

Laboratory of Apiculture & Social Insects

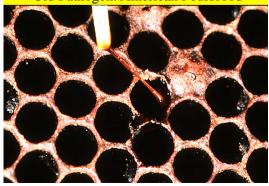
Sussex University

LASI Goals

Research To carry out basic and applied research on honey bees and social insects.

Teaching To train the next generation of honey bee and social insect scientists.

Community To extend knowledge to beekeepers and others.


To play an active role in the public communication of science.

Conservation To help honey bees and other social insects.

Challenges to the Honey Bee in Britain

From c.1,000,000 to 250,000 hives in past century Suggested Causes of the Reduction Fewer flowers in countryside/habitat loss/intensification Honey bee diseases Insecticides Urbanization Global climate change GMOs Mobile Phones F1 hybrid plants Nanotechnology......HFCS......etc.

Old Pathogen: American Foulbrood

.ab Leader			
Professor Francis Ratnieks	England etc.	Bees	
Postdocs & Reseachers		Dees	
Dr. Karin Alton**	Denmark	**	100%
Dr. Margaret Couvillon**	USA		10070
Dr. Christoph Grüter*	Switzerland	*	part
Dr. Jelle van Zweden*	Netherlands		1
Dr. Francisca Seghers*	Netherlands		
Mr. Norman Carreck**	England		
PhD Students			
Mr. Gianluigi Bigio**	Italy		
Mr. Tommy Czaczkes	England		
Mr. Sam Jones*	England		
Mr.Mihail Garbuzov**	Latvia		
Mr. Martin Kärcher**	Austria		
Ms. Fiona Riddell**	Scotland		
Mr. Hasan Tofalia**	Syria		
Volunteers			
Sarah Hudson**	England		
Mike Kavanagh**	England		
Suzie Johanson**	England		
Masters Degree Project Students			
3 students*	China, Scotland		
Final Year Undergraduate Project Students			
6 students*	UK		
Summer Bursary Students			
2 students**	UK		
Summer Visitors			
1 student*	France		

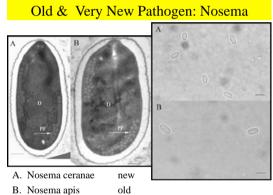

The Sussex Plan for Honey Bee Health & Well Being

Applied Research on Challenges to the Honey Bee

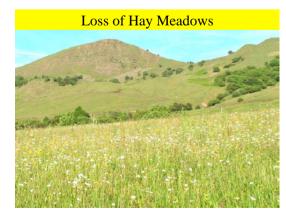
Pesticide-Poisoning British Honey Bee Colonies

Definite Problem Pathogens & Pests Honey Bee Specific New & Old

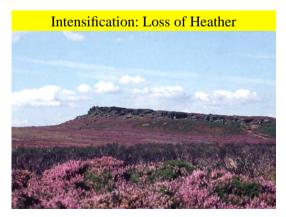
Old Pathogen: Chalk Brood



New Pest: Mother Varroa on Drone Larvae



B. Nosema apis



Fewer Flowers in the Countryside & Agricultural Intensification

Affects Many Species

Fewer Flowers in Grazing Land

Fewer Arable Weeds

Land Use Changes

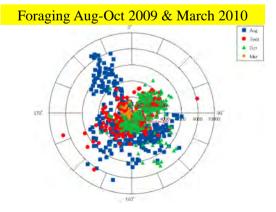
Reduction in hay meadows (97% loss)

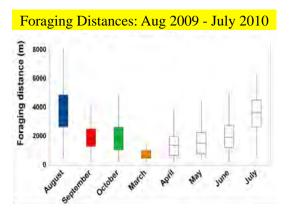
Reduction in flower rich pasture

Fewer weeds in arable fields

Conversion of heathland into arable land, development

Increasing urbanization Etc. Etc.


Overall effect is to reduce forage and habitat for bees



Decoding Dances Using iMovie

University & Surroundings

Breeding Hygienic Honey Bees

LASI Contribution to the Honey Bee Disease Issue

Honey Bee Disease Resistance

Hygienic

Behaviour: general defence against brood

diseases

Previously	
Postdocs & Reseachers	
Dr. Steve Martin	England
Dr. Nigel Raine	England
PhD Students	
Mr. Luis Medina	Mexico
Mr. Antonio Perez-Sato	Mexico
Mr. Nicolas Chaline	France
Currently	
Postdocs & Reseachers	
Dr. Karin Alton	Denmark
Mr. Norman Carreck	England
PhD Students	
Mr. Gianluigi Bigio	Italy
Collaborators	
Dr. Annette Bruun Nielsen	University of Copenh

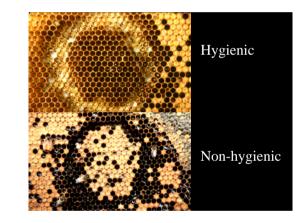
What is Hygienic Behaviour

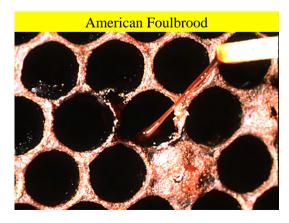
Generally

Removal of dead and diseased colony members and material Generalized defence against disease

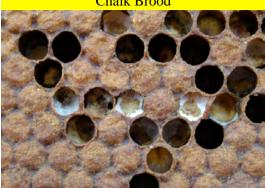
Specifically

Removal of dead and diseased brood from cells Defence against brood diseases

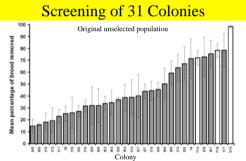

Undertaking: A Type of Hygiene



Hygiene Background & Basic Facts


48h later dead brood gone c. 10% British hives hygienic

Discovered c. 1930s in USA in connection to AFB research chewing out of contaminated comb to remove scales removal of cell cappings; removal of dead brood ("Brown" line)
Found in honey bees wherever it has been looked for
Always quite rare, c.10% colonies are hygienic
Heritable (meaning it can be bred for)
Environmental effects (nectar flow etc., affect performance)
Behavioural dominance (20% hygienic workers make colony hygienic)
Can prevent brood diseases (AFB, Chalkbrood)
Can slow down growth of Varroa population in a hygienic colony
Hygienic colonies yielded same or more honey as non-hygienic
Testing: with diseased brood; cyanide-killed brood; freeze-killed brood



Chalk Brood

Mother Varroa on Drone Larvae

Deformed Wing Virus

All hives in one apiary, similar populations. Average of 3 trials at 2 week intervals in spring. Great variation among colonies exists—the raw material for breeding. Pérez-Sato, J. A., Châline, N., Martin, S. J., Hughes, W. O. H., Ratnicks, F. L. W. 2009. Multi-level selection for hygienic behaviour in honeybees. Heredity 102: 609-615.

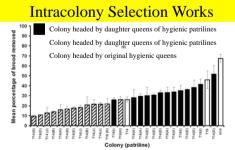
Intracolony Selection

Behavioural Dominance Not all bees in a hygienic colony are hygienic

- Obtain hygienic colonies Find our which "patrilines" are hygienic observation hive: observe workers genetic markers (DNA microsatellites)
- Rear queens from hygienic colony DNA test on virgin queens Keep only queens of hygienic patrilines Allow to mate or inseminate

General Plan of LASI Breeding Program

- Screen as many colonies as possible
- Obtain hygienic colonies
- Carry out queen rearing and intracolony selection
- Multiply hygienic stocks
- Increase levels of hygiene via continued breeding
- Test stocks
- Make breeder queens available to beekeepers
- Beekeeper involvement is essential for success
- · Project is long term


Hygienic colony headed by a hygienic breeder queen mated to hygienic males	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Queen rearing	aaaaaaaaaaaa Y
Queen mating	
4 colonies	1. W W W W W W W W W W 2. W W W W W W W W W W 3. W W W W W W W W W W 4. W W W W W W W W W W

When a queen carrying hygienic genes mates, it is likely that 1 or 2 of the males she mates with will also carry hygienic genes, so resulting in a colony that is hygienic even though not all the workers are hygienic.

Using Hygienic Breeder Queens

Queen honey bee mates to c. 10 males. Colony can be hygienic if only 1 or 2 patrilines are hygienic. Only 10% or 20% queens reared will be of hygienic patrilines unless intracolony selection is used.

The following year colonies headed by daughter queens were tested for hygiene. Those headed by queens from a hygienic patriline were on average twice as hygienic as those headed by a queen from a non-hygienic patriline, and similar to the levels of hygiene seen in the three colonies headed by the hygienic queens from the original screening. Overall, the level of hygiene was lower, probably due to environmental effects.