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Optimal control with a multidimensional quantum invariant
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Optimal quantum control of continuous variable systems poses a formidable computational challenge because
of the high-dimensional character of the system dynamics. The framework of quantum invariants can signifi-
cantly reduce the complexity of such problems, but it requires the knowledge of an invariant compatible with
the Hamiltonian of the system in question. We explore the potential of a Gaussian invariant that is suitable for
quadratic Hamiltonians with any given number of motional degrees of freedom for quantum optimal control
problems that are inspired by current challenges in ground-state to ground-state shuttling of trapped ions.
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I. INTRODUCTION

Quantum optimal control is widely accepted as one of the
central tools in the development of quantum technological
applications [1,2]. While control of discrete degrees of free-
dom, such as qubits, is well established both in theory and
experiment [3], the control over motional degrees of freedom
is still in an early stage of development [3,4]. In particular,
the identification of optimal solutions for the control of mo-
tional quantum states is rather computationally challenging
due to the strictly infinite-dimensional or, practically, high-
dimensional Hilbert space of the underlying control problem.

While most proof-of-principle demonstrations of elemen-
tary building blocks of quantum information processing did
not require control over motional quantum states beyond a
mechanism that holds qubits in place, the current challenges
in developing scalable technologies lead to a growing need
to control motional quantum states [5]. In trapped-ion hard-
ware, for example, scalability is expected to require modular
architectures [6–8] that allow the ions, which act as qubits,
to be separated into many small groups. Interconnecting spa-
tially separated clusters with quantum logical operations then
requires the ability to move individual ions from one cluster
to another [9,10]. Since trapped-ion quantum logic requires
the motional states of the ions to be of sufficiently low energy,
it is essential that such shuttling operations do not result in
motional excitations at the end of the process. This can be
achieved with adiabatically slow shuttling, but, in practice,
diabatic protocols [6,8,11] are sought after because of the
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requirement to realize all operations of a quantum algorithm
within the system’s coherence time.

Transport along a line can be performed diabatically, and
diabatic ground-state to ground-state transport is within exper-
imental capabilities [12,13]. Diabatic transport beyond such
one-dimensional problems has been experimentally demon-
strated in favorable geometries [14]. In typical trapping
geometries, however, actual realizations of diabatic transport
protocols result in excess motional energy in the final state.

Many diabatic protocols that ensure that the controlled
object ends up in its quantum mechanical ground state are
found within the concept of shortcuts to adiabaticity [15]
(STA). Among the different STA strategies, the Ermakov-
Lewis quantum dynamical invariants [16–19] are particularly
useful as they provide a framework for inverse engineering
appropriate control Hamiltonians [15,20–30] as well as pro-
viding physical insight into the quantum system dynamics.

Quantum invariants have been applied to a wide vari-
ety of theoretical control problems, from atom cooling [20],
fast separation of two trapped ions [26], and unidimensional
atomic transport in harmonic traps [22,30], to expansions
and compressions of trapped-ion chains with minimal mo-
tional excitation [25]. Combined with variational methods or
included in the master equation formalism, they have also
been shown to be useful in addressing problems that do
not admit a standard treatment, such as anharmonic-potential
transport [31] or atomic state population inversion [32]. When
integrated with numerical optimization techniques, quantum
invariants have been successfully used to design protocols
that can effectively mitigate experimental imperfections, such
as fluctuations in control parameters and various sources of
experimental noise, including magnetic or electric field noise
[33,34].

While a substantial part of the conceptual development of
quantum invariants is devoted to the construction of invariants
for systems with only one translational degree of freedom,
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many practical applications of this framework require invari-
ants for systems with more translational degrees of freedom.
Here, we focus on a recently developed Gaussian invariant
for multidimensional systems [28] and explore its suitability
for applications in quantum optimal control with theoretical
examples inspired by the current ion shuttling experiments.

II. INVARIANT-BASED INVERSE
ENGINEERING METHOD

This section provides a short review of the invariant [28]
used in the explicit examples discussed below in Sec. IV.
In particular, we sketch how a time-dependent Hamiltonian
can be constructed such that it induces dynamics with desired
properties.

A. Hamiltonian model

Real-world potentials are never strictly harmonic, but if
an object’s quantum state is localized within a potential
well, such as a sufficiently cooled ion, even an ostensibly
anharmonic-potential landscape can be well approximated as
harmonic around the expected position of the ion. During
the shuttling protocol, this quadratic approximation is valid
as long as the localization in real space remains sufficiently
narrow.

The Hamiltonian for an ion of mass m, with a quantum
state localized around a d-dimensional trajectory �z(t ), can be
expressed as

Ĥ (t ) = �p2

2m
+ 1

2
m�xT M�x − �F T �x, (1)

where the superscript T represents the transpose operation, �x
and �p ≡ −i �∇x are the canonical displacement and momentum
operators with respect to the trajectory �z(t ), and the vector �F
and matrix M correspond to the first and second derivatives of
the trapping potential taken along �z(t ).

Up to an irrelevant scalar term, this quadratic Hamiltonian
can also be cast as

Ĥ (t ) = �p2

2m
+ 1

2
m[�x − �C(t )]T M(t )[�x − �C(t )], (2)

with the trap center �C(t ) = 1
m M−1 �F (t ).

If the initial quantum state of the ion is Gaussian, such as
the ground state of the Hamiltonian with a harmonic trap-
ping potential, or a thermal state, the Gaussian character of
the quantum state is preserved during the shuttling proto-
col within this quadratic approximation. The dynamics are
then characterized completely in terms of the classical tra-
jectory �z(t ) and momentum �p(t ) (i.e., the expected value of
the displacement and momentum operators �x and �p) and the
covariance matrix �(t ) of all variances and covariances of �x
and �p.

B. Multidimensional Gaussian quantum invariant

The goal of shuttling an ion such that it ends up in the
ground state of its final Hamiltonian can be understood as
an optimization problem, with motional excitation as the fig-
ure of merit. Instead of finding a suitable protocol as result of

an optimization, one can also design suitable shuttling proto-
cols more directly with the framework of quantum invariants.

A quantum invariant Î (t ) is an operator that satisfies the
equation of motion,

∂ Î (t )

∂t
= i[Î (t ), Ĥ (t )]. (3)

The property of such invariants that is crucial for quantum
control is that the eigenstates of Î (t )—which are gener-
ally time dependent—are solutions of the time-dependent
Schrödinger equation with the Hamiltonian Ĥ (t ).

A nondegenerate eigenstate of an invariant Î (t ) that com-
mutes with the Hamiltonian Ĥ (t ) at the beginning and at the
end of the dynamics thus corresponds to a shuttling protocol in
which an ion starts in an eigenstate of the initial Hamiltonian
Ĥ (t = 0) and ends up in an eigenstate of the final Hamilto-
nian Ĥ (t = T ), even though it does not need to follow the
dynamics of an eigenstate as would be the case in an adiabatic
protocol.

A shuttling protocol can thus be defined in terms of a time-
dependent operator Î (t ), and Eq. (3) is the defining relation
determining a time-dependent Hamiltonian Ĥ (t ) that achieves
the desired shuttling protocol. In defining the operator Î (t ),
however, it is crucial to ensure that the resulting Hamiltonian
is of the form given in Eq. (1) with a kinetic-energy term
and a time-dependent potential, and not some operator that
cannot be realized experimentally. Given the nonlinear depen-
dence between a Hamiltonian and its resulting dynamics (i.e.,
propagator), the specification of the conditions on Î (t ) that
ensure an experimentally realizable Hamiltonian is a largely
open problem in general, and the few known solutions are
unavoidably not particularly intuitive.

The following analysis is based on an invariant [28] that
is defined in terms of the actual classical trajectory �z(t ) that
the ion is meant to take, and a time-dependent, positive (i.e.,
positive semidefinite), d-dimensional matrix R(t ). The matrix
R(t ) determines the matrix M(t ) in Eq. (1), but it does so in a
highly nonlinear fashion. The explicit relation [28] reads

{R2, M} = 2[Ṙ, R]A − {R̈, R} − 2RA2R, (4)

where [X,Y ]Z = XZY − Y ZX is the generalized commutator,
{X,Y } = XY + Y X the anticommutator, and

A = iR−2 + 1
2 [R−1, Ṙ] + 1

2 R−1JR−1, (5)

{J, R−2} = [Ṙ, R−1] + [R, R−2]Ṙ. (6)

For a given time-dependent matrix R(t ), the matrix J is
determined by Eq. (6). Equation (5) then determines A and,
given A, the desired matrix M characterizing the trapping
potential is determined by Eq. (4).

Once M(t ) is obtained in this fashion, the linear force term
�F in Eq. (1) is given by

�F = m(�̈z + M�z), (7)

in terms of the classical trajectory �z(t ) [28].
For any choice of �z(t ) and R(t ), one can thus find a

time-dependent Hamiltonian of the form given in Eq. (1) or,
equivalently, Eq. (2), such that the eigenstates of the invariant
are solutions of the Schrödinger equation. Since a general
choice of �z(t ) and R(t ), however, does not ensure that the
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invariant commutes with Ĥ (t ) at the start or end of the shut-
tling protocol, it is not yet ensured that any eigenstate of the
invariant is also an eigenstate of Ĥ (t ) at the start or at the end
of the shuttling protocol.

Commutativity of the invariant and Hamiltonian at any
instant t is achieved, if the set of relations,

�z(t ) = �C(t ), �̇z(t ) = �̈z(t ) = �0, (8a)

R(t ) = M(t )−1/4, Ṙ(t ) = R̈(t ) = 0d , (8b)

are satisfied [28]. If the boundary conditions given by Eqs. (8)
are satisfied at t = 0 and at t = T , with �C(0), �C(T ), M(0), and
M(T ) determined by the initial and final Hamiltonian, then the
time-dependent ground state of the invariant indeed defines a
shuttling protocol in which an ion evolves from the ground
state of an initial Hamiltonian towards the ground state of a
final Hamiltonian.

C. Scale-invariant potentials

The analytical nature of the invariant framework allows
a straightforward extension to accommodate scale-invariant
potentials. These potentials can be expressed in their original
form up to a multiplicative factor after a scaling transforma-
tion and capture changes in both the center of the potential
and its shape [35]. Specifically, given the potential in Eq. (2),
its scaled version can be written as

Usc = 1
2 m(�x − �C0 − �α)T (�M0)(�x − �C0 − �α), (9)

for some vector �α and scaling matrix �. Hence, for a given
potential of the form Eq. (9), one can obtain a compatible
scaled invariant by appropriately scaling the invariant corre-
sponding to the original potential. That is, given that R(t ) and
�z(t ) are solutions that satisfy the boundary conditions given by
Eqs. (8) with M0 for the quadratic component and �C0 for the
center, the scaled invariant can be obtained via the relation
�zsc(t ) = �z(t ) − �α and Rsc(t ) = �−1/4R(t ). Thus, a solution
obtained for a specific potential can be extended to any other
potential obtained by a scaling transformation.

III. OPTIMAL CONTROL

The framework sketched above in Sec. II enables the
construction of a time-dependent Hamiltonian resulting in
ground-state to ground-state transfer. Indeed, any choice of
the time-dependent functions �z(t ) and R(t ) results in a suit-
able Hamiltonian. Since the shuttling protocol is thus anything
but unique, one can aim to find the protocol that is optimal
in a sense to be specified. To this end, one would need to
perform a variational analysis over �z(t ) and R(t ) respecting
the boundary conditions given by Eqs. (8).

For that purpose, it is convenient to use a set of functions
{�zi} such that �z0(t ) satisfies the boundary conditions given by
Eqs. (8a) and such that any function �zi(t ) with i > 0 satisfies
the homogeneous boundary conditions, i.e., Eqs. (8a) with
vanishing right-hand sides.

The parameterization

�z(t ) = �z0(t ) +
Na∑
i=1

ai�zi(t ) (10)

then satisfies the boundary conditions for any set of Na expan-
sion coefficients ai.

A parametrization of the matrix R(t ) can be chosen in a
similar way, with one matrix R0(t ) satisfying the inhomo-
geneous boundary conditions, and a set of matrices Ri(t )
satisfying the homogeneous version of Eqs. (8b), such that
the parametrized matrix

R(t ) = R0(t ) +
Nb∑

i=1

biRi(t ) (11)

satisfies the boundary conditions for all values of the Nb free
parameters bi. The condition that R(t ) be positive, however,
requires some extra care. Demanding that all the matrices
Ri(t ) (including i = 0) are positive, and that all the expansion
coefficients bi are non-negative, does not give access to all
positive matrices within the spanning set. In all the follow-
ing optimizations, there are thus no direct restrictions on the
expansion coefficients bi, but positivity of R(t ) is assessed nu-
merically, either in terms of subdeterminants (Sylvester’s cri-
terion, [36]), moments, or numerically obtained eigenvalues.

IV. RESULTS

The formalism introduced in the previous section is appli-
cable to any control problem that requires the identification
of ground-state to ground-state transport protocols. In par-
ticular, it can be used to derive the time-dependent trapping
potentials for ground-state to ground-state transport that is
optimal according to a figure of merit to be specified. The
following section shows three examples of such optimized
transport protocols.

A. Three-dimensional shuttling with reduced
displacement from the potential center

Realizing a fast, diabatic shuttling requires strong accel-
eration and deceleration at the beginning and the end of the
protocol. Such processes are most easily realized in terms of
a large displacement of the ion from the center of the trapping
potential. Since, in practice, such large displacements imply
that the ion traverses domains of substantial anharmonicity in
the trapping potential, it is desirable to minimize the displace-
ment.

The following discussion exemplifies the control problem
of minimizing the maximum displacement of the ion while it
moves around a corner in a potential landscape.

The initial and final positions are denoted by the vectors
�C0 = (0, r, h) and �CT = (r, 0, h). An additional boundary con-
dition �rJ (t = T/2) = (r, r, h′) reflects the fact that a realistic
trapping potential does not always ensure dynamics with a
constant value of the z component of the ion trajectory [see
Fig. 1(a)].

The trapping potential along the ion trajectory is character-
ized in terms of a matrix M(t ) following Eq. (1) that satisfies
the boundary conditions

M0 =
⎛
⎝ω2

t 0 0
0 ω2

r 0
0 0 ω2

r

⎞
⎠ and MT =

⎛
⎝ω2

r 0 0
0 ω2

t 0
0 0 ω2

r

⎞
⎠,

(12)
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(a) (b)

FIG. 1. (a) Example of a corner trajectory (red solid line) from �C0 to �CT restricted to pass through �rJ . Dashed black lines are drawn to
facilitate the three-dimensional view of the problem. (b) Displacement as a function of normalized time (τ = t/T ). The solid lines correspond
to the optimal solutions based on a diagonal form (D) of R, while the dashed lines result from the optimization of all entries of R (F). The
color code distinguishes the number of control functions (i.e., free parameters) considered in the optimization.

with an axial frequency ωt that is substantially smaller than
the radial frequency ωr , so that the preferred direction of
motion is initially along the x axis and, finally, along the
y axis. Since the displacement required for an acceleration
or deceleration can be reduced to any desired value by in-
creasing the confining potential along the axis of acceleration
or deceleration, the following optimization includes the con-
straints that Mxx � min(Myy, Mzz ) � 2ωr for t < T/2 and
Myy � min(Mxx, Mzz ) � 2ωr for t > T/2.

With these boundary conditions and constraints, adiabatic
shuttling yields close-to-perfect transport (with fidelities F >

99%, [37]) in regimes where T > 200/ωt . Any transport with
T < 200/ωt is thus considered diabatic. The following results
correspond to T = 10/ωt , i.e., protocols an order of magni-
tude faster than in the adiabatic regime.

As described above in Sec. III, both the classical trajectory
of the ion �z and the matrix R can be parameterized such
that the boundary conditions are satisfied for any value of the
expansion coefficients. In order to highlight the ability of the
present framework to find good solutions of a control problem
in the presence of restrictions on achievable potentials, the
following discussion will compare two different parametriza-
tions of R. In case 1, the matrix R is taken to be diagonal and
only the time-dependent diagonal elements are subject to op-
timization. The physical implication is that the principal axes
of the trapping potential coincide with the x, y, and z axes.
The potential thus cannot be rotated, but its strength along
the principal axes can be modulated. In case 2, each matrix
element of R is subject to optimization, such that rotations of
the principal axes are also possible.

Figure 1(b) depicts the displacement, i.e., the distance be-
tween the ion and the center of the potential as a function
of normalized time (τ = t/T ) for different solutions. The
color code distinguishes the number of control functions in
the optimization, while the line style differentiates solutions
with R in diagonal (D) or full (F) form. The red curve depicts
the solution without any optimization. For τ � 0.15, the ion
is being separated from the trap center, until a maximum
separation of about 0.14r is reached. Subsequently, the ion

moves towards the trap center before it goes through another
interval of separation. Due to the symmetry in trap geom-
etry and time dependence of the invariant, the trajectory is
symmetric around the instant τ = 1/2. The large separation
in the early and late parts of the shuttling protocol is not
unexpected because the ion needs to be strongly accelerated
and decelerated, which is easily achieved far away from the
trap center where the trapping forces are strong.

Achieving a similarly strong acceleration and deceleration
without substantial displacement from the trap center requires
a suitably designed time dependence of the shuttling protocol.
The green curves depict a numerically optimized protocol
with three control functions for each independent component
of �z and R. Both forms of R lead to a reduction of the
maximum displacement compared to the first solution. Never-
theless, rotating the trapping potentials (i.e., using the full R
matrix, dashed line) slightly improves the protocol. Similarly,
the optimization based on five control functions (light blue
curves) shows even greater improvement, as the displacement
does not exceed 0.04r. Likewise, releasing the major axes of
the potential (dashed line) leads to a better solution. Further
minimizing the displacement, however, requires a much more
significant increase in the number of control functions. Thus,
the optimization of up to 25 control functions (i.e., 225 free
parameters when the full R matrix is considered and 150
otherwise) leads to a maximum displacement smaller than
0.02r (dashed purple line). The impact of employing rotating
potentials is minor in this case.

Unsurprisingly, at any given number of control functions
(per matrix element), the maximum displacement obtained in
an optimization with a general matrix R is slightly smaller
than in the corresponding optimization with a diagonal matrix
R. Crucially, however, optimizations with a diagonal matrix
R can outperform optimizations with a general matrix R if
the number of control functions in the former problem is
only moderately larger than in the latter problem. This means
that restrictions in experimentally realizable rotating trapping
potentials can be overcome in terms of an additional temporal
degree of freedom in the tuneable trapping parameters.
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(a)

(b)

FIG. 2. Optimal time evolution of (a) Mxx , Myy, Mzz and

(b) Fx, Fy, Fz, in units of
√

h̄
mω0

, for ωr/ωt = 5 and ωt T = 10, based

on 25 control functions and R in diagonal form.

The discussion so far was focused on the trajectory on
the ion, but a motional ground-state to ground-state protocol
also requires the covariances of the Gaussian state to evolve
towards their appropriate value. Figure 2 depicts the time-
dependent components Mxx, Myy, and Mzz of the trapping
potential [Fig. 2(a)] and the linear force [Fig. 2(b)]. In between
the initial weak confinement along the x axis and the final
weak confinement along the y axis, there are two periods of
time of enhanced confinement, reflecting the fact that strong
confinement is necessary to rapidly accelerate or decelerate
the ion. Figure 2(b) shows that such an acceleration induces
a force [see Eq. (7)] that is particularly strong in the two
directions subjected to change (y, z in the first half and x, z
in the second). Merely enhancing the confinement and the
force in order to ease control over the trajectory is, however,
not possible since this would result in substantial undesired
dynamics of the covariances. Therefore, control of the covari-
ances requires that strong confinement be applied only during
some time windows, while weak confinement is necessary for
the covariances to evolve in such a way that the ion ends up in
the ground state of the final Hamiltonian.

Up to this point, the analysis aimed to identify solu-
tions that minimize ion displacement. Since, in practical
applications, the maximum allowable displacement is not
controllable, but rather an experimental constraint, it is rel-
evant to investigate which protocols are compatible with such

restriction. As the ion’s acceleration is dependent on its dis-
placement, setting a bound on the maximum displacement
limits the protocol’s duration. In this scenario, achieving
perfect motional state fidelity is only possible on specific
timescales, as shown in the following.

By combining Eqs. (1) and (2), the displacement of the
particle can be expressed as a function of the inverse of the
quadratic component of the Hamiltonian, M−1, and the clas-
sical acceleration of the particle, �̈z(t ),

�d (t ) = �z(t ) − �C(t ) = M−1(t )�̈z(t ). (13)

Limiting the maximum displacement to �ε implies that, ∀t ∈
[0, T ],

�̈z(t ) = M(t ) �d (t ) < M(t )�ε. (14)

If �ε is a function of space [�ε ≡ �ε(�z)], then the inequality
must be understood with the minimum value of �ε along the
trajectory �z. Hence, assuming that the trapping frequencies are
bounded from above, i.e., ||M(t )|| < Mmax, the acceleration
satisfies the inequality

||�̈z(t )|| < ||M(t )�ε|| � Mmax||�ε||, (15)

which gives a limit on the minimum time required to transfer
a particle over a distance of � > 0 with perfect motional state
fidelity,

T >

√
2�

Mmax||�ε|| . (16)

Transporting a particle in a time T that does not satisfy this
inequality thus implies some residual motional excitation at
the conclusion of the protocol.

B. Narrow wave packets in weak confinement

The spatial uncertainty, i.e., the width of the wave packet
in diabatic dynamics, is determined by the strength of the
confining potential. A weak potential implies a broad wave
packet that is susceptible to anharmonicities in the potential
landscape. In diabatic shuttling, however, it is possible that the
wave packet propagates through a domain of weak confine-
ment without broadening to the natural width of its trapping
potential.

Beyond the fact that a fast shuttling protocol leaves little
time for the wave packet to broaden, it is possible to initialize
the wave packet in a shape such that the natural dynamics
makes it more narrow. If this happens shortly before the wave
packet enters the domain of weak trapping potential, i.e., when
it can still be controlled well by the stronger potential, the
time window in which the wave packet remains narrow can be
prolonged.

In the following, this is exemplified by the problem of
reducing the spatial width σx of a wave packet in a time-
dependent potential trapping frequency ω(t ). The trapping
frequency has to satisfy the boundary conditions ω(0) =
ω(T ) = ω0, and the wave packet has to evolve from the
ground state of the initial Hamiltonian to the ground state of
the final Hamiltonian. During the time intervals [0, T/4] and
[3T/4, T ], the trapping frequency can be modulated with a
maximally allowed frequency

√
2ω0, but in the time window
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FIG. 3. Squared trapping frequency ω2 and spatial uncertainty
of the quantum state σ 2

x as a function of normalized time. The red
curve depicts the dynamics experienced by σ 2

x when the evolution
follows the optimal protocol, whereas the green curve corresponds
to an adiabatic transport. The dashed black lines indicate upper and
lower frequency limits and all quantities are expressed in units of√

h̄
mω0

, with ω0T = 1 in this case.

[T/4, 3T/4], the maximally allowed trapping frequency is
given by ω0. The goal of the optimization involves minimizing
a weighted average of the maxima of σx(t ) and ω(t ), i.e., the
cost function C = α max[σx(t )] + (1 − α) max[ω(t )] at the
central window T/4 < t < 3T/4 of the dynamics.

The protocol shown in Fig. 3 is based on the optimization
of 25 control functions. The left panel depicts the squared
trapping frequency ω2 (in blue) as a function of normalized
time. Its optimal evolution consists of increasing the strength
of the potential to approximately twice the initial value and
then gradually releasing the confinement so that in the central
time window (T/4 < t < 3T/4), the confinement is weak.
The squared trapping frequency reaches a minimum near zero
at t = T/2 and then exhibits a symmetric time evolution with
respect to that time instance. The red curve in the figure rep-
resents the temporal evolution of the wave packet spread in a
potential evolving with the optimal ω2(t ). Not only does the
uncertainty not increase throughout the protocol, but it even
decreases slightly in the central region, when the potential is
weak (see inset). Interestingly, the minimum uncertainty is
obtained at t = T/2, coinciding with the point of minimum
confinement.

In weak confining potentials, wave packets with narrow
widths can only be obtained in the nonadiabatic regime. In
fact, following the optimal time evolution with a total protocol
time that is 10 times longer, T ′ = 10T , radically different
results are obtained. In this case, uncertainty evolves inversely
proportional to confinement, as shown by the green curve in
Fig. 3. In the first quarter of the protocol, it slightly decreases
as a consequence of a greater confinement. As the potential
strength is reduced, the wave packet spreads out more widely,
reaching a maximum in the central window. Again, increasing
the confining strength in the second half of the protocol results
in a relocalization of the wave packet before it evolves to the
final motional ground state.

C. Shuttling based on null control over
the curvature of the potential

The problem of shuttling around a corner discussed above
in Sec. IV A highlights that restrictions in realizable trapping
potential can be compensated by temporal degrees of freedom.
The ability to compensate lack of control over some degrees
of freedom by controlling other degrees of freedom can be
demonstrated in the following example, in which only linear
force terms, but not confinement, are subject to controllable
time dependence.

Crucially, the dynamics of the controlled particle depends
on the curvature along the classical trajectory taken by the
particle. If the actual trapping potential is anharmonic—as is
the case in any realistic scenario—then the particle can experi-
ence a position-dependent curvature, which can be controlled
in a time-dependant way via the trajectory of the particle. The
choice of trajectory can therefore be used to compensate for
restrictions on the tunability of the trap confinement strength.

This feature can be exemplified with the potential

V (t ) = 1

2
m

{
ω2

x

yx2

yc
+ ω2

y [y − y0(t )]2

}
(17)

of a tapered trap, in which the confinement in the x direction
varies along the y axis. The trapping parameters ωx, ωy, and
yc are time independent, and only the trap center y0 can be
temporally modified. The actual confinement in the x direc-

tion is characterized by the frequency ωx

√
y(t )
yc

, and since the

trajectory y(t ) can be controlled in terms of the trap center
y0(t ), is is possible to effectively modulate the confinement in
the x direction.

Because there is no direct control over the quadratic com-
ponents of the trapping potential, the control framework with
the present invariant does not provide a direct way to con-
struct a protocol that guarantees ground-state to ground-state
shuttling. Applying the framework straightforwardly results
in an overdetermination of the quadratic component of the
potential, i.e., the matrix M in Eq. (2). On the one hand, M
is determined via Eq. (4) following the regular framework;
but, on the other hand, it is also determined via curvatures of
the trapping potential [Eq. (17)] along the ion trajectory y(t ).
The prescription for M(t ) following Eq. (4) ensures ground-
state to ground-state shuttling, but the prescription following
Eq. (17) is what is experienced by the ion. Without a means to
ensure that those two prescriptions coincide, the requirement
that the ion end up in the ground state of the final potential is
not automatically met by the basic framework. Nevertheless,
the deviation between the two prescriptions can be numeri-
cally minimized over the degrees of freedom in selecting the
time-dependent trajectory y(t ), and a successful minimization
will result in a ground-state to ground-state shuttling protocol.

In the following, this will be exemplified with the control
problem of moving the trap center from its initial position
y0(0) = yi to its final position y0(T ) = y f , such that the par-
ticle evolves from ground state to ground state of the initial
and final Hamiltonian. Specific parameter values used in the
example are yi = 10yc, y f = 1000yc, and ωy = 10ωx. With
those parameter values, adiabatic transport is considered to
occur when T > 70/ωy (for which F > 99% or, equivalently,
a final motional heating n̄ < 10−2). The results shown here
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(a) (b) (c)

FIG. 4. (a) Trajectory of the ion along the y axis as a function of time, following the optimal temporal evolution (red) and the corresponding
trajectory of the trap center y0 (black). (b) In red, curvature along the x axis experienced by the ion as a function of time, achieved purely
indirectly via the position-dependent curvature of the tapered trap. In blue, the curvature that guarantees perfect ground-state to ground-state
transfer, obtained with direct dynamic control of the curvature independently of position. (c) Spread of the wave packet in x (in normalized
units) as a function of time. The red line shows the dynamics resulting from following the trajectory y(t ) (with the appropriate velocity), while
the green curve represents the instantaneous spread corresponding to the trajectory’s curvature Mxx , ignoring the dynamics of the full trajectory.

correspond to T = 3/ωy [regime in which extending the adia-
batic protocol leads to n̄ = O(103)].

Figure 4(a) depicts the solution obtained for the trap center
y0(t ) in black. It exhibits oscillations far outside the interval
through which the ion is meant to be shuttled. The ion trajec-
tory (depicted in red), however, remains within this interval,
and the motion of the ion is comparatively slow in the first
60% of the time window. Most of the transport occurs within
a short time window (about 20% of the full duration) and, in
the last 10% of the time window, the ion is, again, moving
very slowly.

As a result of this dynamics, the confinement along the x
direction remains rather weak in the first half of the shuttling
protocol, and it increases towards its final value only later, as
depicted in Fig. 4(b) in red. The time-dependent confinement
that ensures perfect ground-state to ground-state transfer (i.e.,
derived from the invariant framework) is depicted in blue. The
deviation between the two is fairly minor (in fact, the infidelity
of the protocol is below 0.02%, i.e., the final motional excita-
tion n̄ < 10−4), meaning that the dynamics experienced by the
ion will be very similar to that which guarantees ground-state
to ground-state transfer in the case of direct control of the
curvature of the potential.

The close-to-perfect fidelity of the shuttling protocol also
implies that the covariances of the ion evolve towards the
values corresponding to the ground state. This can also be
seen in Fig. 4(c). The green curve in Fig. 4(c) depicts the
instantaneous spatial covariance, i.e., the covariance corre-
sponding to adiabatic transport along the actual trajectory
of the ion [as depicted in red in Fig. 4(a)]. The red curve
depicts the dynamics of 	xx following the same trajectory,
but with the actual velocity. Despite the strong acceleration
of the ion [corresponding to the high amplitudes of the trap
center in Fig. 4(a)], and the periods of slow dynamics of
the ion, which results in the plateau of the instantaneous
covariance [green in Fig. 4(c)], the actual dynamics of 	xx is
rather unspectacular, i.e., the width of the wave packet simply
shrinks monotonically and adopts its desired final value at the
end of the shuttling protocol. The covariance thus behaves
exactly the way that one would have designed it in an adiabatic
protocol, even though the protocol is far outside the regime of
adiabaticity.

V. CONCLUSIONS

Ground-state to ground-state shuttling remains one of the
crucial challenges in the realization of scalable quantum infor-
mation processing of trapped ions. Invariant-based quantum
control has proven to be an effective and reliable approach
for developing shuttling protocols that successfully suppress
undesired motional excitations [15]. Given the multiple exper-
imental imperfections that can contribute to reduced quality of
shuttling operations, the ability to optimize shuttling protocols
without compromising the goal to have an ion end up in its
ground state can become a central step towards a practical
technology.

The exemplary tasks of reducing the displacement from
the center of the trapping potential and the spatial width of
a wave packet without strong confining potential can give a
flavor of what can be achieved with suitable temporal shaping
of trapping potentials. Further extensions of this approach
could involve generalizing the formalism to a broader model
of diffusive Gaussian dynamics that incorporates system-
environment interactions [38], or expanding the noise models
of the trapping potentials [24] to the multidimensional case.

While the framework of invariants can ensure that the re-
sultant Hamiltonians satisfy physically motivated constraints,
such as the decomposition into a predefined kinetic-energy
term and a time-dependent potential term, any practical im-
plementation typically requires compliance with additional
constraints resulting, e.g., from the geometry of the trap elec-
trodes. Given the notorious difficulty to construct an invariant
that is consistent with a Hamiltonian of a specified set of prop-
erties, it is hopeless to expect that suitable invariants for given
trap geometries can be found. The ability to minimize the
deviations between solutions of the general invariant frame-
work and solutions that can be obtained in the presence of
experimental constraints, however, enables the incorporation
of such constraints in practice.
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APPENDIX: PARAMETRIZATION OF�z(t ) AND R(t )

As explained in Sec. III, a quantum invariant compatible
with a quadratic Hamiltonian is determined by the choice of
�z(t ) and R(t ), subject to satisfying a set of boundary condi-
tions. Any solution for �z(t ) can be parametrized in terms of a
set function �zi(t ) (with i � 0),

�z(t ) = �z0(t ) +
Na∑
i=1

ai�zi(t ), (A1)

where �z0(t ) satisfies the inhomogeneous boundary con-
ditions [Eqs. (8a)] and �zi>0(t ) fulfill the correspond-
ing homogeneous equations. Thus, �z0(t ) can be cho-
sen to be the lowest-degree polynomial satisfying the
associated boundary equations in each component, i.e.,
parametrizing each component of �z0(t ) with the following
function:

f (τ ) = CI+10(CF − CI )τ 3−15(CF − CI )τ 4+6(CF − CI )τ 5,

(A2)

where CI ,CF refer to the initial and final values, respectively,
and τ ≡ t

T is the normalized time. If extra constraints are
imposed beyond the boundary conditions, polynomials of
higher degree must be considered. For example, in the case
of constraining f (τ = 1/2) = CJ , the function that fulfills all
the constraints is

f̃ (τ ) =CI + 2(−11CF − 21CI + 32CJ )τ 3 + (81CF + 111CI

− 192CJ )τ 4 + 2(−45CF − 51CI + 96CJ )τ 5

+ 32(CF + CI − 2CJ )τ 6. (A3)

The rest of the functions �zi>0 satisfy the homogeneous bound-
ary conditions. A similar polynomial expansion may be
used for each of the components of �zi>0, but the following
parametrization is more suitable for problems with fast dy-
namics:

g(τ ) = sin [π (1 + 2ω2)τ ] − 1 + 2ω2

1 + 2ω1
sin[π (1 + 2ω1)τ ],

(A4)

where the coefficients ω1, ω2 are free provided that ω1, ω2 ∈
Z. Therefore, g(τ ) defines a set of vectors �zi>0 that results
in a valid solution for �z(t ) independently of the expansion
coefficients ai.

As in the case of �z0, it may also be necessary to impose
constraints on the functions g(τ ) for some particular con-
trol problems. Of particular interest is to impose that g(τ =
1/2) = 0. In that case, a set of functions that simultaneously

satisfies the homogeneous boundary conditions and the added
constraint is

g̃(τ ) = ω2S3 − ω3S2

ω1S2 − ω2S1
sin(πω1τ )

+ −ω1S3 + ω3S1

ω1S2 − ω2S1
sin(πω2τ ) + sin(πω3τ ), (A5)

where we introduced the notation Si ≡ sin(πωi/2) and the
frequencies ω1, ω2, ω3 ∈ Z subject to ω1 	= ω2.

Similarly, the positive semidefinite matrix R(t ) can be
parametrized as

R(t ) = R0(t ) +
Nb∑

i=1

biRi(t ), (A6)

where R0(t ) is a d × d diagonal matrix that fulfills the non-
homogeneous boundary conditions and can be conveniently
expressed as

R0(τ ) =

⎛
⎜⎜⎝

f1(t ) 0 0
0 f2(t ) 0
...

. . .
...

0 · · · fd (t )

⎞
⎟⎟⎠, (A7)

where fi(t ) are polynomials of p-degree satisfying that fi(t ) >

0,∀i, t . The boundary conditions are imposed as fi(0) =
M−1/4

I,ii , fi(T ) = M−1/4
F,ii , ḟi(0) = f̈i(0) = ḟi(T ) = f̈i(T ) = 0.

These conditions are fulfilled by the control function defined
in Eq. (A2). Note that the non-negativity is also guaranteed
because CI ,CF > 0 and the control function in Eq. (A2) has
no minimum for τ ∈ (0, 1).

On the other hand, the set of matrices Ri(t ) (i > 0) can be
chosen following two different alternatives. The first option is
to assume each Ri(t ) as a matrix with functions in each en-
try that satisfy the homogeneous boundary conditions. Then,
R(t ) > 0 is numerically assured at every instant of time, either
in terms of the eigenvalues, the Sylvester’s criterion, or the
calculation of moments.

Alternatively, each matrix Ri(t ) (i > 0) can be decomposed
in terms of lower-triangular matrices Li such that Ri(t ) =
LiL

†
i satisfy the homogeneous boundary conditions and en-

sure that R(t ) > 0. As

Li(τ ) =

⎛
⎜⎜⎝

g11(t ) 0 0
g21(t ) g22(t ) 0

...
. . .

...

gd1 · · · gdd (t )

⎞
⎟⎟⎠, (A8)

it is sufficient to require all the functions gi j (t ) to satisfy
the homogeneous boundary conditions to guarantee that LiL

†
i

does so. In addition, in order for LiL
†
i to be positive semi-

definite, the diagonal must be non-negative throughout the
time domain. Both constraints are fulfilled if the off-diagonal
functions are chosen from Eq. (A4) and the diagonal is
parametrized in term of the non-negative functions h(τ ) ≡
g(τ )2, where g(τ ) is defined in Eq. (A4). Therefore, restricting
the expansion coefficients bi to be positive guarantees that
R(t ) is positive semidefinite in the whole time domain. Note
that although this method guarantees the positivity of R(t ) at
any time, it also limits the spectrum of valid solutions.
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