
Geometry of large random trees

According to Cayley’s formula, there are nn−1 rooted labelled trees with n vertices. But
how many of them have a diameter, say 100, or are of height 45? Enumeration questions of
this sort lead one naturally to look at distribution of the diameter (resp. height) of a uniformly
sampled tree with n vertices. For these questions, classical combinatorial approaches often rely
upon generating functions; see in particular [5], [6].
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Figure 1: The contour function of the tree Tn

Alternatively, let us consider a function Cn : [0, 2(n − 1)] → R+, which depicts the “con-
tour” of Tn in the following sense: imagine an exploration of Tn by a particle which starts
from the root and visits continuously all edges at unit speed (assuming that every edge has unit
length), backtracking as little as possible, and let Cn(t) be the distance to the root from the
particle’s position at time t (see Fig. 1). The distribution of Cn is not simple in general. Nev-
ertheless, it can be expressed as a functional of a random walk. Appealing to the invariance
principal for random walks, one can show that(
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where Bex is the standard normalised Brownian excursion (of length 1). Now the height of
Tn corresponds to maxCn. As for the diameter, noting that the distance between two vertices
visited respectively at time s and t is given by dC(s, t) := Cn(s) + Cn(t) − 2mins≤u≤tCn(u),
we easily see it can be written as maxs,t dC(s, t). Then the convergence in (1) yields that
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The distribution of maxBex is well known. On the other hand, the work [7] explains a way to
identify the distribution of maxs,t dBex(s, t).

The convergence in (1) also has a “geometric” interpretation. Just as Cn is the contour
function of Tn, the Brownian excursion 2Bex is the contour function of the so-called Brownian
Continuum Random Tree, so that (1) actually asserts a convergence of Tn to this tree, and the
random variables maxBex and maxs,t dBex(s, t) can be identified as its height and diameter.

The above can be extended in various ways. For example, instead of uniformly sampled
trees, one can consider trees sampled with probabilities proportional to some prescribed weight



function. If we take the weight of a rooted tree t to be w(t) =
∏

i≥1w
ni(t)
i , where (wi)i≥0 is a

sequence of positive real numbers and ni(t) is the number of the vertices having out-degrees i in
t, then very often this amounts to sampling a Galton–Watson trees conditioned to have n nodes.
A celebrated theorem of Aldous [1] shows that if the offspring distribution of the Galton–Watson
tree has finite second moment, then its contour function still converges in law to 2Bex (up to a
multiplicative constant). If, instead, the offspring distribution has infinite variance and belongs
to the attraction domain of some α-stable law, α ∈ (1, 2], then the height (resp. diameter) of a
such n-vertex Galton–Watson tree is of order n1−1/α; see [2]. The limit process replacing the
Brownian excursion is the height process of α-stable process and it can be viewed as the contour
function of the so-called α-stable tree, a sub-family of the Lévy trees of Le Gall & Le Jan [4].
The work [3] studies in particular the height and diameter of an α-stable tree.

It is also natural to look at unrooted trees. The work [8] considers an analogous model
for (unrooted) random trees. As it turns out, the scaling limits of these trees are given by an
unrooted version of Lévy trees.
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