

T. Nowotny
Informatics, CCNR,
University of Sussex

Sussex HPC workshop, 14-12-2011

GPU enhanced neuronal network
simulations

Example: Insect olfaction model

Hand-tuned neuronal network simulation 2009
T.
	 N
ow

ot
ny
,	 W

CC
I	 2
01
0	
Ba

rc
el
on

a	

24x

However ...

  It took me a month to program a previously
developed model (this is after learning how to do
CUDA)

  The program was optimised for “my” GPU (a
Tesla C870)

  It was optimised for one size of the simulation

But: This code is useless for any other
purpose!

Exposure of the challenge: model side

  Have neurons that could be described as
-  ODEs

-  Maps

-  Stochastic Dynamics

Neural (neuronal) network simulations ...

Exposure of the challenge: model side

  Neurons interact through synapses that could be
-  Pulse coupling

-  Instantaneous rise/ exponential decay

-  Full-blown ODEs

if presynaptic spike

Exposure of the challenge: model side

  Synapses can have delays
  Synapses could be plastic

  But note: Spikes are typically rare events:
Temporally sparse communication

  The types of neurons, synapses are known at
compile time and do not change at runtime

Exposure of the challenge: model side

  Synaptic connectivity patterns can be ...

-  Dense pre-synaptically

-  Dense post-synaptically

-  Sparse (pre- or post-synaptically)

-  Local or global, with structure or random

Exposure of the challenge: GPU side

  Need to massively parallelise with minimal
communication
-  Could be neuron-based
-  Could be synapses-based
-  ... or both?
-  ... in other reasonable partitions?

  Need to optimise memory access patterns
-  Avoid memory access conflicts
-  Enable coalesced memory access
-  Optimize use of different memory types (register,

shared, local, device, textures, …)

Exposure of the challenge: GPU side

  The GPU system used for simulations can
-  Have different numbers of individual GPUs in different

configurations (n GPUs on k different boards)
-  have a variety of compute capability levels, in

particular different Fixed Point capabilities, atomic
operations, etc.

-  have different amounts of memory of each memory
type available

-  Have different structures (#multi-processors,
#threads/block, #blocks)

Code generation can overcome these problems

GPU enhanced Neuronal Network simulator
provides such a solution:
  Provides a simple C++ API for specifying a neuronal network

of interest
  Generates optimised C++ and CUDA code for the model and

for the detected hardware at compile time (e.g. grid/block
organisation, HW capability, model parameters)

  GeNN can offer a large variety of different models – only the
ones used in the particular model actually enter the
generated code

  The generated code is compiled with the native NVidia
compiler (and all its optimisations).

Large &
complete

Lean &
Mean

Performance

AL-MB:
50 % all-to-all

Individual con-
ductances

spikes commu-
nicated to host
(dotted)

spike # commu-
nicated to host
(solid)

Performance

AL-MB:
50 % all-to-all

Individual
conductances

spikes commu-
nicated to host
(dotted)

spike # commu-
nicated to host
(solid)

Conclusions

  Using a C++/CUDA code generation approach
has several advantages:

-  Model specific optimisations at compile time
-  Hardware specific optimisations at compile time
-  Can provide unlimited number of different models

but actual simulations stay lean and mean
  GeNN is freely extendible with few constraints
  Low level code is accessible if desired/needed
  New hardware capability can be accom-

modated

Outlook
  “Mature” the package

-  Extension to CUDA 4, porting to OpenCL
-  More HW-specific optimisations
-  More connectivity pattern optimisations (e.g. Fidjeland

“scatter-gather” strategy)
-  Larger library of predefined model elements, delays

  Find a user base & form developer community
  Python API, neuroML API
  Multi chip parallelisation (e.g. many Fermi cards)
  Multi-device parallelisation (p-threads)
  Multi-host parallelisation (mpi) ...

Acknowledgments

  Ramon Huerta
  NVidia professor partnership (2x Quadro FX 5800

cards donated)
  Funders:

http://genn.sourceforge.net/

