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Modern platforms for potential qubit
candidates, such as trapped ions or neu-
tral atoms, allow long range connectivity
between distant physical qubits through
shuttling. This opens up an avenue for
transversal logical CNOT gates between
distant logical qubits, whereby physical
CNOT gates are performed between each
corresponding physical qubit on the con-
trol and target logical qubits. However,
the transversal CNOT can propagate er-
rors from one logical qubit to another,
leading to correlated errors between logi-
cal qubits. We have developed a multi-pass
iterative decoder that decodes each logical
qubit separately to deal with this corre-
lated error. We show that under circuit-
level noise and only O(1) code cycles, a
threshold can still persist, and the logi-
cal error rate will not be significantly de-
graded, matching the sub-threshold logical
error rate scaling of p⌊ d

2 ⌋ for a distance d
rotated surface code.

1 Introduction
Quantum error correction (QEC) is essential
for realising fault-tolerant quantum computation.
The threshold theorem states that if the error rate
per quantum gate is below a certain threshold,
arbitrarily long quantum computations become
possible [1]. The surface code, known for its high
error threshold and ability to correct both bit-flip
and phase-flip errors through local interactions,
is a leading QEC candidate. It arranges qubits
on a two-dimensional lattice and uses stabilizer
measurements for error detection. The minimum
weight perfect matching (MWPM) algorithm is
an effective decoding method for the surface code
[2–4].

Quantum computing hardware varies in con-
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Figure 1: Two patches/copies of distance 5 rotated sur-
face codes. A transversal logical CNOT operation is
performed by apply physical CNOT gates between the
corresponding physical qubits of the two patches.

nectivity capabilities. Superconducting qubits
typically have fixed, limited connectivity which
is imposed by the chip topology, while platforms
like trapped ions, neutral atoms, and photonics
allow for long-range connectivity. For example,
in the trapped ion paradigm, ion shuttling op-
erations enable arbitrary connectivity [5]. The
variability of connectivity influences QEC imple-
mentation and efficiency across different systems.

Lattice surgery is a common technique for per-
forming logical operations in the surface code
while relying only on nearest neighbour opera-
tions. It involves merging and splitting logical
qubits to facilitate operations such as the logi-
cal CNOT gate. The time complexity of lattice
surgery scales with the code distance, typically
requiring O(d3) volume, where d is the code dis-
tance. One possible implementation requires a
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time complexity of 2d and three logical qubits,
one of which is an ancilla patch for mediating the
merging and splitting operations [6, 7]. Note that
all Clifford operations can be done in 0 time given
sufficient qubits [8].

The transversal CNOT gate offers an alterna-
tive approach. It requires performing a physi-
cal CNOT operation between every correspond-
ing physical qubit of the logical qubits. For N
data qubits per logical qubit, N CNOT opera-
tions are needed, often involving long-range inter-
actions. The transversal CNOT deterministically
maps Pauli errors between patches: X errors are
mapped from control to target, and Z errors are
mapped from target to control. This mapping,
if uncorrected, leads to spurious detection events
which will greatly degrade logical qubit perfor-
mance if standard decoding methods like MWPM
are used.

Recent research has focused on developing spe-
cialized decoders for transversal CNOT gates [9–
16]. Our work significantly expands upon a
concept briefly mentioned1 in [9], by develop-
ing a multi-pass iterative decoder that addresses
the correlated errors spread by the transversal
CNOT. This decoder processes each logical patch
separately in multiple passes to correct these cor-
related errors.

Modern qubit platforms supporting long-range
connectivity make transversal CNOT gates feasi-
ble, potentially improving resource estimates for
quantum computing. Our multi-pass iterative de-
coder demonstrates that, even under circuit-level
noise and only O(1) code cycles, a threshold can
persist without significant degradation of the log-
ical error rate. This matches the sub-threshold
logical error rate scaling of p⌊d/2⌋ for a distance d
rotated surface code.

This paper presents an analysis of our multi-
pass iterative decoder for transversal CNOT
gates, including its design, implementation, and
performance characteristics.

Specifically, we illustrate a simple method to
separately decode two different patches of surface
codes that had undergone transversal CNOT op-
erations, we assume:

1. error-free and instantaneous transversal
CNOT operations and

1As a long footnote.

2. standard circuit-level depolarising noise
model on all other gates - SD6 [17].

We argue that the error-free transversal oper-
ation should not significantly impact the overall
behavior of the logical error rates, as the realistic
transversal CNOT error is expected to contribute
only a marginally higher circuit-level noise error
rate [2] for some hardware platforms [5]. Further-
more, the idealized transversal CNOT operation
suffices for the primary purposes of our investiga-
tion here, i.e. the performance of a new approach
to decoding. A detailed analysis into hardware
realistic connectivity error models and its impact
on the performance of the transversal CNOT op-
eration relative to lattice surgery is in preparation
[18].

Our work has significant implications for re-
source estimation in quantum advantage applica-
tions, where there exists a trade-off space between
run times and the number of magic state distilla-
tion factories. Previous work [19–21] has assumed
lattice surgery operations and demonstrated the
benefits of fast code cycle times when other fac-
tors are held constant. For instance, trapped ion
hardware, with code cycle times potentially three
orders of magnitude slower than superconducting
qubits, would traditionally require substantially
more physical qubits to achieve comparable quan-
tum advantage run times [22]. This comparison
assumes the same QEC methods and physical er-
ror rates across both platforms.

However, transversal operations offer potential
improvements in both the volume scaling of magic
state factories and the overhead associated with
parallelized magic state consumption. By lever-
aging these advantages along with enhanced con-
nectivity and higher baseline fidelities on physi-
cal gates, slower hardware architectures may be
able to bridge the gap in physical qubit require-
ments to reach runtime parity with faster but
locally-connected systems. Our findings suggest
that the integration of transversal CNOT gates
and specialized decoding techniques could signif-
icantly impact the resource landscape across di-
verse quantum computing platforms, potentially
altering the balance between speed and qubit
count in the pursuit of quantum advantage.

2



2 The repetition code
In the following sections, we illustrate our itera-
tive transversal CNOT decoding method with the
repetition code. Due to the surface code’s sym-
metry in suppressing Pauli-X and -Z error, it is
sufficient to study the repetition code for the intu-
ition behind our method. For simplicity, we also
assume no mid-circuit errors for the visualisation
of this decoding procedure. However, it should
be noted that this method easily generalises to
accommodate mid-circuit errors.

A distance d repetition code has code words∣∣0̄〉
= |0⟩⊗d ,

∣∣1̄〉
= |1⟩⊗d and can be represented

with the following stabiliser generators, G, and
logical operators X̄ and Z̄:

G =
〈

d−2⋃
j=0

ZjZj+1

〉
, X̄ =

d−1∏
i=0

Xi , Z̄ = Zk ,

(1)

where Zj(Xj) are Pauli-Z(X) operator acting on
physical qubit j. If we were to repeatedly mea-
sure the stabiliser generators of this code, we can
detect and correct for Pauli-X errors only. In the
particular example in figure 2, we initialise the
repetition code and measure the parity checks
for 3 rounds before subsequently measuring all
the data qubits. We can then construct the syn-
drome of this quantum memory experiment [19]
(in this case a classical code). For t = 1, 2, the
syndrome data/detector clicks can be constructed
by the calculating the modulo 2 difference (⊕) of
the same parity check measurement separate by
one step in time.

t = 0 :
q0 q1 q2 q3 q4

t = 1 :

t = 2 :

t = 3 :

Figure 2: Distance 5 repetition code (can tolerate
⌊d/2⌋ = 2 errors before failing) decoding graph for 4
time steps, assuming no mid-circuit errors (no diagonal
edges in the syndrome graph).

Figure 2 is a syndrome graph for this quantum
memory experiment with 3 rounds of syndrome
extractions. The horizontal edges at each time

slices of this graph represents the qubits and ver-
tical edges between time slices correspond to the
possibility of measurement errors. Detectors are
the nodes of this graph, carrying the syndrome
information and will be coloured if the parity of
the measurements associated with the detected
differs from that expected.

3 Correlated errors
A CNOT operation inherently spread errors be-
tween the control and target modes. X errors will
flow from the control to target modes (shown in
equation 2) and Z errors will flow from the target
to control mode (see equation 3).

X = X

X

X
=

X

(2)

Z = Z

Z
= Z

Z

(3)

For simplicity, in this discussion we focus on
the X errors only and note that by symmetry, the
argument is valid for the Z errors with the con-
trol and target modes reversed. The transversal
CNOT will deterministically map X errors from
the control to target patch. If this propagated er-
ror is not corrected for, it will cause spurious de-
tection events appearing on the target node right
after the transversal CNOT. Ultimately, this has
the overall effect of a degraded logical error rate.
However, if we can first decode the control patch,
and have a suitable guess for the locations of the
X errors, we can use that to cancel out the prop-
agated X error on the target patch. The motiva-
tion behind our decoder is to use a conventional
memory experiment decoder for a single logical
qubit memory experiment, which decodes each
logical qubit separately, updates the syndrome
data and Pauli-frame of each individual logical
qubit and then propagates that information be-
fore decoding again iteratively. This process re-
peats until the Pauli-frames converge to a stable
state. The number of iterations required is a func-
tion of the circuit structure, where simple circuits
only ever require one iteration.
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4 Iterative decoder for the repetition
code
We shall illustrate our approach with two exam-
ples concerning the repetition code. The first
example (Example 1) involves a single transver-
sal CNOT, requiring only a single-pass decoder,
whereas the multiple CNOT version (Example 2)
requires multiple rounds of iterative decoding.

We use the following notation and conven-
tions to separate different detectors and edges by
colour.

• “Natural” errors (edges) and detectors
(nodes) are coloured red, , they are
the errored edges and detectors that occur
genuinely, and are not due to the propaga-
tion effects of the CNOT.

• Propagated errors (edges) and detectors
(nodes) are coloured brown, , they
are the errored edges and detectors that are
caused solely by the propagation of errors
due to the CNOT.

• Decoded matched edges are coloured blue,
they are the edges returned by the MWPM
decoding algorithm, , in this case
the blue decoded edge had correctly cor-
rected for the red corrupted edge.

• The stored propagated edges are coloured
green, they are the recorded edges perceived
to be propagated by the error spreading ef-
fects of the CNOT, , in this case
the green propagated edge had correctly cor-
rected for the brown propagated edge.

The core part of the method relies on propagat-
ing Pauli errors and detection events between the
patches. For example with X errors, the Pauli
frame of the control patch directly before the
CNOT operation is determined, and propagated
in the round following the CNOT into a sepa-
rate stored list corresponding to the target patch.
Next the associated detectors of the control Pauli
Patch are propagated modulo 2 into the detector
pattern of the target patch. The procedure acts
to recover the detector pattern corresponding to
only the natural errors while the Pauli errors de-
termined to be propagated are stored separately.
The logical observable is determined by combin-
ing the detector pattern decoded Pauli frame with
the propagated Pauli frame.

Each CNOT is addressed in this manner se-
quentially. For more complex circuits, like those
with alternating directions of CNOT operations,
more than one iteration may be required, where
each iteration involves addressing every CNOT in
the circuit, first undoing the impact of this par-
ticular CNOT from the prior iteration, and then
again performing the propagation of Pauli errors
and detectors. The termination clause is when
the combined Pauli frame for each logical qubit
converges to a stable state, i.e. equality between
this iteration and the prior. For circuits with two
alternating direction CNOT operations, at most
two iterations are ever required. A flowchart illus-
trating the iterative method is found in appendix
A.

4.1 Example 1: Single pass decoder

In figure 3s and 4s, chronologically in time from
figure 3a to figure 4c, we show a method to mod-
ify syndromes and record propagated edges to de-
code a single logical transversal CNOT acting be-
tween two logical qubits (left and right).

Firstly, in figure 3a, we see a detector pattern,
and have annotated the propagated detectors and
edges with the brown nodes and edges respec-
tively, and also labelled the errored qubits with
red edges for illustrative purposes. However in an
actual experiment, this information is not avail-
able.

t = 0 :

t = 1 :

(a) Original detector pattern without any modifications.

t = 0 :

t = 1 :

Decode both patches and record decoded edges.

(b) Decode both logical qubits and record the blue de-
coded edges, we can see that we have arrived at incor-
rectly decoded edges.

Figure 3: Figures 3a and 3b show the decoding proce-
dure before the propagation of the Pauli-frame from the
left to the right logical qubit in order to reduce the num-
ber of spurious detectors resulting from the transversal
logical CNOT. We can observe that in this case, we have
decoded and arrived at incorrect edges.

In figure 3b, we decode the left and right logical
qubits and record the blue decoded edges in figure
3b. In this case, decoding has chosen some edges

4



incorrectly.

t = 0 :

t = 1 :

2) Record propagated edges.

1) Remove spurious events.

(a) The Pauli-frame is propagated over to the right logi-
cal qubit, removing spurious events and with green prop-
agated edges recorded.

t = 0 :

t = 1 :

Decode patch.

(b) The right logical qubit is then decoded via MWPM.

t = 0 :

t = 1 :

Record decoded edges.

(c) The decoding from MWPM, leading to the blue
coloured edges on the right logical qubit.

Figure 4: Steps in figure 4a to figure 4c show the de-
coding procedure required to decode and propagate the
Pauli-frame from the left logical qubit to the right logi-
cal qubit.

In order to decode correctly, we reset the blue
decoded edges on the right patch, then, the pre-
dicted Pauli-frame for the left logical qubit is
propagated to the right logical qubit in figure 4b,
removing spurious detection events and recording
the propagated edges in green at t = 1. We then
proceed to decode the right logical qubit with
MWPM and record its decoded edges in figure
4c.

With this syndrome modification and Pauli-
frame propagation procedure, we are able to cor-
rectly identify the “natural errors” and the propa-
gated errors with all the spurious detection events
removed. For an instantaneous and error-free
transversal CNOT operation, the logical error
rate of failure after the application of a transver-
sal CNOT should be as close as possible to the
memory experiment case as possible. This can be
interpreted as an enhanced memory experiment
with a transversal CNOT sandwiched in between
patches.

4.2 Example 2: Multi-pass decoder

We will now show a more complicated exam-
ple which includes two alternating transversal

CNOTs. Multiple iterations of frame propaga-
tion are required, and we see that this natu-
rally follows from the mapping behaviour of the
transversal CNOT. In the case of two alternat-
ing transversal CNOT’s, we observe that an X
error spreading from control to target in the first
instance will be reflected back after the second
transversal CNOT. If not correctly decoded, this
would lead to an amplification of errors that will
severely affect the overall logical error rate.

4.2.1 1st iteration

In the first iteration, we follow similar methods
outlined in Example 1. The detector pattern from
experiment can be seen in figure 5a, the series of
two alternating transversal CNOTs with a round
of syndrome extraction in between leads to the
brown propagated edges and nodes. We first de-
code the left logical qubit and record its blue de-
coded edges in 5b. We then propagate the Pauli-
frame at t = 0 in the left patch to the right patch
to remove spurious events, in this case no data
(spatial) edges are matched in the left patch at
t = 0, hence no spurious events are propagated
over to the right. These are the incorrectly de-
coded edges on the left, we shall see how iterating
the process in the 2nd iteration solves this.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

(a) Original syndrome detector signal without any mod-
ifications for Example 2 with two alternating CNOTs.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

1) Record decoded edges. 2) Remove no spurious events.

(b) We decode the left patch and propagate the Pauli-
frame to the right patch, in this case, no errors were
detected, so no spurious events or propagation of green
edges were formed on the right patch.

Figure 5: The original syndrome detection pattern of
the two alternating CNOT example, following by the first
iteration’s first Pauli-frame propagation through the first
CNOT.

Then, we decode the logical qubit on the right,
leading to the blue decoded edges in figure 6a.
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t = 0 :

t = 1 :

t = 2 :

t = 3 :

Record decoded edges.

(a) Decode the logical qubit on the right and record its
decoded blue coloured edges.

t = 0 :

t = 1 :

t = 2 :

t = 3 :
1) Remove “spurious” events.

2) Record propagated edges.

(b) Using the Pauli-frame of the right patch up to t = 1,
propagated the frame over to the left, record the propa-
gated edges and remove the spurious events. Note that
the propagated edges and the removed spurious event
are incorrect and will be fixed in the second iteration.

Figure 6: The procedure outlining the first itera-
tion’s second Pauli-frame propagation through the sec-
ond CNOT.

Again these matched edges are incorrect, we will
still propagate the frame over from the right at
t = 1 to the left at t = 2, removing spurious
events and recording the green decoded edges (fig-
ure 6b). At the end of the first iteration, we arrive
at a series of matched edges as shown in figure 7.
The pattern of detection events has changed, and
this triggers another round of decoding.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

Figure 7: The decoded and propagated edge record af-
ter the first iteration, note that we have removed two
spurious detection events but at this stage introduced a
logical error. This will be rectified in the second itera-
tion.

4.2.2 2nd iteration

It’s clear that a single iteration of frame propa-
gation will not be sufficient to find good decoded
edges in this case. In the second iteration, we
reset the magneta edges on the left qubit and de-
code again leading to new blue edges at t = 0

(figure 8a). Propagate the Pauli-frame over to
t = 1 of the logical qubit on the right, removing
the spurious events and record the newly propa-
gated green edges (figure 8b).

t = 0 :

t = 1 :

t = 2 :

t = 3 :

Record decoded edges.

(a) Reset the decoded blue edges on the left logical qubit
and then re-decode.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

1) Remove spurious events.

2) Record propagated edges.

(b) Propagate the Pauli-frame up till t = 0 from the left
logical qubit from figure 8a to the right logical qubit at
t = 1.

Figure 8: In the second iteration of the Pauli-frame
through the first CNOT, we can see that we have cor-
rectly identified some more of the errored edges.

Next, the right logical qubit is decoded, lead-
ing to blue edges at t = 1 in figure 9a. Before
propagating the frame from t = 1 on the right
to left, we need to remove the previously propa-
gated edges and spurious events at t = 2 on the
left from the first iteration (see figure 9b). We
then reset the decoded blue edges on the left, be-
fore following the conventional frame propagation
shown in figure 10a to 10b.

After the second iteration, we have correctly
identified all the propagated edges and errored
edges. Please refer to figure 15 in appendix A for
an outline of the process.

5 Surface code simulations
The procedure illustrated in the previous sections
can be easily generalised to patches of surface
code after applications of transversal CNOT op-
erations. We aim to study and simulate the mini-
mally interesting cases. Firstly, we characterise a
transversal CNOT operation memory experiment
with one round of syndrome extraction before and
after it. Then we study the next minimally inter-
esting case with 2 alternating transversal CNOTs,

6



t = 0 :

t = 1 :

t = 2 :

t = 3 :

Record decoded edges.

(a) Reset the decoded blue edges on the right patch and
re-decode.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

3) Reset decoded blue edges.

2) Remove previously modified spurious events.
1) Remove previously propagated edges at t = 2.

(b) Firstly, we remove the previously modified spurious
events and propagated green edge at t = 2 on the left
logical qubit from the previous iteration.

Figure 9: Crucial step in the second iteration of Pauli-
frame propagation through the second CNOT, we need
to undo detector modifications and propagated edges
done in the first iteration.

t = 0 :

t = 1 :

t = 2 :

t = 3 :
1) Remove spurious events.

2) Record propagated edges.

(a) Re-propagate the green edges from the right patch
to the left patch at t = 2, removing new spurious events
and record new propagated edges.

t = 0 :

t = 1 :

t = 2 :

t = 3 :

Record decoded edges.

(b) Finally, re-decode the left logical qubit and we have
finally arrived at a pattern of detectors and set of Pauli
frames that is stable warranting no further iteration.

Figure 10: Final frame propagation leading to all the
correct corrupted edges being identified.

with the iterative procedure and varying number
of rounds of syndrome extraction between the
CNOTs. All the logical error rates show close
agreement with the memory experiment logical
error rates.

We use Stim [23] to construct the detector er-

ror model and sample from the syndrome ex-
traction circuits undergoing the SD6 circuit-level
noise model. We then subsequently use PyMatch-
ing to decode each logical qubits’ syndromes sep-
arately with an equivalent single patch memory
experiment matching graph.

We represent arbitrary number of rounds of
syndrome extraction that is performed as follows:∣∣0̄〉

x SE Û y SE
, (4)

the quantum circuit in equation 4 shows one logi-
cal qubit undergoing x rounds of syndrome ex-
traction(s), before a unitary operation Û , fol-
lowed by another y rounds of syndrome extrac-
tion(s) before reading it out in the computational
basis.

5.1 Single transversal CNOT

1 SE 1 SE

A single CNOT circuit with one round of syndrome ex-
traction before and after, followed by measurement of
the logical observables.

Figure 11: Surface code simulations with a single
transversal CNOT sandwich between one round of syn-
drome extraction before and after before reading out
all the data qubits. At every distance, the transversal
CNOT logical error rate matches the memory experi-
ment results closely.

In figure 11 we analyse the single CNOT case,
where only one iteration is ever required. We
show close agreement between the CNOT cir-
cuit with propagating decoder versus the mem-
ory equivalent, which corresponds to two logical

7



qubits with no CNOT operations and the same
number of total rounds, i.e. two rounds, decoded
with standard independent MWPM. This repre-
sents a lower-bound on performance quality. The
scaling relationship with physical error rate is
preserved.

5.2 Two alternating transversal CNOTs

1 SE nr SE 1 SE

A two-alternating CNOT circuit with one round of syn-
drome extraction before, a variable number of rounds
between, and one after, followed by measurement of the
logical observables.

Figure 12: Surface code simulations with two alternat-
ing transversal CNOTs, one round of syndrome extrac-
tion between transversal CNOTs.

In this section we investigate the performance
of the iterative CNOT decoder as a function of
the number of rounds of syndrome extraction be-
tween successive alternating transversal CNOT
operations. We show that in figure 12 where only
a single round of error correction is performed be-
tween, we still maintain the same scaling relation-
ship with physical error rate, and a comparable
threshold. We note that the discrepancy between
the transversal CNOT case versus memory ap-
pears to grow with increasing code distance.

For figure 13 we instead include two rounds of
syndrome extraction, and now this growing dis-
crepancy with increasing distance is no longer
evident. This difference may be attributable to
the space-time edges that span across the syn-
drome extraction rounds where there is a degen-

erate choice of round occurrence in relationship
to the location of the CNOT operations (discov-
ered independently by [15]). The impact of this is
mitigated by moving to two rounds and beyond.

Figure 13: Surface code simulations with two alternat-
ing transversal CNOTs, two rounds of syndrome extrac-
tion between transversal CNOTs.

In figure 14 we plot for the three round case,
and see the same overall scaling relationships as
the two round case. Of course, the ideal perfor-
mance of a transversal CNOT decoder would be
the minimal time complexity with the minimal
final error rate. Moving from one round to two
rounds improved our final logical error rate, e.g.
for distance 9, physical error rate 1E-3, the fi-
nal error rate improved from 4.3E-6 to 2.4E-6. In
contrast, moving from two rounds to three rounds
actually slightly worsened our final error rate, i.e.
from 2.4E-6 to 2.6E-6. This is because there are
opposing forces, i.e. the iterative propagating de-
coder has some additional resiliency to time com-
ponent edges with increasing round count sep-
arating CNOT operations, but each additional
round added itself has some additional contribu-
tion of error. For all of our investigations so far,
the minimal error case is found at two rounds
of QEC separating the transversal CNOT opera-
tions. The optimal choice will ultimately include
the desired target error rate, and a minimization
of total volume, i.e. the distance required, and
the number of rounds between CNOT operations
to reach the target.

8



Figure 14: Surface code simulations with two alternat-
ing transversal CNOTs, three rounds of syndrome ex-
traction between transversal CNOTs.

6 Discussions and outlook

Our iterative decoder addresses the challenge
of managing correlated errors resulting from
transversal CNOT operations. The relevance of
this work is supported by the feasibility of long-
range two-qubit gates between physical qubits,
as demonstrated in hardware platforms such as
trapped ions [5, 10, 24].

A key outcome of this study is the finding that
two rounds of QEC between alternating transver-
sal CNOTs lead to the optimal final error rate, in-
dependent of the code distance. This result con-
firms that the time complexity of the transversal
CNOT is O(1). Our results show that the iter-
ative decoder maintains the expected scaling of
logical error rates with code distance and phys-
ical error rates under typical circuit-level noise
models.

The practical implications of these findings
are significant for particular quantum comput-
ing platforms. Incorporating transversal CNOT
gates and the specialized decoding technique can
reduce the physical qubit overhead required for
fault-tolerant operations. For example, the lat-
tice surgery CNOT implementation has a vol-
ume complexity of O(d3), whereas the transversal
CNOT has a volume complexity of O(d2). The
integration of transversal CNOTs would enhance
the efficiency of magic state distillation processes
and parallelized magic state consumption, thus
reducing the overall resources required for quan-
tum advantage applications in the fault-tolerant
regime. This has the potential to bridge the

gap in performance and resource requirements be-
tween different hardware architectures, such as
superconducting qubits and trapped ions, mak-
ing it feasible for slower, more connected systems
to achieve comparable operational efficiency to
their faster, locally-connected counterparts.

Further exploration of hardware-specific error
models and their impact on the performance of
the transversal CNOT is essential. A detailed
analysis of the performance of the transversal
CNOT with hardware-realistic connectivity error
models, and its contrast to the lattice surgery
alternative, is in preparation [18]. Addition-
ally, an extension to the quantum advantage re-
source estimation process to include the benefits
of transversal CNOT operations is also in prepa-
ration [25]. In this latter upcoming work, phys-
ical qubit requirements to reach target runtime
will be estimated for different connectivity and
code cycle assumptions.

In summary, the multi-pass iterative decoder
for transversal CNOT gates offers an approach
to utilize the benefits associated with high-fidelity
long-range qubit connectivity. By optimizing the
number of QEC rounds required and the resulting
error rate, this method can improve the perfor-
mance of quantum hardware with such connec-
tivity available.
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A Iterative decoding flowchart

Start

Input: full detector pattern of two logical qubits

Split detector pattern for each logical qubit

MWPM decode detectors and infer initial pauli frame

Convergence

satisfied?

For each CNOT in CNOT list

Undo impact of this CNOT from previous iteration

Check target/control index

Determine expected lit detectors from combined Pauli frame

Target time step to propagate onto is CNOT round + 1

Propagate X errors

into propagated frame

Propagate lit X detectors modulo 2

Propagate Z errors

into propagated frame

Propagate lit Z detectors modulo 2

Store propagated errors and detectors

Re-decode both patches

Combined Pauli frame = combine

decoded and propagated frame

previous_iteration

== this_iteration?

Convergence found

Output: combined Pauli frame

Stop

Update previous_iteration

no

yes no

yes

Figure 15: This flowchart outlines the procedure and termination of iteration required to iteratively decode multiple
alternating transversal CNOTs between two logical qubits.
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