

Reproduction in primitively eusocial wasps

 Reproduction is usually highly skewed towards one 'dominant' individual (e.g. hover wasps)

Liostenogaster flavolineata (HOVER WASP: STENOGASTRINAE)

- Small nests: ≤ 90 cells
- Initiated by single foundress lays eggs, feeds developing larvae progressively
- Female offspring have a choice:
 - leave & nest independently
 - become helpers on natal nest: nesting independently has a low payoff
 - groups small (<10 females)

Reproduction in primitively eusocial wasps

- Reproduction is usually highly skewed towards one 'dominant' individual (e.g. 90% in *Lf*)
- But.... when the current dominant dies, another female inherits her position: reproduction is less skewed when viewed across the whole lifespan

What happens when the dominant dies?

Age-based queues are common....

Xylocopa carpenter bee

DATE	TIME	YWR	WGG	RYR	WWR
13 Mar	13.00	\checkmark	\checkmark		√
	13.30		√		√
	14.00	√	√	V	√
	14.30	V			V
	15.00	√			V
	15.30	√	√		V
	16.00		√		V
	16.30	√	√		V
	17.00	√	√		V
14 Mar	13.30	V			V
	14.00				V
	14.30	√	√		√.
	15.00	V	V		V
	15.30				V
	16.00			V	√.
	16.30	√			√.
	17.00	V.	V	V	V
16 Mar	13.00	V			V
	13.30	√		V	V
	14.00				√

 Predict a correlation between effort and the relatedness of individual helpers to the dominant
 Positive correlation:

Negative correlation:

Genetic relatedness & helping effort in vertebrates

- Predict a correlation between effort and relatedness
- Vertebrates: ≈10% variation in effort explained by variation in relatedness (Griffin & West 2003)

Primitively eusocial insects

- Few studies
- In *Lf*, helpers are mainly sisters (*r*=0.75) or cousins (*r*=0.1875) of the dominant
 Sisters forage no harder
- than cousins

Hamilton's Rule rb > c c = cost to the altruist b = benefit to the recipientr = coefficient of relatedness

Life-history trade-offs: current vs. future reproduction Clutch size of same parents in year 2 $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}$

Future fitness & helping effort

Trade-off between current & future reproduction

Applied to helpers: trade-off between helping effort & future reproduction

Prediction: individuals with greater future fitness have more to lose, so should work less hard

Index of future fitness = position in queue to inherit. Being nearer the front of queue means more chance of inheriting before you die: higher costs of foraging

Predictions

- Helpers nearer to the front of the queue should work less hard
- Helpers of a given rank should work less hard in larger groups: productivity effect
- Age = rank in Liostenogaster

Methods

- Wait until the ages (ranks) of the wasps in the queue are known
- Estimate helping effort by each forager: the % time it spent away from the nest foraging
- Estimate relatedness of each helper to the dominant

- In Lf, nearly all nest-mates are relatives: helpers are getting indirect fitness
- ...but don't fine-tune their effort according to relatedness
- Effort is fine-tunes according to rank and group size.

Relative age is a good predictor of inheritance rank

- Experimental removal of dominants (n=70): oldest helper inherits (90%)
- Natural inheritance (n=37): 86% of dominants were the oldest

Queue-jumpers - cheats, or queuing rules more complex? Relatedness x Size x Worked less hard $\sqrt{}$

What if the rules are broken?

- Only dominant pair breeds
- Queue is size-based: constant size ratio
- Experimental removal: next rank starts to grow
- Each rank restrains its growth so as not to represent a threat - manipulate?

(Buston 2003; Heg et al. 2004)

Breaking the rules.... **RESULT:** dominant expelled R4 from the group Goby Paragobiodon

Wong et al. (2008) Current Biology 18: R372-3

Hidden threat of expulsion is revealed only when the rules are broken

Inducing escalated contests Remove dominant Escalated conflict (n=17) temporarily Allow R2 to establish as new dominant expulsion or injury Release the old dominant and record her interaction with the R2

But the dominant nearly always wins

Do subordinates have any leverage?

- Threaten to leave the group?
- Threat of leaving increased by providing vacant breeding sites

 No effect on reproductive share

Cichlid fish - Heg et al. 2006 Greater threat of leaving didn't enable subordinates to extract a larger share of reproduction

Providing vacant nests

Liostenogaster flavolinea

Create vacancies: remove all residents from 39/108 nests

Result negative: only 6/200 subordinates leave to adopt vacant nests Leaving may not be a very credible threat

Do subordinates have any leverage?

- Threaten to escalate conflict with the dominant?
- Costly for the dominant
- Dominant could appease subordinate by granting it reproduction
- Predict escalation if subordinate has only a small share of reproduction

(paper wasp)

Summary (2)

- A strong relationship between behaviour and queue position suggests that the queue must be reasonably stable
- If the rules are broken, there might be personal as well as group-level costs
- The threat of escalated conflict may allow subordinates to extract reproduction from the dominant