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Abstract. 
 
Autonomous systems are the result of self-sustaining processes of constitution of 
an identity under precarious circumstances. They may transit through different 
modes of dynamical engagement with their environment, from committed 
ongoing coping to open susceptibility to external demands. This paper discusses 
these two statements and presents examples of models of autonomous behaviour 
using methods in evolutionary robotics. A model of an agent capable of issuing 
self-instructions demonstrates the fragility of modelling autonomy as a function 
rather than as a property of a system’s organization. An alternative model of 
behavioural preference based on homeostatic adaptation avoids this problem by 
establishing a mutual constraining between lower-level processes (neural 
dynamics and sensorimotor interaction) and higher-level metadynamics 
(experience-dependent, homeostatic triggering of local plasticity and re-
organization). The results of these models are lessons about how strong 
autonomy should be approached: neither as a function, nor as a matter of 
external vs. internal determination. 
 
Keywords: biological autonomy, modelling autonomous behaviour, evolutionary 
robotics, self-setting of goals, behavioural preference. 
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1. Introduction 
 
In this paper I would like to establish two important points about autonomy that 
stem from a careful analysis of the continuity between life and cognition, and a 
third point by implication. The two main messages I would like to establish 
about autonomy are: 1) autonomous systems always originate in self-sustaining 
processes of constitution of an identity under precarious circumstances and 2) 
such processes can be dynamically manifested in different modes of engaging 
with the world ranging from committed coping to open susceptibility. The 
implication of these two points will be that 3) current work in "autonomous" 
robotics based on ideas of automated synthesis of design (e.g., evolutionary 
robotics) and dynamical systems approaches to cognition, is still far from 
achieving or even modelling autonomy in the strong sense advocated here, but 
that this work may be at the same time the surest route to this goal. I will 
concentrate for the most part of the paper on discussing examples of recent work 
in evolutionary robotics. One case illustrates the insufficiency of thinking about 
autonomy in terms of functions and another example shows that at least some 
interesting aspects of the organization of autonomous behaviour can be 
modelled fruitfully once we take points 1 and 2 more seriously. Both cases, 
however, constitute “good” examples of the role of modelling in clarifying 
complex concepts such as autonomy. 
 
2. Why should autonomous systems generate their own identity? 
 
I will work under the assumption that autonomous systems, i.e., systems capable 
in some non-trivial sense of setting their own laws, exist, and that living systems 
provide the clearest, less controversial examples of such autonomy (even if it 
may still be possible to discuss autonomous systems that are non-living; or let's 
say, remain agnostic about the possibility). That autonomy is not an illusion is far 
from evident for Western thought. This is in fact because it is often suspected to 
be a purely ascriptional property – one that will simply vanish upon closer 
inspection. Autonomy remains such a slippery concept if examined under the 
magnifying glass of reductionist physicalism. If we are to avoid mysteries, an 
autonomous system must follow only the laws of physics, hence it cannot set its 
own laws, therefore they don't really exist, they're just convenient ways of 
talking. For Kant, in his Critique of Judgment, the intrinsic teleology of organisms 
was similarly unreachable by pure reason and yet it was so evident that he 
proposed it should remain as a regulative concept, i.e., we may talk about 
organisms as if they had purposes of their own but as a convenient shorthand of 
(not quite well-known) physical events. With autonomy the situation is 
analogous (and this is no accident). However, the above argument is rather 
absolutist in its terminological interpretation (what is a law? what is a system?) 
and its ignoring of the complex possibilities of self-organization of multi-scale 
physical processes of formation of constraints and structures. More gravely, the 
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argument just too quickly takes sides in the conflict between two kinds of very 
real experiences: the experience of the physical world as regular and describable 
in terms of laws and the experience of our perceived teleology and autonomous 
behaviour in others and, most importantly, in ourselves. On what basis are two 
reliable and repeatable experiences to be discriminated as real or unreal? History 
tells us that this is a naive formulation and that conflict breeds novel 
understanding by dialectical synthesis rather than by decreeing a winner 
position. This is Hans Jonas's rebuttal of the Kantian lukewarm recognition of the 
importance, but not quite properly ontological status, of intrinsic teleology. We 
can know life because we ourselves are alive (Jonas, 1966; Weber & Varela, 2002; 
Di Paolo, 2005; Di Paolo, Rohde & De Jaegher, forthcoming).  
 
Let's just boldly state that living organisms are autonomous – they follow laws 
set up by their own activity. Fundamentally, they can only be autonomous by 
virtue of their self-generated identity as distinct entities. A system whose identity 
is fully specified by a designer and cannot, by means of its own actions, 
regenerate its own constitution, can only follow the laws contained in its design, 
no matter how plastic, adaptive, or life-like its performance. In order for a system 
to generate its own laws it must be able to build itself at some level of identity. If a 
system ‘has no say’ in defining its own organization, then it is condemned to 
follow an externally given design like a laid down railtrack. It may be endowed 
with ways of changing its behaviour depending on history, but at some level it 
will encounter an externally imposed functional (as opposed to physical) 
limitation to the extent to which it can change. This can only be avoided if the 
system's limitations result partly from its own dynamics.  
 
Here we find already a point to be taken seriously by those who pursue the goal 
of building an autonomous system artificially. It would be wrong to think that 
the quest for artificial autonomy is futile by definition (to design what cannot be 
externally constructed). In fact, a subtle change of attitude should take place to 
start recasting the job of a designer of artificial systems. Once this attitude has 
changed, there is no contradiction in the idea of strong artificial autonomy. A 
design process is now transformed into the design of the right conditions 
(appropriate material substrate and organization) for an autonomous identity to 
constitute itself. Evolutionary robotics, as we shall see, has made important steps 
in this novel methodological direction. 
 
The autonomy of a self-constituted system is by no means unconstrained (being 
able to influence one's own limitations does not imply being able to fully remove 
them; on the contrary it means being able to set up new ways of constraining 
one's own actions). Hans Jonas (1966) speaks of life as sustaining a relation of 
needful freedom with respect to its environment. Matter and energy are needed to 
fuel metabolism. In turn, metabolism sustains its form (its identity) by 
dynamically disassociating itself from specific material configurations. 
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Let’s provide a definition of an autonomous system. 
 
An autonomous system is defined as a system composed of several processes that 
actively generate and sustain an identity under precarious conditions. By identity we 
mean to the joint properties of self-distinction and operational closure. The two 
properties go hand in hand. Operational closure, in a non-trivial sense, indicates 
the property that among the enabling conditions for any constituent process in 
the system one will always find one or more other processes in the system (i.e., 
there are no component processes that are not conditioned by other processes in 
the network, which does not mean, of course, that other conditions external to 
the system are not necessary as well for such processes to exist). Self-distinction 
therefore means the property of a process/component of belonging to such 
network of enabling conditions (i.e., it is the relation of closure that defines 
whether a process/component belongs or not to the system), and more strongly, 
of actively affirming the identity of the system by its own operation. By precarious 
we mean the fact that in the absence of the organization of the system as a 
network of processes, under otherwise equal physical conditions, isolated 
component processes would tend to run down or extinguish. 
 
The above definition makes the concept of autonomy operational. It should be 
clear that by expressions like ‘self-constitution’ and ‘generating its own laws’ no 
mysterious vitalism is intended. By saying that a system is self-constituted, we 
mean that its dynamics generate and sustain an identity. An identity is generated 
whenever a precarious network of dynamical processes becomes operationally 
closed. This means that at some level of description, the conditions that sustain 
any given process in such a network are provided by the operation of the other 
processes in the network, and that the result of their global activity is an 
identifiable unity in the same domain or level of description. Autonomy as 
operational closure is intended to describe self-generated identities at many 
possible levels (Varela, 1979; 1991; 1997).  
 
For instance, autocatalytic cycles are an example of an operationally closed 
system in the domain of chemical reactions: by definition, the cycle is capable of 
sustaining and regenerating itself (given enough supplies) and, at a formal level 
of description, it defines its own identity: a chemical reaction either belongs or 
does not belong to an autocatalytic cycle. This identity defines the interactive 
properties of the system but the history of interaction may also alter the process 
of continuous identity generation; hence the sense of self-law.  
 
For a living system, the self-identifying processes are themselves processes of 
material construction and transformation resulting in a self-distinct physical 
form.  The constraint of physical construction seems to provide some non-trivial 
implications to the condition of operational closure. Having a distinct, self-built 
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unity allows to ground consistently notions of behaviour and agency in ways 
that autocatalytic cycles do not permit. The implication of this is that our 
definition of autonomy may have to be refined in the future to better grasp the 
implications of physical self-construction. The notion of precariousness does part 
of this job. But this issue is further pursued here. 
 
The definition provided above fits well the case of the constitutive autonomy of 
living system: their metabolic organization. However, the definition is carefully 
worded so as to avoid the conclusion that this is the only possible instantiation of 
an autonomous system. Indeed, we find that several layers of behaviour up to 
the case of social interactions are able to meet the operational requirements of 
autonomy (or at least there’s no question of principle why they should not). 
Robotics (the tool for modelling autonomy discussed in this paper) can therefore 
aim at “catching” the constitutive dynamics of identity generation at some of 
these higher levels in order to capture forms of non-metabolic generation of 
values and self-determination (forms that are enabled but underdetermined by 
metabolism, for detailed discussions on this topic see Jonas, 1966, Di Paolo, 2003, 
2005). In other words, we suggest that there are ways of modelling and maybe 
even instantiating artificial autonomy that do not require building a fully 
autopoietic artificial system. 
 
In this respect, it is important to indicate that cognitive systems are also 
autonomous in an interactive sense in terms of their engagement with their 
environment as agents and not simply as systems coupled to other systems 
(Moreno & Etxeberria, 2005; Di Paolo, 2005). As such, they not only respond to 
external perturbations in the traditional sense of producing the appropriate 
action for a given situation, but do in fact actively regulate the conditions of their 
exchange with the environment, and in doing so, they enact a world or cognitive 
domain. 
 
Viewing cognitive systems as autonomous is to reject the traditional poles of 
seeing cognition as responding to an environmental stimulus on the one hand, 
and as satisfying internal demands on the other – both of which subordinate the 
agent to a role of obedience. It is also to recognize the ‘ongoingness’ of 
sensorimotor couplings that lead to patterns of perception and action twinned to 
the point that the distinction is often dissolved. Autonomous agency goes even 
further than the recognition of ongoing sensorimotor couplings as dynamical 
and emphasizes the role of the agent in constructing, organizing, maintaining, 
and regulating those closed sensorimotor loops. In doing so, the cognizer plays a 
role in determining what are the laws that it will follow, what is the ‘game’ that 
is being played. 
 
The focus on biological autonomy and agency is a radical departure from 
decades of theories that subordinate cognition to the demands and instructions 
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of either the environment or internal sub-agential modules meant to represent 
theoretical constructs such as instincts or drives. And it is only made more 
radical by the connection between the constitutive and interactional aspects of 
autonomy that is the basis of the idea of sense-making (Varela 1997; Thompson, 
2007; Di Paolo, 2005), the bringing forth of a world of significance.  
 
3. A fable about the dynamics of everyday life 
 
When trying to understand autonomous behaviour it may be instructive to take a 
look at the ongoing cycles of activity in normal everyday life and how they are 
often very different from the performances that are studied in psychology, 
neuroscience, cognitive science and AI/robotics. The locus of study in the 
majority of work in these disciplines is in general the single performance of an 
act – the recognition of a pattern, the enactment of a choice, the attainment of a 
goal, etc. – and the factors and mechanisms involved. It is only rarely the 
ongoing flow of behaviour that is of concern, i.e., the different modes of 
engaging with the environment and the autonomous constitution of future 
engagement such as the emergence of novel goals.  In new AI and robotics we 
find a strong, almost exclusive, emphasis on situated action and ongoing coping. 
This is typically a mode of performance rich in sensorimotor couplings and 
focused engagement with the task at hand (navigating towards a goal, 
hammering down a nail, etc). This mode is highly robust. There are very few 
distractors that will break down the flow of coping activity.  But coping does not 
always run smoothly. There may be breakdowns of different kinds that demand 
some effort of re-adaptation in order to return to the goal-driven activity. Most of 
the current work in robotics is about ongoing coping and a fraction of it (dealing 
with adaptation and learning) is about facing and resolving breakdowns in 
coping. 
 
Do these two concepts cover all the possibilities that we may encounter in the 
flow of an animal's (or a human's) everyday activity? This would imply that we 
lead very busy lives going constantly from one well-defined action to the next, 
that we are always only coping or dealing with some breakdown and that there 
is a clear purpose at each moment. If we pay more attention to the temporal 
organization of goal-seeking coping, we will find that there is one more possible 
mode of activity. Coping behaviour starts with an intentional demand to fulfil an 
objective. It is by definition motivated. This motivation or goal is not necessarily 
fixed or independent of the activity that ensues which is driven by an initial 
intention or solicitation from the current situation (i.e., a demand or need either 
external or internal to the agent). However, the fate of all coping, goal-oriented 
activity is, by its intentional nature, success, abandonment, or frustration 
(irrecoverable breakdown or simply unattainability). In all cases, coping ceases. 
We may describe this as the self-extinction of all well formed behaviour. If self-
extinction does not occur, then we are dealing with compulsive, possibly 
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pathological action (obsessive repetition, moths attracted to the candle flame, 
etc.). 
 
What happens after self-extinguished coping? It is simply contrary to everyday 
experience to assume that new goals will immediately follow from the 
attainment or frustration of previous ones (we are of course not ignoring the 
possibility of hierarchical organization of tasks into sub-tasks in which case the 
next set of activities is generally well-defined, but this is not the only possibility). 
In fact, our experience tells us that there are moments of certain openness to the 
possibilities afforded by our situation (such openness can clearly be very 
different depending on the affective outcome of the previous coping task). While 
distractors were robustly ignored during coping, now in an open state with 
undefined goals, an agent may be drawn by environmental or internal events 
into forming a novel intention and retroactively investing such a “distracting” 
event with meaning (for instance, I decide to put down the page I’m reading, I 
take a deep breath and look around my desk aimlessly, the sound of a car horn in 
the distance makes me look out of the window and on seeing the garden I notice 
that some maintenance is now long overdue, I decide to go and do some work 
there, it was one of the things I was previously intending to do, but not just now, 
the car horn “reminded” me of it). So there are durable states of dynamical 
openness and susceptibility to micro-events that are qualitatively very different 
from intentional, goal-driven coping. Openness does not self-extinguish by the 
logical structure of an intentional act, but it is bound to be extinguished by its 
very nature of high susceptibility. 
 
The different modes are represented in figure 1. Dynamically speaking, we could 
venture the hypothesis that coping relates to low-dimensional, highly robust, 
coordinated body/environment dynamics whereas openness relates to high-
dimensional, typically unstable, uncorrelated dynamical modes. And that 
switching between one and the other is not symmetrical. And yet the emerging 
picture is one of transiting between very different dynamical modes, between 
stability and instability. Maybe, in order to be able to synthesize artificial 
autonomous systems, we must first understand better what sort of dynamical 
system can generate such different regimes. 
 

[Figure 1 about here] 
 
There is a further step in the story of transiting between different modes of 
activity that is well supported by phenomenological analysis for the case of 
human agency. This is the active and regulated constitution of goals. The path 
from a state of openness to new coping simply just happens for most animals. 
The new goal doesn’t wait long before it appears. But humans can bring about a 
recursive constitutive skill to this passage by the act of simply asking: And now 
what? What was it that I had planned to do? Therefore, a further level of autonomy 
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that is supported by socio-linguistic skills and that down-regulate behaviour by 
actively constituting new goals marks human agency. However, this higher form 
of autonomy is beyond the scope of the present paper. 
 
4. Limitations of pure evolutionary robotics 
 
Let us now turn to the problem of modelling autonomous behaviour. Let us 
immediately clarify the obvious but easily forgotten fact that models and 
instantiations are very different things. An instantiation is supposed to be a 
proper member of the class of phenomena under study. By contrast, a model 
need not be; it can be crude – almost ignoring the majority of interested aspects 
of the phenomenon of interest – and yet be extremely useful. In general, simple 
models tend to be scientifically very powerful. This is because the purpose of a 
model is not to replicate a phenomenon, but to help explain it. There are lots of 
ways in which this can happen that do not involve producing an instantiation:  
models can show us the mistake in our assumptions, they can be explanatory 
rich in the way they actually fail to capture the phenomenon of interest, they can 
act as proofs of concept, they can generate novel hypotheses, and generally they 
can help re-organize complex ideas by exercising and questioning our intuitions. 
The models on self-generation of goals discussed later in this paper help us think 
about the concept of strong autonomy discussed in the previous section without 
either of them coming close to being an instantiation of this concept. 
 
Modelling (and instantiating) autonomous behaviour is the goal of robotics. 
However, in robotics the term autonomous is often used very loosely. It can 
mean anything from mobile, un-tethered, adaptive, to self-recharging or self-
powered. In the sense of not being constantly controlled from the outside and 
being able to cope with a noisy, real-world environment, mobile robots imitating 
simple lifeforms have been seriously investigated for the last two decades 
(Brooks, 1991) and have noble ancestors such as W. Grey Walter's tortoises 
(Walter, 1950). Such robots move about using simple but powerful principles of 
engaged interaction and achieve robust performance in the absence of explicit 
controlling at the level of attaining a certain goal. Robust performance emerges 
from the interaction of simple mechanisms with body and environmental 
dynamics. These robots exploit loose couplings with the environment to achieve 
sustained behaviour. But what about autonomous agents in a sense that is closer 
to the autonomy of living systems, agents capable of setting their own laws? As 
argued above, as long as a system is externally designed (even in terms of 
eventual changes that it may undergo in its organization) and not allowed to 
constitute itself, it cannot really be autonomous in the strong sense. Its goals are 
not set by itself but by the designer; they are extrinsic to it. However, interesting 
behaviour that approaches different aspects of autonomy is often observed once 
the designer starts constraining the process of design at increasingly removed 
levels.  
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Evolutionary robotics (ER) is still proving a useful and open-ended method for 
exploring this increasingly less constraining role of the designer that may be 
required to achieve strong artificial autonomy. ER hands in the task of filling in 
design specifications pertaining to mechanisms, morphology, structural and 
functional organization to an automatic process of artificial evolution (Harvey et 
al. 1997, Nolfi & Floreano, 2000). Thus, instead of designing a robot that must 
explore the environment but should go to the green light when the battery is 
down, one can attempt to design a robot that more generally must keep the 
battery up during its explorations, or more implicitly, a robot that explores 
indefinitely. In principle, there may be different ways of achieving this broader 
goal, and artificial evolution can find many of these ways and select for robots 
that opportunistically choose the most convenient route towards the general goal 
of maintaining the battery charged (it may imply taking advantage of a different 
source of energy that the one we intended as designers). A proper, strongly 
autonomous agent (in a sufficiently complex environment affording many 
alternative routes towards a goal) would certainly maximize the selection 
criteria. So, one could hope, all that needs to be done is evolve such robots for 
sufficiently long times and such autonomous agents will emerge eventually. 
 
Unfortunately, this is too optimistic a view and relies on a misunderstanding 
about artificial evolution. Unlike the open-endedness of natural evolution 
(operating on systems that are already autonomous), artificial evolution tends to 
be conservative rather than innovative. Or, rather, its innovation resides in that it 
often finds simpler, cleverer solutions than the ones we expect as designers. This 
is what makes it a powerful scientific tool to debunk myths and clarify pre-
conceptions (Harvey et al. 2005). Artificial evolution is capable of producing such 
results because it works outside the box of design constraints that limit the way 
we think about the system and the task it must achieve. But as a process 
operating on statistical information about a set of tested solutions to a problem, it 
will always run the risk of getting stuck on solutions that are statistically 
mediocre and thus finding it hard to explore elements of design that are initially 
neutral but that allow novel possibilities if they are reliably present. 
 
The best way to illustrate this is with an example. Tuci, Quinn, and Harvey 
(2002) have investigated landmark learning behaviour in a mobile, Khepera-like, 
robot controlled by a continuous-time, recurrent neural network (CTRNN) 
without synaptic plasticity. That learning is afforded without changes to a 
network’s connectivity is already one major demonstration of the power of ER to 
break pre-conceptions. This work intended to reproduce previous work by 
Yamauchi and Beer (1994) on landmark learning in one dimension, but with an 
agent moving freely in a two dimensional arena. The task is simple: find the 
location of a goal that cannot be seen from the distance using information 
provided by a fixed light. In half the cases, the light is next to the goal, in the 
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other half the light is far from the goal. Approaching the light and remembering 
the relation to the goal would enable an agent to learn in which of the conditions 
it finds itself, and then on later trials move either towards the light or away from 
it, but always towards the goal. Yamauchi and Beer had to use a modular de-
composition of functions into sub-networks to solve this task. It was the 
suspicion of Tuci and colleagues that this was unnecessary. However, if the 
fitness function were simply to count how many times the agent found the goal 
after the first trial (minimising designer involvement), no learning would evolve. 
Effectively, evolution settles on a fixed strategy (e.g., always move left) and finds 
the goal 50% of the times – a result that will not be unfamiliar to practitioners of 
ER. Why is not the robot using the light? Because the light is on average 
uncorrelated with the goal position, and fitness is measured as the average of 
many trials with the same number of presentations in each of the two possible 
situations (landmark far, landmark near). Hence, the safest bet given this lack of 
correlation is that the light is a distractor and hence it should be ignored. 
 
Tuci et al, realizing this, solved this problem by introducing an artificial bias in 
the selection process (effectively becoming more involved in it as designers). 
During the initial phase of the evolutionary process, they gave extra rewards to 
robots that approached the light (on top of whether they also approached the 
goal or not). This forced the evolutionary process to select neurocontrollers that 
responded to the light as a relevant stimulus. When this extra fitness criterion 
was removed in later generations (and only goal seeking remained) the 
population consisted of neurocontrollers that firstly sought the light, and from 
that situation they had to work out what to do next. The light because of the 
initial bias has ceased to be irrelevant, and in such circumstances (standing on 
the same spot as the light after having approached it) now the evolutionary 
process can uncover the proper correlation between light and goal. As a result of 
this, robots capable of learning the landmark correlation to a goal evolved. 
 
So we may conclude that more sophisticated levels of behaviour in general (as 
more sophisticated models of autonomy) may demand more and not less design 
intervention in the evolutionary process. This is the apparent paradox of artificial 
autonomy. The system should in some sense build itself, the designer should 
intervene less, but it should at the same time be more intelligently involved in 
setting the right processes in motion. Contrary to the uninformed perceptions at 
the time when ER was born, one cannot treat artificial evolution as a magic box 
capable of solving any problem one poses to it (and all one must do is just wait). 
Fortunately, failures to evolve a desired behaviour, if followed by some analysis 
of the behaviours that do evolve, often leads to a revelation of what are the 
problems one must overcome as a designer of an evolutionary regime. 
 
In addition, by its very nature, ER proceeds by testing candidate solutions under 
a set of varying circumstances in order to select robot controllers capable of 
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latching onto the significant interactions with the environment that will lead to 
achieving the desired goal efficiently and robustly. Finding a target cannot 
depend on the initial position of the agent, or the initial internal state, and so 
these parameters must be randomized from trial to trial to ascertain a level of 
stability of the solutions that evolve. But this very basic element of the ER 
methodology may play against the design of autonomous agents, at least if we 
consider the different dynamical regimes of activity described in the previous 
section. If evolution is to produce stable and robust dynamical controllers, it will 
avoid being strongly influenced by irrelevant environmental factors, but at the 
same time it will avoid internal sources of instability.  Hence it will produce 
robust coping, but not necessarily dynamical states of openness after coping 
activity is self-extinguished. That's why goal-seeking evolved robots tend to keep 
around their targets like moths attracted to a flame. They behaviour is almost 
pathological. The lack of self-extinction of behaviour should perhaps be taken as 
a sign of bad design (cf., work by Ian Macinnes on functional circles and practical 
ways of dealing with this problem, e.g., Macinnes and Di Paolo, 2006). So 
evolving autonomous robots will have to overcome this problem by either 
selecting the right building blocks, or including sensorimotor interactions and 
internal elements that inevitably will sometimes lead to transitions between low 
and high dimensionality in the dynamical flow as suggested in the previous 
section. 
 
5. A "self-instructing" agent. How not to model autonomy. 
 
Let us consider an example of an agent capable of generating its own instructions 
and following them. In some loose sense of autonomy (but not necessarily in the 
operational sense that we have offered above), this agent would be setting up its 
own goals. I present the following agent as a computer-enhanced thought 
experiment but also as a demonstration of why certain tempting methodologies 
for designing autonomous agents are conceptually flawed. In the next section, I 
will show an agent that is not yet fully autonomous but which demonstrates 
what I consider a better methodology. Both these models demonstrate how we 
can learn about autonomy without yet producing proper instantiations. 
 
In his well-known discrimination experiments, Randall Beer (2003) has shown 
how minimally cognitive behaviour can be 1) easily modelled and analysed 
using a combined evolutionary robotics/dynamical systems approach, and 2) 
how such models, albeit minimal, demonstrate interesting general principles and 
provide extendable vocabularies to discuss cognition in dynamical terms. The 
basic discrimination experiment consists of a visually-guided agent moving in 1 
dimension (left-right) whose task is to catch a falling object if it is a circle and 
avoid it if it is a diamond; the agent receives input from an array of linear visual 
sensors (rays that activate when intersected by the falling object) and this input is 
fed into a recurrent, symmetrical CTRNN controlleri. The output of the network 
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determines the velocity of the agent,  (Beer, 2003). Although dynamical analysis 
has shown that agents use the absolute radius of the falling shape to perform 
their discrimination, extensions of the setup to shapes of variable size results in 
agents capable of discrimination based on shape, (Di Paolo and Harvey, 2003). 
 
Let us consider a variant of this model. An agent that performs a circle/diamond 
shape discrimination, but that depending on an external binary signal its choice 
of which object to catch can be altered. So if the external signal (ES) is set to 0, the 
agent is a circle-catcher and if the signal is 1, the agent is a diamond-catcher. 
 
The setup is otherwise similar to Beer’s experiments, with the difference that 
sensors are binary (to increase sensory ambiguity and encourage more active 
solutions). And additionally, a focus control is added to the array of sensor rays. 
This is an effector neuron that simply opens and closes the angle of the sensors 
rays in a linear way. Interestingly, this extra level of sensory control is important 
to evolve agents capable of changing their behaviour depending on the external 
instruction. Figure 2 shows the average fitness of 10 independent runs with and 
without focus control. The best focus controlling agents can perform either circle-
catching or diamond-catching on demand for a relatively large range of sizes, 
using ambiguous noisy sensors with success rates of over 85%.  
 

[Figure 2 about here] 
 
These agents have now a well-defined signal that alters the goal they pursuit. 
Couldn’t such a signal be somehow provided internally? Ideally, could such a 
signal be generated in a way that is jointly dependent on internal and 
environmental factors? Exclusive dependence on either class of factors would not 
generate an agent that we would be happy to call autonomous as we could 
suspect that the agent is following the instructions that either are external to it or 
is blindly taking no account of its situation. Autonomy, even in an intuitive 
sense, is ruled out by either of these two conditions. Why? Because both 
conditions negate the idea of self-determination. The case of constant reactive 
response to the environment is clear. No system that is simply driven externally 
can ever be autonomous. But, and this is less intuitive, the same may be said 
about a system that is “driven internally”. If a subset of a system exerts control 
on the whole, then the situation remains that of a system that is controlled, not 
self-determined. If a system is controlled only by internal dynamics making it 
blind to the current environmental situation (what sometimes in mathematical 
terms is indeed called an “autonomous” system due to the lack of parametrical 
and time-dependent driving), the system has nothing to determine itself against. 
It simply endures in its dynamics because it’s closed to environmental 
challengesii.  
 
So taking these intuitive constraints into account let us conceive of a sub-system 
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capable of generating a stable on-off signal depending on internal state and 
environmental circumstances. There are many options. One would be a central 
pattern generator (CPG) that oscillates with a certain frequency in the absence of 
input currents and settles into either a high or a low value stable attractor in the 
presence of input. Such a circuit can easily be hand-designed using a fully 
connected 2-node CTRNN (Beer, 1995) and is shown in figure 3. The CPG 
receives input from the visual sensors. Depending on the phase value of the 
oscillation orbit, the presence of input will drive the CPG to one of two possible 
stable fixed points (new intersections of nullclinesiii). For one of the nodes the 
two fixed points correspond to high and to low firing rates respectively. This 
node is then connected to ES in the pre-evolved discriminator network. The 
agent will now produce behaviours such as those shown in figure 4. Upon 
repeated presentation of a circle the agent will sometimes approach it and other 
times avoid it. Similarly for diamonds. In a very simplistic way, the agent is 
setting up its own “goals” by instructing itself to go for one object type or the 
other. It does so in a way that depends on internal conditions (phase in the CPG 
cycle) and external factors (e.g., position and timing of the falling object). An 
external observer could describe the agent’s behaviour as “capricious”. 
 

[Figures 3 and 4 about here] 
 
Why is this a problematic way of approaching artificial autonomy? Even though 
this model tries to capture an intuitive notion of autonomy as the setting of a 
system’s own goals by the system itself, the integrity of what we take to be the 
system ultimately relies on the designer’s viewpoint. It is (like most artificial 
agents to this day) a system by convention. It is only too clear that the add-on of a 
CPG to an already evolved neural network does not result in a system that is 
integrated in other than a nominal sense. In fact, because they system’s identity is 
given externally, we could just as well visualize the CPG circuit as located in 
another room and communicating with the system through remote control. And 
this is in effect what a method aiming a integrating a controller into the system 
itself (see Smithers, 1997) will always achieve: a homuncular solution whereby 
the human controller is replaced by a module telling the rest of the system what 
to do. The advantage of this example is the clarity with which this problem 
presents itself, but more sophisticated versions of the same idea (when clear 
modular separation is not so easy to perform) will be conceptually no different. 
Hence, proper autonomy must address internal goal generation as a result of the 
system’s own organization, rather than as a function that the system produces 
(independently of whether such function is achieved in a modular or distributed 
manner). In short, autonomy is not a function. A similar point is made by Rohde 
and Di Paolo (2006) with respect to value generation and value systems (see also 
Di Paolo, Rohde & De Jaegher forthcoming, and Rutkowska, 1997). We are faced 
with an important consequence of the view on biological autonomy sketched at 
the beginning which is not necessarily obvious at the moment of starting to 
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develop it into a workable model: autonomy is not something that a system does, 
it is a property of how the system is organized and re-organizes itself so as to 
channel its functionalities towards newly generated intentions. 
 
6. A better way: evolving behavioural preferences. 
 
For ease of comparison, let us stay with the problem of an agent producing an 
autonomous behavioural choice, but let us approach the problem in terms of the 
dynamical organization of the agent. How would such a model look like? What 
sort of method can produce a system that by its very structure and interactions 
would by itself select and regulate a sensorimotor flow based on the effects it has 
on the maintenance of an internal organization? 
 
Consider a dynamical model of the formation and sustaining of a behavioural 
preference. How does an embodied agent develop a stable preference such as a 
habit of movement, a certain posture, or a predilection for spicy dishes? Is this 
development largely driven by a history of environmental contingencies or is it 
endogenously generated? Kurt Goldstein (1934) described preferred behaviour 
as the realization of a reduced subset of all the possible performances available to 
an organism (in motility, perception, posture, etc.) that are characterized by a 
feeling of comfort and correctness as a contrast to non-preferred behaviour 
which is often difficult and clumsy. In this view, the fact that a preferred 
behaviour is observed more often would be derivative of these properties and 
not central to its definition (preferred behaviour is often efficient but not 
necessarily optimal in any objective sense).  Following this idea, a preference can 
be defined as the enacting of a behavioural choice that is sustained through time 
without necessarily being fully invariant, i.e., with time it may develop or it may 
be transformed into a different preference.  
 
Behavioural preferences and their changes lie between the two scales typically 
addressed by dynamical systems approaches to cognition: the behavioural (e.g., 
Beer, 2003; Kelso, 1995) and the developmental (Thelen & Smith, 1994) and share 
properties with both of them. Goldstein has argued that we cannot really find the 
originating factors of a preferred behaviour purely in central or purely in 
peripheral processes, but that both the organism’s internal dynamics and its 
whole situation participate in determining preferences (Goldstein, 1934). In this 
view, it becomes clear that a preference is never going to be captured if it is 
modelled as an internal variable (typically a module called “Motivation”) as in 
traditional and many modern approaches, but that a dynamical model needs to 
encapsulate the mutual constraining between higher levels of sensorimotor 
performance, and lower processes, such as neural dynamics (Varela & 
Thompson, 2003). This is what the above model does not achieve. A preference is 
not “located” anywhere in the agent’s cognitive architecture, but it is rather a 
constraining of behaviour (through internal and external conditions) that is in 
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turn shaped by behaviour.  
 
Iizuka and Di Paolo (forthcoming) present an exploratory model of behavioural 
preference with the objective of exploring Goldstein’s assertion of multi-
causality. This model illustrates a potentially fruitful method for modelling 
autonomy as well. The minimal requirement to capture the phenomenon of 
preference is a situation with two mutually exclusive options of behavioural 
choice. An agent should be able to perform either of these options but the choice 
should not be random, but stable, and durable. The choice should not be 
invariant either but it should eventually switch (in order to study the factors that 
contribute to switching). There should be a correspondence between internal 
dynamical modes and different aspects of behaviour (from commitment to a 
choice to switching between choices). For this the methods of homeostatic 
adaptation (first introduced in Di Paolo, 2000) are used to design not only the 
agent’s performance but to put additional requirements on the corresponding 
internal dynamics. 
 
In the original model of homeostatic adaptation an agent is evolved to 
simultaneously perform a task and to maintain its internal variables (e.g., 
neuronal firing rates) within some homeostatic bounds, (Di Paolo, 2000). When 
such variables cross the boundary, local internal plasticity is activated, and keeps 
active until homeostasis is recovered (Ashby, 1960). Some of the agents that 
evolve under these conditions show a dynamical link between the two objectives 
(performance and internal homeostasis) such that disruption to performance 
(e.g., changes to motors or sensors) result in internal instability, which provokes 
plastic internal changes until stability is regained. Because of the dynamical link 
established during evolution, regaining internal stability involves a behavioural 
adaptation to the original disruption. The result is that the agent is able adapt to 
severe disruptions that have not been presented to it before. 
 
This idea can be naturally extended to a situation where an agent must choose 
between alternative behaviours: A and B. Instead of a single homeostatic region 
for the internal variables (neuronal firing rates), there are two regions. If the 
neural dynamics are contained within either of these high-dimensional boxes, the 
network remains unchanged. But if the flow of internal states moves out of the 
boxes, local plastic synaptic changes are applied in the general direction of 
reverting the flow to move again inside the box. Now, agents are evolved to 
perform each behaviour A and B and to behave homeostatically so that the 
internal state is inside box A while performing behaviour A and inside box B 
while performing behaviour B. The evolutionary regime is designed so that 
behaviour is not biased to either of the choices. In the case presented in (Iizuka 
and Di Paolo, forthcoming) the behaviour is simply approaching a light of type A 
or B (the wheeled Khepera-like agent has two pairs of sensors left and right 
towards the front, one for each type of light). Each homeostatic box is 
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implemented for each node in the CTRNN neurocontroller as 2 bands within the 
range of firing rates (figure 5): a low-firing and a high-firing homeostatic region 
(to reduce bias, the type of each region, A or B, is assigned randomly at the 
beginning of the evolutionary run). 

[Figure 5 about here] 
 
The idea is that if the system holds two separate (fixed) high-dimensional boxes 
in the space of neural dynamics which are associated with performing different 
behaviours, a preference could be formed by the dynamical transitions that select 
which box the trajectories go into and stay in. This provides a first requirement 
for talking about preference, that of durability (bottom-up construction of 
stability). Once a behaviour is formed, due to the stability in a box, the system 
keeps doing the behaviour while ignoring other behavioural possibilities. It is 
like a spontaneous top-down constraint that regulates the sensorimotor flow. 
However, some disturbances might eventually cause a breakdown of the stability 
and then another behaviour can be reconstructed though the homeostatic 
adaptive mechanisms. Since by design, the system has another region of high 
stability, it will be possible in the right circumstances to switch into it and then 
start enacting the other behavioural option. In this way, behaviour can switch 
due to the corresponding transitions between two boxes. One can expect to see 
both spontaneous and externally induced transitions from the viewpoint of the 
top-down and bottom-up construction or destruction of durable but 
impermanent dynamical modes. Here we find a second requirement, that of the 
possibility of transformation, or change in preference. 
 
The evolved agents show interesting behaviour when two lights (A and B) are 
presented simultaneously in a random position. They always “chose” to go to 
one of the two lights, they never stay in the middle or move away from them. 
Moreover, when the position of the light is replaced by two new distant 
positions, the agents seem to maintain a preference for the light they have visited 
previously, but not indefinitely. Figure 6 shows a sequence of 100 consecutive 
presentations of lights (A and B) in sequence with randomized positions. The 
plot on the left shows the final distance to each type of light. We can see that the 
agent approaches light B for the first 25 presentations, but then switches to light 
A and maintains this behaviour for about 35 presentations before switching 
again. The plot on the right shows the corresponding proportion of time that the 
neural dynamics is inside boxes A and B. It is clear that the proportion tends to 
be high while the agent is performing the corresponding behaviour.  
 

[Figure 6 about here] 
 
Many tests have been performed to assess what makes an agent change its 
preference, (more details in Iizuka and Di Paolo, forthcoming). For instance, 
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while approaching light A, the lights are swapped in position to see whether the 
agent changes its behaviour. The result depends on the time of the swapping. If 
the agent is far enough, it alters its trajectory after the swap and moves towards 
the new position for light A. If the swap is made later, when the agent is close to 
light B, the agent switches to finish its approach to light B, as if its presence was 
now too strong a stimulus to ignore. This and similar tests indicate that a 
preference is maintained or changed as a combined effect of environmental 
factors and endogenous dynamics.  
 
In an attempt to measure the development of a preference, agents are tested at 
different times during the sequence of presentations shown in figure 6 in order to 
find out if their choice would have been the same at that point in time if the 
position of the lights had been different. The distinction between a spontaneous 
or externally driven “decision” is made operational by observing the agent’s 
behaviours in different situations departing from a same initial state. If the agent 
“decided” to go to one of the lights endogenously, its behaviour must be robust 
without depending too much on environmental factors. On the contrary, if the 
selection were externally driven it would be affected by changes to 
environmental factors such as light positions (as if the agent were not 
“committed” enough).  
 
Figure 7 shows the results. Each plot indicates in shades of grey the final 
destination approached by the agent as a function of the angle relative to the 
body in which each light is presented. The neural and bodily states are picked 
from those corresponding to a given time in the sequence shown in figure 6. In 
the case of (a), in which the agent originally has the preference of light B, the 
“decision” is stable against the various alternative positions of the lights. The 
agent robustly approaches light B for practically all the angular positions tested. 
Therefore, the “decision” to approach B does not strongly depend on 
environmental factors in this case. This is also true in the case of (c). Except for 
the small region where it selects light B, the agent approaches light A wherever 
else the lights are placed. By contrast, in cases (b) and (d) the agent is rather 
“uncommitted” because the approached target changes depending on the lights’ 
position.  
 
The agent thus alternates between periods of high and low preference for each of 
the options presented to it. During periods of high preference it could be said 
that the agent’s behaviour is committed in the sense that it is less dependent on 
distracting factors (as implied in Figure 7, the agent will under these 
circumstances ignore the “wrong” light even if placed directly in front of it, and 
look for the “right” light even if it is out of its visual range). While the preference 
is changing from one option to the other the agent does not show a strong 
commitment to which light should be selected as target. There is ample scope for 
distracting factors to alter the agent’s behaviour. Then, the new preference 
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develops towards a more stable (or committed) dynamics. It is this alternation 
between these modes – resembling the alternation between the modes of coping 
and openness described in section 3 – that makes this behaviour closer to 
something we might call autonomous. 
 
The implication of these results is that the emergence of a new goal happens by 
an interplay between internal and interactive dynamics and that it consists, not 
of a function that performs certain decisions and instructs how the agent should 
behave, but of the regulation of periods of openness to external and internal 
variations and periods of commitment to a goal. Even during periods of weak 
environmental dependence, the endogenous dynamics are not solely responsible 
for the agent’s performance. In all cases, behaviour is the outcome of a tightly 
coupled sensorimotor loop. It is clear that the mode of environmental influence, 
whether weak or strong, changes over time and that this is a property of the 
agent’s own internal dynamics as well as its history of interaction. During the 
periods of high susceptibility to external variations, the agent is highly 
responsive to environmental variability resulting in less commitment towards a 
given target. By contrast, during periods of weak susceptibility, the consistent 
selection of a target is a consequence of low responsiveness to environmental 
variability. 
 
The important point is that the autonomy of the agent’s behaviour can be seen as 
the flow of alternating high and low susceptibility as suggested in section 3, 
which is an emergent property of the homeostatic mechanism in this case (but 
might be the result of other mechanisms in general). There is nothing apart from 
the flow of neural and sensorimotor dynamics that stands for a mode of 
commitment to a preference or other. It should be made clear that this picture is 
quite a contrast with the idea that autonomy may be simply measured as how 
much of behaviour is determined internally vs. how much is externally-driven. 
Strong autonomy is orthogonal to this issue since simply all of behaviour is 
conditioned by both internal and external factors at all times. It is the mode of 
responsiveness to variations in such factors that can be described as committed 
or open, and it would be a property of strong autonomous systems that they can 
transit between these modes (maybe in less contingent ways as this agent). 
 

[Figure 7 about here] 
 
This agent comes closer to some properties of autonomous behaviour described 
above, especially in addressing the constitution of a new goal as an emerging 
property of the internal and interactive dynamics in relation to organizational 
constraints. We cannot really claim that the agent is fully autonomous however. 
The fixed internal constraints (homeostatic boxes) are rather arbitrary in their 
definition and their lack of contingent development over time. It seems that 
having homeostatic regions that are somehow themselves constituted by a 
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history of interactions would be a much better way of modelling autonomy. In 
addition, there is only a contingent link between internal “requirements” and 
external interaction. Light is made relevant to the agent by a selective pressure 
and it is linked to an internal condition to be satisfied (homeostasis) also by 
evolutionary history. Organisms present much tighter double causal links 
between internal needs (e.g., metabolism) and sensorimotor interactions (e.g., 
foraging). This is again something that should be improved for a closer approach 
to behavioural autonomy, (Di Paolo, 2003). 
 
7. Conclusions 
 
What do we learn from these models? The two examples of modelling aspects of 
autonomous behaviour presented above allow us to draw some clear conclusions 
that are implicit but not well articulated in the more conceptual view on 
biological autonomy proposed in section 2: Autonomy (and its implications such 
as identity generation, value-generation, goal-setting, etc.) is an organizational 
property of a system, not a function, a state or a mechanism. Any attempt at 
approaching it purely in functional terms will miss something fundamental.  
 
In other words, autonomy is a property pertaining to what a system is, rather 
than what it does. This ontological property will have very clear consequences for 
how the systems behaves, i.e., what it does. But to start a model from those 
consequences will always run the risk of trivializing autonomy or even 
explaining it away. In our two cases, we have focused on the self-setting of goals 
as an example of an autonomous performance. Implementing this in an intuitive 
manner results in a model that is not satisfactory because it misses the 
ontological dimension of autonomy. It treats it as a function. A more 
sophisticated implementation is able to capture the underlying dialectics 
between dynamics and meta-dynamics (homeostatic constraints and plasticity), 
between organization and performance, and goal setting is achieved in an 
emergent manner and not as a function of the system requiring some dedicated 
computational module. There is simply nothing in the neural controller of the 
agent that set out new goals, and yet this is what the agent does as a whole. 
 
The preference model also suggests a second lesson. It is not very fruitful to ask 
of a putative autonomous system whether its behaviour is caused by internal or 
external factors. This approach breeds confusion because all of behaviour is 
always determined by both internal and external conditions. Autonomous 
behaviour is, like the preferences shown by the agent, always caused by a 
multiplicity of internal and external factors. It is the response of the system to 
variability in such factors that gives an idea of the particular mode of 
commitment to a goal, and it is to be expected of autonomous systems that they 
would also show transitions between these modes as shown in the preference 
model. The study of this model has so far looked at the commitment to a 
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preferred behaviour by altering environmental conditions (positions of light), but 
we might as well study internal variability (e.g., noise or lesions) such that 
behaviour is still achievable and similarly measure different modes of 
engagement resulting in analogous periods of coping and switching (this study 
has not been performed yet). 
 
Are we dealing with an autonomous system in the model of preference 
formation? Not yet. We may ask (as suggested at the end of the last section) to 
what extent is an identity self-generated in this system. This definitional aspect 
of autonomy is not captured by this model. It is clear that much of the system is 
rather stable and not precarious (e.g., the agent’s body, sensor and motor 
response, and neural connectivity) and that if an identity could be self-generated 
anywhere in this case, it would have to be at the level of the combined neural 
and sensorimotor dynamics. But still there is much arbitrariness in the design of 
this setup (such as the location and static nature of the homeostatic regions).  In 
fact, whether higher and recursive levels of identity are possible without the 
grounding in physical self-construction is still an open question. 
 
The complex dialectics between different dynamical levels is at the root of 
several intentional aspects of autonomous behaviour from the generation and 
appreciation of values, norms and affect in a situation, to the emergence of a 
sense of agency and self. We expect that, by producing models that either make 
confused ways of thinking more manifest or indicate more clearly the relation 
between complex ideas, this kind of methodology will help us further research 
into these related questions. At the moment, functional modelling (attempting to 
capture concepts such as autonomy or agency in terms of functions) is still 
prevalent (Di Paolo, Rohde, De Jaegher, forthcoming; Rohde & Di Paolo, 2006). 
This is in part due to the technical limitations of traditional approaches to 
cognitive modelling (which we are beginning to overcome) but also partly due to 
some conceptual Cartesian baggage that hides itself under apparently innocuous 
assumptions, especially in terms of deriving mechanisms for externally observed 
functionality. 
 
However, we must at all times remember the point of producing models such as 
the ones described here. They are not meant to be implementations of the 
properties under study. The formation of an identity may well be modelled at the 
neural level (e.g., the formation of a dynamic pattern that is self-sustaining under 
precarious conditions and whose maintenance require certain sensorimotor 
interactions with the environment) even though implementing such a process 
may not still be enough to implement a proper autonomous agent. A model is 
supposed to expose gaps in our understanding – not produce fancy 
performances. For this, in most cases, full implementations are optional and 
models as those presented here do their job. 
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List of figures 
 
Figure 1. Dynamical modes describing the flow of everyday activity. 
 

Figure 2. Fitness achieved for agents evolved to catch circles or diamonds under 
external instruction with and without focus control of sensor rays. Average of 10 
independent runs. 
 
Figure 3. Top left: CTRNN neurocontroller for self-instructing agent. ES: external 
signal, F: focus effector, ML and MR, motor neurons driving left and right 
respectively. Top right: nullclines corresponding to fully connected 2-node CPG 
in the absence of input. Bottom left and right: nullclines in the presence of input, 
trajectory ends in a low firing fixed point for neuron 1 (left) or in a high firing 
fixed point (right) depending on phase. Output of neuron 1 is fed into ES. 
 
Figure 4. Repeated presentation of falling circles (left) and diamonds (right) for 
self-instructing agent. Plots show the horizontal displacement of the agent over 
time and the position where the objects fall. Agent sometimes approaches the 
target, other times avoids it. 
 
Figure 5. Left: schematic representation of two high-dimensional homeostatic 
regions in the space of neural firing rates. Right: how the homeostatic regions are 
implemented for each node in the network. The plot indicates the plasticity 
function (pj) as a function of neural firing rate (zj). Changes to incoming weights 
are calculated as a function of pre- and post-synaptic activation multiplied by pj. 
Whenever the post-synaptic firing rate is in one of the two flat regions, pj = 0 and 
local plasticity is inhibited. 
 
Figure 6. Left: Final distance to each light at the end of trials on serial 
presentations of 100 pairs of lights. Right: Proportion of neurons that have stayed 
within the homeostatic region for each light in correspondence to trials on the 
left.  Adapted from Iizuka and Di Paolo (forthcoming). 
 
Figure 7. Light preference of the agent corresponding to the states of (a) 20, (b) 
25, (c) 50 or (d) 95 in Fig. 6, against different light positions. Horizontal and 
vertical axes indicate the initial angles of lights A and B relative to the agent’s 
orientation respectively. The positions of lights whose difference is less than /2 
are removed in order to better determine which light the agent is approaching. 
The dark grey circles show that the agent approaches light A. The light grey 
circles correspond to light B and black shows the agent does not approach either 
of lights. Adapted from Iizuka and Di Paolo (forthcoming). 
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external instruction with and without focus control of sensor rays. Average of 10 
independent runs. 
 
 
 



29 

 
 
 
Figure 3. Top left: CTRNN neurocontroller for self-instructing agent. ES: external 
signal, F: focus effector, ML and MR, motor neurons driving left and right 
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Figure 4. Repeated presentation of falling circles (left) and diamonds (right) for 
self-instructing agent. Plots show the horizontal displacement of the agent over 
time and the position where the objects fall. Agent sometimes approaches the 
target, other times avoids it. 
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Figure 5. Left: schematic representation of two high-dimensional homeostatic 
regions in the space of neural firing rates. Right: how the homeostatic regions are 
implemented for each node in the network. The plot indicates the plasticity 
function (pj) as a function of neural firing rate (zj). Changes to incoming weights 
are calculated as a function of pre- and post-synaptic activation multiplied by pj : 

wji = ji zi pj (zj) where ji is an evolved constant. Whenever the post-synaptic 
firing rate is in one of the two flat regions, pj = 0 and local plasticity is inhibited. 
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Figure 6. Left: Final distance to each light at the end of trials on serial 
presentations of 100 pairs of lights. Right: Proportion of neurons that have stayed 
within the homeostatic region for each light in correspondence to trials on the 
left.  Adapted from Iizuka and Di Paolo (forthcoming). 
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Figure 7. Light preference of the agent corresponding to the states of (a) 20, (b) 
25, (c) 50 or (d) 95 in Fig. 6, against different light positions. Horizontal and 
vertical axes indicate the initial angles of lights A and B relative to the agent’s 
orientation respectively. The positions of lights whose difference is less than /2 
are removed in order to better determine which light the agent is approaching. 
The dark grey circles show that the agent approaches light A. The light grey 
circles correspond to light B and black shows the agent does not approach either 
of lights. Adapted from Iizuka and Di Paolo (forthcoming). 
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Notes 
                                                
i
 The state equation for a CTRNN neuron is:  
 

i (dyi/dt) = –vi + j wjizj  + Ii,  
 
where i indexes all neurons, j indexes all links inputting to neuron i (which may 
be an empty set), i is a time constant, yi is the neuron state (analogous to a 
membrane potential), Ii is an input current, wji is the link weight from neuron j 
into neuron i, and zj is the activation of the pre-synaptic neuron attached to link j. 
For a neuron, the firing rate is given by the logistic function: 
 
zj = (yj+bj) = 1/{1+exp[–(yj+bj)]},  
 
where bj is a bias parameter. 
 

 
ii
 If such blind action were to be the paradigmatic case of autonomy, we should 

think of mountains as being alive since they endure much longer than living 
systems. But life is not about enduring and autonomy is not about blindly 
ignoring the environment. Self-determination becomes an empty concept if the 
system is detached from sources of uncertainty and solicitations that would tend 
to induce in it alternative outcomes from the one that the system itself is 
struggling to achieve. In this view, autonomy is always a dialectical concept. 
 
iii Nullclines in a 2-node CTRNN circuit are calculated by setting the derivatives 
of the states y1 and y2 equal to zero in the CTRNN state equation. The y1 nullcline 
is given by: 
 
J2 = ln [J1/(w21 – J1)] - w22 J1/ w21 – I2 – b2. 
 
The y2 nullcline is given by: 
 
J1 = ln [J2/(w12 – J2)] – w11 J2/ w12 – I1 – b1. 
 
where J1  w21 (y2+b2) and J2  w12 (y1+b1) 
 
See (Beer, 1995). 
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