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Example: Insect olfaction model
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Hand-tuned neuronal network simulation 2009
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However ...

. It took me a month to program a previously
developed model (this is after learning how to do
CUDA)

« The program was optimised for "my” GPU (a
Tesla C870)

. It was optimised for one size of the simulation

But: This code is useless for any other
purpose!
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Exposure of the challenge: model side

Neural (neuronal) network simulations ...
« Have neurons that could be described as

- ODEs dV
CE: Z Iion_l' Z Isyn

Na,K,... synapses
- Maps

Vit+1)=F(V(t),{si(t)},...)

- Stochastic Dynamics

pare(t) = P(v(t), {si(t)},...)
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Exposure of the challenge: model side

« Neurons interact through synapses that could be
- Pulse coupling

Viost (t + At) = Vst (t) + AV if presynaptic spike

- Instantaneous rise/ exponential decay

ds
dt = —s+ As 5( splke) Isyn — 93(‘/1“6\7 — Vpost)

- Full-blown ODEs 7 = @, F(Vpre)(1 — 1) — By
S = asr — 38
Isyn — gS(V}ev — Vpost)
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Exposure of the challenge: model side

» Synapses can have delays
« Synapses could be plastic

dg
% — F(Vprea Vposta t)
» But note: Spikes are typically rare events:

Temporally sparse communication

« The types of neurons, synapses are known at
compile time and do not change at runtime
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Exposure of the challenge: model side

« Synaptic connectivity patterns can be ...

- Dense pre-synaptically

- Dense post-synaptically

- Sparse (pre- or post-synaptically) ‘\‘:Ti?
9

- Local or global, with structure or random
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Exposure of the challenge: GPU side

« Need to massively parallelise with minimal
communication

- Could be neuron-based

- Could be synapses-based

- ... or both?

- ... In other reasonable partitions?

« Need to optimise memory access patterns
- Avoid memory access conflicts
- Enable coalesced memory access

- Optimize use of different memory types (register,
shared, local, device, textures, ...)
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Exposure of the challenge: GPU side

. The GPU system used for simulations can

- Have different numbers of individual GPUs in different
configurations (n GPUs on k different boards)

- have a variety of compute capability levels, in
particular different Fixed Point capabilities, atomic
operations, efc.

- have different amounts of memory of each memory
type available

- Have different structures (#multi-processors,
#threads/block, #blocks)
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Code generation can overcome these problems

GPU enhanced Neuronal Network simulator
provides such a solution:

» Provides a simple C++ API for specifying a neuronal network
of interest

« Generates optimised C++ and CUDA code for the model and
for the detected hardware at compile time (e.g. grid/block
organisation, HW capability, model parameters)

« GeNN can offer a large variety of different models — only the
ones used in the particular model actually enter the
generated code

. The generated code is compiled with the native NVidia
compiler (and all its optimisations).
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—> _—_ XYZsimulation }
_> : 5: compile

() flexGNN library source code

() executable code

() generated simulator source code

() model definition and user source code
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Conclusions

. Using a C++/CUDA code generation approach
has several advantages:

- Model specific optimisations at compile time
- Hardware specific optimisations at compile time

- Can provide unlimited number of different models
but actual simulations stay lean and mean

« GeNN is freely extendible with few constraints
« Low level code is accessible if desired/needed

- New hardware capability can be accom-
modated
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Outlook
. "Mature” the package

- Extension to CUDA 4, porting to OpenCL
- More HW-specific optimisations

- More connectivity pattern optimisations (e.g. Fidjeland
“scatter-gather” strategy)

- Larger library of predefined model elements, delays
. Find a user base & form developer community
» Python API, neuroML API
» Multi chip parallelisation (e.g. many Fermi cards)
» Multi-device parallelisation (p-threads)
» Multi-host parallelisation (mpi) ...
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