
“Value Signals” and Adaptation:

An Exploration in Evolutionary Robotics

Marieke Rohde and Ezequiel Di Paolo

Centre for Computational Neuroscience and Robotics (CCNR)
Department of Informatics, University of Sussex, Brighton, BN1 9QG, UK

{m.rohde,ezequiel}@sussex.ac.uk

Abstract. Pfeifer and Scheier write: “If the agent is to be autonomous
and situated, it has to have a means of ‘judging’ what is good for it and
what is not. Such a means is provided by an agent’s value system” ([8], p.
315). What can it mean for a system to generate “values”? In this paper,
we take a closer look at this question. A series of minimal evolutionary
robotics experiments, in which an agent is evolved to generate a signal
that corresponds to its level of performance, in analogy to the idea of
a value system, is presented and discussed, pointing out the essential
role of sensorimotor coupling for the integrated process of judgment.
The emphasis of the discussion is on the relation between function and
mechanism and aims at questioning our intuitions about value systems
and the neural correlates of meaningful events and processes.

1 Introduction

What is the relation between function and mechanism? Research in evolutionary
robotics is frequently motivated by a scepticism about an isomorphic relation
between the structure of behaviour and the structure of the physical mechanism
that brings it about (e.g. [11]).

This paper follows this tradition of questioning the localisation of a function.
We critically investigate what is called a “value system” and “value guided learn-
ing”, mooting the assertion that an encapsulated system can be held responsible
for meaningful judgment. Our method allows us to generate a minimal embod-
ied system where “value judgements” result from a coupling between mechanism
and behavioural dynamics. We show how the de-compositional view misses out
on crucial aspects of how the system works. This example illustrates an impor-
tant theoretical possibility that traditional approaches to the question of value
are unable to account for.

2 Value System Architectures

2.1 What Are Value System Architectures?

What we refer to as “value system architectures” is a class of models for life-
time adaptation, characterised by a functional and structural division between



behaviour–generating mechanisms and mechanisms of adaptation. In particular,
these models feature a value system, which generates a bipolar performance sig-
nal directing adaptive processes (value guided learning). Their activity can be
seen as the internal generation of a reinforcement signal.

The label “value system” has been taken from the theory of neuronal group
selection (TNGS) by Edelman et al. (e.g. [3]). TNGS proposes ontogenetic Dar-
winian–style evolution as principle of neural organisation ([3], p. 242). A value
signal, generated by a value system, is the criterion to reinforce successful be-
haviour by strengthening the participating synaptic connections, a process akin
to natural selection. For instance, a value system for reaching would become
active (“good”) if the hand comes close to the target [10].

This underspecification permits more behavioural flexibility than pre–speci-
fied motor programmes and allows an organism to manage the effects of anatom-
ical variations on neural control. However, it requires the behaviour generating
mechanisms themselves to be value–agnostic and blindly obey the value system’s
judgment. The value system is a separate system, which in itself is not supposed
to adapt, at least not through its own judgment1. Value systems are thought to
be “already specified during embryogenesis as the result of evolutionary selection
upon the phenotype” ([10], p. 968).

This idea of value guided learning has also been transferred to autonomous
robotics. Pfeifer and Scheier refer to TNGS in their book “Understanding In-
telligence” and support the claim that self–supervision through value systems
is essential to direct processes of self–organisation in autonomous agents ([8], p.
467, see Verschure et al. [12] for an example application).

2.2 What Is the Problem With Value System Architectures?

Our argument can be seen as a special case of an argument that others have made
before us: It is the claim that the dynamics of behaviour and the dynamics of
behavioural learning, even though they can be functionally distinguished and
occur on different time scales, need not be brought about by different physiolog-
ical structures. Simulated evolutionary robotics experiments, first by Yamauchi
and Beer [13], then by Tuci, Quinn and Harvey [11], have helped to illustrate
this point, by demonstrating how a unitary fixed weight control network can
realise fast changing motor behaviour as well as long term modulation of this
behaviour (learning).

These existence proofs, even though they teach us to be careful not to pre-
suppose a functional modularity, do not exclude the empirical possibility of such
structures. The developmental psychologist Julie Rutkowska [9], however, pro-
vides more practical reasons to be sceptical of value system architectures. She
argues that “[increased] flexibility requires some more general purpose style of
value” ([9], p. 292) than a value module could provide, even though such circuits
may work in specific cases. She laments their vulnerability and their restrictive

1 Some authors hold it possible “that different value systems interact, or that hierar-
chies of specificity might exist.” ([10], p. 969).



semantics consequent to the built–in evaluation criteria. A similar limitation is
pointed out by Pfeifer and Scheier, who describe a “trade–off between specificity
and generality of value systems” ([8], p. 473): A very specific value system will
not lead to a high degree of flexibility in behaviour, while a very general value
system will not constrain the behavioural possibilities of the agent sufficiently.

The common denominator of these different issues raised by different re-
searchers is summarised in Rutkowska’s question of whether a value system
constitutes a “vestigial ghost in the machine” ([9], p. 292). A value system that
applies pre–specified evaluation criteria to pre–specified sensory states to steer
ontogenesis in a top–down manner, even if it guides the adaptation of real–time
situated and embodied behaviour, is in itself a disembodied control structure.
As such, it suffers from all the problems associated with traditional disembod-
ied artificial intelligence architectures, which have been pointed out many times
(e.g. [2, 7, 8]): They are rigid and non–adaptive, their functionality relies on the
intact functionality of dedicated input and output channels and they can only
deal with scenarios that could be foreseen when they were designed.

2.3 The Only Good Ghost Is a Dead Ghost

The astonishing fact about value system architectures is that, despite the out-
lined disembodied nature of the value system, these architectures are very popu-
lar with researchers that share our concerns about situatedness and embodiment
in the study of intelligent behaviour, and who are deeply sceptical towards clas-
sical symbolic approaches. For instance, Sporns and Edelman point out how
TNGS models, through their increased flexibility, can overcome difficulties such
as anatomical variations, which are “challenging to traditional computational
approaches” ([10] p. 960). It is probably unquestioned that “Understanding In-
telligence” by Pfeifer and Scheier [8], the very volume that advertises value
guided learning, is one of the most important books to promote the situated and
embodied approach.

Maybe, it is “shrinking” the homunculus that makes the difference for these
researchers, after all, value systems are just a vestigial ghost in the machine2.
Maybe, empirically, there are “simple criteria of saliency and adaptiveness” ([10],
p. 969) that can a priori specify what will be good and what will be bad a

posteriori3.
As a neuroscientific theory, TNGS is backed with empirical evidence. There is

e.g. a correspondence between salient events in the environment and the activity
of cell assemblies in the brain stem and the limbic system that modulate synaptic

2 For instance, Edelman’s statement that “[TNGS] relies only minimally upon codes”
([4], p.45) suggests this interpretation.

3 An option that we can probably exclude is that “value” and “value systems” are
simply ambiguous terms and used to describe phenomena on both the mechanical
and the functional level. When Edelman maintains e.g. that “general information
about the kinds of stimuli that will be significant to the system is built in” ([3],
p.58), it is obvious that a literal reduction of function to mechanism underlies the
idea of value system architectures.



changes in the cortex[5]. The bigger question to be asked in this context is: What
can we deduce from such a correspondence4?
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Fig. 1. Schematic view of value system architectures (A), and the alternative views
resulting from our first (B) and second (C) set of experiments.

The simulation experiments we present in this paper approach this question
in minimal controlled settings. A mobile agent is designed through artificial evo-
lution to perform simple phototaxis and, at the same time, to generate a signal
that corresponds to its level of performance. There is no a priori need or function
associated with this estimate, it simply serves us as analogy with the aforemen-
tioned brain structures identified as value systems. In a first set of experiments,
a value signal is generated that has no effect on the network dynamics. With this
experiment, we raise the question whether it is adequate to think of value gener-
ation as the application of a pre–specified function, which can be separated from
sensorimotor behaviour (as in Fig. 1 (A)), or if judgment is rather an activity
just like phototaxis and is constituted within a closed sensorimotor loop (Fig. 1
(B)). In a second set of experiments, the internally generated value signal is fed
back into the neural dynamics of the agent (Fig. 1 (C)). With this experiments
we want to question intuitions about the value system modulating the behaviour
dynamics. We emphasise the consequences of the reciprocal causal links that go
in both directions, not only top-down from the value system to the behaviour
generating network.

3 The Model

The model is deliberately minimalist. It does not aim to model actual brain
structures, as the cited models, it serves to illustrate a conceptual argument.

A circular two-wheeled agent of 4 units diameter is designed by evolutionary
search to perform phototaxis. The control networks evolved are continuous time
recurrent neural networks (CTRNNs, e.g.[1]) with variable size and structure (see

4 According to Kandel, the “idea that different [brain] regions are specialized for differ-
ent functions is now accepted as one of the cornerstones of modern brain sciences”([6],
p. 9). We think that such functional specialisation of brain regions is questionable,
at least as a general case.



below). The dynamics of neurons ni in a CTRNN of N neurons are governed by

τi

dai(t)

dt
= −ai(t) +

N
∑

j=0

cijwijσ(aj(t) + bj) + Ii (1)

where σ(x) = 1
1+e−x is the standard sigmoidal function and Ii is the external

input to ni. The weights wij ∈ [−8, 8] from nj to ni, the bias bi ∈ [−3, 3] and
the time constant τi ∈ [16, 516] are determined by a genetic algorithm (GA). C

is the n× n connectivity matrix with cij = 1 if there is a connection from nj to
ni and cij = 0 otherwise.

The agent has two sensors SL,R with an angle of acceptance of 180◦, which
are oriented towards +60◦ and −60◦, with added uniform directional noise ∈

[−2.5◦, 2.5◦]. Their activation is fed into input neurons by ISi(t) = Sg · SL,R(t)
with Sg evolved ∈ [0.1, 50] and SL,R(t) = 1 if the light is within the sensory range
of SL,R at time t and SL,R(t) = 0 otherwise. Note that the binary character
of the light activation makes the estimation of the distance to the light non–
trivial. The motor velocities are set instantaneously at any time t by ML,R(t) =
MG · (σMi+(t) − sigmaMi−(t)) + ε where MG is the motor gain ∈ [0.1, 50].
sigmaMi±(t) is the neural output of one of the two neurons controlling ML,R

and ε ∈ [0, 0.2] is uniform noise. A fifth output neuron generates the performance
estimate E(t) = σM5(t).

The connectivity C and the size of the network is partially evolved. Connec-
tions to input neurons or from output neurons are not permitted. Input neurons
can project to output neurons and to hidden neurons, hidden neurons can project
to other hidden neurons and to output neurons. The network can have varying
numbers (0–5) of hidden neurons. In experiments where the value signal E is
integrated into the network dynamics (Sect. 4.2), the estimator neuron changes
status to become another interneuron. In some experiments, parts of the network
structure and parameters were excluded from continued evolution at a certain
stage.

Parameters for the control network are evolved in a population of 30 indi-
viduals with a generational genetic algorithm with real–valued genes ∈ [0, 1],
truncation selection (1

3 ), vector mutation [1] of magnitude r = 0.7 and reflec-
tion at the gene boundaries. The sensor gain SG, the motor gain MG and the
time constants τi are mapped exponentially to the target range. The existence
or non–existence of hidden neurons and neuronal connections is determined by
the step functions x > 0.7 and x > 0.6 respectively. All other values are mapped
linearly to their target range.

In every evaluation, the robot is presented with a sequence of 4-6 light sources
that are placed at at a random angle and distance ∈ [40; 120] from the robot.
Evaluation trials last T ∈ [3000, 4000] time steps. They are preceded by T ′

∈

[20, 120] simulation time steps without light or fitness evaluation, to prevent that
the initial building up of activity in the estimator neuron follows a standardised
performance curve. Each light is presented for ti ∈

[

T
5 − 100, T

5 + 500
]

time
steps. The network and the environment are simulated using the forward Euler
method with a time–step of 1 time unit.



The fitness F (i) of an individual i is given by

F (i) = FD(i) · FE(i) + εFD(i) (2)

where FD(i) rates the phototactic behaviour and FE(i) rates the fitness pre-
diction. The second term (ε = 0.001) is included to bootstrap the evolution of
behaviour, as the coevolution of light seeking and estimation of performance
from scratch is difficult for evolutionary search. FD(i) is given by

FD(i) =
1 − M2

T

∫ T

0

max

(

0, 1 −
d(t)

d(t0)

)

dt (3)

with M = 0.125
T

∫ T

0
ML(t)−MR(t)

MG
. d(t) is the distance between robot and light at

time t and t0 the last displacement of the light source. The estimate fitness FE

has gone through a long but necessary process of refinement and complication.
It is given by

FE(i) =

√

√

√

√max

(

0,
e(d̄, d) − e(E, d)

e(d̄, d)

)

· max

(

0,
e(0, ḋ) − e(Ė, ḋ)

e(0, ḋ)

)

(4)

with e(x, y) the sum of squared error e(x, y) =
∫ T

0
(x(t) − y(t))

2
dt. d̄ is the

average of d(t) during each trial. ḋ(t) and Ė(t) are the derivatives of d(t) and
E(t) averaged over a sliding time window w = 250 time steps (interval borders
for e(x, y) have to be adjusted accordingly).

The evaluation of a network i on n = 6 trials is given by

F (i) =

n
∑

j=1

Fj(i) · 2
−(j−1)

·
1

∑n

j=1 2−(j−1)
(5)

where Fj(i) gives the fitness on the jth worst evaluation trial for individual i,
which gives more weight to worse trials and thereby rewards the generalisation
capacity of the evolved networks.

4 Results

4.1 Generating a Value Signal

In this section, we describe and analyse an individual evolved agent. It was
selected because of its simplicity and because its way of estimating performance
is representative for the most frequently evolved strategy.

The network evolved (Fig 2, (A)) does not have hidden neurons, recurrent
connections or slow time constants, i.e. its behaviour hardly relies on internal
state and its complexity is minimal, even within the already restricted range of
possibilities. For rhetorical reasons, we start with the description of the value
system, before we describe the light seeking behaviour.
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Fig. 2. (A) The distance estimator network (θ in neurons, dotted lines inhibition, solid
lines excitation). (B) Trajectory following four presentations of light sources. Arrows
indicate the punctuated turns during t = 2200 − 2700 (see text). (C) The evolution
of different variables over time in the same trial (Top to bottom: SL,R, ML,R, d(t) vs.
E(t), ḋ(t) vs. Ė(t)).

The neural structures participating in the generation of the value signal are
just the two input neurons and the estimator neuron, so if anything, we would
have to call this sub–system the value system. In the absence of light, or if
the network receives input only on its right light sensor (SR = 1, SL = 0), it
estimates E ≈ 0. If light is perceived with both sensors, it estimates E ≈ 0.5,
and if the network receives input only in its left light sensor (SR = 0, SL = 1),
the estimate reaches its maximum of E ≈ 0.8. The judgment criteria of this
value system can thus be described as “seeing on the left eye is good, seeing on
the right eye or not at all is bad”. Intuitively, these rules do not make sense.
Nevertheless, as we can see in Fig. 2 (C) (bottom two plots), both E(t) and Ė(t)
(dotted lines) follow with amazing accuracy the actual values d(t) and ḋ(t) (solid
lines), particularly if we remember the poor sensory endowment of the agent.

The agent’s light seeking behaviour is realised by the network minus the
estimator neuron. In the absence of sensory stimulation, the agent slowly drives
forward, slightly turning to the right. If SR = 1 and SL = 0, the “brake”
on the left motor ML is released, which leads to a sharper turn to the right.
If SR = 0 and SL = 1, the “brake” on the right motor MR is released, which
makes the agent turn to the left. If light is perceived with both sensors, the agent
releases both “brakes” and drives almost straight, slightly drifting to the right.
In combination (Fig. 2 (B)), upon a presentation of light, these four behavioural
modes lead to the following sequence of actions: 1.) A scanning turn to the right,
until SL = 1. 2.) A quick approach of the light from the right side. 3.) counter
clockwise rotation around the light source. While the agent approaches the light
source, it keeps bringing the light source in and out the sensory range of SR

(compare the rhythmically occurring drops of sensory and motor activity in Fig.
2 (C)). This strategy results in the chaining of nearly straight path segments in
the approach trajectory, separated by punctual left turns (arrows in Fig. 2 (B)).



We now return to the agent’s value system. The estimator neuron M5 outputs
E ≈ 0 if SL = 0. The reason for this is that during the entire approach behaviour
SL = 1, and therefore SL = 0 implies that the light has not yet been located,
which only happens in the beginning of the trials if the agent is far away from
the light source. During the nearly straight path segments, SL = SR = 1, which
leads to E ≈ 0.5, i.e. an intermediate estimate for an intermediate approach
stage. While the agent cycles around the light source, SR = 0 and SL = 1, and
the value system produces its maximum estimate, expressing that the light source
has been reached. Notice also that the straight path segments which correspond
to E ≈ 0.5 become shorter as the agent comes closer to the light. Therefore, even
though the value system has just three modes of output, its evolution over time
can express a more gradual change in distance, if averaged over a time window:
The average output increases with decreasing distance to the light.

Another event worth discussing in the trial depicted in Fig. 2 (B) and (C)
occurs after the last displacement of the light source (t > 2800): As the dis-
placement happens to bring the light source in the left visual field of the agent,
it immediately enters the oscillating approach mode and its estimate therefore
poorly corresponds to the actual distance measure which drops to 0. This dis-
sonance can be seen as inevitable error due to the limited possibilities of the
agent. However, we prefer to see it as superiority of the evolved estimator over
the distance measure as a measure of performance: The comparably high output
expresses the agent’s justified optimism to be at the light source soon. Such dis-
crepancies between meaningful judgment signals generated by the agent and a

priori specified performance measures were one of the key difficulties in design-
ing the experiments. Even with the highly refined and complex fitness measure
FE (4), sometimes, “good” solutions in terms of the experimenter’s perception
were replaced with less sophisticated ones by automated selection.

4.2 Value Guided Learning

Value systems are the proposed neural structures to guide ontogenetic adapta-
tion. Can such mechanisms work if the value system is properly embodied? To
investigate this question, we conducted another simple simulation experiment, in
which the evolution of the robot controller is seen as the analogue of ontogenetic
neural Darwinism as proposed in TNGS. The only parameters that evolve in
this experiment are the strengths of the three synaptic connections from sensors
to motors in the agent presented in the previous section (compare Fig. 2 (A)).
The fitness measure F is substituted for the performance estimate E(t). It is
important to notice that in this set–up, the value system does not evolve, it just
guides the evolutionary change of the synaptic weights to reinforce whatever
behaviour leads to a high performance estimate E(t).

Figure 3 (B) illustrates how with an embodied value system, value guided
learning quickly results in a deterioration of light seeking behaviour, even though
synaptic weights are just minimally altered. What the “value system” rewards
is simply activation of the left light sensor but not the right. That this judgment
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means good light seeking behaviour during embodied interaction is a contribu-
tion of the sensorimotor context, and this meaning is removed if the system is
functionally separated from the sensorimotor context. The gradual change of
behaviour results in what we call “semantic drift” of the value system, i.e. the
behaviour it rates as successful quickly ceases to be phototaxis (Fig. 3 (A)).

We see that the functional integration of the value system into the sensori-
motor loop has far reaching consequences for the role this value system can play
in the adaptation of behaviour dynamics. The reciprocal causal connections be-
tween behaviour generating system and value system undermine the idea of the
value system as a top–down modulator of behaviour. But if the function of a
neural structure whose activity we, as observers, can interpret as performance
signal is not actually a value judgment, what could it be? This question is an
open issue. One answer has already been given in Sect. 4.1 of this paper: Such a
correspondence could be purely epiphenomenal and not bear any functional role
in the generation of behaviour.

In an initial attempt to further investigate this question, we evolved agents
in which the estimator neuron has the status of an interneuron and can project
to other neurons. The most common structure we find in these networks is an
excitatory self–connection in the estimator neuron that improves the estimation
performance, but not phototaxis. In some of the networks that realise the same
strategy described in Sect. 4.1, light seeking crucially depends on the activity
of the estimator neuron. It serves to inhibit the right motor, as its activity is
roughly in inverse correlation with the activity of the right sensor, and thereby
takes part in inducing left turns if the light goes out of the right visual field.
Its function is simply to relay and invert the right sensory signal. There is no
end to the possible functions a “value system” could serve in the control of
an embodied and situated agent. What the presented findings show is that the
correspondence of neural activity to a behaviourally meaningful variable may
well be plainly accidental.



4.3 The Evolution of Value Systems

Comparing the agents evolved to estimate value and seek lights to agents evolved
to achieve just phototaxis (i.e. F (i) = FD(i)), it turns out that the light seeking
behaviour in agents that are evolved to estimate their performance is clearly
suboptimal. Our first hypothesis to explain this phenomenon was a trade–off
between the ability to perform judgments and the ability to find light quickly.

To test this hypothesis, we seeded evolution with successful light seeking
agents and evolved combined light seeking and judgment behaviour on top,
comparing conditions in which the sensorimotor behaviour was either fixed or
continued to evolve with the value system. We expected the latter to be fitter,
because the light seeking behaviour could be changed by evolutionary search to
allow better estimation of performance. To our surprise, we found that both FD

and FE were on average higher in the agents with fixed sensorimotor behaviour5.
If good light seeking and good value estimation are possible at a time, why does
the evolutionary search not find this solution? If we have a closer look at how the
FE and FD component evolve in example evolutionary runs (Fig. 3, (C)), we see
that the coevolutionary scenario (top) is much more noisy and good solutions
repeatedly deteriorate. Apparently, in the presented set–up, a good estimation
of the agent’s performance is very sensitive to behavioural noise and can only
exceed a certain level if the sensorimotor coupling is completely fixed. This ex-
plains why value guided learning leads to such a rapid and devastating decay of
behaviour: The noise sensitivity of value estimation accelarates semantic drift.

5 Discussion

Summarising the results from our simulation experiments, we presented an agent
in which the capacity to judge on its level of performance with respect to a certain
task crucially relies on the sensorimotor behaviour through which this task is
realised. Without this sensorimotor context, the neural structure producing the
performance estimate is meaningless, and if sensorimotor behaviour does not
accommodate the need to estimate the level of performance, such judgment is
only possible to a very limited degree, which renders the value system useless as
internal supervisor of adaptive change.

Let us start our discussion by remembering the neural structures whose ac-
tivity corresponds to salient events. From the presented results, two possible
ways to interpret such structures result: a.) They could be embodied structures,
integrated in a sensorimotor context, whose meaning has to be investigated and
interpreted within this context and during situated interaction with an environ-
ment. b) They could be value systems that autonomously perform judgments
about the significance of a situation and rewire the agent accordingly.

5 However, one of the seeded phototactic agents applies a strategy for phototaxis that
does not seem to allow the estimation of performance. This suggests that there is at
least some need for sensorimotor behaviour to accommodate judgment.



The presented results hopefully illustrate how these two options exclude each
other: An “embodied value system” is a contradictio in adjecto. The existence of
reciprocal causal links between value system and behaviour generating systems
causes semantic drift of the value signal, which results in anarchy of development
(see Sect. 4.2). But how could a value system not be embodied? Surely, we do
not want to introduce magic meaning sensors or a magic master value system
that ensures that the other value systems work smoothly. This smells too much
of what Rutkowska calls “[b]uck passing to evolution” ([9], p. 292). If we struggle
to explain the simple case without such scaffolding, the more abstract case will
surely not become easier. The only way a value system architecture can work is a
full embracement of the functional separation and pre–specification of meaning.

In the area of robotics, as shown in [12], we can design experiments rigidly
enough to fixate meaning. But for an approach that aims at advancing past
the stage of pre–specified motor programs, that refers to variable biomechanical
properties in living organisms, the introduction of parts of the organism that are
exempted from ontogeny, despite the constant material flux an organism under-
goes, seems like a step backwards. It appears so inevitable that a random change
would slightly change the context in which a value system is embedded, and the
value–agnostic remainder of the organism would be unable to detect it or do
anything about it. Furthermore, both in the area of biological modelling and in
robotics, there is another unpleasant side–effect resulting from the introduction
of disembodied and non–adaptive value systems: The impossibility of novel val-
ues. A rigid structure with a priori meaning can only work in situations that
rely on phylogenetic constancies, the generation of new values in situations that
our ancestors could not even have dreamt of asks for a different explanation.

We do not want to question that structures like the ones described as value
systems exist in living organisms and that they play an important role in the
adaptation of behaviour. In contrary, we think that the investigation of such
mechanisms is important and intriguing. We plan follow–up experiments to the
ones presented in Sect. 4.2, to investigate possible embodied functions that “neu-
ral value structures” could have for the adaptation of behaviour6. However, what
we do want to question is that such components are or could be the loci of
meaning. We question the idea that the generation of meaning can be separated
functionally. Such components form part of an integrated system and their func-
tionality both constrains and is constrained by this system they form part of,
and therefore, they have to be interpreted as parts of a complex mechanism, not
as encapsulated generators of judgment.

6 Conclusion

This paper does not have to be seen exclusively as a criticism of the value system
as a locus of judgment, but as a general conceptual argument about correlation
of neural activity with functional aspects of behaviour and how it does not

6 A crucial aspect to change is a task that requires long term adaptive modulation of
behaviour, which was neither the case nor necessary in this paper.



entail, or even justify, the reduction of the respective function to the respective
brain structure. Even though this point is not exactly novel, the enthusiasm with
which researchers sympathetic to the embodied approach implement and develop
“value system architectures”, in which a disembodied module is introduced to
provide a priori specified criteria to guide embodied and situated lifetime de-
velopment, provoked us to conduct the presented series of simple simulation
experiments. These experiments illustrate the impossibility to reconcile func-
tional reduction and the embodiment and situatedness of behaviour, which has
been discussed in detail for the case of value system architectures, but extends
to all models that feature a functional and structural separation of mechanisms
of meaning generation from mechanisms of behaviour generation, i.e. all hybrid
symbolic/embodied approaches to adaptive and intelligent behaviour: If a full–
blown ghost in the machine has difficulties dealing with the variability of the
external world, why would a vestigial ghost in the machine not face the same
difficulties dealing with the variability of its bodily environment?
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