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Aims & Objectives 
Aims 
1. To show where regression relatedness, sex-specific 
reproductive value, and sex-specific mating success come 
from and how they affect the efficiency by which one 
organism can transmit another's genes.  
2. To show how to combine these three parameters to 
determine the value of one organism to another (kin value) and 
so to determine the interests of different colony members over 
colony reproduction.  
Objectives 
1. To understand in general terms what regression relatedness, 
sex-specific reproductive value, and sex-specific mating 
success mean and where they come from. 
2. To understand how to combine regression relatedness, sex-
specific reproductive value, and sex-specific mating success to 
determine kin value. 

Passing on Genes 
Indirectly  

(In a Social Context) 

Passing on Genes Indirectly 
Workers can generally rear a range of individuals into reproductives: 
  males versus females (young queens) 

 brothers versus sons versus nephews 
 full sister queens versus half sister queens 

Which of these should be reared? 
In what ratio (sex ratio) should males and queens be reared? 

Is there conflict? Among workers? Between workers and queen? 
Should workers allow each other to produce males? 

In general, natural selection will cause a worker to rear those individuals 
which are best at transmitting the worker’s genes. These are the 
individuals with the greatest kin value. Kin value has three components 

 regression relatedness 
 sex-specific reproductive value 
 sex-specific mating success.  

Conflicts & Conflict 
Resolution in Social 

Groups 

How Did Eusociality Evolve? 

Charles Darwin (1859) 

Not solved  

William Hamilton 1964 

Solved 

Inclusive Fitness/Kin Selection 

Workers help rear kin (e.g., brothers & 
sisters). Pass on genes indirectly. 



Inclusive Fitness Theory 
W. D. Hamilton 

The Genetical Evolution of 
Social Behaviour 

Journal of Theoretical Biology. 
1964. 7: I-52 

“Inclusive Fitness Theory” 
(also known as “Kin Selection”) 
“The social behaviour of a species evolves in such a way that 
in each distinct behaviour-evoking situation the individual will 
seem to value his neighbours’ fitness against his own 
according to the coefficients of relationship appropriate to that 
situation.” 
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Determining genetic relatedness by probabilities of gene transmission 

Queen Honey Bee Laying Egg 

Most males are the queen’s sons. Why are few workers’ sons reared? 

Worker Policing in Honey Bee 

Worker policing: workers may prevent each other from reproducing by 
killing worker-laid eggs. Worker policing was predicted from IF theory. 

Foster & Ratnieks 2000 Nature

Worker Policing in Saxon Wasp 

Worker policing occurs in many species, like Dolichovespula saxonica 
the Saxon wasp. It is an important conflict resolution mechanism.  

Crime Detection & Prevention 

Policing in humans both detects and prevents crime. Crime prevention is 
probably more important than detection in reducing the harm done to 
society by criminal actions, and was the philosophy behind setting up the 
London force in the early 19th century. In insect societies, worker 
policing acts in both ways. By killing worker-laid eggs, police workers 
“detect” and “solve” antisocial acts. But in societies with effective egg 
policing few workers (honey bee, <0.1%) even try to lay eggs.    



Regression Relatedness 

Regression Relatedness to Self or Clonemate 
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’ Here we compare the genotype of 
one individual (donor) with the 
genotype of another individual 
(recipient) at a single locus. The 
genotypes are converted into 
numbers by giving a score 
depending on how much of the 
genotype is allele A. Thus, aa 
scores 0, Aa scores 0.5, & AA 1. 
There is a perfect correlation 
between the scores of the two 
individuals, as they always have the 
same genotype. If donor is aa so is 
recipient; if donor is AA so is 
recipient. 
The gradient of the regression 
through these points is 1.  
The regression relatedness is 1.   

Regression Relatedness to Random Individual 
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Here we compare the genotype of a 
donor individual with the 
genotypes of randomly chosen 
individuals in the same population. 
The gradient of the regression of 
the gene scores is zero meaning 
that there is no correlation between 
the scores of the donor and the 
recipients. 
The regression relatedness is 0. 
Note: the recipients are aa, Aa, or 
AA. The solid blue points on the 
graph are averages over many 
randomly chosen recipients, whose 
individual genotypes are shown by 
the open blue circles.  
Note: the frequency of allele A in 
the population affects the intercept 
of the line (where it crosses the y-
axis) but not the gradient.   

Freq. of allele A in population 
0.25 0.67 

Regression Relatedness Mother to Son 
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Here we compare the genotype of a 
haplodiploid female donor 
individual with her son. 
The son is haploid so can only have 
genotypes a and A, which score 0 
and 1. (0% and 100% of his 
genotype at that locus is A.)  
The son gets all his genes from his 
mother. If the mother is AA her son 
must be A. If the mother is aa her 
son must be a. If the mother is Aa, 
then half her sons are a and half are 
A. the average score (shown) is 0.5. 
The gradient of the regression 
through these points is 1.  
The regression relatedness is 1. 
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Regression Relatedness Mother to Daughter 

Donor allele ‘score’ 
0 (aa) 0.5 (Aa) 1 (AA) 

Here we compare the genotype of a 
haplodiploid or diploid female donor 
individual with her daughter. 
The daughter gets half her genes from 
her mother and half from her father. If 
we assume that the father and mother 
are unrelated (outbreeding) then the 
genes from the father are essentially 
taken at random from the population. 
If mother is AA, daughter gets one A 
allele from her. From father she gets 
the average of the population: A with 
probability 2/3 and a with probability 
1/3. Her total score is therefore 
1.666/2 =0.833. 
If mother is aa, average daughter 
score is 0.666/2 = 0.333. If mother is 
Aa, daughter score is 1.166/2 = 0.583. 
Gradient of regression is 0.5.   

Note: Allele A has frequency 
2/3 in population.  
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Regression Relatedness Mother to Daughter 

Donor allele ‘score’ 
0 (aa) 0.5 (Aa) 1 (AA) 

If anyone is struggling with the 
previous slide this may help. 
The average contribution from the 
father is an A allele with probability 
2/3 and an a allele with probability 
1/3. These probabilities are not 
from any one father, who must be 
either a or A and so can only 
contribute either a or A. They are 
from many sets of parents all in the 
same population. On average, 2/3 
of the fathers are A and 1/3 a. 
The graph now also shows the 
average contribution of the father 
(an A allele with probability 2/3 
giving a score of 1/3), and the 
contribution of the mother to the 
overall score of the daughter. 
Essentially, the random genes from 
the father halve the gradient.     

Note: Allele A has frequency 
2/3 in population.  
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Regression Relatedness Mother to Daughter 

Donor allele ‘score’ 
0 (aa) 0.5 (Aa) 1 (AA) 

This figure is the same as that 
before except the frequency of 
allele A in the population is now 
only 1/4. 
Note that the gradient remains 0.5 
even though the intercept has 
changed. 
The father’s average contribution to 
the A score has diminished to 1/8. 
The mother’s contribution is 
unchanged.       

Note: Allele A has frequency 
1/4 in population.  
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Regression Relatedness Son to Mother 

Donor allele ‘score’ 
0 (a) 1 (A) 

We now consider the reverse situation 
from a few slides ago, with a donor 
son and a receiver mother. 
The son receives all his genes from his 
mother but she only gives half her 
genes to him. This is because she is 
diploid and he is haploid. In the 
mother is outbred her two alleles at a 
locus will not be correlated.  
If the son is A the mother can be either 
AA or Aa. On average, 2/3 will be AA 
and 1/3 Aa. So the average score of the 
mothers is (1.666/2) = 0.833. If the son 
is a the mother can be either Aa or aa. 
Here average score is 0.666/2 = 0.333. 
The gradient is 0.5, so regression 
relatedness is 0.5.  
This shows that the regression 
relatedness of son to mother is 
different from mother to son.  

Note: Allele A has frequency 
2/3 in population.  
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Regression Relatedness Full Sisters 

Donor allele ‘score’ 
0 (aa) 0.5 (Aa) 1 (AA) 

The gradient is 0.75. 
Regression relatedness is 0.5. 

The next slide shows how to work 
it out.  

Note: Allele A has frequency 
2/3 in population.  
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Regression Relatedness Full Sisters 
It is a bit trickier to work out the relationships between sisters. A more 
detailed treatment is given in the long handout. Here we will just 
consider the cases of AA and aa donors for full sisters.  
Full-sisters have the same father. Their father is haploid so both receive 
the same allele from him, either A or a. So if the donor is AA she must 
have received an A allele from her father, and her full sister must have 
the same A allele. Similarly, if the donor is aa she must have received an 
a allele from her father, and her full sister must have the same allele.   
Now consider the maternal genes. If the donor is AA, she also received a 
A allele from her mother. There is a 50% chance that her sister will also 
receive this allele, and a 50% chance that her sister will receive the other 
allele. The chance that the other allele is A is the frequency of A in the 
population (2/3), assuming the mother is outbred. Thus, the sister has a 
0.5x1 + 0.5x(2/3) = 5/6 chance of receiving an A allele from mum. 
Overall, the allele score of the full sister is 0.5x1 + 0.5x5/6 = 11/12. 
If the donor is aa she received an a from both parents. The chance that 
her full sister received an A allele from their father is 0. The chance that 
she received an A allele from the mother is  0.5x0 + 0.5x(2/3) = 2/6. 
Overall, the allele score of the full sister is 0.5x0 + 0.5x2/6 = 2/12.  

Learn These Regression Relatednesses 
Donor  Recipient   Regression Relatedness 
Female  Full-sister     0.75 
Female  Half-sister     0.25 
Female  Mother, Daughter    0.5 
Female  Son      1 
Female  Mother’s son (Brother)   0.5 
Female  Full sister’s son (Full nephew)  0.75 
Female  Half-sister’s son (Half nephew)  0.25 

Male   Sister      0.25 
Male   Daugher     0.5 
Male   Brother     0.5 
Male   “Son”—mate’s son    0 

Hints: 1. There is no difference in relatedness if you switch donor and 
recipient if they are the same sex. Thus, relatedness of mother donor to 
daughter recipient is the same as daughter donor to mother recipient. 
There is a difference, however, if donor and recipient are of different 
sexes. 2. A female’s relatedness to another female is the same as her 
relatedness to that female’s son.       

Regression Relatednesses. Notation 
Notation: when writing regression relatednesses in 
formulae use the notation brd,i where r is the recipient, 
d the donor, and i the colony or colonies or population 
you are referring to. 
For example bqw,i could mean "the regression 
relatedness of the workers (donors) in colony i to the 
young queens (recipients) being reared in colony i". 
Because of haplodiploidy bmale,female ≠ bfemale,male so it is 
important to consistently put the donor second when 
donor and recipient are of different sexes. 
However, relatednesses within a sex are the same 
when donor and recipient are switched. For example, 
bdaughter,mother = bmother,daughter  



Life for Life Relatednesses 
In most books and articles relatedness is given in the 
life-for-life format. Essentially, this format combines 
regressions relatedness with sex-specific reproductive 
value.  
It is difficult to use this format when studying sex ratio 
optima when there is male production by workers. 
It is also easier to understand how the theory is 
developed when keeping relatedness and sex-specific 
reproductive value separate. 
For that reason, this course uses the regression 
relatedness format.  

Life for Life & Regression Relatednesses 
Donor  Recipient   Relatedness: Reg       Life for Life 
Female  Full-sister     0.75   0.75 
Female  Half-sister     0.25   0.25 
Female  Mother, Daughter    0.5   0.5 
Female  Son      1   0.5 
Female  Mother’s son (Brother)   0.5   0.25 
Female  Full sister’s son (Full nephew)  0.75   0.375 
Female  Half-sister’s son (Half nephew)  0.25   0.125 

Male   Sister      0.25   0.5 
Male   Daughter     0.5   1.0 
Male   Brother     0.5   0.5 
Male   “Son”—mate’s son    0   0 

The differences occur when we consider relatedness between sexes. Life 
for life is half regression when the donor is female and the recipient male 
(e.g., female workers rearing males), and double regression when the 
donor is male and the recipient female (e.g., father rearing daughter—
which does not happen).   

Sex-Specific 
Reproductive Value 

Diploid 
Both sexes have father 

Gene Transmission Between Generations 
Haplodiploid 

Males have no father 

Diploid 
Both sexes have father 

Haplodiploid 
Males have no father 

Gene Transmission Between Generations 
Diploid 

Both sexes have father 
Haplodiploid 

Males have no father 

Gene Transmission Between Generations 



Worker Reproduction & Gene Transmission 
Eusocial Haplodiploid 
Males workers’ sons 

Diploid 
Both sexes have father 

Haplodiploid 
Males have no father 

Eusocial haplodiploid 
all males queens’ sons 

Worker Reproduction and Gene Transmission 

p*f = pm/2 + pf/2 = (pm + pf)/2 

p*m = pf 

Equations can represent the diagram on the 
left showing gene transmission from one 
generation to the next. pf and pm mean the 
gene frequency of the “red” genes in females 
and males; * means in the next generation.  

Iterate these equations by putting the  newly 
calculated values of p*m and p*f back into the 
right hand side to calculate p*m and p*f over 
and over again for generations 3, 4, 5 etc. In 
this way we can follow gene frequency 
changes over many generations. For example, 
if we say that pf in generation 1 = 1 and pm = 
0 (i.e., initially genes in females are all “red”) 
we can determine where the red genes end up. 
They end up in both sexes, with each sex 
having more than half its genes red.  

Reproductive Value V 
genera t ion a) males p ( m ) p ( f ) b) males p ( m ) p ( f ) c) males p ( m ) p ( f )

1 1 0 1 0 0 1 0 . 5 0 1
2 1 1 0 . 5 0 0 . 5 0 . 5 0 . 5 0 . 7 5 0 . 5
3 1 0 . 5 0 . 7 5 0 0 . 5 0 . 5 0 . 5 0 . 5 6 2 5 0 . 6 2 5
4 1 0 . 7 5 0 . 6 2 5 0 0 . 5 0 . 5 0 . 5 0 . 6 0 9 4 0 . 5 9 3 8
5 1 0 . 6 2 5 0 . 6 8 7 5 0 0 . 5 0 . 5 0 . 5 0 . 5 9 7 7 0 . 6 0 1 6
6 1 0 . 6 8 7 5 0 . 6 5 6 3 0 0 . 5 0 . 5 0 . 5 0 . 6 0 0 6 0 . 5 9 9 6
7 1 0 . 6 5 6 3 0 . 6 7 1 9 0 0 . 5 0 . 5 0 . 5 0 . 5 9 9 9 0 . 6 0 0 1
8 1 0 . 6 7 1 9 0 . 6 6 4 1 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
9 1 0 . 6 6 4 1 0 . 6 6 8 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6

1 0 1 0 . 6 6 8 0 . 6 6 6 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
1 1 1 0 . 6 6 6 0 . 6 6 7 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
1 2 1 0 . 6 6 7 0 . 6 6 6 5 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
1 3 1 0 . 6 6 6 5 0 . 6 6 6 7 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
1 4 1 0 . 6 6 6 7 0 . 6 6 6 6 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6
1 5 1 0 . 6 6 6 6 0 . 6 6 6 7 0 0 . 5 0 . 5 0 . 5 0 . 6 0 . 6

V(f)/V(m) = 2 . 0 0 0 2 1 1 . 5

generation
proportion of males in whole population that are queens' sons 
proportion of genes in whole population initially in females (gen 1) now in males
proportion of genes in whole population initially in females (gen 1) now in females
V(f)/V(m) is the relative sex specific values of females to males, = p(f)/(1-p(f)) 

Reproductive Value V 
The slide before is from an Excel spreadsheet set up to iterate the two 
equations from the slide before that. 
The first column is the generation, starting with generation 1. The other 
columns represent three simulations for cases in which proportions 1, 0, 
and 0.5 of the males in the population are queens’ sons “males”. 
The two columns to the right of “males” represent the frequency of red 
genes in males, p(m), and females, p(f), of that generation. The 
frequency is initially set, in generation 1, to 0 in males and 1 in females.  
The frequencies change generation to generation and eventually stabilize. 
In the first simulation (“males” = 1), they stabilize at 2/3 in both sexes. 
This tells us that genes in females contribute 2/3 to the gene pool of the 
population while males contribute the rest, or 1/3.  
The ratio of the sex specific reproductive values of females and males, 
V(f)/V(m) is, therefore, (2/3)/(1/3) = 2. 
The simulation for “males” = 1 stabilizes after one generation, with 0.5 
in both sexes. This is the same as the diploid situation. The simulation 
for “males” = 0.5 shows that the ratio of the sex specific reproductive 
values of females and males, V(f)/V(m), is 1.5. In other words, it is 
(1+proportion of males that are queens’ sons).  

Life for Life Relatednesses 
The sex-specific reproductive value of females to 
males is a ratio, VF/VM. When all the males in the 
population are workers’ sons the ratio equals 2. It is 
sometimes convenient to think of this as meaning that 
VF = 2 and VM = 1. But it is also fine to think of it as 
VF = 1 and VM = 0.5. Both are the same as the ratio 
VF/VM is the same. If we take VF = 1 and VM = 0.5, we 
can now see that life-for-life relatedness is basically 
regression relatedness x sex-specific reproductive 
value.  
Kin relationship   Reg. relatedness  LfL relatedness 
Worker to full sister  0.75    0.75 x 1 = 0.75 
Worker to brother   0.5    0.5 x 0.5 = 0.25   

Sex-Specific Mating 
Success 



Mating Success 
Not all individuals of same 
sex have same mating success.  

Some males many offspring, 
others none. 

What about the two sexes? 
Can members of one sex have 
greater mating success than 
the other?  

d  

Sex-Specific Mating Success Depends on Sex Ratio 

Consider a population with 2 females per male.  

If each female mates with just one male, then, 
on average, each male mates with two females. 

If each female mates with two males, then, on 
average, each male mates with four females. 

If a male can only mate once, then half the 
females remain unmated. 

Each (only females in Hymenoptera) offspring 
has exactly one father and one mother. 

On average, a male has twice as many sets of 
offspring as a female when sex ratio is 2F:1M. 

You can work though this example for different 
ratios, such as 1 female per 2 males. 

In many eusocial insects males and queens are not same size. 

Queens are usually larger and require more investment. 

This must be accounted for when we consider mating success. 

When we do this, we can see the  overriding importance of the 
allocation sex ratio not the numerical sex ratio. 

Sex-Specific Mating Success Equal Mating Success Per Unit Allocation 
Cost female = cost male 
Numerical sex ratio is 1F:1M 
Allocation sex ratio is 1F:1M 

In all three examples above, the sex-allocation ratio in the population is 
1F:1M. The mating success is equal per unit allocation in either sex, 
even though the numerical sex ratios differ.  

Cost female = 2 cost male 
Numerical sex ratio is 1F:2M 
Allocation sex ratio is 1F:1M 

Cost female = 0.5 cost male 
Numerical sex ratio is 2F:1M 
Allocation sex ratio is 1F:1M 

Study the previous slide until you understand why the 
allocation ratio is more important than the numerical ratio. The 
basic theory for determining optimal sex ratios makes 
predictions about the sex allocation ratio to the two sexes, not 
the numerical ratio of the two sexes. 

Consider what would happen if the numerical ratio were the 
key. If the optimum numerical ratio was 1F:1M, then females 
who made small sons would be at an advantage, as they would 
have spare resources to make more daughters. So males would 
get smaller. But equally, females who made small daughters 
would have spare resources to make more sons. So females 
would get smaller. It’s a logical impossibility. 

Equal Mating Success Per Unit Allocation 
Kin Value = Regression relatedness x SSreproductive value x 
SSmating success. Consider two simple examples: the kin 
value of the males and the queens reared in a colony with a 
single queen mated to a single male. 

Relatedness of workers to males, bmw   =  0.5  
Relatedness of workers to queens, bqw  =  0.75  

All the males are queens’ sons, VF/VM  =  2   
(we can say VF = 2 and VM = 1; What is important is the ratio 
of VF/VM or MF/MM) 

And the sex-allocation ratio is equal, MF/MM =  1   
(we can say MF = 1 and MM = 1)* 

The kin value of a male is bmwVMMM   = 0.5 x 1 x 1  = 0.5 
The kin value of a female is bqwVFMF  = 0.75 x 2 x 1 = 1.5 

Kin Value 



The previous slide shows that a female (a young sister queen who is the 
daughter of the mother queen) has three times the kin value of a male (a 
brother) to the workers. We will later see what implications this has on 
queen-worker conflict over sex allocation. 

But can you already see what may happen. What will the optimum sex 
ratio of the workers be? Male bias, female bias, or equal? 

How would differences in the sex allocation ratio to males versus 
females in the whole population affect things?   

Kin Value 


