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Ultrasensitive single-ion electrometry in a 
magnetic field gradient
 

F. Bonus1,2,3,5, C. Knapp    1,5, C. H. Valahu    1,4, M. Mironiuc1,2,3, S. Weidt1,3 & 
W. K. Hensinger    1,3 

Hyperfine energy levels in trapped ions offer long-lived spin states. In 
addition, the motion of these charged particles couples strongly to electric 
field perturbations. These characteristics make trapped ions attractive 
platforms for the quantum sensing of electric fields. However, the spin states 
do not exhibit a strong intrinsic coupling to electric fields, lim iting the 
achievable sensitivity. Here, we amplify the coupling between electric field 
perturbations and the spin states by using a static magnetic field gradient. 
Displacements of the trapped ion resulting from the applied electric field 
perturbations are thereby mapped to an instantaneous change in the 
energy-level splitting of the internal spin states. This gradient-mediated 
coupling of the electric field to the spin enables the use of well-established 
magnetometry protocols for electrometry, making it possible to achieve 
extremely sensitive measurements of d.c. and a.c. electric fields. We also 
employ a rotating-frame relaxometry technique and demonstrate the use 
of our quantum sensor as an electric field noise spectrum analyser. Finally, 
we describe a set of hardware modifications that are capable of achieving a 
further improvement in sensitivity by up to six orders of magnitude.

Precision measurements of electric fields and forces are used in a wide 
range of emergent applications in biological, biomedical and chemical 
research1–4, particle physics4–6, gravitational wave detection7, energy 
applications8 and communications9,10. Consequently, a variety of elec-
trometers based on various quantum hardware platforms have been 
developed, including bulk11 and single12 nitrogen-vacancy (NV) centres, 
quantum dots13, Rydberg atoms14–17 and trapped ions in Penning and 
Paul traps18–22.

Existing quantum electrometers have demonstrated ultrasensitive 
electric field measurements. However, they are restricted to certain 
frequency bands, with few sensors being able to measure subkilohertz 
frequencies23. This is because commonly used electrometers rely on 
either near-resonant measurements of transitions within the quantum 
system15,17,19,21,24, or resonant pulse techniques on spin states using 
phase-coherent sensing protocols11,12,20. In the former, the measure-
ment bandwidth is defined by the frequency of available transitions. 
In the latter, the lower cutoff frequency of the sensor is constrained 

by both the achievable coherence times and the coupling strength 
of the quantum states to the electric field perturbation, whereas the 
upper limit is restricted by the pulse duration of coherent operations 
on the spin states.

Access to the frequency band ranging from subhertz to several 
kilohertz could enable quantum electrometers to be used for a variety 
of other applications, including medical imaging techniques such as 
electrical impedance tomography25, microscopy26, meteorological 
applications such as the long-range geolocation of lightning27, as well as 
the study of atmospheric phenomena and space weather28–30. Geologi-
cal prospecting techniques are another use case for a low-frequency 
sensor, where applications include the detection of a range of subter-
ranean and submarine features31,32.

In this work, we describe a new quantum electric field sensor in 
which a magnetic field gradient is used to couple electric field signals 
to the energy-level separation between the spin states of a two-level 
system in a single trapped ion. We experimentally demonstrate d.c. 
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which allows for the implementation of a wide range of magnetom-
etry techniques for electrometry. From equation (2), we can see that 
stronger coupling is achieved by lowering the vibrational frequency of 
the ion, increasing the strength of the magnetic field gradient, using 
ions with a larger charge-to-mass ratio or by employing transitions with 
a higher susceptibility to magnetic fields. Electric field vector sensing is 
also in principle possible by tuning the confinement strength of the ion 
trap to maximize γi along one axis while suppressing it along the others.

All experimental demonstrations of our sensing scheme were 
conducted using a single 171Yb+ ion confined in a linear RF blade-trap 
with segmented d.c. electrodes33. A magnetic field gradient of 
∂B/∂z = 22.41(1) T m−1 is generated along the axial (z) direction of the 
trap by a set of samarium-cobalt magnets. The magnetic field strength 
at the unperturbed ion position is B0 = 8.3767(4) G. Doppler cooling 
and re-pump lasers, with wavelengths of 369.52 and 935.18 nm respec-
tively, are used to cool the ion to near the Doppler limit, whereas coher-
ent operations on the spin states are realized by applying microwave 
fields using an external microwave emitter, as shown in Fig. 1. Further 
details of the experimental set-up and control techniques can be 
found in Methods. Electric field signals are generated by an arbitrary 
waveform generator (AWG) and injected onto one of the d.c. end-cap 
electrodes of the ion trap by capacitively coupling across a 220 pF 
capacitor (Methods). The applied electric field strength is character-
ized by a geometric factor αi = ∂Ei/∂V, which relates the electric field 
at the position of the ion to the d.c. voltage applied to the electrode. 
Stronger radial confinement (νx/2π ≈ νy/2π ≈ 1.5 MHz) suppresses 
coupling of the radial electric field components to the spin state tran-
sition frequency by a factor γz/γx,y ≈ 180 (Methods). The subsequent 
experiments, therefore, measure solely the axial (z) component of the 
electric field. We find αz = α = −95.64(4) (Methods), and we will drop 
the subscript from here on.

and low-frequency a.c. electric field sensitivities that are unmatched 
by current state-of-the-art electrometers within our measurement 
bandwidth. We also demonstrate the versatility of our sensing scheme 
by employing a magnetometry technique to measure the electric 
field noise.

We consider a single ion with charge q confined in a radio-frequency 
(RF) Paul trap. A magnetic field gradient is applied at the position of 
the ion, as depicted in Fig. 1. A perturbation of the electric field δE(t) 
will alter the confining potential and exert a force δF(t) = qδE(t) on 
the ion. This force displaces the ion along the vector r = (rx, ry, rz) by an 
amount (Methods)

δri(t) =
q

mν2i
δEi(t), (1)

where i ∈ {x, y, z}, and m and νi are the mass of the ion and its vibrational 
frequency along the i axis respectively. The displacement δri of the 
trapped ion causes a change Δ in the transition frequency ω of its spin 
states due to the position-dependent Zeeman shift. The transduction 
parameter γi defines the susceptibility of the spin state transition fre-
quency to changes in the electric field and is given by

γi =
∂ω
∂Ei

= ∂ω
∂B

∂B
∂ri

∂ri
∂Ei

, (2)

where ∂ω/∂B is the susceptibility of the transition frequency to changes 
in the magnetic field, ∂B/∂ri is the strength of the magnetic field gra-
dient along ri, and ∂ri/∂Ei = q/mνi

2 is the change in position for a given 
change in the electric field at the ion. Equation (2) highlights the mecha-
nism of our sensing scheme. The magnetic field gradient transforms 
electric fields into magnetic fields in the reference frame of the ion, 
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Fig. 1 | Electric field sensing with a trapped ion in a magnetic field gradient. 
a, Top, single ion confined in an RF Paul trap. Segmented d.c. electrodes 
(blue) provide confinement in the axial (z) direction. The RF electrodes (red) 
provide confinement in the radial (x, y) directions. A magnetic field gradient 
of ∂B/∂z = 22.41(1) T m−1 is applied along z. Doppler cooling and re-pump lasers 
at wavelengths of 369.52 and 935.18 nm, respectively, are indicated by the blue 
and orange beams. Transitions between the internal spin states are driven 
using an external microwave emitter. Electric field signals are applied to the ion 
through a d.c. end-cap electrode (E1) and are generated using an AWG that is 

capacitively coupled into the signal chain of E1. Bottom, zoom-in. An external 
electric field E applies a force F on the ion, resulting in a displacement δz. The 
transition frequency of the spin states is then shifted by Δ due to the magnetic 
field gradient. b, Simplified energy-level diagram of the 171Yb+ ion. Doppler 
cooling, optical pumping and state detection are carried out using the standard 
resonance fluorescence scheme described in ref. 50. Phase-coherent operations 
on the second-order magnetic field sensitive |F = 0, mF = 0〉 to |F = 1, mF = 0〉 
transition and first-order sensitive |F = 0, mF = 0〉 to |F = 1, mF = +1〉 transition are 
driven by resonant microwave fields.
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a.c. and d.c. sensing
We use the |↓〉 = |F = 0, mF = 0〉 and |↑〉 = |F = 1, mF = 0〉 energy levels of 
the 2S1/2 hyperfine manifold of 171Yb+ for the measurements of a.c. and 
d.c. fields (Fig. 1b). The energy-level separation of the spin states is a 
function of the magnetic field at the ion, and is given by ω = ω0 + δ2z 
where ω0/2π ≈ 12.64 GHz is the hyperfine splitting at zero magnetic 
field and δ2z/2π = 310.8B2 Hz (B in Gauss) is the second-order Zee-
man splitting34. The vibrational frequency along z was measured to 
be νz/2π = 161.191(8) kHz, from which we calculated the transduction 
parameter γ = 3,998(2) rad mV−1 (Methods).

The sensitivity to a.c. signals is characterized using a Hahn- 
echo-type sequence. The electric field signal is applied during  
the free precession time τ, as described in ref. 35 and illustrated in 
Fig. 2a. We apply an a.c. electric field with a frequency ωϵ = τ−1. The pulse 
sequence maps the electric field amplitude onto the probability of 
finding the spin in the |↑〉 state, P↑. The displacement of the ion in the  
magnetic field gradient results in an instantaneous field-induced  
detuning Δ of the two-level system transition frequency. A superposi-
tion of the spin states will, therefore, experience a phase shift of  
dϕ = Δ(t) dt, where Δ(t) = γδE(t) is the detuning of the spin transition  
frequency. The total accumulated phase over the signal duration τ is 
ϕ = ∫τ/2

0 ∆(t)dt − ∫τ
τ/2 ∆(t)dt , which is a function of the electric field 

amplitude δE(t) and τ. The electric field amplitude is linearly increased 
for each interaction time τ, leading to sinusoidal oscillations of P↑. 
A linear least squares fit is used to fit an equation of the form 

P↑ =
1
2
+ A

2
sin( 2π

κ
E) to the data. Here A is the fringe amplitude, κ is the 

electric field required to induce a 2π phase rotation of the spin and 
E is the electric field at the ion. We extract the resulting maximal 
derivative ∂P↑/∂E and use this to calculate the minimum detectable 
electric field:

Emin = σtot(
∂P↑
∂E )

−1

, (3)

where σtot is the total read-out uncertainty due to quantum projection 
noise (σ2quantum) and classical read-out noise (σ2read-out) and is given by 
σ2tot = σ2quantum + σ2read-out ≈ 1/(4C2N)  (ref. 35). Here, C ≈ 1/√(1 + 4η)  is 
an overall read-out efficiency parameter36, N is the number of measure-
ments of the spin state and η is the infidelity associated with state 
preparation and measurement (SPAM). We measure a SPAM infidelity 
of η = 1.8 × 10−2, resulting in C = 0.97. The sensitivity, defined as the 
minimum detectable signal measured over 1 s of averaging, is calculated 
as S = Emin√texp . Here, texp = N(τ + tm)  is the total experimental  
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Fig. 2 | Measuring a.c. and d.c. sensitivities. a, Bloch sphere representation of 
the quantum state evolution (top), pulse sequence diagram (middle) and plot 
of the evolution of the electric field amplitude at the ion E for the a.c. sensing 
technique (bottom). Blue arrows and rectangles represent the microwave 
drive, and the orange rectangles and lines represent the interaction with the 
electric field. The initial and final spin states are shown in light and dark green, 
respectively. Each interaction period of duration τ/2 of the electric field features 
a half-oscillation of a signal with frequency ωϵ/2 = 1/τ. Xπ and Xπ/2 pulses are π and 
π/2 rotations around the x axis of the Bloch sphere induced by the microwave 
drive. b, Left, sensitivity of a.c. and d.c. sensing sequences against shot duration 

τ + tm for evolution times ranging from τ = 25 to 250 ms, corresponding to signal 
frequencies ωϵ/2π = 40 to 4 Hz. Centre, measurements of the sensitivity near the 
optimal evolution time τopt = 172(2) ms indicated by the squares and circles for 
d.c. and a.c., respectively, for 2,950 (d.c.) and 3,750 (a.c.) shots. Right, measured 
probability P↑ against the applied electrode voltage δE/α where δE = (2/π)EPK, for 
d.c. (a.c.) sensitivity measurements at Smin along with a least squares fit to a sine 
wave (solid grey) are shown in the upper (lower) plot. The dotted grey lines on 
the main plot are the theoretically expected curves for d.c. and a.c. sensing from 
equation (4). The error bars represent the 1σ confidence interval in the fitted 
fringes and the shot noise for the main plot and expanded plots, respectively.
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duration, where tm is the overhead associated with initialization, manip-
ulation and read-out of the sensor. From ref. 35, the optimum sensitiv-
ity for a given evolution time τ is

Smin =
eχ(τ) √τ + tm

γCτ , (4)

where χ(τ) is the associated decoherence function of the two-level 
system. The measured sensitivity for each evolution time is shown in 
Fig. 2b. a.c. waveforms were applied across the capacitor for various 
evolution times. These waveforms were pre-compensated to account 
for the frequency-dependent phase offset induced by the capacitor 
(Methods).

Although d.c. signals cannot be injected across the input capacitor, 
the sensitivity of the sensor to d.c. electric fields is characterized by 
injecting a time-varying signal. We also employ a Hahn-echo-type 
sequence for d.c. sensing, where the interaction between the electric 
field and the sensor occurs only during the first half (τ/2) of the total 
free evolution time (Methods). The average electric field over the 
course of this half-oscillation is given by ̄E = 2

π
EPK , where EPK is the 

electric field amplitude. Correspondingly, the sensor accumulates the 
same amount of coherent phase ϕ as if it had evolved under a square 
d.c. pulse of amplitude Ed.c. = ̄E .

The data shown in Fig. 2 are in good agreement with the theory, 
as plotted from equation (4). For a.c. sensing, a ~5% offset of the meas-
ured sensitivity relative to the theory is observed near τopt. This is 
due to higher-frequency electric field components capacitively cou-
pling onto the electrode, which could not be fully eliminated by the 
pre-compensation sequence.

The local minimum of the sensitivity Smin occurs at an optimal 
evolution time τopt. This is because the phase accumulation induced 
by the electric field increases linearly with τ but is counteracted by the 
reduction in the fringe contrast of the quantum system due to deco-
herence, which followed a Gaussian functional form. τopt can therefore 
be determined from equation (4). Experimentally, we find the local 
minimum of the sensitivity to be at τopt = 172(2) ms for tm = 66.839 ms 
and coherence time T2 = 304(3) ms (Methods). We measure a minimum 

a.c. sensitivity of Sa.c.min = 960(10) × 10−6 Vm−1 Hz−1/2  at a signal fre-

quency of ωϵ = τ−1opt = 5.82Hz , and a minimum d.c. sensitivity of 

Sd.c.min = 1.97(3) × 10−3 Vm−1 Hz−1/2.
To determine if our quantum sensor is shot noise limited, 

M = 275,000 measurements (shots) are taken at the optimal evolution 
time τopt for both a.c. and d.c. signals. The electric field amplitude is set 
so that a measurement of the quantum system yields a probability 
P↑ = 0.5. The set of M shots is then subdivided into k = M/N sets of N 
shots. From this, we calculate k individual means, corresponding to 
the mean probability of each set of N shots. Using equation (3), we plot 
the minimum electric field, Emin, calculated using the standard deviation 
of each set of k means (equation (3)), against N by varying the total 
measurement duration texp, which is a function of N in Fig. 3. The meas-
urement shows that the minimum detectable electric field follows a 
1/√texp  dependence, which is consistent with a shot-noise-limited 
sensor. We find that for 1 s of integration time of an a.c. signal, the 
quantum electrometer is able to measure a minimum detectable elec-
tric field equivalent to an elementary charge at a distance of 
1.225(6) mm.

Rotating-frame relaxometry
In the previous section, we have shown the measurement of d.c. signals 
and a.c. signals at well-defined frequencies and phases. Our sensor 
can, however, also be employed to measure stochastic signals with 
a discontinuous phase evolution over the measurement interval. We 
demonstrate this by using our sensing scheme to measure the power 
spectral densities (PSDs) of injected electric field noise. This is done 

using a spin-locking sequence. This technique is well established in 
magnetometry37,38. However, the gradient-mediated coupling of our 
scheme enables the implementation of spin-locking to measure the 
electric fields. The pulse sequence, outlined in Fig. 4b, begins by ini-
tializing the spin into the |+X〉 eigenstate. A resonant drive of the form 
(ωε/2)σx, with Rabi frequency ωϵ, is applied parallel to the orientation 
of the spin state, locking the spin along the x axis of the Bloch sphere. 
The resonant interaction lifts the degeneracy of the |±X〉 eigenstates 
by an energy ϵ = ℏωϵ, thereby making the two-level system sensitive 
only to σz-type signals oscillating at angular frequency ϵ/ℏ = ωϵ, effec-
tively creating a quantum electric field noise spectrum analyser. In 
the presence of electric field noise, the resonant drive is applied for 
a duration τ, after which the spin state is mapped into the σz basis for 
detection. The measured probability follows an exponential decay 
over time of the form

P↑ =
1
2 (1 + e−τΓ ) , (5)

where Γ  is the decay rate of the system. The measured decay is a result 
of electric field noise at angular frequency ωϵ being transformed into 
σz noise on the spin states through the coupling induced by the mag-
netic field gradient. We define the PSD of the electric field noise at 
an arbitrary angular frequency ω as SE(ω) = ∫+∞

−∞ ⟨δE(0)δE(t)⟩ e−iωt dt . 
The corresponding PSD of the σz noise is then related to the PSD of 
the electric field noise by Sz(ωϵ) = γ2SE(ωϵ), giving a spin-locking decay 
rate of38

Γ = 1
2Sz(ωϵ). (6)

Equations (5) and (6), therefore, make it possible to extract the PSD of 
the electric field noise at the angular frequency of the resonant drive ωϵ.

To characterize our sensor experimentally, we capacitively inject 
electric field noise into the system for the duration of the spin-locking 
drive pulse. The waveform comprises white noise in a 3 kHz bandwidth 
centred around the resonant drive frequency ΩX/2π = 30.0(3) kHz, as 
illustrated in Fig. 4a.

E m
in

 (V
 m

–1
)

10–3

10–4

100 101 102 103

texp (s)

8 mm

5 mm

3 mm

2 mm

1 mm
d.c.
a.c.a.c. Smin

d.c. Smin

Fig. 3 | Minimum detectable signal against measurement time. Measured 
values of Emin at fixed measurement times for d.c. (a.c.) sensing shown in blue 
(red). The blue (red) lines show the theoretical dependence of Emin, which is 
limited only by quantum projection noise. The value of Emin for a measurement 
time of 1 s (which defines the minimum sensitivity of the quantum sensor) is 
also shown (dashed black line). The classical read-out error is approximately 
equivalent for measurements on the |↓〉 and |↑〉 states, meaning that it does 
not contribute to the experimentally measured standard deviation shown in 
this figure. The dotted grey lines represent the magnitude of the electric field 
emanating from a single elementary charge at the indicated distance.
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For this experiment, we use the first-order magnetic field sensitive 
|↓〉 = |F = 0, mF = 0〉 and |↑〉 = |F = 1, mF = 1〉 spin states, where the transi-
tion frequency is ω = ω0 + δz, and δz/2π = 1.4 MHz G−1 is the first-order 
Zeeman shift. In addition, we set the axial secular frequency to 
νz/2π = 264.79(1) kHz, from which we calculate a coupling strength of 
γ = 398.6(2) × 103 radmV−1. We first verifiy the relation in equation (6) 
by characterizing the decay rate Γ  for various injected noise amplitudes 
(Fig. 4c). This is done by measuring P↑ as a function of the spin-locking 
drive duration τ and fitting the data to equation (5). We then character-
ize the minimum detectable signal, which is defined as the PSD of the 
electric field for which the signal-to-noise ratio is equal to 1. The 
signal-to-noise ratio is calculated by measuring the decay rate in the 
absence of injected noise. From this, we measure a decay rate 
Γ0 = 0.49(4) s−1, corresponding to a minimum detectable signal of 
Smin
E = 6.2(5) × 10−12 V2 m−2 Hz−1.

Discussion
We describe a new quantum sensing technique for trapped ions in RF 
traps. A magnetic field gradient is used to couple displacements of the 
ion induced by the electric field to its spin state energy-level  
splitting, thus enabling the use of magnetometry protocols for elec-
trometry. We demonstrated our scheme with a single trapped  
171Yb+ ion by measuring the axial component of electric field  
signals emitted by an in-vacuum electrode. We measure a  
minimum a.c. sensitivity of Sa.c.min = 960(10) × 10−6 Vm−1 Hz−1/2  for a 
signal frequency of τ−1 = 5.82 Hz and a minimum d.c. sensitivity  
of Sd.c.min = 1.97(3) × 10−3 Vm−1 Hz−1/2 . In addition, we employ a spin- 
locking sequence to measure stochastic signals with a discontinuous 
phase evolution over the measurement time. We determine a mini-
mum detectable electric field PSD of SE(ω) = 6.2(5) × 10−12 V2 m−2 Hz−1 
at a frequency of ω/2π = 30.0(3) kHz.

Figure 5 compares the sensitivity and bandwidth of our scheme 
with those of current state-of-the-art quantum electrometers.  

Current quantum hardware platforms use a variety of measurement 
schemes for electrometry, resulting in a range of achievable band-
widths and measurable sensitivities. Single26,39 and bulk NV centres11 use 
resonant pulse schemes on their spin transition frequency and are able 
to operate at ambient conditions, allowing highly increased flexibility 
in sensor placement3. However, the coherence times and coupling 
strengths limit both the achievable sensitivities and the bandwidth. 
Rydberg atoms measure Stark shifts on internal transitions induced 
by near-resonant fields, enabling high-sensitivity electrometry in the 
100 MHz to 500 GHz range15,40. Ion crystals in Penning traps are sensi-
tive to electric fields at or near the motional resonances of the crystal, 
which are typically in the 50 kHz to 10 MHz range18,19,21. Rydberg and 
Penning trap architectures have also demonstrated electric field sensi-
tivities below the standard quantum limit through entanglement-based 
schemes15,18. Finally, there exist a variety of sensors based on RF Paul 
traps, which implement both fluorescence-based schemes to measure 
d.c. electric fields22,41,42 and resonant pulse schemes for Doppler shift 
measurements20.

The achieved minimum sensitivities discussed in this work are 
unmatched by existing sensing hardware platforms across the meas-
urement bandwidth of our sensor. Our sensing scheme can be used for 
highly sensitive electric field measurements in the d.c. and subhertz 
to ~500 kHz frequency range. The lower cutoff frequency is limited by 
the coherence time of the two-level system, whereas the upper cutoff 
frequency is a function of the maximal achievable Rabi frequency of the 
refocussing π pulses. Our experimentally measured optimal sensitivity 
is limited by both classical noise and hardware constraints specific to 
the experimental system. Voltage noise on the electrodes of the ion 
trap directly couples to the spin states, which limits the T2 coherence 
time. Previous measurements with our particular experimental set-up 
have shown that the coherence time of our system is dominated by  
voltage noise on the trapping electrodes and scales as T2 ∝ ν4(∂B/∂z)−2 
(ref. 43). Equations (2) and (4) therefore indicate that the sensitivity in 
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measurement. b, Pulse sequence diagram and associated Bloch sphere 
representation of the spin-locking sequence. A Yπ/2 pulse aligns the spin state with 
the x axis. An X pulse with Rabi frequency ΩX locks the state vector to the x axis. 
Resonant noise at the spin-locking Rabi frequency drives the |+〉 → |−〉 transition 
incoherently. A final Yπ/2 pulse transfers the state population into the σz basis for 

read-out. The outer radius of the cone represents all possible alignments of the 
final state vector. The measured probability over many shots P↑ is represented by 
the projection of the vector onto the z axis (white vector). c, Measurement of the 
decay rate Γ  against the resonant electric field PSD SE and voltage PSD SV of the 
applied noise. Round markers indicate fits of probability measurements to 
exponential decay functions. Error bars are within the size of the marker. The 
solid line is given by equation (6). The left (right) inset shows measurements of 
the decay rate and the associated fit for a PSD of SE = 2.770 × 10−10 V2 m−2Hz−1 
(SE = 2.689 × 10−9V2 m−2 Hz−1) resulting in a decay rate of Γ  = 22(1) s−1 
(Γ  = 195(9) s−1). The error bars represent the 1σ confidence interval.
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the current implementation of our electrometer is independent of both 
the secular frequency and the magnitude of the magnetic field gradi-
ent. However, this is not a universal scaling law, so that modifications 
to the hardware of the sensor would improve the measured Smin and fur-
ther increase the bandwidth of the sensor. These modifications include 
reducing the PSD of the voltage noise on the electrodes, replacing the 
existing low-pass filter with one that has a larger roll-off rate and a lower 
cutoff frequency, or by using a voltage source that enables a different 
scaling of T2 with ∂B/∂z and νz. Additionally, the time penalty associated 
with phase-matching electric field signals across the input capacitor 
leads to an increase in tm, which increases the minimum sensitivity 
achievable with the current experimental hardware (Methods). Using 
an in-vacuum antenna rather than a d.c. electrode as the electric field 
source would avoid the need for capacitive coupling of the electric field 
signals, thus leading to immediate improvements of Smin.

The measured sensitivities could be improved through hardware 
modifications of the quantum sensor. Extending the coherence time 
by reducing the voltage noise on the electrodes, in combination with 
dynamical decoupling techniques, would enable the use of first-order 
magnetic field sensitive transitions as well as larger magnetic field 
gradients. Additionally, using a trapped ion with a larger charge-to-mass 
ratio, such as 25Mg+ or 9Be+, instead of  171Yb+ would improve the achiev-
able sensitivities. For example, using the first-order magnetic field 
sensitive |F = 2, mF = −2〉 to |F = 1, mF = −1〉 transition in the S1/2 hyperfine 
manifold of 9Be+, in a system with ∂B/∂z = 200 T m−1, would result in a.c. 
sensitivities of <5 × 10−9 V m−1 Hz−1/2 for an evolution time of τopt = 170 ms 
(and T2 = 2τopt). A further reduction in sensitivity by a factor of 1/√N  

could be achieved by simultaneously employing N trapped ions, which 
could be confined either in an array of trapping wells or as a large crystal 
in a single well. The size of larger crystals may be limited by a worsening 
of the sensitivity due to increased coupling to electric and magnetic 
field noise at large magnetic field, as a result of the second-order Zee-
man shift, and the technical challenge of maintaining a large magnetic 
field gradient over the entire crystal length.

Miniaturization, portability and hardware complexity are also 
important considerations when deploying quantum sensors in the 
field44 and to ensure optimal positioning of the sensor relative to 
electric field sources. As the sensor presented in this work operates 
in-vacuum, sensor placement relative to a signal source may be more 
challenging for some applications. However, the development of com-
pact ion-trapping systems is a well-established area of research, with 
substantial advances being made in vacuum system miniaturization45,46. 
Additionally, our scheme does not require cryogenic cooling of the 
hardware, which reduces the portability constraints.

In addition to improving sensitivities and portability, hardware 
modifications can broaden the range of applications of the sensor. 
A system that allows for independent tuning of the confinement 
strength along each axis of vibration can be used for the vector sens-
ing of electric fields. Switchable static magnetic field gradients as 
described in ref. 47 could also be used to realize a hybrid magnetic field 
and electric field sensor, in which the sensor has an identical measure-
ment bandwidth for both magnetic and electric fields. Furthermore, 
our electric field sensor is compatible with entanglement-enhanced 
sensing techniques. Static magnetic field gradient entanglement 
schemes for trapped ions using long-wavelength radiation48,49 can be 
implemented and could allow the sensor to reach sensitivities below 
the standard quantum limit.
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Methods
Transduction parameter
We consider the dynamics of a string of N trapped ions perturbed by 
an external electric field, which results in a force δFj(t) = −qδEj(t) on ion 
j. Restricting ourselves to a single direction without loss of generality, 
the Lagrangian of this system is53

L = m
2 (

N
∑
p=1

(Q̇p(t))
2
− ν2pQp

2(t))

+ qQp(t)
N
∑
j=1

b(p)j δEj(t),

(7)

where νp are the normal mode frequencies and b(p)j  describes how 
strongly ion j couples to the mode p. The normal modes of motion Qp(t) 
are related to small displacements of the ion, δr(t) of equation (1), via:

Qp(t) =
N
∑
j=1

bj
(p)δr(t). (8)

The equation of motion of the pth normal mode is found from the 
Lagrangian using the relation

d
dt (

∂L
∂Q̇p(t)

) = ∂L
∂Qp(t)

,

resulting in

Q̈p(t) + ν2pQp(t) =
e
m

N
∑
j=1

b(p)j δEj(t). (9)

Without loss of generality, we restrict ourselves to a single-ion chain, 
N = 1, and consider the centre-of-mass motion along the z axis. After 
setting p = z and b(1)1 = 1, equation (9) becomes

Q̈z(t) + ν2zQz(t) =
e
mδE(t). (10)

This corresponds to the equation of a driven harmonic oscillator. Tak-
ing the Fourier transform, equation (10) becomes

Q̂p(ω) =
e

m(ν2z − ω2)
δ ̂E(ω), (11)

where ̂⋅ denotes the Fourier transform. For N = 1 ion, Qp(t) = δr(t) and 
equation (11) becomes

δ ̂r(ω) = e
m(ν2z − ω2)

δ ̂E(ω). (12)

In the limit νz ≫ ω, equation (12) reduces to

δ ̂r(ω) = e
mν2z

δ ̂E(ω), (13)

from which one can retrieve the expression of equation (1). From equa-
tion (12), we also find that the coupling of radial micromotion into 
the spin states is negligible. These oscillations occur at the RF trap 
frequency, ΩRF/2π = 19.22 MHz, and the resulting amplitude of the radial 
oscillation is negligible because ΩRF ≫ νx,y.

Experimental set-up
Extended Data Fig. 5 shows a schematic of the experimental set-up 
used in this work. The ion trap was mounted inside a vacuum chamber 
maintained at an average pressure of 2.4 × 10−11 mbar. The ion is Doppler 
cooled using a 369.52 nm laser that is red-detuned from the 2S1/2 |F = 1〉 
to the 2P1/2 |F = 0〉 transition. The laser beam is double-passed through 

an acousto-optic modulator to allow for fine frequency and ampli-
tude control by a field-programmable gate array. An electro-acoustic 
modulator (EOM) is used to generate 2.11 GHz sidebands for state 
preparation. These sidebands allow the population to be driven into 
the 2P1/2 |F = 1〉 state via optical pumping, after which it decays into the 
|↓〉 = 2S1/2 |F = 0〉 ground state. The population that is off-resonantly 
driven into the 2S1/2 |F = 0〉 state during Doppler cooling is returned to 
the cooling cycle by continuously applied microwaves near 12.64 GHz. 
Population can also leak out of the Doppler cooling cycle by decaying 
into the 2D3/2 manifold, where a 935.18 nm re-pump laser applied on the 
2D3/2 to 3D[3/2]1/2 transition returns population to the 2S1/2 |F = 1〉 state. 
The re-pump laser is also modulated by an EOM at 3.07 GHz to improve 
the re-pumping efficiency. Microwaves are generated by a vector signal 
generator (Keysight E8267D PSG), which produces a carrier signal of 
12.54 GHz. This is then mixed with RF pulses near 100 MHz generated 
by a two-channel AWG (Keysight M8190A), which is then amplified 
and emitted by an external microwave emitter to allow for coherent 
manipulation of the spin state. The spin state is measured using a 
state-dependent fluorescence scheme as described in ref. 50. The 
average SPAM error was found to be η = 1.8 × 10−2. The voltage signals 
used to measure the a.c. and d.c. sensitivities are applied directly to the 
capacitor from the second channel of the AWG. To measure the electric 
field noise, a white-noise waveform is generated using a separate AWG 
(Agilent 33522A). The white-noise signal is attenuated by two 30 dB 
RF attenuators, and its output controlled with an external RF switch.

Gradient measurement
The strength of the magnetic field gradient along the axial direction was 
calculated by measuring the transition frequencies of two co-trapped 
171Yb+ ions. As the splitting of the 171Yb+ spin states is dependent on the 
strength of the magnetic field at the position of the ion, the magnetic 
field gradient in the axial direction is given by

∂B
∂z

= B2 − B1
δZ

, (14)

where B1 and B2 are the magnetic field strengths at the location of each 
ion, and δZ is the ion separation (Extended Data Fig. 1). The ion separa-
tion is a result of the mutual Coulomb repulsion between the ions and 
the oppositely acting axial confinement force. δZ is given by53

δZ = ( e2

4πϵ0mν2z
)
1/3

2.018
N0.559 , (15)

where νz is the axial vibrational centre-of-mass frequency, m is the mass 
of a single charged particle and N is the number of ions in the crystal. 
We measured νz/2π = 161.191(8) kHz via the ‘tickling’ method. An a.c. 
electric field was applied to the trap using an external RF coil, which 
excites the axial motion of the ion crystal when the applied frequency is 
resonant with the axial vibrational frequency, leading to a measurable 
decrease in ion fluorescence due to the Doppler shift. We then compute 
δZ = 12.64(1) μm from equation (15).

The magnetic field at each ion was calculated by measuring the 
magnetic field-dependent transition frequency of each ion, as shown 
in the inset plots of Extended Data Fig. 1. From these measurements, 
B1 = 7.1328(8) G and B2 = 9.9655(5) G. Finally, from equation (14), the 
magnetic field gradient strength was ∂B/∂z = 22.41(1) T m−1.

Calibrating α and γ
The geometric factor of an electrode, α, relates the electric field at 
the position of the ion to the voltage applied to the electrode, and is 
defined as

α = ∂E
∂V

= ∂ω
∂V

∂E
∂z (

∂B
∂z

∂ω
∂B )

−1
, (16)
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where ∂E/∂z = mνz
2/e. We calibrate α by first measuring the change 

in magnetic field at the ion due to a change in the voltage applied to 
the E1 electrode (∂B/∂V) using the second-order sensitive spin state 
transition frequency and νz/2π = 161.191(8) kHz (Extended Data Fig. 2). 
The measurement was performed with a single 171Yb+ ion by applying 
a voltage V0+δV to the electrode, where V0 = 1.75 V is the static voltage 
contributing to the axial confining potential and δV is an offset that is 
varied from −50 to +50 mV. We extract the value of ∂B/∂V from a least 
squares fit to a straight line of the magnetic field measurements for 
each voltage offset. From this, we then determine

∂ω
∂V

= ∂B
∂V

∂ω
∂B

= −382 × 103 radV−1.

The geometric factor is then calculated from equation (16), giving 
α = −95.64(4) m−1.

The transduction parameter is found using

γ = 1
α
∂ω
∂V

= (∂V∂E
∂ω
∂V )

.

For the second-order magnetic field sensitive transition, we meas-
ure γ = 3,998(2) rad m V−1.

Our scheme measures the electric field component along the z 
axis, as the sensitivities to electric fields in the x and y axes are neg-
ligible. To see this, we calculate the ratio between the transduction 
parameter in the z direction, γ = γz, and the transduction parameter in 
the x and y directions, γx,y, using equation (2). The magnetic field gradi-
ent along the z axis was measured to be ∂B/∂z = 22.41(1) T m−1, whereas 
the gradient along the x and y axes was estimated through numerical 
simulations to be ∂B/∂rx,y ≈ 11 T m−1. With the motional frequencies 
νz/2π = 161.191(8) kHz and νx,y/2π ≈ 1.5 MHz, the ratio of the transduc-
tion parameters is

γz/γx,y =
∂B
∂z

∂z
∂Ez /

∂B
∂rx,y

∂rx,y
∂Ex,y

≈ 180,

which indicates that the sensitivity to electric fields in the radial direc-
tion is over two orders of magnitude weaker.

Electric field sensing protocol
For the sensing of a.c. fields, we follow the pulse sequence protocol 
outlined in ref. 35 and illustrated in Extended Data Fig. 3. The a.c. sens-
ing sequence is realized by first initializing the two-level system into 
the |+⟩ = (1/√2)(| ↓⟩ + | ↑⟩)  state using a π/2 pulse. The superposition  
state then evolves under an electric field perturbation for a time τ/2.  
A π pulse reorients the spin along the equator of the Bloch sphere, 
before the quantum state again evolves under the electric field pertur-
bation for a time τ/2. A final π/2 pulse mapps the state population into 
the σz basis for detection. Using this pulse sequence, the sensitivity of 
the spin state transition frequency is maximized for a.c. signals oscil-
lating at a frequency of τ−1.

The d.c. sensing experiments also use a Hahn echo type pulse 
sequence, whose benefits are twofold. First, the coherence time of 
the sensor is greatly extended when compared to that of the 
Ramsey-type sequence, which allows for increased sensitivities. 
Second, the refocusing π pulse also compensates for detuning errors 
in the microwave pulses. The pulse sequence is illustrated in Extended 
Data Fig. 3, and begins with a π/2 pulse to initialize the spin into the 
|+⟩ = (1/√2)(| ↓⟩ + | ↑⟩)  state. d.c. signals cannot be applied through a 
capacitor. The low-pass filter signal chain of the d.c. electrode is also 
not suitable for fast application of d.c. square pulses during the sens-
ing pulse sequence, as the low-pass filter would significantly attenuate 
and distort the signal. Therefore, to quantify the sensor’s response 
to d.c. signals, we apply an a.c. signal of frequency τ−1 for the duration 

of the first τ/2 delay time. This corresponded to an equivalent d.c. 
voltage on the electrode of Vd.c. = (2/π)VPK, where VPK is the amplitude 
of the applied signal. Here, (2/π)VPK is the average voltage over the 
half-oscillation of the a.c. waveform. The applied time-varying pulse 
therefore causes the spin state to accumulate the same amount of 
phase ϕ as a square d.c. pulse of amplitude (2/π)VPK applied for a 
duration τ/2 based on the equation relating phase accumulation to 
the detuning of the spin transition: ϕ = ∫τ/2

0 γαδV(t)dt. The refocusing 
π pulse is then applied, followed by the second τ/2 delay time, during 
which no other voltage signals are applied to the electrode, followed 
by a final π/2 pulse.

In addition to the electric field interaction time τ, the second 
relevant time parameter from equation (4) is tm, which breaks down as 
follows for our experimental implementation: (1) d.c. offset application 
delay time, 50 ms (see next section), (2) Doppler cooling and detection, 
14.599 ms, (3) state preparation and microwave pulses, 2.155 ms and 
(4) data processing and field-programmable gate array delays, 85 μs. 
The total tm = 66.839 ms.

Capacitive coupling of a.c. signals
Due to the absence of an in-vacuum antenna, the electric field sig-
nals measured by the trapped ion were emitted from an in-vacuum 
end-cap electrode, which also generated a d.c. confinement electric 
field. Voltage waveforms were generated by an AWG and capacitively 
coupled onto the electrode across a 220 pF capacitor. Due to their 
frequency-dependent impedance, capacitors act as high-pass filters, 
thereby attenuating the lower-frequency signals more strongly. The 
fixed response time of a capacitor will also shift the phase of a.c. signals 
that are applied across it. This shift in phase of the a.c. signal can, if unac-
counted for, affect the total coherent phase ϕ that is accumulated by 
the spin states. To achieve an optimal measurement of the sensitivity 
of our experimental system, it is necessary for the electric field signal 
at the ion to be in phase with the Hahn-echo sensing pulse sequence. 
This is because ϕ is the difference between the coherent phase accrued 
during the first and second interaction times τ/2. An electric field sig-
nal that is not in phase with the Hahn-echo sequence will, therefore, 
reduce the measured sensitivity. References 11 and 35 provide further 
information about this effect.

We measure the phase shift on signals applied across the capacitor 
for the span of frequencies used in the a.c. and d.c. sensing experi-
ments using an oscilloscope. Based on these measurements, we then 
pre-compensate the signal applied across the capacitor by applying an 
inverse phase shift, negating the effect of the capacitor on the phase of 
the voltage waveform. This ensures that the voltage on the electrode 
and, therefore, the electric field signal at the ion, are in phase with the 
Hahn-echo sequence.

Shifting the phase of the voltage waveform introduces a disconti-
nuity into the signal. This manifests as a sudden change in the voltage 
across the capacitor from 0 to VΦ = VA sin Φ, where Φ is the phase of the 
a.c. voltage signal. Given that the current across a capacitor is defined 
as I = C dV/dt, where C is the capacitance of the capacitor, the high rate 
of change of voltage induces a large current flow across the capacitor, 
which introduces additional coherent phase offsets of the superposi-
tion state. To suppress this unwanted perturbation, we apply a d.c. 
voltage offset of VΦ into the capacitor in the time before the initializa-
tion of the |+〉 state, which minimized the sudden voltage spike across 
the capacitor from the phase-shifted a.c. voltage waveform. To ensure 
that the sensor reaches a steady state before the application of the a.c. 
electric field signal, an extra 50 ms delay is added between the applica-
tion time of the d.c. offset and the first resonant microwave pulse. This 
made up most of the tm time, which was broken down in the previous 
section. The pre-compensation technique for the a.c. and d.c. sensing 
pulse sequences is visualized in Extended Data Fig. 3, which illustrates 
both the AWG and in-vacuum electrode voltage evolution throughout 
the experimental pulse sequence.
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We also measure the frequency-dependent attenuation of the 
capacitor using an oscilloscope. We determine the transfer function of 
the capacitor by fitting a Butterworth high-pass filter function to these 
data. We then find the total attenuation of the electric field signal for 
a given frequency τ−1.

Determination of the coherence time
We measure the coherence time of the two-level system using a 
Hahn-echo experiment. The spin is initialized in the |↓〉 state, after 
which a π/2 pulse rotates the spin into the |+X〉 eigenstate. A refocusing 
π pulse is applied between the two free evolution periods of duration 
τ/2. A final π/2 pulse maps the state into the σz basis for detection. 
Varying the phase of the final pulse from −2π to 2π results in sinusoidal 
fringes in the probability of measuring |↑〉. As the free evolution time is 
increased, decoherence leads to a reduction in the amplitude of these 
fringes. The coherence time T2 is given by the point at which the fringe 
contrast reaches e−1. As the a.c. and d.c. sensing experiments were also 
based on the Hahn-echo sequence, the fringe amplitudes from these 
experiments can also be used for the coherence time measurement. 
The fringe amplitudes in these three experiments are shown against the 
free evolution time in Extended Data Fig. 4. These data are aggregated 
and fitted to a Gaussian decay function of the form χ−1(t) = exp(−t2/T2

2) 
using a least squares fit, yielding a coherence time of T2 = 304(3) ms.

Data availability
The data that support the findings of the study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Measurement of the magnetic field gradient. The blue 
circles indicate the axial position of two co-trapped 171Yb+ ions. The axial (z) 
separation of the ions is calculated from spectroscopy measurements of their 
motional frequency, giving 12.64(1) μm, and is symmetric about the single 
ion equilibrium position in the axial direction of the trap. The insets show 
measurements and least-squares fits of the spin state transition frequency of 
each ion. The horizontal axis of the insets indicates the detuning of the applied 

microwave pulse, relative to probing frequencies near 12.64 GHz corresponding 
to the spin transition of ion 1, ω1 (left inset), and ion 2, ω2 (right inset). Inset titles 
are the values of the magnetic field magnitude calculated from the measured 
spin transition frequency of each ion. The magnetic field gradient is calculated 
using equation (14). The black line is a plot of magnetic field strength against 
axial position based on the measured magnetic field gradient. The error bars 
represent the 1σ confidence interval.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-025-02887-9

Extended Data Fig. 2 | Calibrating the geometric factor. Measurement of 
the shift in resonance frequency of the two-level system after applying a static 
voltage offset δV to the E1 electrode. The red circles indicate the magnetic 
field determined from spin state transition frequency measurements at 
different values of δV, whilst the yellow square represents the magnetic field 

corresponding to a measurement of the unperturbed (δV = 0) transition 
frequency. The data are fitted to a straight line using a least-squares fit, shown in 
red. The top axis shows the axial displacement of the ion for a given δV, which is 
calculated using the previously measured value of α. Error bars are within marker 
size and represent the 1σ confidence interval.
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Extended Data Fig. 3 | AC, DC and spin-locking (SL) pulse sequence diagram 
and time evolution of input signal. Blue lines represent the AWG voltage output, 
whilst red lines show the voltage evolution on the in-vacuum electrode. Note that 
the voltage on the electrode is attenuated and phase-offset relative to the AWG 
voltage. The AC sensing technique is characterized by applying a full oscillation 
of an AC signal at frequency 1

τ
 onto the electrode. Sensitivity to DC signals is 

characterized by applying a half-oscillation of an AC signal at frequency 1
τ

 onto 

the E1 electrode of the ion trap. For spin-locking, noise resonant with the 
spin-locking Rabi frequency is applied onto the electrode. The input signal 
exhibits a frequency dependent phase shift and a frequency dependent 
attenuation across the input capacitor. For AC and DC sensing the offsets are 
pre-compensated, as can be seen by the dark-blue line. For spin-locking a 
continuous signal is switched into, thus pre-compensation is not applied.
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Extended Data Fig. 4 | Coherence time measurement of the second order 
sensitive clock states. The spin states used for the experimental demonstration 
of AC and DC sensing are defined by the |↓〉 = |F = 0, mF = 0〉 and |↑〉 = |F = 1, mF = 0〉 
energy levels. The fringe contrasts associated with each of the AC sensing, DC 
sensing, and Hahn-echo experiments are shown for a range of free evolution 

times τ. The black dashed line indicates the 1/e threshold. The grey line is a least 
squares fit of these measurements to a Gaussian decay function, corresponding 
to a coherence time of T2 = 304(3) ms. The error bars represent the 1σ confidence 
intervals in the fits to the fringe contrasts.
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Extended Data Fig. 5 | Experimental Setup. Electric field sensing configurations, 
coherent control, optical and electric field signal chains for the operation of 
the quantum sensor. Coherent control is achieved using triggered microwave 
pulses generated by amplitude modulation of an RF signal from a two-channel 
AWG with a microwave carrier using a VSG. The microwave tone is amplified and 
emitted into the vacuum chamber using a microwave horn. The second channel 
of this AWG provides the electric field signals for AC and DC sensing. These 
signals are synchronously coupled into the quantum sensor in configuration II. 

Configuration I shows the setup for rotating frame relaxometry. Here, a signal 
is continuously output using a second AWG. Interaction with the spin state 
is toggled using an RF switch. The signal is then attenuated and capacitively 
coupled onto the electrode. Doppler cooling, optical pumping and state 
detection of the ion are achieved by modulating a 369.52 nm laser beam using an 
acousto-optic modulator (AOM) and an electro-optic modulator (EOM). An EOM 
in the 935.18 nm beam allows for efficient repumping. The photo-multiplier tube 
(PMT) is used for fluorescence detection of the spin state.
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