
  

T. Nowotny 
Informatics, CCNR, 
University of Sussex 

Sussex HPC workshop, 14-12-2011  

GPU enhanced neuronal network 
simulations 



Example: Insect olfaction model 



Hand-tuned neuronal network simulation 2009 
T.
	
  N
ow

ot
ny
,	
  W

CC
I	
  2
01
0	
  
Ba

rc
el
on

a	
  

24x 



However ... 

  It took me a month to program a previously 
developed model (this is after learning how to do 
CUDA) 

  The program was optimised for “my” GPU (a 
Tesla C870) 

  It was optimised for one size of the simulation 

But: This code is useless for any other 
purpose! 



Exposure of the challenge: model side 

  Have neurons that could be described as 
-  ODEs 

 
 

-  Maps 
 
 

-  Stochastic Dynamics 

Neural (neuronal) network simulations ...   



Exposure of the challenge: model side 

  Neurons interact through synapses that could be 
-  Pulse coupling 

 
 

-  Instantaneous rise/ exponential decay 
 
 
 

-  Full-blown ODEs 
 

if presynaptic spike 



Exposure of the challenge: model side 

  Synapses can have delays 
  Synapses could be plastic 

 
 
 

  But note: Spikes are typically rare events: 
Temporally sparse communication 

  The types of neurons, synapses are known at 
compile time and do not change at runtime 



Exposure of the challenge: model side 

  Synaptic connectivity patterns can be ... 
 
-  Dense pre-synaptically 

 
 

-  Dense post-synaptically 
 
 

-  Sparse (pre- or post-synaptically) 
 

-  Local or global, with structure or random 



Exposure of the challenge: GPU side 

  Need to massively parallelise with minimal 
communication 
-  Could be neuron-based 
-  Could be synapses-based 
-  ... or both? 
-  ... in other reasonable partitions? 

  Need to optimise memory access patterns 
-  Avoid memory access conflicts 
-  Enable coalesced memory access 
-  Optimize use of different memory types (register, 

shared, local, device, textures, …) 



Exposure of the challenge: GPU side 

  The GPU system used for simulations can 
-  Have different numbers of individual GPUs in different 

configurations (n GPUs on k different boards) 
-  have a variety of compute capability levels, in 

particular different Fixed Point capabilities, atomic 
operations, etc. 

-  have different amounts of memory of each memory 
type available 

-  Have different structures (#multi-processors, 
#threads/block, #blocks) 



Code generation can overcome these problems 

GPU enhanced Neuronal Network simulator 
provides such a solution: 
  Provides a simple C++ API for specifying a neuronal network 

of interest 
  Generates optimised C++ and CUDA code for the model and 

for the detected hardware at compile time (e.g. grid/block 
organisation, HW capability, model parameters) 

  GeNN can offer a large variety of different models – only the  
ones used in the particular model actually enter the 
generated code 

  The generated code is compiled with the native NVidia 
compiler (and all its optimisations). 



Large & 
complete 

Lean & 
Mean 



Performance 

AL-MB:  
50 % all-to-all 
 
Individual con- 
ductances 
 
spikes commu- 
nicated to host 
(dotted) 
 
spike # commu- 
nicated to host  
(solid) 



Performance 

AL-MB:  
50 % all-to-all 
 
Individual 
conductances 
 
spikes commu- 
nicated to host 
(dotted) 
 
spike # commu- 
nicated to host  
(solid) 



Conclusions  

  Using a C++/CUDA code generation approach 
has several advantages: 

-  Model specific optimisations at compile time 
-  Hardware specific optimisations at compile time 
-  Can provide unlimited number of different models 

but actual simulations stay lean and mean 
  GeNN is freely extendible with few constraints 
  Low level code is accessible if desired/needed 
  New hardware capability can be accom-

modated  



Outlook 
  “Mature” the package 

-  Extension to CUDA 4, porting to OpenCL 
-  More HW-specific optimisations 
-  More connectivity pattern optimisations (e.g. Fidjeland 

“scatter-gather” strategy) 
-  Larger library of predefined model elements, delays 

  Find a user base & form developer community 
  Python API, neuroML API 
  Multi chip parallelisation (e.g. many Fermi cards) 
  Multi-device parallelisation (p-threads) 
  Multi-host parallelisation (mpi) ... 



Acknowledgments 

  Ramon Huerta 
  NVidia professor partnership (2x Quadro FX 5800 

cards donated) 
  Funders: 

http://genn.sourceforge.net/ 


