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Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance 
of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and 
visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to 
see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use dur-
ing orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation 
behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultane-
ous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality 
increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes 
and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking 
at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
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Introduction

The world provides a host of information sources for an ani-
mal to use in controlling its behaviour, and we see in the nav-
igation of insects the use of a variety of sensory inputs from 
multiple sensory modalities. Multimodal cue use allows for 
redundant navigation strategies and this can increase robust-
ness, accuracy and overall foraging success. To maximise 
these benefits, we see that the multimodal aspects of sen-
sory systems and navigational strategies are adapted to the 
insects’ specific movement patterns, lifestyle and sensory 
ecology. The purpose of this review is to present the current 
knowledge of multimodal interactions during navigation in 
insects. Thus, we take examples from short-range sensori-
motor orientation behaviours up to large scale navigation, 
asking at each stage how cues are combined, what insects 

gain from different modalities and what we can learn about 
the mechanisms of these multimodal interactions.

Multimodal orientation: lessons 
from mosquitoes, moths and flies

One of the most fundamental orientation behaviours for 
many insects is to locate the source of an odour that may 
indicate food, a mating partner or oviposition site. We 
have all experienced how incredibly good mosquitoes are 
at finding us when we are enjoying a warm summer even-
ing outdoors. When female mosquitoes need a blood meal 
to get proteins for their eggs, they use a combination of 
sensory cues to successfully localise their host. Like other 
insects, mosquitoes are attracted by carbon dioxide natu-
rally exhaled by humans and other animals (Gillies 1980). 
Sensing  CO2 activates a strong attraction to visual objects 
which allows mosquitoes to approach a host and then when 
in closer proximity they eventually confirm a host using ther-
mal cues (van Breugel et al. 2015). This attraction to visual 
objects in the presence of  CO2 is an elegant way for mos-
quitoes to be directed towards potential victims (Fig. 1a). 
Considering the spatial scales over which these cues can 
be detected, the host-seeking behaviours are often triggered 
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sequentially, with the olfactory cues (Zollner et al. 2004) 
sensed from furthest away from the host followed by visual 
cues (Bidlingmayer and Hem 1980) and eventually thermal 
cues detected when very close to the target. Interestingly, 
the sensory modulation in mosquitoes is asymmetric with 
odours modulating vision but not vice versa, potentially 
reflecting the different effective distances of sensory modali-
ties (Vinauger et al. 2019).

Odour-gated attraction to visual cues has also been shown 
in other insects such as hawk moths (Raguso and Willis 
2002) and fruit flies (Fig. 1b). We all know the situation of 
having forgotten a delicious piece of fruit in the kitchen and 
ending up with a less delicious fruit and lots of fruit flies. 
To accurately approach such a decaying piece of fruit, flies 
require the use of both olfactory and visual cues. In general, 
it has been shown that multimodal interactions enhance per-
formance during perception (van Swinderen and Greenspan 
2003; Goyret et al. 2007; Chow and Frye 2008; van Breugel 

and Dickinson 2014) and learning (Rowe 2002; Guo and 
Guo 2005; Reinhard et al. 2006), but more specifically visual 
feedback is needed in flying insects for stabilizing an upwind 
flight (Reiser et al. 2004; Budick et al. 2007), which is a key 
component of plume tracking (Fadamiro et al. 1998; Frye 
et al. 2003). Specifically, the crossmodal interaction works 
because attractive odours enhance the gain of optomotor 
responses during flight (Chow and Frye 2008) and, there-
fore, through more precise flight, it is easier for the fly to 
track the spatial odour gradient (Duistermars and Frye 2010; 
Stewart et al. 2010).

So far, the highlighted studies have focused on flying 
insects and we don’t have the same detailed knowledge 
about similar cue integration in walking insects. It is known 
in walking cockroaches for instance, that plume-following 
behaviour is not enhanced in the presence of visual cues 
(Willis et al. 2011), however, ants do benefit from having 
visual information when following an odour plume, as paths 

Fig. 1  Multimodal orientation and navigation in insects. a Attraction 
to  CO2 exhaled by a host activates a strong attraction to visual cues in 
mosquitoes. Once the mosquito is close to the victim, thermal cues 
emitted by the host are detected and used for the final approach. Here 
and below, the  paths prior to and following sensory stimulation are 
shown as red dashed and red solid lines, respectively. b Drosophila 
flies accurately approach a piece of fruit using both olfactory and 
visual cues. The presence of visual cues enhances the tracking of an 

attractive odour plume. c Ants combine innate (e.g. path integration) 
and learnt navigational strategies to perform long and complex forag-
ing journeys. Idiothetic information, input from sky compasses (e.g. 
position of the sun and the polarised pattern in the sky shown as grey 
dashed lines), terrestrial visual information (e.g. from vegetation), 
prevailing wind direction, and odours emitted by the ants’ nest, dead 
arthropods and the environment (odour plumes shown in black) are 
shown here (colour figure online)
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are straighter with fewer turns (Buehlmann et al. 2020). 
Some differences may be a function of the sensory ecology 
being different for flying and walking insects, who encounter 
different challenges, even for shared orientation strategies. 
Volatile chemical compounds emitted by an odour source 
are dispersed, mixed, and diluted by air movements and form 
filamentous odour plumes with patchy spatiotemporal dis-
tributions of odour packets (Murlis et al. 1992, 2000; Riffell 
et al. 2008). However, the dynamics of olfactory informa-
tion (e.g. the temporal fluctuations) in an odour plume are 
very different at ground level and up in the air (Fackrell and 
Robins 1982; Crimaldi et al. 2002).

Multimodal navigation: lessons from ants 
and bees

While the challenge for some insects is to find a rotten fruit 
or a blood meal, some insects are capable of navigation over 
much larger scales, with ants and bees as the real champions. 
Such social insects are central place foragers and individu-
als become task specialists as expert navigators shuttling 
between their nests and foraging locations to collect food 
for the colony.

Cataglyphis desert ants are an example of one of these 
expert navigators, performing foraging runs of hundreds of 
metres when searching for sparsely distributed dead arthro-
pods in the harsh desert environment (Wehner 1987b; Buehl-
mann et al. 2014; Huber and Knaden 2015). Across ants, the 
use of pheromone trails to recruit and navigate between the 
nest and reliable food locations is a common strategy (Czac-
zkes et al. 2015). However, in addition to, or even instead 
of trail pheromones, many ant species can navigate using 
personal navigational strategies (Wehner et al. 1996; Wehner 
2003, 2008; Collett et al. 2013; Knaden and Graham 2016). 
In this review, we focus on such individually navigating ants 
whose recipe for navigational success is the clever combina-
tion of innate navigational strategies and the learning of key 
features from the environment (Fig. 1c; Wehner 2003, 2008; 
Collett et al. 2013; Knaden and Graham 2016).

One widespread innate navigational strategy is path inte-
gration (PI), where ants keep track of direction (Wehner 
and Mueller 2006) and distance travelled (Wittlinger et al. 
2006) and continually integrate this information such that 
they can travel directly to their nest from any point dur-
ing a foraging journey (Wehner and Srinivasan 2003; Ron-
acher 2008; Collett 2019). This innate strategy allows ants 
to explore the environment while being safely connected to 
the nest and, furthermore, gives foragers the chance to learn 
relevant environmental cues about locations and foraging 
routes. Such learnt information about routes (olfactory cues: 
(Buehlmann et al. 2015; Huber and Knaden 2017), visual 
cues: (Collett et al. 1992; Baader 1996; Kohler and Wehner 

2005; Macquart et al. 2006; Mangan and Webb 2012)) and 
important places (olfactory cues: (Steck et al. 2009), visual 
cues: (Wehner and Raeber 1979; Wehner et al. 1996; Knaden 
and Wehner 2005), tactile cues: (Seidl and Wehner 2006), 
magnetic cues: (Buehlmann et al. 2012a), vibration cues: 
(Buehlmann et al. 2012a), thermal cues: (Kleineidam et al. 
2007)) can come from a range of sensory modalities and is 
essential for successful and accurate navigation.

Bees are fascinating navigators too, travelling up to 
several kilometres when visiting flower patches (Janzen 
1971; Osborne et al. 2008; Pahl et al. 2011; Woodgate et al. 
2016b). Within these foraging patches, we see multimodal-
ity for the successful detection of flowers, with bees using 
a combination of floral cues, such as temperature (Harrap 
et al. 2017), tactile cues (Kevan and Lane 1985), odours 
(Bhagavan and Smith 1997), floral iridescence (Whitney 
et al. 2009), flower pattern (de Ibarra and Vorobyev 2009) or 
colours (Lawson et al. 2017). Loaded with pollen or nectar 
from the flower, bee foragers then navigate back to their hive 
using a combination of path integration (Srinivasan 2015) 
and learnt terrestrial visual cues (see e.g. (Towne et al. 2017; 
Menzel et al. 2019)).

In the following section, we highlight interesting features 
of multimodality within and between the navigational strat-
egies highlighted above. We hope to demonstrate themes 
within insect navigation mechanisms that show how mul-
timodality helps animals adapt to their specific habitat and 
increase robustness to complex dynamic environments.

Multimodality within the insect compass 
system

Idiothetic information alone cannot guide animals over long 
distances (Cheung et al. 2007), as shown by the curved paths 
of humans trying to maintain a straight course in featureless 
environments (Souman et al. 2009) or the failure of wander-
ing spiders to accurately return to a safe place when exter-
nal orientation cues are removed (Seyfarth et al. 1982). To 
compensate for such errors, insects have evolved an array 
of compass systems that allow for more precise orientation, 
as most beautifully demonstrated by the yearly migrations 
of millions of monarch butterflies from their summer feed-
ing grounds in southern Canada to roosting sites in central 
Mexico (Brower 1995) relying on a highly tuned sense of 
direction (Reppert et al. 2010).

Across insects, the most well-studied compass system 
is the highly conserved celestial compass (Fig. 2a; ants: 
(Wehner 1984; Collett and Collett 2000); bees: (Hardie 
1986); wasps: (Ugolini 1987); flies: (Weir and Dickinson 
2012; Giraldo et al. 2018); desert locusts: (Mappes and 
Homberg 2004); monarch butterflies (Merlin et al. 2012); 
dung beetles: (el Jundi et al. 2019)) by which animals track 
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their orientation with respect to the solar or lunar azimuth, 
through both direct visual detection of the light source (sun 
compass: (Wehner and Mueller 2006; Beetz and el Jundi 
2018; Santschi 1911); moon compass (Dacke et al. 2004)), 
or by inference of its position through observation of cor-
related chromatic intensity gradients (diurnal: (Pfeiffer and 
Homberg 2007; el Jundi et al. 2014)), and polarised light 
patterns in the sky (diurnal: (Wehner 1976; Wehner and Lab-
hart 2006; Wehner and Mueller 2006); nocturnal: (Wehner 
and Duelli 1971; Dacke et al. 2003a, b)). Theoretically, the 
insect visual system could derive a celestial compass bearing 
accurate to less than one degree (Gkanias et al. 2019) but as 
the cues constantly move with respect to their observer, due 
to the rotation of the earth, compensation mechanisms are 
required for long-term use (see e.g. (Wehner and Lanfran-
coni 1981; Dyer 1987; Towne and Moscrip 2008)).

Insects can also derive local short-term compasses by 
tracking their orientation relative to visual features in 
their surroundings (Fig. 2b; Lent et al. 2010; Seelig and 
Jayaraman 2015; Buehlmann et al. 2016; Varga and Ritz-
mann 2016; Woodgate et al. 2016a)) and the prevalent 

wind direction (Fig. 2c; Wehner and Duelli 1971; Bell 
and Kramer 1979; Heinzel and Bohm 1989; Wolf and 
Wehner 2000; Mueller and Wehner 2007; Chapman et al. 
2008; Dacke et al. 2019)) most likely detected through the 
Johnson’s organ in the antennae (Wehner and Duelli 1971; 
Gewecke 1974; Dacke et al. 2019).

Furthermore, insects can also track their orientation 
with respect to the Earth’s magnetic field (Fig. 2d; Collett 
and Baron 1994; Guerra et al. 2014; Dreyer et al. 2018; 
Fleischmann et al. 2018)) which is largely stationary, but is 
likely much less accurate than a celestial compass (Mour-
itsen 2018). Insects sense their bearing with respect to 
the magnetic North–South axis either through trophocyte 
cells containing super-paramagentic magnetite that change 
activity relative to an induced magnetic field (Hsu and Li 
1994; Hsu et al. 2007), and/or crypotchrome activity in the 
visual pathways (Gegear et al. 2008; Phillips et al. 2010; 
Reppert et al. 2010).

Finally, despite its inherent susceptibility to accumula-
tive errors, insects can also track their orientation using 
proprioceptive cues derived from leg joint angles, and/or 

Fig. 2  Multimodal compasses in insects. a Insects derive their ori-
entation with respect to the solar and lunar azimuths either through 
direct observation (1.) or indirect measures (2. detection of the con-
trasolar/contralunar azimuth which has the highest degree of polarisa-
tion; 3. measurement of chromatic gradients; 4. sampling the polar-
ised light pattern). b Insects also orient with respect to prominent 
visual features such as the visual panorama (top) or the milky way 
(bottom). Background fisheye images are sampled from dung beetle 
habitats in South Africa and provided by Dr James Foster. c Consist-
ent wind provides a short-term orientation cue known to be used by 

ants and dung beetles. d Insects derive their orientation with respect 
to the Earth’s North–South axis but the sensory pathways remain 
unresolved. e Proprioception tracks changes in animal heading itera-
tively, which is suitable for direction tracking over short durations, for 
instance, changing direction alters haltere orbits. Insect species com-
bine these multimodal and multiscale compasses differently depend-
ing on their navigational need, for example, simple course stabilisa-
tion in dung-beetles, central-place navigation in ants, and long-range 
migration in butterflies
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the halteres (Fig. 2e; Wehner 1992; Kim and Dickinson 
2017)).

Taken as a whole, the evidence above shows the exploi-
tation of a vast range of sensory cues. Insects are able to 
combine these multiscale, multireference, and multimodal 
compasses in different, flexible manners depending on the 
context or particular ecology. For example, dung beetles try-
ing to maintain a straight course away from the crowded 
dung pile, simply minimise any change in sensory input 
across their short journey (el Jundi et al. 2016, 2019; Dacke 
et al. 2019), whereas central place foragers that visit the 
same feeding site over successive days, or migratory insects 
that navigate for long periods per day, use matched filters 
(Wehner 1987a, 1989; Bech et al. 2014; Warrant 2016) to 
derive a robust, time-invariant, geocentric compass. Desert 
ants and dung beetles demonstrate the flexible transfer of ori-
entation information from one modality to another (wind to 
celestial: (Wystrach and Schwarz 2013; Dacke et al. 2019); 
visual to celestial (Schwarz et al. 2017a); between polarisa-
tion and sun compass (Lebhardt and Ronacher 2015)) to 
markedly extend their behavioural capacity. Moreover, mul-
tiple celestial cues can be used simultaneously and when 
cues are experimentally set in conflict, the insects’ headings 
often represent an intermediate direction with different cues 
weighted depending on the relative strength of their input 
(Lebhardt and Ronacher 2014; Wystrach et al. 2014).

How sensory ecology drives the balance 
of cue use

One way of looking at how cues from different modalities 
interact with each other is to look at how different species 
have adapted to their particular habitat or sensory ecology. 
We have seen in the previous section that dung beetles can 
use multiple celestial cues such as the sun, the moon and 
the pattern of polarised light for their straight-line orienta-
tion away from the dung pile. Interestingly, when we look 
at celestial cue use in diurnal and nocturnal beetles experi-
encing different light levels, we find the same orientation 
behaviours in both species, but we see differences in the cue 
weighting (el Jundi et al. 2015), which dynamically allows 
beetles to successfully orient across different environmen-
tal conditions using whatever compass cue is available and 
reliable.

In individually foraging desert ants that don’t use pher-
omone trails, there are interesting interactions between 
path integration and visual guidance that vary with habi-
tat. Closely related desert ant species inhabit similar eco-
logical niches as they are all thermophilic scavengers, but 
their environments can differ fundamentally, with different 
levels of clutter and vegetation, thus, different amounts of 
visual information available for navigation. For instance, 

North African Cataglyphis fortis foragers navigate through 
sparsely vegetated salt pans while Australian Melophorus 
bagoti ants inhabit a densely cluttered habitat. We know 
from both ant species that they use the visual panorama for 
navigation (C. fortis: (Huber and Knaden 2015); M. bagoti: 
(Graham and Cheng 2009a, b)). But unsurprisingly, we see 
that C. fortis ants inhabiting an environment that is poor in 
visual information rely strongly on path integration, while 
M. bagoti ants rely more strongly on terrestrial visual cues 
and show less trust in their PI vector (Buehlmann et al. 
2011). Looking across multiple species, we see a general 
trend that ants were taken from a feeder and released in an 
unfamiliar location follow path integration before starting 
a systematic nest search (Wehner and Srinivasan 1981; 
Schultheiss and Cheng 2011), with the proportion of the 
home vector followed being inversely proportional to the 
typical density of vegetation (Cataglyphis fortis: (Buehl-
mann et al. 2011); Melophorus bagoti: (Narendra 2007b; 
Buehlmann et  al. 2011; Cheng et  al. 2012; Schultheiss 
et al. 2016); Formica japonica: (Fukushi 2001; Fukushi 
and Wehner 2004); Gigantiops destructor: (Beugnon et al. 
2005)). These results indicate that the weighting of differ-
ent navigational strategies differs across species, with ants 
from visually rich habitats relying less heavily on PI (see 
also (Cheung et al. 2012)). Moreover, these species-specific 
behavioural differences are further shaped by the ants’ very 
specific local habitat characteristics. Experiments performed 
with M. bagoti ants reveal that ants from a nest in a highly 
cluttered area relied less strongly on PI when displaced to an 
unfamiliar test field than ants from a more open area (Cheng 
et al. 2012). Hence, a crucial factor in these displacement 
tests is the visual mismatch between the ants’ memorised 
views and the views experienced at the novel location (see 
also (Islam et al. 2020)). Moreover, experienced ants with a 
strong memory of learnt visual scenes along their habitual 
foraging route will experience a higher visual mismatch 
when displaced to a novel location than naïve ants, and thus 
run off a shorter proportion of their home vector when dis-
placed (Schwarz et al. 2017b).

Above we have seen how interactions between path inte-
gration and visual guidance are adaptive and tailored to a 
species’ sensory ecology. We see similar interactions in sys-
tematic nest-search behaviours. If an ant runs off its entire PI 
vector, is captured near its nest entrance and then released 
at a novel location, it will search for the nest (Wehner and 
Srinivasan 1981; Schultheiss and Cheng 2011). Upon 
release, ants from featureless environments will initially 
head in a random direction before producing a search distri-
bution that is symmetrical about the release point (Wehner 
and Srinivasan 1981). Ants that are experienced in visually 
rich environments do not show these random initial direc-
tions when displaced, rather, their bearings are biased in 
the nest-to-feeder direction (Wystrach et al. 2013), i.e. the 
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ants walk opposite to the direction they had just travelled 
(Fig. 3a). Experiments show that it is the recent experience 
of the visual surroundings near the nest that leads to this 
backtracking behaviour (Wystrach et al. 2013; Graham and 
Mangan 2015). In summary, we see adaptive interactions 
between navigational strategies and the nature of these inter-
actions depends on the animals’ sensory ecology as well as 
individual experience.

How insects apply multimodal information

Ants can benefit from the use of multiple navigational cues 
(see above) because in some situations cues act additively in 
determining the ants’ path accuracy (Buehlmann et al. 2020). 
However, in addition to a general improvement in accuracy, 
there are nice examples of more complex interactions in how 
multiple cues interact to control spatial behaviour.

The egocentric nature of path integration means that 
small errors accumulate along a path (Sommer and Wehner 
2004; Merkle et al. 2006). This is why it is so important 
to supplement PI with the learning and use of other cues 
(Knaden and Graham 2016). Thus, at most times in a forag-
er’s life an ant will have PI, as well as learnt environmental 
information, available for guidance between the nest and a 
foraging site. The integration of path integration and vision 
is relatively well studied, and behavioural experiments have 
shown that these cues are used simultaneously, i.e. they are 
redundant navigational strategies that contribute to an ant’s 
heading direction during its journey (Narendra 2007a, b; 
Reid et al. 2011; Collett 2012; Legge et al. 2014) and might 
even be weighted optimally based on their reliability (Vick-
erstaff and Cheung 2010; Legge et al. 2014; Wystrach et al. 
2015). A typical way of looking at such interactions between 
PI and visual guidance is to observe the ants’ behaviour 
when the direction indicated by the path integration system 
is at odds with the information from visual cues. In experi-
ments, creating a subtle conflict between the PI vector and 
the direction indicated by the familiar visual scene usually 
results in ants heading in intermediate, compromise direc-
tions (Fig. 3b; Collett 2012; Wehner et al. 2016)).

Another example of how visual guidance interacts 
with other guidance systems comes from ants walking 
backwards which they do when they have to move a large 
piece of food (Fig. 3c). When moving backwards, ants are 
able to approach their nest either under the control of PI 
(Pfeffer and Wittlinger 2016) or without PI information 
(Ardin et al. 2016), the latter case suggesting guidance 
by familiar visual cues. One notable feature of ants’ paths 
when moving backwards is that they occasionally drop 
their piece of food and perform small loops nearby (Pfeffer 
and Wittlinger 2016). During these loops, familiar visual 
scenes may be experienced that allow the ants to set an 

accurate direction for the route once they reacquire the 
food and resume their journey, albeit with their heading 
being controlled by celestial compass information, not the 
familiar visual scene, whilst moving backwards (Schwarz 
et al. 2017a).

We have these interesting examples of how PI and 
visual guidance influence the behaviour of navigating 
ants, but we can also ask about the role of olfaction in 
individually navigating ants and how odour use interacts 
with other navigational strategies. Following an attractive 
odour plume up to its source (Fig. 1) is a common strategy 
seen in many insects such as flies (Budick and Dickinson 
2006; van Breugel and Dickinson 2014), moths (Baker and 
Kuenen 1982; David et al. 1983; Kennedy 1983; Carde 
and Willis 2008; Willis et al. 2013), cockroaches (Wil-
lis and Avondet 2005) or ants (Wolf and Wehner 2000; 
Buehlmann et al. 2012b, 2014). Desert ants, when search-
ing for perished arthropods, combine a high sensitivity to 
food odours with specific movement patterns that increase 
the time they spend moving crosswind (Buehlmann et al. 
2014). This combination of wind and odour information 
use increases food detection speeds in the harsh Tunisian 
salt pan (Fig. 3d). After discovering a food item, the next 
challenge is to safely return back to the nest where olfac-
tory information can also be useful (Steck et al. 2009). 
Homing C. fortis follow the PI vector back to the close 
vicinity of the nest from where they pinpoint it by walking 
upwind, i.e. they follow a nest-derived  CO2 plume back 
to the nest (Buehlmann et al. 2012b). In homing ants, PI 
overrides olfactory information and ants only respond to 
nest odours when they are close to home, which is crucial, 
as homing ants may pass through multiple  CO2 plumes 
emanating from foreign nests at earlier stages of their 
homeward journey (Buehlmann et al. 2012b). However, 
in the same species, foraging ants heading to a regular 
foraging area always find food odours attractive and thus 
olfactory information overrides PI information about 
feeder locations (Buehlmann et al. 2013). This is a clever 
way of avoiding entering a wrong nest but maximising 
foraging efficiency.

We have seen before that compass information can be 
transferred from one modality to another (e.g. (Dacke et al. 
2019)). In ants, we see additional interactions between the 
visual compass and wind information when they are blown 
away from their familiar route by a sudden gust (Fig. 3e). 
The moment before they are blown away, ants ‘clutch’ on 
the ground to resist the wind and this is the moment they 
compute and store the compass direction of the wind using 
their current heading and the relative direction of the wind 
to their body (Wystrach and Schwarz 2013). If their clutch-
ing behaviour fails, and they are blown away, they can use 
the integrated information to walk back in the direction 
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Fig. 3  Examples of multimodal interactions in navigating ants. a If an 
ant runs off her entire PI vector (1.), is captured near her nest entrance 
and displaced and released at a novel location (2.), she will search for 
the nest. Ants from visually rich environments do not show random 
initial directions, rather, their bearings are biased in the nest-to-feeder 
direction (3.). The recent experience of the visual surroundings near 
the nest leads to this backtracking behaviour. b Ants are trained to 
navigate along a route (shown as arrows) using PI and visual guid-
ance (1.). PI and visual cues are used simultaneously and when infor-
mation from PI and visual guidance are in conflict (2.), ants head in 
intermediate directions (shown in blue). c Ants with a large piece of 
food walk backwards (1.). Occasionally they drop their piece of food 
and perform small loops, allowing familiar visual scenes to correct 
their heading direction (2.). Backwards walking is resumed with their 
updated heading subsequently controlled by celestial compass infor-
mation (3.). d Foraging desert ants combine a high sensitivity to food 

odours with specific movement patterns that increase the time they 
spend moving in crosswind paths and this combination of wind (1.) 
and odour information (2.) increases food detection speeds. e When 
there are strong gusts of wind, ants ‘clutch’ to the ground to resist 
being blown away, and compute and store the compass direction of 
the wind using their current heading and the relative direction of the 
wind to their body (1.) After they are blown away (2.), ants can use 
the integrated information to walk back in the direction opposite to 
the one they had just been blown away (3.). f At the beginning of 
each ants’ foraging career or when the appearance of the world has 
changed (1.), ants start with short excursions in the close vicinity of 
the nest (2.). The characteristically structured elements of these learn-
ing walks are shaped by multiple information sources, such as PI, 
terrestrial visual information, wind direction, or the earth’s magnetic 
field (shown as grey lines in the sky) (colour figure online)
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opposite to the one they had just been displaced (Wystrach 
and Schwarz 2013).

How innate behaviours support learning

In the examples of orientation and navigation above we 
have shown how multimodal interactions shape behaviour. 
Such interactions are also present during the learning of 
environmental cues. The topic of insect learning, in gen-
eral, is discussed elsewhere (e.g. reviewed in (Avargues-
Weber et al. 2011; Giurfa 2013; Perry et al. 2017)) and 
we focus in this section on how innate behaviours shape 
learning for navigation. At the beginning of each forager’s 
career or when the appearance of the world has changed, 
individuals do not immediately perform long foraging 
journeys but implement little excursions in the close vicin-
ity of the nest and these choreographed movements allow 
the learning of key features from the environment (Collett 
and Zeil 2018; Zeil and Fleischmann 2019). These so-
called learning walks or flights are essential to learn infor-
mation required on subsequent foraging journeys (ants: 
(Judd and Collett 1998; Nicholson et al. 1999; Wehner 
et al. 2004; Graham and Collett 2006; Mueller and Wehner 
2010; Stieb et al. 2012; Fleischmann et al. 2016, 2017; 
Grob et al. 2017; Jayatilaka et al. 2018), bees: (Philip-
pides et al. 2013; Degen et al. 2015), wasps: (Collett and 
Lehrer 1993; Stuerzl et al. 2016)). The characteristically 
structured elements of these paths are matched to the ants’ 
visual ecology (Fleischmann et  al. 2017) and are also 
shaped by multiple information sources (Fig. 3f), such as 
PI (Graham et al. 2010; Mueller and Wehner 2010), wind 
direction (Vega Vermehren et al. 2020) or the Earth’s mag-
netic field (Fleischmann et al. 2018).

Innate navigational strategies such as path integration, 
pheromone trails and innate responses to ecologically rel-
evant stimuli can also all facilitate learning (Voss 1967; 
Collett 1998, 2010; Heusser and Wehner 2002; Collett 
et al. 2003; Graham et al. 2003, 2010; Mueller and Weh-
ner 2010; Graham and Wystrach 2016). PI safely connects 
an ant with its nest during a learning walk, but it is also 
essential for longer distance scaffolding. For instance, 
ants using PI in unfamiliar terrain will take consistent 
and direct paths, potentially simplifying the learning of 
visual information along a route (Collett et  al. 2003). 
Importantly, although PI plays an important role in the 
learning of visual information, PI itself involves little or 
no learning (Narendra et al. 2007; Merkle and Wehner 
2009). Moreover, the visual cues can later be retrieved 
and utilised independently of the path integration system 
(Collett et al. 1992, 2001; Kohler and Wehner 2005; Man-
gan and Webb 2012). Another interaction between PI and 
visual learning is the modulation of visual experience via 

walking speed (Buehlmann et al. 2018) where the ants’ 
speed is modulated in a way that might help ants search 
for, utilise or learn environmental information at important 
locations. Therefore, path integration mediated movement 
characteristics might assist ants in adequately learning or 
responding to sensory cues at locations of importance, by 
allowing those other cues to act for a longer period of time 
(see also (Chittka et al. 2009)).

Learning is facilitated by innate strategies but there are 
also synergies between sensory modalities when different 
cue types are being learnt. Ants learning bimodal cues (vis-
ual and olfactory cues presented together) learn faster than 
ants that only have single cues to learn (Steck et al. 2011). 
Interestingly, we see that bimodal landmarks are first learnt 
as their individual components but later stored as a unit. 
That means, although initially the presence of a second sen-
sory cue enhances learning performance of a unimodal cue 
(Steck et al. 2011), the components of the bimodal cue are 
often fused together after several training trials and ants will 
no longer respond accurately to either of the components 
presented alone (Steck et al. 2011; Buehlmann et al. 2020). 
Although this cue binding can be shown to be dynamic and 
depends both on the navigational context and the specific 
information provided by each modality (Buehlmann et al. 
2020).

Conclusions

In this review, we have shown the rich and diverse ways 
that evolution has provided insects with mechanisms for 
orientation and navigation using multimodal information. 
We have seen that multimodal strategies and information 
sources interact in many ways and navigational strategies 
are tuned to the current needs of behaviour and the specific 
sensory ecology. This further confirms that insects, despite 
their small brains, are sophisticated and dynamic in their 
spatial cognition and not in the least simple or robotic.
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