

Job, parameter and data management using a
database

Emyr James

Outline

● Why ?
● How ?
● Advantages
● Can I use it?

Why ?

● MSc Project on Genetic Programming (Fancy
Genetic Algorithms)

● 14 algorithm variants
● 7 test problems
● 30 for each for stats
● ~3000 runs
● How to keep track of all these??

How ?

● Store details about the runs in a database
● Used Postgresql – free & open source
● Feature rich - stored procedures, foreign key

constraints etc.
● Design Schema : Tables, data types and stored

procedures
● Interact with database from C++ using libpqxx

The Run Table
create table t_run (

run_id serial primary key,

expt_id int references t_experimet.expt_id,

 job_id int,

started bool default FALSE,

finished bool default FALSE,

start_time timestamp,

finish_time timestamp,

rng_x0 bigint,

rng_x1 bigint,

rng_x2 bigint,

rng_x3 bigint,

rng_x4 bigint,

host varchar(255)

);

The Experiment Table

create table t_experiment (
expt_id serial,
algo_id int,
problem_id int,
run_expiry_seconds int,
pop_size int,
init_depth int,
prob_crossover float,
prob_mutation float,
max_tree_size int,
spatial_radius int

);

Start and Finish Stored Procedures

● start_next_run called at start
– Passes in RNG state & Hostname to DB

– Get next run to process I.e started=FALSE

– Mark as started and set time stamp

– Return custom datatype populated with run
parameters

● mark_run_as_finished called when program finished

– Pass in run_id

– Mark as finished and set finish time

Custom Datatype
create type tp_run_params AS (

run_id int,
problem_name char(8),
algo_name char(10),
ep_order int,
poly_coefficients varchar(255),
poly_min_x float,
poly_max_x float,
poly_points int,
pop_size int,
init_depth int,
run_expiry_seconds int,
max_tree_size int,
spatial_radius int

);

Process

● Populate Experiment table with data for
experiments

● Populate Run Table based on above (e.g. 30
runs per experiment)

● Use qsub to queue up jobs (no parameters
needed)

– Jobs start on nodes..

– start_run to get info for next run & mark as
started

– Does work

– Call mark_as_finished at end

The Code

One Simple Run Script

#!/bin/bash

#$ -S /bin/bash

#$ -o /path/to/output/logs

#$ -e /path/to/error/logs

PATH=/first/path:/second/path

LD_LIBRARY_PATH=/firs/lib:/second/lib:/third/lib

my_job $JOB_ID

Easy to Queue up Jobs

#!/bin/bash

for {x in 1..3000}

do

 qsub -my.q run_script.sh

done

Other Advantages

● Web Portal
– Upload a text file / spreadsheet to populate

tables

– Button to press which can kick off runs

– Can report on what's done, what's in progress

– Failed jobs – started but not finished

– Easy to redo only jobs that failed, see what
parameters that job had

● Coherent history of what you've done
– Can go back and redo experiment – just mark

all runs as not started

Can I Use It ?

● Easy if you write your own programs
– Design problem specific experiment &

parameter tables

– If not using C++, easy to port the database stuff
to python, java, C, Fortran etc.

● If Not ?
– How do you get parameters into your 'off the

shelf' program?

– Usually command line or config file

– Wrap it all up in a python script – call python
wrapper instead of your job

Python Wrapper

● Do same start_run procedure as C++
● Generate a config file called <run_id>.cfg using

a template file – use Cheetah python module
● Or just generate a command line string
● Call your actual job from within python using

the subprocess module
● Call the mark_run_as_finished at end of python

wrapper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

