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Abstract. The optimization of two-dimensional (2D) lattice ion trap geo-
metries for trapped ion quantum simulation is investigated. The geometry is
optimized for the highest ratio of ion–ion interaction rate to decoherence rate.
To calculate the electric field of such array geometries a numerical simulation
based on a ‘Biot–Savart like law’ method is used. In this article we will focus
on square, hexagonal and centre rectangular lattices for optimization. A method
for maximizing the homogeneity of trapping site properties over an array is
presented for arrays of a range of sizes. We show how both the polygon radii and
separations scale to optimize the ratio between the interaction and decoherence
rate. The optimal polygon radius and separation for a 2D lattice is found to be
a function of the ratio between radio-frequency (rf) voltage and drive frequency
applied to the array. We then provide a case study for 171Yb+ ions to show how a
2D quantum simulator array could be designed.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 14 (2012) 085009
1367-2630/12/085009+29$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:W.K.Hensinger@sussex.ac.uk
http://www.njp.org/


2

Contents

1. Introduction 2
2. Ion–ion interactions and lattice geometry 3

2.1. Ion–ion interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Two-dimensional ion trap lattice geometry . . . . . . . . . . . . . . . . . . . . 5

3. Simulation of lattices 6
4. Lattice geometry optimization 7

4.1. Increasing the homogeneity of Ksim across the array . . . . . . . . . . . . . . . 7
4.2. Optimizing the number of polygon sides . . . . . . . . . . . . . . . . . . . . . 10
4.3. Optimization method for polygon separation and radius . . . . . . . . . . . . . 11

5. Optimization results and analysis 13
6. Constraints on α 17

6.1. Power dissipation in optimized arrays . . . . . . . . . . . . . . . . . . . . . . 17
6.2. Quantum simulation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3. Spontaneous emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4. Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7. Example case study 22
8. Conclusion 25
Acknowledgments 26
Appendix A 26
Appendix B 27
References 27

1. Introduction

Trapped ions possess long lived addressable internal states and can be highly decoupled
from their environment. This makes them an important tool in the development of quantum
information processing [1, 2] and quantum simulation [3–7]. When used for quantum simulation
they enable complex spin systems, among others, to be investigated beyond the practical
limitations of classical computation. For example, trapped ions have been used for quantum
simulations of the evolution of paramagnetic into (anti-)ferromagnetic order in a spin system,
[8, 9] and frustrated anti-ferromagnetic Ising interactions [10, 11]. These first simulations were
carried out using one-dimensional trapping arrays and state dependent forces applied using laser
beams.

More complex simulations will require ions trapped in two-dimensional (2D) arrays and
interaction schemes compatible with these. Advances towards 2D trapping arrays suitable for
quantum simulations have been made by trapping ions in a millimetre-scale mechanically
fabricated metal mesh [12] and by the successful implementation of microfabrication techniques
for ion traps [13]. In addition, interaction schemes based on large oscillating or static magnetic
field gradients have been proposed [14, 15] and demonstrated in an on-chip microwave gate
[16, 17]. With the recent advances in the field, ion trap quantum simulations using large scale
2D ion trap lattices are within the reach of current technology.
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In order to create a 2D array of trapped ions a repeating 2D surface geometry is required.
Decoherence due to anomalous heating is a major issue for large scale quantum simulations. As
this heating scales approximately as r−4 [18], where r is the ion height above the trapping
surface, it is advantageous for ions to be trapped high above the surface. However, when
individual surface microtraps are placed together so that their separation is less than around
twice the ion height the individual electric fields start to overlap and distort the resulting
trapping fields [19]. In extreme cases this can lead to the traps combining to produce a singular
trapping zone. To compensate for this the electrode structure has to be altered when operating
within this regime [19]. Schmied et al [19] have investigated surface-electrode geometries and
developed an algorithm that optimizes geometries to maximize the electric field curvatures
of individual trapping sites for arbitrary ion heights and separations. Individual trapping sites
shown in [19, 20] were optimized using this algorithm leading to non-intuitive electrode patterns
which can contain many isolated radio-frequency (rf) and static voltage electrodes. Another
proposal [21] working outside this regime uses rf electrodes with controllable rf voltages
to lower trap frequencies and decrease ion–ion distances and, therefore, increase interaction
strengths. However, this requires the use of multiple independent rf electrodes and individually
controllable rf voltages posing an additional experimental complication.

In this paper we present an optimization process for ion trap topologies based on a single
rf electrode island, reducing the requirement for buried rf wires and multiple rf electrodes. We
focus on the development of an optimum lattice geometry where the ratio of coupling rate
to the decoherence rate due to ion heating is maximized and made homogeneous across the
lattice. This is achieved by minimizing the secular frequencies of the trapping sites whilst,
simultaneously, keeping the trapping depths above a minimum trap depth (for illustrative
purposes we use 0.1 eV) to allow for successful operation of the proposed 2D lattice designs. We
will concentrate on the optimum lattice topology for hexagonal, square and centred rectangle
lattices. An investigation is also carried out on how optimal geometries depend on the overall
lattice size, and we discuss the choice of and scaling for experimental parameters such as rf
voltage, drive frequency, ion mass and electric field noise density.

Additionally it is possible that 2D ion arrays of this type could also be used for quantum
computation. For example, cluster state quantum computation could be carried out in such a
system [22, 23]. However, additional constraints may also have to be taken into account.

2. Ion–ion interactions and lattice geometry

2.1. Ion–ion interactions

2D lattices of ions can be used as a quantum simulator for many body spin-1/2
systems [24]. Forces such as the trapping potential, FT = −mω2

i , and the Coulomb force,
FC = −e2/(4πε0 A2), between the individual ions determine the equilibrium position. Laser
beams or magnetic field gradients can be used to impart an additional force to the ions which
displace the ion(s) depending on its internal state. This displacement leads to a change in the
Coulomb force and thereby displaces the neighbouring ion(s) dependent on their own internal
state. This state dependent coupling is given by [24]

J =
βF2

mω2
, (1)
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Figure 1. Pictorial diagram of three ions in adjacent traps. The ions feel a
Coulomb force indicated by the springs between each ion and can be placed in
two different states indicated by their colour. (a) Pictorial diagram showing the
case with no state dependent force present. (b) Pictorial diagram showing how
the system reacts to the presence of a state dependent force, F . Here the ions feel
a change in the Coulomb force, δFC, due to the displacement of the ions and a
change in the restoring force, δFT.

where m is the mass of an ion, F is the magnitude of the state dependent force applied to each
ion and ω is the trap’s secular frequency. We will consider how this force is applied later in the
article. β is the ratio of the change in the Coulomb force to the change in the restoring force due
to the displacement of the ions caused by the state dependent force and is given by [24]

β =
e2

2πε0mω2 A3
, (2)

where A is the ion–ion spacing. There are two cases to consider, when β > 1 the change in
the Coulomb force, δFC, due to the displacement of an ion is dominant over the change in the
restoring force, δFT. This results in an interaction over a large number of trapping sites. When
β < 1, the opposite is true resulting in an interaction which decays rapidly across the array.
Trapping ions in a 2D array of microtraps makes it possible to satisfy the condition that β < 1
allowing systems with short range interactions to be simulated. An illustration of this system is
shown in figure 1.

It is important to consider sources of decoherence when designing a 2D ion trap array. The
internal state of an ion can remain coherent for tens of seconds [25, 26]. However, motional
decoherence due to anomalous heating of ions will be an important factor during quantum
operations within small scale ion traps as the implementation of spin dependent couplings
involves the use of motional states of the ion. The coupling, J , will be observable if the coupling
time, TJ = 1/J , is less than the motional decoherence time in the system and, therefore, the ratio
of these two times is an important parameter of the system and is given by

Ksim =
Tṅ

TJ
, (3)
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where [18]

Tṅ =
4mωh̄

e2SE(ω)
. (4)

Here SE(ω) is the electric field noise density [13, 18]. In order for an interaction to occur on
faster time-scales than the decoherence in the system, we require Ksim > 1 and it is the aim of
the optimization process presented in this work to optimize the geometry in order to maximize
this parameter. To acquire an understanding of how a geometry can affect Ksim it is necessary
to determine its form with respect to the geometry variables. The form of TJ can be found by
substituting equation (2) into (1) and is given by

TJ =
2πε0m2ω4 A3h̄

e2 F2
. (5)

The Ksim parameter can then be expressed as

Ksim =
2F2

SE(ω)πε0mω3 A3
. (6)

The secular frequency, ω, of a trapped ion [27] can be expressed as a function of α defined as

α =
V

�
, (7)

where V is the amplitude of the rf voltage applied to the trap and � is 2π times the drive
frequency in Hz, yielding,

ω =
eV ηgeo

√
2m�r 2

=
eαηgeo
√

2mr 2
, (8)

where r is the height of an ion above the surface, e is the charge of an electron and ηgeo is an
efficiency factor which can range between 0 and 1 depending on the form of the geometry [27].

The secular frequency given in equation (8) can then be used along with SE(ω) = 4r−4ω−1,
where 4 is a coefficient that can be experimentally obtained and depends on the temperature
and surface of the trap electrodes (see [13] for a listing) to re-express equation (6) in the form

Ksim =
4F2mr 8

4α2η2
geoπε0 A3

. (9)

To further understand how the geometry effects the Ksim value we will now introduce the
parameters of a lattice geometry and relate them to equation (9).

2.2. Two-dimensional ion trap lattice geometry

A lattice is a regular tiling of a space by a primitive unit cell. Previous works [12, 21] concentrate
on lattices created from square unit cells. In total there exist five types of cell which can be
used to form a 2D lattice: centred rectangular, hexagonal and square as shown in figure 2, and
rectangular and oblique [28]. The rectangular and oblique structures are not considered in this
work due to their non-uniform ion–ion distances.

Figure 2 shows the polygon–polygon separation which is equal to the ion–ion distance,
A, in equation (9). The polygon radius, R, along with the separation, will determine the height
above the surface at which the ion is trapped, r , with larger polygon radii yielding higher ion
heights. Another variable to be considered is the gap between the outer polygon in the array
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Figure 2. Diagrams showing the polygon radii R, the separation between the
polygon centres, A, and the distance between the last polygon and the edge of
the rf electrode (shown in grey), g. (a) Diagram showing a three by four ion
trap surface array consisting of six sided polygons arranged with square unit
cells. (b) Diagram showing a similar surface array arranged into hexagonal
unit cells. (c) Diagram showing a surface array arranged into centred rectangular
unit cells. The unit cells are indicated by dashed lines.

to the edge of the rf electrode, g. This can be used to alter the homogeneity of the individual
trapping sites within the array. In general a non-homogeneous system results in spin dependent
coupling rates which are a function of the lattice site, posing a significant problem for the
scalability of such an array [29].

3. Simulation of lattices

To determine the electric field produced by a 2D array a method based on the Biot–Savart like
law described by Oliveira and Miranda [30] was used. This method calculates the electric field
produced by an arbitrarily shaped 2D electrode which is held at a potential V whilst the rest of
the plane is held at a potential of zero. The electric field observed at a given point, X , in space
due to such an area held at a potential and bounded by a path C is given by [30]

E(X) =
V

2π

∮
C

(x − x ′) × ds∣∣x − x ′
∣∣3 , (10)

where the curve, C , bounds the electrode and x ′ and x are vectors that locate the source point
and field point respectively. By calculating the electric field in this manner an assumption is
made that there is no gap between the areas held at the potential, V , and the areas held at zero.
In microfabricated surface traps, gaps between the electrodes are required and typically range
from 3 to 10 µm [13]. If, however, these gaps are small in comparison to the electrode structures
they will not alter the trapping fields significantly [20, 31, 32]. The electric fields of individual
electrodes can then be combined to determine potential nils and, therefore, trapping positions in
the 2D trap arrays, using the numerical Gauss–Newton algorithm. The secular frequencies, trap
depths and ion heights at these positions can then be determined.

To calculate the error of our numerical integration we compared simulations of five wire
symmetric surface trap geometries with different central static electrode and rf rail widths in
the gapless plane approximation using the method of Oliveira and Miranda [30] to results
obtained with analytical equations described by House [31]. In all the geometries simulated
the two rf rails were of equal width. Similarly to House, the outer static voltage electrodes were
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Table 1. Table showing the secular frequency, ω, and ion height, r , for different
five wire surface trap geometries as calculated by the analytical method in
House [31] and simulated by the method used in this work based on the
Biot–Savart like law [30].

Electrode parameters Simulations House equations

Central static
rf width electrode width rf volt. rf freq. r ω r ω

(µm) (µm) (V) (MHz) (µm) (MHz) (µm) (MHz)

100 50 250 75 55.8 6.86 55.9 6.87
100 50 500 60 55.8 4.29 55.9 4.29
200 100 250 30 110.1 2.17 111.8 2.20
200 100 500 40 110.1 3.26 111.8 3.30
500 150 250 20 165.4 1.48 167.7 1.52
500 150 500 25 165.4 2.37 167.7 2.43

approximated as an infinitely long ground plane although the length of the inner rails were set
to 3000 µm instead of infinite. A selection of these simulation results are shown in table 1.

In these results a general error for the ion heights and secular frequencies of less than 2 and
3% respectively was found, which leads to a maximum error in Ksim of 10%. For the following
simulations it is therefore assumed that the maximum Ksim error is 10%. Additionally, numerical
simulations of the geometries were carried out using methods described in [33], which indicate
similar errors and trends for the ion height and secular frequency as the results obtained with
the Biot–Savart like method.

4. Lattice geometry optimization

In this section we show how the parameters of the lattice geometry (discussed in section 2.2)
can be optimized to achieve the highest possible Ksim value across the array for a given set
of experimental parameters. To do this, we first show how to maximize the homogeneity of
individual site properties over an array by varying the distance between the outer polygon in the
array to the edge of the rf electrode, g, and show how this scales with lattice size. We will then
use the homogeneous arrays to calculate the optimum number of sides, n, a polygon within the
array should possess in order to maximize Ksim. We then outline a method for the optimization
of the polygon radii, R, and separation, A, of an array and show how these vary with increased
lattice size and ion mass.

4.1. Increasing the homogeneity of Ksim across the array

This is achieved by ensuring homogeneous secular frequencies, ion heights and trap depths
across all the array sites. As shown in figure 3 the Ksim of trapping sites in an array can be altered
to approach a common value if the distance, g, between the edge of the outer polygon and the
edge of the rf electrode containing the polygon array is adjusted. As the value of g is increased,
the Ksim value of the sites towards the centre drops, however, the outer sites Ksim value rises,
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Figure 3. Diagram showing the effect of varying the distance g on the scaled
Ksim value of the individual trapping sites. The Ksim values shown are scaled
with that of the central site. (a) Representation of a 5 × 5 square type lattice
array indicating the axis labelling. (b) Slices across the array (indicated by the
dotted line in (a)) for g/L values of 0.1, 0.2, 0.5 and 1.

resulting in the properties converging towards each other. If the distance g is increased further
beyond the point at which maximum homogeneity occurs the outer site properties drift away
from those of the central sites and, therefore, decrease the homogeneity of the array.

To provide a value of g which is universal for all lattice sites, its value is given in units of
lattice side length, L . The lattice side length is determined by the polygon separation, A, and
radius, R, and can be expressed as

L = (M − 1)A + 2R, (11)

where M is the number of lattice sites along one side of an array.
In order to quantify the array’s homogeneity, H is defined as the average deviation of Ksim

of each lattice site from the Ksim of the central site and is given by

H =
1

N

N∑
n=1

∣∣∣∣1 −
Ksimn

Ksimcentre

∣∣∣∣ , (12)

where N is the total number of trapping sites in the lattice.
Figure 4 shows H for a 5 × 5 square type unit cell lattice for 0 < g/L < 1.5. The maximum

homogeneity, and thus the optimum g/L , is found when H is minimized. The error associated
with H is given by

σH =

√
N (σK sim)2 + N (σK simcentre)

2

N
, (13)

where the error on all Ksim values is 10%, as shown in section 3. This yields an overall
percentage error on H of 0.13/

√
N%.

Figure 5 shows the optimum g/L for hexagonal, central rectangular and square unit cell
lattices of different sizes. The curves are found to be described by an equation of the form
g/L = a + bN−B with a, b and B values for different lattice types shown in table 2. For large
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Figure 4. Graph showing the average deviation of the Ksim of each lattice site
from the Ksim of the central site, H , for a 5 × 5 square type unit cell lattice for
0 < g/L < 1.5. The error on H is given by (0.13/

√
N )H and the error of the

minimum of H is determined by observing the spread of g/L which agrees,
within error, with the minimum position.

Figure 5. Graph showing the optimum g/L as a function of the total number of
trapping sites, N, for square lattices (square markers), hexagonal lattices (circular
markers) and centre rectangular lattices (diamond markers). The curves are given
by g/L = a + bN−B with a, b and B values for different lattice types shown in
table 2.

lattices, g/L is independent of N , as trapping sites close to the edge of the lattice are influenced
only by the electric field created by that edge. In small lattices, however, the optimum g/L
increases as the effect of the electric field from the opposite edge of the lattice increases.
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Table 2. Table showing a and b values for the fits which describe g/L as a
function of the number of sites in the lattice.

Lattice type a b B

Square 0.20±0.01 5.21±0.38 0.74±0.03
Hexagonal 0.39±0.08 3.76±1.40 0.54±0.14
Centre rectangular 0.31±0.04 7.84±2.43 0.76±0.11

Figure 6. Graph showing the relationship between the number of polygon sides
and Ksim for square (square markers), hexagonal (circular markers) and central
rectangular (diamond markers) unit cell lattices. The dashed lines show the
values of 1 and 0.95 of the scaled Ksim value.

4.2. Optimizing the number of polygon sides

We now investigate the optimum number of polygon sides, n, providing the highest Ksim value
on the central trapping site (located above the central polygon) of a lattice.

To ensure the results are universal for all lattice geometries, g/L is set to the value which
maximizes the homogeneity of each array, and all other parameters are scaled by normalizing
Ksim to that of an identical geometry with polygons of 100 sides. This also allows comparison
between the different types of lattices.

Figure 6 shows the scaled Ksim for the central site as the number of polygon sides is varied.
As the number of sides is increased the value of Ksim approaches an asymptote, shown by the
upper dashed line. This indicates that the best geometry will be made from circular electrodes.
However, simulation times grow with increasing polygon side number and so it is advantageous
to reduce this number to a minimum. It is shown that 95% of the maximum achievable
Ksim (indicated by the lower dashed line) can be achieved with around >25–30 sides in the
polygons.
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4.3. Optimization method for polygon separation and radius

In this section we now maximize the Ksim of any arbitrary geometry. We will then go on and
determine optimum geometries and show how they scale and, ultimately, are determined by
α = V/�. We use the value of g determined in section 4.1 in order to provide the maximum
Ksim homogeneity across the lattice, and set the number of sides to 25 as this provides a
good approximation to the optimum circular geometry while keeping the simulation time at
a minimum, as shown in section 4.2.

When considering any fixed arbitrary geometry, equation (9) shows that Ksim can be
maximized by reducing the value of α. However, the minimum achievable α is limited by the
lowest usable trap depth, as the trap depth is proportional to α2 and is given by

TD =
ζe2α2

π 2m
, (14)

where e is the charge of an ion and ζ is a geometrical factor which is a function of A and R [31].
We will now focus on finding optimal geometries which we define as geometries that yield

the highest value of Ksim for a given value of α. This will be carried out by fixing the trap depth
at a reasonable minimum value (we use 0.1 eV for illustration purposes) which, as discussed
above, provides the maximum Ksim for a given geometry, and then investigating the dependence
of polygon radius, separation and ion height with α. To determine these dependences a Ksim

contour plot is made by calculating the Ksim over a range of polygon separation, A, and radius,
R, with a resolution of 1 µm. The range of polygon radius and separation used should not create
traps with inter-well barriers of less than the minimum trap depth value, and to ensure this the
polygon radius was kept to less than a third of the polygon separation. For each combination of
polygon separation and radius a value of α is found which yields the minimum trap depth and,
thus, maximizes the Ksim of the particular geometry. By following this method one can obtain
the α required to achieve the minimum trap depth, the ion height, r , and Ksim for each geometry.
From the resulting data the polygon separation and radius which yields the highest Ksim for a
given α (the optimum geometry) can then be found. A graphical example of such data is shown
in figure 7.

It can be seen from this method and the example data in figure 7 that the highest Ksim will
be achieved with an infinite value of α, R and A. However, other effects may limit the magnitude
of α. In order to determine a limit on α it is, therefore, necessary to describe the various array
and trapping field dependent properties (such as secular frequency, ion height and Ksim) in terms
of α.

By plotting these optimum parameters (polygon radius, separation and ion height) as a
function of α, as shown in figures 8(a)–(c), linear relationships of the form

r = krα, (15)

A = kAα (16)

and
R = kRα (17)

are found for the optimal geometries. The values of kr , kA and kR are dependent on the number
of trapping sites in an array, as shown in figures 9(a)–(c) respectively, for lattices made from
square type unit cells of polygons.
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Figure 7. Example graph showing how the Ksim (absolute values indicated
by numbers on contour lines) varies as a function of polygon radius and
separation. The graph also indicates that the value of α increases as the radius and
separation are increased. These data were obtained using the method described
in section 4.3 with a polygon separation and radius resolution of 1 µm and a
minimum trap depth of 0.1 eV. The value of α in the figure ranges from zero
to 5/π V MHz−1. The impossible region describes geometries where individual
trapping sites start to combine to a single one and so possess a polygon radius,
R, greater than or equal to a third of the polygon separation, A.

It is important to stress that equations (15)–(17) are only valid in the case of optimal
geometries, which depend solely on α. With this in mind, it is now possible to re-express the
secular frequency in equation (8) to describe the secular frequency of an optimized geometry as

ω =
eηgeo

√
2k2

r mα
. (18)

Ksim in equation (9) can also be re-expressed to describe that of an optimized geometry:

Ksim =
4F2mk8

r α
3

4η2
geoπε0k3

A

. (19)

Equation (19) shows that, for optimal geometries, Ksim is proportional to α3 (as the value of
α determines the electrode dimensions to be used) and so, to produce an array with a high
Ksim for a given number of lattice sites (as kr and kA are functions of the number of trapping
sites), a large value of α is preferable. Equations (16) and (17) show that the optimum geometry
size is proportional to α. It, therefore, follows that larger lattice geometries will produce larger
values of Ksim. This effect is illustrated in figure 7 which shows the Ksim as a function of polygon
radius and separation. For optimized lattices, the optimal radius and separation will fall on a line
described by A = (kA/kR) R, with higher values of α required for higher values of separation
and radius as shown in equations (16) and (17) respectively.

The heating rate in ion traps has a strong dependence on the ion height (∝ 1/r 4) [18].
A large Ksim is achieved with large values of α, resulting in large ion heights, as shown
in equation (15). It, therefore, can be concluded that a different scaling of the heating rate
(for example in cryogenic systems) does not change the optimization process and optimal
geometries.
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(a) (b)

(c)

Figure 8. Graphs showing the ion height (a), polygon separation (b) and polygon
radius (c) of an optimized lattice as a function of the ratio α. In all cases the plots
are shown using α = V/� where � is 2π times the drive frequency in Hz, and
for arrays made from square type unit cells of polygons with 81 sites and for
171Yb+ ions.

It has now been shown that the optimal geometry for a given minimum trap depth and ion
mass is determined solely by the value of α.

Optimal geometries and their Ksim values (in units of 1/α3) can now be found by creating
contour plots (such as shown in figure 7) for different values of lattice size, N , lattice unit cell
type and ion mass, m. The error on the Ksim value, calculated from equation (9), was determined
to be ±10% by comparing the secular frequency and ion heights obtained using the program
with those predicted by House’s analytical solutions for a five wire surface trap geometry [31].

5. Optimization results and analysis

In this section, optimum polygon separations, A, and radii, R, are obtained using the method
outlined above for square, hexagonal and centre rectangular unit cell type lattices. These are
shown as functions of lattice sizes and ion masses with the experimental constraint, α, scaled
out. Throughout this optimization example, 171Yb+ ions will be used unless otherwise stated.

Figure 10 shows how the optimum scaled radius, R/α, and separation, A/α, of polygons
vary as a function of lattice size for 171Yb+ ions. As explained in the previous section we
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(a) (b)

(c)

Figure 9. Graphs showing the value of kr (a), kA (b) and kR (c) as a function of
the number of trapping sites, N . In all cases the plots are shown using α = V/�

where � is 2π times the drive frequency in Hz and are for arrays made from
square type unit cells of polygons using 171Yb+ ions.

(a) (b)

Figure 10. (a) Graph showing how the optimum polygon radius, R/α, varies as
a function of the number of sites. (b) Graph showing how the optimum polygon
separation, A/α, varies as a function of the number of sites. For both (a) and (b)
the results shown are for square (square markers), hexagonal (circular markers)
and centre rectangular (diamond markers) unit cell lattices with 171Yb+ ions.

have assumed a minimum trap depth of 0.1 eV for illustrative purposes. It can be seen from
this figure that as the size of the lattice increases, the optimum polygon radius and separation
asymptotically tend towards values representative of an infinitely large lattice. This is expected
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Figure 11. Graph showing how the optimum Ksim/(F2α3) varies as a function of
the number of sites for optimum lattices with 171Yb+ ions. This is shown for
square (square markers), hexagonal (circular markers) and centre rectangular
(diamond markers) unit cell lattices. Here F is a state dependent force applied
to the ions in the lattice.

Table 3. Table showing c, d and E values for the fits which describe R/α as a
function of the number of sites in the lattice.

Lattice type c d E

Square −5 ± 1 101 ± 7 0.29 ± 0.03
Hexagonal 1 ± 3 85 ± 6 0.40 ± 0.08
Centre rectangular −2 ± 2 68 ± 6 0.34 ± 0.05

as once a lattice becomes large enough, the addition of extra lattice sites will represent only a
small change in the overall electrode geometry and, therefore, produce a small change in the
electric field produced by the geometry. When the lattice is small however, additional lattice
sites will represent a larger change in the geometry and will, therefore, cause a larger change in
the electric field. Figure 11 shows how the scaled Ksim/(F2α3) scales as a function of the number
of lattice sites, N , using scaled optimum polygon radii, R/α, and separations, A/α. The state
dependent force F will be considered in more detail in section 6.2. Due to the dependence of
Ksim on the geometry, the relationship between Ksim/(F2α3) and the number of sites is expected
to be of similar form to that for optimal polygon radii, R/α, and separation, A/α, with the
maximum Ksim/(F2α3) asymptotically tending towards a value representative of an infinitely
large lattice.

Using the data shown in figures 10(a) and (b) and 11 the optimum radii and separation of the
polygons as a function of number of sites, N , were found to follow a c + d N−E and f + gN−G

relationship, respectively, while the maximum Ksim/(F2α3) follows a k + l N−Q trend. The
values of c, d, E , f , g, G k, l and Q are shown in tables 3–5.

Using the data shown in figures 12(a) and (b) the optimum radii and separation of the
polygons as a function of mass were found to follow a o + pm−0.5 and q + sm−0.5 relationship,
respectively, with values of o, p, q and s shown in tables 6 and 7. Figure 13 shows how the
optimum Ksim/(F2α3) varies as a function of the mass of the trapped ion, m, for 220 (square
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Table 4. Table showing f , g and G values for the fits which describe A/α as a
function of the number of sites in the lattice.

Lattice type f g G

Square −136 ± 7 457 ± 5 0.15 ± 0.01
Hexagonal 13 ± 24 547 ± 288 0.48 ± 0.21
Centre rectangular 40 ± 15 831 ± 282 0.57 ± 0.13

Table 5. Table showing k, l and Q values for the fits which describe Ksim/(F2α3)

as a function of the number of sites in the lattice.

Lattice type k l Q

Square −(2.69 ± 2.97) × 1034 (3.09 ± 1.31)×1036 (0.61 ± 0.13)
Hexagonal (0.52 ± 6.00)×1033 (3.51 ± 1.54)×1036 (0.86 ± 0.12)
Centre rectangular −(3.09 ± 6.12) × 1035 (5.23 ± 5.11)×1037 (0.65 ± 0.26)

Figure 12. (a) Graph showing how the optimum polygon radius varies as a
function of the ion mass for 220 (square type unit cells) and 225 (hexagonal
and centre rectangular type unit cells) trapping sites. (b) Graph showing how
the optimum polygon separation varies as a function of the ion mass. In both
graphs this is shown for square (square markers), hexagonal (circular markers)
and centre rectangular (diamond markers) unit cell lattices and the polygon radii
and separations are scaled with α.

type unit cells) and 225 (hexagonal and centre rectangular type unit cells) trapping sites. It is
found that the optimum Ksim/(F2α3) scales as u + vm−0.5, with the values of u and v shown in
table 8.

We note, as shown in figure 12, that as the mass of the ion is increased, the polygon radii
and separation will have to be decreased in order to provide trapping regions with a depth of
above 0.1 eV for a given α for 220 (square type unit cells) and 225 (hexagonal and centre
rectangular type unit cells) trapping sites. It is also clear to see that ions with lighter masses will
provide higher Ksim/(F2α3) values but will require larger lattice geometries compared to heavier
ions.
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Table 6. Table showing o and p values for the fits which describe R/α as a
function of ion mass.

Lattice type o p

Square −56 ± 6 138 ± 10
Hexagonal −34 ± 7 88 ± 11
Centre rectangular −48 ± 3 110 ± 6

Table 7. Table showing q and s values for the fits which describe A/α as a
function of ion mass.

Lattice type q s

Square −176 ± 47 489 ± 65
Hexagonal −311 ± 15 678 ± 22
Centre rectangular −402 ± 28 911 ± 51

Figure 13. Graph showing how the optimum Ksim/(F2α3) varies as a function
of the ion mass for 220 (square type unit cells (circular markers)) and 225
(hexagonal and centre rectangular type unit cells (square markers and diamond
markers respectively)) trapping sites.

6. Constraints on α

In this section we will discuss the considerations which could limit the value of α. To do this
we will show how the power dissipation in a chip trap, the quantum simulation error and the
interaction time vary as a function of α. This is important as from this a value of α can be
determined for a given experiment, which will be shown in section 7.

6.1. Power dissipation in optimized arrays

The power dissipation of an ion trap chip is determined by the voltage, V , frequency, �, as
well as the capacitance and resistance of the trap itself. This may, for a given capacitance and
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Table 8. Table showing u and v values for the fits which describe Ksim/(F2α3)

as a function of the ion mass.

Lattice type u v

Square −(5.25 ± 3.00) × 1035 (7.96 ± 1.72)×1036

Hexagonal −(1.25 ± 0.60) × 1035 (5.08 ± 1.29)×1036

Centre rectangular −(2.56 ± 1.28) × 1034 (3.27 ± 0.86)×1036

resistance, affect the value of α (the ratio between the rf voltage and drive frequency) which can
be used. As the value of α is used to determine the optimum polygon radii and separation of a
geometry, as shown in figure 10, for a given number of sites, N , and stability parameter, q, it is
important to know how the power dissipation varies as a function of α.

The power dissipation of a chip is approximately given by [13]

PD ≈
1
2 V 2C2 R�2, (20)

where C and R are the capacitance and resistance of the chip. It is not possible to apply any
combination of V and � to a geometry as they must be chosen so that the ion is stably trapped
with a stability parameter given by [12, 27]

q =
2eηgeoV

mr 2�2
=

2eηgeoα

mr 2�
(21)

between 0 and 0.9, where e is the charge of an electron.
The ion height, r , of ions trapped in the optimized lattices shown in this work have been

found to be linearly proportional to α. This relationship is shown in figure 8(a) with the constant
of proportionality, kr , found to be 63(4) mV−1 s−1 for the example case of square type lattice
with 81 sites using 171Yb+ ions. Considering one particular ion height, r0, and substituting for
r0 = krα0 and rearranging equation (21) for � yields

�0 =
2eηgeo

mk2
r α0q

. (22)

This equation can be re-expressed for V0 by noting that V0 = �0α0:

V0 =
2eηgeo

mk2
r q

. (23)

Equations (22) and (23) show that, for a given ion mass, m, ion height, r0, stability
parameter, q, and number of trapping sites in the array (as kr is a function of the number of
trapping sites), there is one unique voltage, V0, and unique parameter α0. This means that a
given ion height (and, therefore, a chosen value of α) determines both the voltage and drive
frequency to be applied to the trap.

To express the power dissipation, PD, in terms of α equations (22) and (23) can be
substituted into equation (21) giving

PD =
8η4

geoe4C2 R

k8
r m4q4α2

. (24)

Equation (24) shows that as α is increased, the power dissipated is reduced. This means that the
power dissipation is low for high values of α and, as high values of α provide high values of
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Ksim (see figures 11 and 13), power dissipation will not impact on producing high values of Ksim

in optimized geometries. However, a low value of α will result in a high power dissipation in
the chip and, so, the maximum allowable power dissipation in a chip will determine the lowest
α which can be applied to a geometry.

6.2. Quantum simulation error

An upper limit on the value of α can be obtained from an estimation of the error of a quantum
simulation using the method described in [34], where the error for the Ising model is given by

E0 ≈
1

2
η2

∑
j

(2n + 1)
〈[[

O(t), σ z
j (t)

]
, σ z

j (t)
]〉

. (25)

Here n is the mean radial phonon number of the ions, O is the observable of the quantum
simulation and η is a parameter which characterizes phonon displacement caused by the state
dependent force and is given by [34]

η =
F

√
h̄/(2mω)

h̄ω
, (26)

where m is the mass of a trapped ion and ω/2π is its secular frequency.
If O is an M-site observable then there exist M non-vanishing commutators (for example

a two-site correlation function (M = 2) or a spin average (M = 1)) and so the error on the
simulation will not be dependent on the number of ions, N , in the array [34]. The error in
equation (25) can now be re-written as

E0 ≈
F2 M(n + 1

2)

2h̄mω3
. (27)

Equations (19) and (27) show that both the Ksim and the error of the simulation, E0, are
proportional to the square of the state dependent force, F . It follows that the way in which
this force is applied to the ions will determine the dependence of the simulation error on
α. A discussion on the possible effects of the heating rate on the error can be found in
appendix A. In this work we will consider applying this state dependent force via laser beams
and magnetic field gradients.

To calculate the laser power required to achieve a force, F , it is assumed, for illustrative
purposes, that the laser beam is focused to a sheet given by 25 µm multiplied by the width of
the array. The laser intensity required to provide a state dependent force, F , can be provided by
a laser beam of power, P . If the output power of the laser used is assumed to be constant, then
the force applied to the ions will be dependent on α. This is because the lattice size will increase
with increasing α and, therefore, so will the spatial area of the beam required to impart a force
onto the ions. It is, therefore, required to express this force as a function of α. The intensity of a
beam required to provide a state dependent force, F , is given by [35]

I0 =
3F1λIsat

2π h̄γ 2
, (28)

where 1 is the detuning of the laser from resonance, λ is the wavelength of the laser, Isat is the
saturation intensity of the ion and γ is 2π times the transition linewidth. The power of a laser
beam is given by

P = I0a, (29)
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where a is the spatial area to which the beam is focused. In this work the beam is assumed
to be focused to form a light sheet across the array with an area given by a = (ns − 1)AW =

(ns − 1)kAαW , where ns is the number of trapping sites (or polygons) along one side of the
array and W is the width of the light sheet. By using equations (28) and (29) the force applied
to the ions by a laser power, P , can be expressed as

F =
2π h̄ Pγ 2

3a1λIsat
. (30)

The form of E0 for the case of lasers applying the state dependent force can now be found
by using equations (18), (30) and the general error equation (27) yielding

E0laser =
4
√

2

9

π 2h̄

e3

Mk6
r γ

4m2 P2α(n + 1
2)

η3
geo(ns − 1)2k2

AW 212λ2 I 2
sat

. (31)

It follows that both the Ksim and simulation error E0 will decrease with increasing laser
detuning, 1. Therefore, the optimum detuning, for a given laser power and α, corresponds
to the lowest detuning which provides the required Ksim. The optimum detuning to achieve the
lowest simulation error for 171Yb+ will be discussed in section 6.3.

Magnetic fields can also be used to provide the state dependent force, F , given by [4]

Fî =

(
h̄

2

)
∂iω〈σ (î)

〉, (32)

where ω = γgbi is the position dependent spin resonance frequency with γg = e/me the
gyromagnetic ratio and i is the x-, y- or z-direction. The magnetic field gradient b is assumed
to arise from a magnetic field of the form B = B0 + bî , where B0 is a constant magnetic field
offset. From this, the state dependent force, Fî , produced from a magnetic field gradient, bî , is
found to be

Fî ≈
h̄ebî

2me
, (33)

where me and e are the mass and charge of an electron respectively. If one assumes the magnetic
field is created by a current carrying wire located on the surface of a polygon, at a distance a
from the centre of the polygon and making an angle of 45◦ with respect to the x-axis, then the
magnetic field gradient will be of the form

br ′ =
µ0 I

2πr ′2
. (34)

Here µ0 is the permeability of free space, I is the current flowing through the wire and r ′2 is the
distance squared of the ion from the current carrying wire and is equal to r 2 + a2 where r is the
ion height. We assume, for simplicity, that the distance a scales linearly with α with a constant
of proportionality of ka in order to keep the angle of r ′ to the x–z plane, θ , independent of α. As
the ion height is known to scale linearly with α, from equation (15), it is possible to express the
magnetic field gradient along r ′ as

br ′ =
µ0 I

2πα2
(
k2

r + k2
a

) . (35)
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The component of this magnetic field gradient in the x–z plane can now be shown to be

bx,z =
µ0 I cos θ

4πα2
(
k2

r + k2
a

) . (36)

The form of Ksim for the case of magnetic field gradients applying the state dependent force
can be found by using equations (18), (33), (36) and the general error equation (27) yielding

E0mag =

√
2

64

h̄µ0

π 2m2
ee

k6
r m2 I 2 cos2 θ M

(
n + 1

2

)
η3

geo

(
k2

r + k2
a

)2
α

. (37)

Equations (31) and (37) show that the quantum simulation error is proportional to α for
a state dependent force created by a laser beam and proportional to α−1 for a magnetic field
gradient created by current carrying wires. For the case of laser beams the α scaling implies
that as α is increased (yielding larger Ksim values and geometries as shown in section 4.3) the
quantum simulation error will rise and, therefore, provide an upper limit on the value of α.
For the magnetic field gradient case the upper limit on α comes from the current creating the
gradient. While the α scaling for the quantum simulation error using magnetic field gradients
implies that a larger α is advantageous, the current required to achieve a given magnetic field
gradient scales as α2 as can be deduced from equation (35). The maximum current that one can
apply to the lattice therefore provides an upper limit for α.

It is also interesting at this point to note the different scaling with α of the laser and
magnetic field gradient forces given in equations (30) and (32). The laser force can be seen
to be ∝ α−1 as it is a function of the inverse of laser sheet cross section, a, which is ∝ α1.
The magnetic gradient force, on the other hand, is ∝ α−2 as it is a function of the magnetic
field gradient br ′ , which is ∝ α−2 due to r ′ having a linear relationship with α in the geometry
considered.

6.3. Spontaneous emission

When applying the state dependent force to the ions using a laser beam additional decoherence
will occur via spontaneous emission. The spontaneous emission rate is given by [36, 37]

S =
γ g2

6

(
1

12
+

2

(1fs − 1)2

)
, (38)

where γ is 2π times the linewidth in Hz, 1 is the laser detuning from resonance, 1fs is the fine
structure splitting of the ion (approximately 100 THz for 171Yb+) and g is the single photon Rabi
frequency given by

g = γ

√
I0

2Isat
. (39)

Here, I0 is the laser intensity and Isat is the saturation intensity of the ion. It is possible to express
the single photon Rabi frequency in terms of the laser power, P , by using equation (29) giving

g = γ

√
P

2(ns − 1)kAαW Isat
. (40)
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It is now possible to describe an additional parameter, L sim, which describes the ratio of
interaction rate to the spontaneous emission rate as

L sim =
TS

TJ
, (41)

where

TS =
1

S
. (42)

It has been shown that the detuning which minimizes the effect of spontaneous emission
is approximately 33 THz for 171Yb+ [38]. It, therefore, follows that the value of L sim will be
maximized with this detuning. This additional parameter is analogous to the parameter Ksim

in equation (3) and is also required to be greater than unity, just like the original Ksim, when
considering a state dependent force created using laser light. If magnetic field gradients are to
be used to apply the state dependent force then L sim is no longer relevant.

6.4. Other considerations

It is important to note here that an increase in α will increase the time taken for ion–ion
interactions to take place in optimized lattice structures, as we will show in equation (44).
Equation (5) gives an expression for the time taken for an ion–ion interaction to occur in any
given fixed lattice structure. This can be expressed for optimized lattice structures by including
the expressions for the ion–ion separation (polygon separation, A) and secular frequency, ω,
from equations (16) and (18) respectively, to yield

TJ =
e2πε0h̄

2

η4
geok3

A

k8
r F2m2α

. (43)

An expression to give the interaction time in optimized lattices as a function of α can now
be arrived at by using equations (43) and (30),

TJ =
9

8

e2ε0

π h̄

η4
geok3

A((ns − 1)kAW )212λ2 I 2
satα

k8
r γ

4 P2m2
. (44)

Equation (44) clearly shows that as α is increased the time taken for an ion–ion interaction will
increase and, so, it may be preferable to limit the magnitude of α after taking into account the
effects on Ksim. A similar equation can also be derived for use with magnetic field gradients. It
is also important to note here that increasing the laser power, P , will increase the value of L sim

as the spontaneous emission rate is proportional to P whereas the coupling rate is proportional
to P2 as shown in equations (38) and (44) respectively.

With the use of the equations derived in this section, optimal geometries can be calculated
given certain experimental parameters and will be described in the following section.

7. Example case study

In this section, an example case will be presented to show how a 2D lattice for the use in
quantum simulations can be designed using the work in this paper, whose successful operation
is within reach of current technology when using lasers. We then go on to show that while
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Table 9. Table summarizing the parameters for a 3 × 3 square type unit cell
lattice at cryogenic temperature as shown in the example case study.

α R (µm) A (µm) 1 (THz) P (W) M Ksim Lsim E0

0.3 14 52 33 6.5 1 35 1.5 0.25

magnetic field gradients can be used to create a state dependent force their use may be more
challenging.

From equation (23) we can see that there is a unique voltage for a given mass, m, lattice
type and stability parameter, q . For this example case we choose a lattice comprised of square
type unit cells with nine trapping sites for 171Yb+ ions with a stability parameter q = 0.5. Using
these parameters the voltage can now be determined by calculating kr . kr can be found by
plotting the ion height of an optimized lattice against α, as shown in figure 8(a), and finding the
gradient of this linear relationship. For this example case kr = 98(5) mV−1 s−1. Using this result
and equation (23) we find the unique voltage to be 33(2) V where ηgeo has been calculated to be
0.14(1).

The α dependent polygon radius and separation can be calculated by producing the
corresponding graphs in figure 10, using the method described in section 4.3, for the lattice type
and ion to be used. For this example case the optimum radius and separation of the polygons in
terms of α are 45(1)α and 174(1)α µm respectively.

The next step is to choose a laser detuning from resonance and a maximum acceptable error,
E0, to be used. For 171Yb+, as explained in section 6.3, the optimum detuning is approximately
33 THz giving a wavelength of 355 nm, which is therefore used in this example case together
with a maximum acceptable error of 0.25. Note that in this example case the array is assumed
to be at cryogenic temperatures which correspond to an electric field noise density three orders
of magnitude less than at room temperature. We can see from equation (31) that α needs to be
minimized in order to keep the quantum simulation error low. The minimum α is determined
by the lowest ion height one can easily achieve, which for this example case we choose to be
equal to 30 µm. For this case we find α = 0.30(2) V MHz−1. Having determined α we find the
optimum radius and separation to be equal to 14(1) and 52(3) µm respectively. To calculate the
laser power required equation (31) should be set to the maximum acceptable error and solved for
the laser power, which is found to be 7(1) W assuming the ions to be cooled to n � 1 and M = 1
(one site average observable). These conditions provide a coupling rate, J , of 530 ± 110 Hz with
β ≈ (2.8 ± 0.2) × 10−5. This laser power can, for example, be achieved using a commercially
available diode pumped solid state (coherent Paladin range) or fibre (coherent Talisker range)
laser system. Table 9 summarizes all parameters for this example case study.

Figure 14 shows the effect a change of α and laser power, P , has on the quantum simulation
error (solid curves), Ksim (dashed curves) and L sim (dotted lines). The cross corresponds to
the 2D lattice designed in this example case which represents the optimum case in terms of
achieving the highest Ksim and L sim for a maximum quantum simulation error of 0.25. We note
that the main limitations in achieving lower quantum simulation errors stem from the lowest
achievable ion height (lowest α) and magnitude of electric field noise density. Figure 14 also
shows that higher values of Ksim and L sim can be achieved with any given geometry (given by
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Figure 14. Graph showing the quantum simulation error (solid curves), Ksim

(dashed curves) and L sim (dotted lines) for a 3 × 3 square type unit cell lattice
with 171Yb+ ions as a function of α and laser power. Here traps are operated at
cryogenic temperature. The cross indicates the example case.

the value of α) by simply increasing the power of the laser. However, this can only be achieved
at the expense of higher quantum simulation errors.

State dependent forces can also be created using magnetic field gradients as described
in section 6.2. Figure 15 shows the Ksim (solid curves) and the quantum simulation error
(dashed curves) as a function of the magnetic field gradient, b, and α for traps operated
at cryogenic temperature. Here we use 171Yb+ ions in a 3 × 3 square unit cell array. As
described in section 6.2, E0 ∝ α−1 indicating that a large α is advantageous. The limit on
the maximum α is dependent on the maximum current one can apply to the geometry. Using
equation (35) it is possible to calculate the current required to create a desired magnetic
field gradient. In order to illustrate the magnitude of currents required we assume ka = kr ,
which will result in an angle θ = 45◦ (refer to section 6.2 for more information). We also set
α = 0.30(2) V MHz−1, determined by the lowest achievable ion height which, for illustration
purposes, we have set to 30 µm. The reason for choosing the minimum α value can be seen
when considering equation (35) which clearly shows that, for a given magnetic field gradient,
I ∝ α2. In the magnetic field gradient case, the chosen α sets Ksim and E0. For this case, again,
we choose M = 1, n � 1, Ksim = 2 and E0 = 0.01 which requires a magnetic field gradient of
30 500 ± 3500 T m−1 and is indicated by the cross in figure 15. This is achievable with a current
of approximately 1200 A yielding a coupling rate, J , of 240 Hz and a β = (2.8 ± 0.2) × 10−8.
From this simple example case one can conclude that using magnetic field gradients to provide
state dependent forces for use in quantum simulations using the methods and trap designs shown
in this work is quite challenging. However, geometries trapping ions in chains allow for sizeable
magnetic gradient induced couplings [39] and, so, a detailed investigation into optimizing the
wires used for producing magnetic field gradients in the geometries discussed in this work could
improve results.
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Figure 15. Graph showing the quantum simulation error (dashed curves) and the
Ksim (solid curves) of a 3 × 3 square type unit cell lattice with 171Yb+ ions as a
function of α and magnetic field gradient. Here traps are operated at cryogenic
temperatures.

8. Conclusion

2D arrays of surface ion traps have the potential to provide a technology with which quantum
simulations can be performed. In order for ion traps to be used successfully for this purpose a
greater understanding is required of how the various geometry parameters affect the ions trapped
above them. Throughout this work square, hexagonal and centre rectangular unit cell arrays of
microtraps have been modelled in the gap-less plane approximation using the Biot–Savart like
law in electrostatics [30]. Decoherence due to motional heating [18] was then compared to
the ion–ion interaction [24] to provide a ratio used to describe how much faster an ion–ion
interaction occurs in comparison to the motional decoherence, Ksim. This work investigates
how various parameters in the array can be adjusted in order to optimize the device’s ability to
perform quantum simulations and shows how the interactions can be made as homogeneous as
possible over the device. It has been shown how the homogeneity of the Ksim across an array
can be altered by varying the distance from the outer polygon to the edge of the rf electrode.
The distance required to maximize the Ksim homogeneity is also shown to vary as a function of
the total size of the lattice. The number of polygon sides, n, required to maximize Ksim has also
been found.

We have shown that the Ksim of a given lattice geometry can be maximized by reducing the
value of α. However, as α reduces so does the trap depth. This results in the conclusion that the
maximum Ksim of a geometry can be achieved by reducing the value of α until the trap depth
reaches a reasonable minimum value.

Using this information, optimal geometries as a function of α are presented. This has
been achieved by finding the relationships of polygon separation and radius with α for optimal
geometries. It was found that, for these optimal geometries, Ksim scales as α3. The individual
polygon separation and radius were found to possess a linear relationship with α and, therefore,
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larger geometries have been found to produce larger values of Ksim. Therefore, the optimal
lattice geometry is dependent solely on the value of α for a given ion mass and number of
trapping sites in the array.

We presented a case study for determining an optimum geometry consisting of nine
trapping sites arranged into square type unit cells for 171Yb+ ions. We showed how the value
of α can be chosen (and, therefore, the geometry dimensions) by taking into account the laser
power (or static magnetic field gradient) required to produce a state dependent force acting on
the ions, the Ksim and the error on the simulation. From this it has been found that to carry
out quantum simulations with reasonable Ksim and error values it is preferable to use traps
held at cryogenic temperatures as this reduces decoherence due to heating effects on the ions.
Other methods known to significantly decrease the anomalous heating rate include pulsed laser
electrode cleaning [40] and argon-ion beam electrode cleaning [41].

The scaling of anomalous heating has not yet been fully understood and is thought to
possess a dependence on the ion height, r , of between r−4 and r−2. In this work we have used
r−4, however, if the anomalous heating is found to possess a relationship with ion height nearer
r−2 then the equations in this work can be adjusted and this is discussed in more detail in
appendix B.

The relationships between lattice size and α with the polygon radii and separation obtained
using the method described in this work will allow for the construction of 2D surface trap lattice
arrays with high ratios of ion–ion interaction rates to decoherence rates, providing a system
which could be used to perform quantum simulations.
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Appendix A

The simulation error in equation (27) can be adjusted to take into account the heating of the
ions during a simulation. If this occurs the mean radial phonon number n will become time
dependent, n(t). It, therefore, follows that the error will also become time dependent and is
given by

E0(t) ≈
F2 M(n(t) + 1

2)

2h̄mω3
. (A.1)

The time dependent mean radial phonon number will be a function of the heating rate ṅ,
the interaction time, TJ , and the initial mean phonon number, n0, and is given by

n(TJ ) = n0 + ṅTJ (A.2)

yielding an error given by

E0(TJ ) ≈
F2 M(n0 + ṅTJ + 1

2)

2h̄mω3
. (A.3)
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It should be noted here that ṅTJ = 1/Ksim and so the error can be expressed as

E0(TJ ) ≈
F2 M(n0 + (1/Ksim) + 1

2)

2h̄mω3
. (A.4)

Equation (A.4) shows that as Ksim increases the error will tend towards that in equation (27)
in section 6.2 for the case of n̄ � 1. This is because higher values of Ksim mean that less heating
takes place during an interaction until the mean radial phonon number can be approximated as
constant.

Appendix B

In the work presented we have used a motional heating rate, ṅ, which has an r−4 scaling,
where r is the ion height. However the scaling of this anomalous heating has not yet been fully
understood and so it is conceivable that a different scaling will be required to describe the effect.
For this reason it is the aim of this appendix to outline the steps and main expressions required
to obtain an optimized 2D ion trap array with an anomalous heating rate which possesses an
arbitrary scaling with the ion height r−x .

For the case of optimizing the homogeneity of Ksim across an array the results shown
in section 4.1 will hold for any scaling of the heating rate with ion height. This is because
this optimization aims to give each trapping site in the array the same properties and this is
independent of the heating rate. The same applies to the optimization of the number of polygon
sides described in section 4.2.

Equation (19) describing Ksim for an optimized geometry can be altered to take into account
a different scaling of the heating rate with ion height. For an arbitrary scaling r−x this equation
can be expressed as

Ksim =
4F2mk(4+x)

r α(x−1)

4η2
geoπε0k3

A

. (B.1)

It can be seen in equation (B.1) that Ksim is proportional to α(x−1). The values of kr , kA and
kR (described in section 4.3) are independent of the value of x and, so, the optimum geometry
for a given α will be the same regardless of the scaling of the heating rate with ion height. Using
this procedure optimum geometries can be computed for an arbitrary scaling of the anomalous
heating with the ion height, r−x .
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