
1. Discrete Hammersley process

Consider a collection of independent Bernoulli random variables {Xv}v∈Z2 with P(Xv =
1) = p = 1− q and interpret the event that Xv = 1 as the event of having site v as marked.
For any rectangle [m]× [n] = {1, 2, ...,m} × {1, 2, ..., n} we can define the random variable
L(m,n) that denotes the maximum possible number of marked sites that one can collect
along a path from (1, 1) to (m,n) that is strictly increasing in both coordinates. It is
possible that there is more than one optimal path, and any such path is called a ‘Bernoulli
longest increasing path (BLIP).’
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Figure 1. Two possible Bernoulli Longest Increasing paths in the rec-
tangle [7] × [8]. Bernoulli markings are denoted by ×. With the nota-
tion introduced, we have that L(7, 8) = 5. A longest increasing path is
Π = {(1, 2), (2, 3), (3, 4), (5, 5), (7, 8)}.

The random variables −L(m,n) satisfy a certain property, called subadditivity. By
Kingman’s Subadditive Ergodic Theorem one can prove n−1L(bnxc, bnyc)→ Ψ(x, y)
a.s. and in L1. Part of the project will be to prove the closed formula for Ψ(x, y) given by

(1.1) Ψ(x, y) =



x, if x < py

2
√
pxy − p(x+ y)

q
, if p−1y ≥ x ≥ py

y, if y < px

for all (x, y) ∈ R2
+. There is a vast literature in statistical physics that studies this model as 

a simplified alternative to the hard longest common subsequence (LCS) model (see below).
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In a recent project with Federico Ciech we cast the discrete Hammersley process in the context of 
an invariant boundary model, and proved several results about the order of the variance of the 
boundary model. The article is titled “ Order of the variance in the discrete
Hammersley process with boundary ” and it can be found here.

https://link.springer.com/content/pdf/10.1007%2Fs11040-018-9276-2.pdf



