Grid computing for the SNO+ experiment

11/01/2013

Matthew Mottram

Introduction to SNO+ & SNOLAB

Multi-purpose physics (neutrino) experiment at SNOLAB

The SNO+ experiment

2km underground (!!!)

- Physics goals:
- Double betadecay
- Solar, geo, reactor, supernova neutrinos
- Forbidden nucleon decay

Other SNOLAB experiments

DAQ electronics

Acrylic vessel with ~1kton liquid scintillator

≃9500 photomultiplier tubes

7 kton H2O shielding

Urylon liner (radon seal)

1/15/13

Data transfer & storage requirements

- Max data taking rate of 450Mbit/s (!)
 - Expect 10s TB of real data a year
 - Require 10x simulated data
 - Larger data-structure size compare to real data
 - But not all real data requires simulating
 - -> 10s-100 TB a year
- Very limited computing resources at SNOLAB:
 - Buffer data underground and on surface
 - Ship all real data off-site
 - All simulations processed off-site
- Expect (guess) we need 10s of cores continuous use and 10s-100s of TB of storage a year to process/simulate required datasets.

Resource layout

- SNO+ will store and process/simulate data at two locations:
- WestGrid (ComputeCanada):
 - Canadian Grid Tier 1 storage resource
 - One single batch farm (qsub submission)
 - 100 nodes, priority access
- LHC Computing Grid (LCG):
 - UK Grid Tier 1 storage at RAL
 - Processing at distributed Tier 2 sites
 - 1000s of nodes, but low priority
 - Use glite software and workload management services (WMS)
 - Do not submit jobs directly to specific site
 - Place requirements on data, software etc, WMS does the rest

LCG data-processing

Tier 2: Sheffield

Tier 2: TU-Dresden

Tier 2: Liverpool

Tier 2: Oxford

Tier 1: RAL

- Access to 7 sites
- Process/produce data at Tier-2 sites
- Archive data at Tier-1 storage
- Ship data out to
 Tier-2 sites ready for (re)-processing

Grid job lifecycle

From glite-3.2 user guide

Grid jobs/data – current SNO+ method

- Submit job to Workload Management System (WMS)
 - WMS matches job requirements to available computing elements (CE) - software, memory etc
 - Submits job to specific queue
 - SNO+ rely entirely on the WMS for job management (so we use three)
- Jobs output data to their local storage element (SE)
 - All data logged in LCG File Catalogue (LFC)
 - SNO+ jobs would rely entirely on the LFC
 - But access only to one of these, at RAL
 - Official Monte Carlo and processed/raw real data are logged in a SNO+ database

Processing & Production

- Two very different production environments
 - Plus possibility of introduction of more farms/grids
 - Plus smaller analysis groups may want to reprocess data at local institution
- -> Need for backend agnostic production system

- Ganga: "configure once, run everywhere"
 - Python job management software
 - Setup to run SNO+ software on range (batch, grid etc) of submission backends, low user expertise required

Ganga vs no Ganga

ganga_script.py

```
j=Job()
j.application='RATUser'
j.application.ratMacro='mymacro.mac'
j.application.ratBaseVersion='4.1'
j.application.outputDir='myDirectory'
j.backend='LCG'
j.submit()
```

job_description_file.jdl

```
Executable="job_script.scr",
Arguments={"-1","rat.log"},
StdOutput = "job.out",
StdError = "job.err",
InputSandbox = {"job_script.scr"},
OutputSandbox = {"rat.log","job.out","job.err"},
VirtualOrganisation = "snoplus.snolab.ca"
```

job_script.scr

```
source $VO_SNOPLUS_SNOLAB_CA_SW_DIR/snoing-
install/env_rat-4.1.sh
rat mymacro.rat
lcg-cr -vo snoplus.snolab.ca -d
$VO_SNOPLUS_SNOLAB_CA_DEFAULT_SE -P myDirectory/
myoutput.root -l lfn:/grid/snoplus.snolab.ca/
myDirectory/myoutput.root myoutput.root
```

No Ganga

Ganga vs no Ganga (2)

Job submission and monitoring

```
j.submit()
j.status()
```

Job submission and monitoring

```
glite-wms-job-submit -c config.conf -a -o myjob.jid
job_description_file.jdl
glite-wms-job-status -i myjob.jid
glite-wms-job-output -i mujob.jid
```

GangaSNO plugin created:

- Jobs on batch/grid/local node will automatically setup the correct environment to run SNO+ software
- User just provides a job (Geant4) macro
- Very little configuration required by user, but ability to configure is there if desired.

Production systems

- SNO+ will automate processing and simulation of "official" SNO+ data:
 - Production systems with a big bookkeeping task:
 - O(10k) data runs per year (real data)
 - Number of processing modules (~10) per run
 - One job per module
 - + 10x Monte Carlo with 10s of modules per physics run
 - Use CouchDB database:
 - Schema free
 - Documents, not tables
 - Documents stored as JSON objects
 - Pre-processed ("design") views fast querying

Production systems

Database (CouchDB) document

```
" id": "19bfec64083952f4f6c2bd37df00110f",
" rev": "1-7b833b61ceccc06acedf9be72eabcb51",
"status": "waiting",
"run": 13,
"module": "Dummy",
"locked": null,
"type": "job",
"passes": [
      { "status": "waiting",
       "ratv": "3 00",
       "subRun": [
            { "status": "waiting",
              "failCount": 0,
              "output":
                  { "cksum": null,
                    "loc": null,
                    "name": null,
                    "se": null,
                    "size": null },
             "subRun": 0 },
      "pass": 0 }
```


SNO+ roadmap

- Preparing for data-taking:
 - Spring 2013: fill with water, first physics data
 - Autumn/Winter 2013: fill with liquid scintillator
 - 2014: deploy double-beta-decay isotope
- In the meantime (a small selection of recent/ongoing

Thanks for listening!

