Thermal Power Cycles (H3053)

15 credits, Level 5

Spring teaching

The module will focus on developing the skills required to analyse heat engine performance (e.g. efficiency, power output, work and heat input) from cycle data.

  • Steam Power (Rankine) Cycle: beginning with a simple cycle and adding more refinements (feedheating, economiser etc.). Application to electrical power generation where the heat source is supplied by: i) fossil fuel and ii) nuclear fuel.
  • Reciprocating (Internal Combustion) Engine Cycles: beginning with the ideal Otto and ideal Diesel cycle and then considering the actual cycles that real engines use. The use of engine test beds to generate data for research and development.
  • Gas Turbine (Joule or Brayton) Cycle: simple, then add intercooler, heat exchanger and reheater. The use of gas turbines for aircraft propulsion (turbojet and turbofan) also the application of gas turbines to electrical power generation. Latest developments with concentrated solar energy as a heat source.
  • Cooling towers and air conditioning systems.
  • Refrigeration and heat pump analysis.
  • Hybrid systems: CHP, steam turbine with gas turbine

Teaching

66%: Lecture
34%: Practical (Laboratory, Workshop)

Assessment

30%: Coursework (Report)
70%: Examination (Unseen examination)

Contact hours and workload

This module is 150 hours of work. This breaks down into 49 hours of contact time and 101 hours of independent study.

This module is running in the academic year 2019/20. We also plan to offer it in future academic years. It may become unavailable due to staff availability, student demand or updates to our curriculum. We’ll make sure to let our applicants know of such changes to modules at the earliest opportunity.