aided by powerful planning algorithms capable of online planning in continuous
state and action spaces (Williams et al., 2016; Rubinstein, 1997).

Intrinsic Measures Using intrinsic measures to encourage exploration has a long history in RL
(Schmidhuber, 1991; 2007; Storck et al., 1995; Oudeyer & Kaplan, 2009; Chentanez et al., 2005).
Recent model-free and model based-intrinsic measures that have been proposed in the literature
include policy entropy (Rawlik, 2013; Rawlik et al., 2013; Haarnoja et al., 2018), state entropy
(Lee et al., 2019), information-gain (Houthooft et al., 2016b; Okada & Taniguchi, 2019; Kim et al.,
2018; Shyam et al., 2019; Teigen, 2018), prediction error (Pathak et al., 2017), divergence of en-
sembles (Shyam et al., 2019; Chua et al., 2018b), uncertain state bonuses (Bellemare et al., 2016;
O’Donoghue et al., 2017), and empowerment (de Abril & Kanai, 2018; Leibfried et al., 2019; Mo-
hamed & Rezende, 2015). Information gain additionally has a substantial history outside the RL
framework, going back to (Lindley, 1956; Still & Precup, 2012; Sun et al., 2011).

D DERIVATION FOR THE FREE ENERGY OF THE EXPECTED FUTURE

We begin with the full free energy of the expected future and decompose this into the free energy of
the expected future given policies, and the negative policy entropy:

F̃ = Eq(o,s,θ,π)[log q(o, s, θ, π)− log pΦ(o, s, θ)]

= Eq(π)[F̃π]−H[q(π)]
(7)

We now show the free energy of the expected future given policies can be decomposed into extrinsic
and information gain terms:

F̃π = Eq(o,s,θ|π)[log q(o, s, θ|π)− log pΦ(o, s, θ)]

= Eq(o,s,θ|π)[log q(s, θ|π) + log q(o|s, θ, π)− log p(s, θ|o)− log pΦ(o)]

≈ Eq(o,s,θ|π)[log q(s, θ|π) + log q(o|s, θ, π)− log q(s, θ|o, θ)− log pΦ(o)]

= Eq(o,s,θ|π)[log q(s, θ|π)− log q(s, θ|o, π)] + Eq(o,s,θ|π)[log q(o|s, θ, π)− log pΦ(o)]

−F̃π = Eq(o,s,θ|π)[log q(s, θ|o, π)− log q(s, θ|π)] + Eq(o,s,θ|π)[log pΦ(o)− log q(o|s, θ, π)]

= Eq(o|π)

[
DKL

(
q(s, θ|o, π)‖q(s, θ|π)

)]
︸ ︷︷ ︸

Expected Information Gain

−Eq(s,θ|π)

[
DKL

(
q(o|s, θ, π)‖pΦ(o)

)]
︸ ︷︷ ︸

Extrinsic Value

(8)

Where we have assumed that p(s, θ|o) ≈ q(s, θ|o, π). We wish to minimize F̃π , and thus maximize
−F̃π . This means we wish to maximize the information gain and minimize the KL-divergence
between expected and preferred observations.
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By noting that q(s, θ|o, π) ≈ q(s|o, π)q(θ|s), we can split the expected information gain term into
state and parameter information gain terms:

Eq(o|π)

[
DKL

(
q(s, θ|o, π)‖q(s, θ|π)

)]
= Eq(o|π)q(s,θ|o,π)

[
log q(s, θ|o, π)− log q(s, θ|π)

]
= Eq(o|π)q(s,θ|o,π)

[
log q(s|o, π) + log q(θ|s)− log q(s|θ, π)− log q(θ)

]
= Eq(o|π)q(s,θ|o,π)

[
log q(s|o, π)− log q(s|θ, π)]

]
+ Eq(o|π)q(s,θ|o,π)

[
log q(θ|s)− log q(θ)

]
= Eq(o|π)q(θ)

[
DKL

(
q(s|o, π)‖q(s|θ)

)]
︸ ︷︷ ︸

Expected State Information Gain

+Eq(s|θ)

[
DKL

(
q(θ|s)‖q(θ)

)]
︸ ︷︷ ︸
Expected Parameter Information Gain

(9)

E RELATIONSHIP TO EXPECTED FREE ENERGY

In the active inference literature, policy selection minimises expected free energy G, which is defined
for a policy π as (Friston, 2019b):

G(π) = Eq(o,s,θ|π)[log q(s, θ|π)− log pΦ(o, s, θ)] (10)

Expected free energy also decomposes into an expected information gain term and a (different)
extrinsic term. We have proposed the free energy of the expected future as a viable alternative to
approximating the free energy that will occur from some policy. While G and F̃ look extremely
similair, they have a number of different properties. We leave it to future work to explore these in
full.

F DERIVATION OF THE OPTIMAL POLICY

We derive the distribution for q(π) which minimizes F̃ :

F̃ = DKL

(
q(o, s, θ, π)‖pΦ(o, s, θ)

)
= Eq(o,s,θ,π)[log q(o, s, θ|π) + log q(π)− log pΦ(o, s, θ, π)]

= Eq(π)

[
Eq(o,s,θ|π)[log q(π)− [log pΦ(o, s, θ)− log q(o, s, θ|π)]

]
= Eq(π)

[
log q(π)− Eq(o,s,θ|π)[log pΦ(o, s, θ)− log q(o, s, θ|π)]

]
= Eq(π)

[
log q(π)−

[
− Eq(o,s,θ|π)[log q(o, s, θ|π)− log pΦ(o, s, θ)]

]]
= Eq(π)

[
log q(π)− log e−

[
−Eq(o,s,θ|π)[log q(o,s,θ|π)−log pΦ(o,s,θ)]

]]
= Eq(π)

[
log q(π)− log e−DKL

(
q(o,s,θ|π)‖pΦ(o,s,θ)

)]
= DKL

(
q(π)‖e−DKL

(
q(o,s,θ|π)‖pΦ(o,s,θ)

))
= DKL

(
q(π) ‖e−F̃π

)

(11)

G EXPECTED INFORMATION GAIN

In Eq. 3, expected parameter information gain was presented in the form Eq(s|θ)DKL

(
q(θ|s)‖q(θ)

)
.

While this provides a nice intuition about the effect of the information gain term on behaviour, it
cannot be computed directly, due to the intractability of identifying true posteriors over parameters.
We here show that, through a simple application of Bayes’ rule, it is straightforward to derive an
equivalent expression for the expected information gain as the divergence between the state likeli-
hood and marginal, given the parameters, which decomposes into an entropy of an average minus
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an average of entropies:

Eq(s|θ)DKL

(
q(θ|s)‖q(θ)

)
= Eq(s|θ)q(θ|s)

[
log q(θ|s)− log q(θ)

]
= Eq(s,θ)

[
log q(s|θ) + log q(θ)− log q(s)− log q(θ)

]
= Eq(s,θ)

[
log q(s|θ)− log q(s)

]
= Eq(θ)q(s|θ)

[
log q(s|θ)

]
− Eq(θ)q(s|θ)

[
logEq(θ)q(s|θ)

]
= −Eq(θ)H

[
q(s|θ)

]
+ H

[
Eq(θ)q(s|θ)

]
(12)

The first term is the (negative) average of the entropies. The average over the parameters θ is
achieved simply by averaging over the dynamics models in the ensemble. The entropy of the likeli-
hoods H

[
p(s|θ)

]
can be computed analytically since each network in the ensemble outputs a Gaus-

sian distribution for which the entropy is a known analytical result. The second term is the entropy
of the average H

[
Ep(θ)p(s|θ)

]
. Unfortunately, this term does not have an analytical solution. How-

ever, it can be approximated numerically using a variety of techniques for entropy estimation. In our
paper, we use the nearest neighbour entropy approximation (Mirchev et al., 2018).

H DERIVATION OF RL BOUND

Here we show that the free energy of the expected future is a bound on the divergence between
expected and desired observations. The proof proceeds straightforwardly by importance sampling
on the approximate posterior and then applying Jensen’s inequality:

DKL

(
q(ot:T |π)‖ pΦ(ot:T )

)
= Eq(ot:T |π)

[
log q(ot:T |π)− log pΦ(o)

]
= Eq(ot:T |π)

[
log
( ∫

dx1:T

∫
dθ1:T

q(ot:T , st:T , θt:T |π)q(st:T , θt:T |ot:T )

pΦ(ot:T )q(st:T , θt:T |ot:T )

)]
≤ Eq(ot:T ,st:T ,θt:T |π)

[
log
(q(ot:T , st:T , θt:T |π)

pΦ(ot:T , st:T , θt:T )

)]
≤ DKL

(
q(ot:T , st:T , θ|π)‖pΦ(ot:T , st:T , θ)

)
= F̃

(13)

I MODEL DETAILS

In the current work, we implemented our probabilistic model using an ensemble-based approach
(Chua et al., 2018a; Fort et al., 2019; Chitta et al., 2018). Here, an ensemble of point-estimate
parameters θ = {θ0, ..., θB} trained on different batches of the dataset D are maintained and treated
as samples as from the posterior distribution p(θ|D). Besides consistency with the active inference
framework, probabilistic models enable the active resolution of model uncertainty, capture both
epistemic and aleatoric uncertainty, and help avoid over-fitting in low data regimes (Fort et al.,
2019; Chitta et al., 2018; Chatzilygeroudis et al., 2018; Chua et al., 2018b).

This design choice means that we use a trajectory sampling method when evaluating beliefs about fu-
ture variables (Chua et al., 2018a), as each pass through the transition model p(st|st−1, θ, π) evokes
B samples from st.

Transition model We implement the transition model as p(st|st−1, θ, π) as
N (st; fθ(st−1), fθ(st−1)), where fθ(·) are a set of function approximators fθ(·) =
{fθ0(·), ..., fθB (·)}. In the current paper, fθi(st−1) is a two-layer feed-forward network with
400 hidden units and swish activation function. Following previous work, we predict state deltas
rather than the next states (Shyam et al., 2018).

Reward model We implement the reward model as p(oτ |sτ , θ, π) = N (oτ ; fλ(sτ ),1), where
fλ(sτ ) is some arbitrary function approximator5. In the current paper, fλ(sτ ) is a two layer feed for-

5Formally, this is an observation model, but we retain RL terminology for clarity.
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ward network with 400 hidden units and ReLU activation function. Learning a reward model offers
several plausible benefits outside of the active inference framework, as it abolishes the requirement
that rewards can be directly calculated from observations or states (Chua et al., 2018a).

Global prior We implement the global prior pΦ(o) as a Gaussian with unit variance centred
around the maximum reward for the respective environment. We leave it to future work to explore
the effects of more intricate priors.

J IMPLEMENTATION DETAILS

For all tasks, we initialize a dataset D with a single episode of data collected from a random agent.
For each episode, we train the ensemble transition model and reward model for 100 epochs, using
the negative-log likelihood loss. We found cold-starting training at each episode to lead to more
consistent behaviour. We then let the agent act in the environment based on Algorithm 1, and
append the collected data to the dataset D.

We list the full set of hyperparameters below:

Hyperparameters
Hidden layer size 400
Learning rate 0.001
Training-epochs 100
Planning-horizon 30
N-candidates (CEM) 700
Top-candidates (CEM) 70
Optimisation-iterations (CEM) 7

K ENVIRONMENT DETAILS

The Mountain Car environment (S ⊆ R2A ⊆ R1) requires an agent to drive up the side of a hill,
where the car is underactuated requiring it first to gain momentum by driving up the opposing hill.
A reward of one is generated when the agent reaches the goal, and zero otherwise. The Cup Catch
environment (S ⊆ R8A ⊆ R2) requires the agent to actuate a cup and catch a ball attached to its
bottom. A reward of one is generated when the agent reaches the goal, and zero otherwise. The
Half Cheetah environment (S ⊆ R17A ⊆ R6) describes a running planar biped. For the running
task, a reward of v − 0.1||a||2 is received, where v is the agent’s velocity, and for the flipping task,
a reward of ε − 0.1||a||2 is received, where ε is the angular velocity. The Ant Maze environment
(S ⊆ R29A ⊆ R8) involves a quadruped agent exploring a rectangular maze.
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