
CVS integration with notification and chat:
lightweight team support

Geraldine Fitzpatrick
Interact Lab, Dept of Informatics

University of Sussex
+44 1273 678982

g.a.fitzpatrick@sussex.ac.uk

Paul Marshall
Interact Lab, Dept of Informatics

University of Sussex
+44 1273 678941

p.e.marshall@sussex.ac.uk

Anthony Phillips
Interact Lab, Dept of Informatics

University of Sussex
+44 1273 678983

a.d.phillips@sussex.ac.uk

ABSTRACT

Communication and awareness have been identified as key issues
for effective software development. Code management systems
like Concurrent Version System (CVS) can play an important role
in this work, but often at some time removed from the original
entries. The focus of this paper is what happens to a software
development team’s use of CVS when the log is synchronously
augmented with an event notification system, Elvin, and a
tickertape tool where CVS messages are displayed and where
developers can chat with one another. Data from interviews and a
high-level log analysis demonstrate that the tool was effective in
supporting timely interaction around CVS entries and became an
important communication and awareness tool. Analyses of the
CVS logs of two different projects show that, when using the tool,
developers tend to include more information in the messages they
write when they check code in to the repository.
Keywords
Event notification, CVS, Elvin, awareness, communication, chat,
log analysis.

1. INTRODUCTION
Software development is widely recognized as a difficult and
complex endeavour, not least because of the involvement of
multiple people and the complex interdependencies among the
intangible software artefacts being worked on. This can be further
complicated by people being distributed across time and space.
Effective coordination, then, becomes a significant challenge for
software development teams and awareness and communication
are regarded as key elements of the way in which coordination is
achieved.

It is not surprising then that significant effort has focused on
supporting coordination. Much of this support is through explicit
project mechanisms such as formal project documentation, the use
of formal specification languages, regular structured review
meetings, and systems for bug tracking, version control/
configuration management (CM) and so on [2, 12, 13, 16]; these
mechanisms are in common use in real-world projects. Grinter
[10] clearly identifies the role of CM tools in creating visibility in
the development process and becoming a form of organisational
memory.

More recent approaches, especially in the research realm, show a
move away from managing activities and workflow per se to
providing visualisations to support awareness of activities and
artefacts in software development, e.g., see Storey et al. [21] for a

survey of current approaches such as Palantir [18], Jazz [14] and
Augur [9]. Many of these visualisations are created by extracting
information that already exists in tools, such as version control
systems, and representing it in different ways to provide graphical
overviews of the code base that can be queried and interacted
with. Sarma et al. [18] describe how this transforms the use of
version control tools from information pull to information push.

While awareness and communication are both talked about as
important aspects of coordination supported by the tools above,
communication is treated similarly to awareness as ‘information
delivery’ to the individual. More interactive and discursive
communication takes place externally from the above
mechanisms, through tools such as email or IM or an informal
pairwise basis or at team meetings. Interestingly though, such
informal communications have been repeatedly identified as
critical for software coordination [4, 5, 10, 12, 13, 16, 17] and
there are reports of very effective use of email alongside CVS [6,
11]. The costs of pairwise communications have also been well
documented, such as being expensive in time, ephemeral in nature
and tightly aligned to physical co-location and accessibility [15].

Hence CM tools play an important role in awareness and passive
communication; visualisation tools enhance this by making CM
information more temporally relevant and available with
additional functionality; more interactive communication
however, has to happen separately from these tools.

In this paper, we report on the augmentation of CVS with real-
time notification and chat in the same interface. A simple event
notification service sends CVS log messages to a tickertape (or
other client interface) that also supports informal chat among the
development team. The main contribution of this paper is to show
how a very simple lightweight event notification mechanism and
multi-function client interface, closely integrated with use of an
existing tool such as CVS, can support both the awareness and
informal communication needs inherent in software development.
Data presented from interviews and vignettes, and from analysis
of CVS log files, suggest that developers come to regard the entry
of CVS log comments more as a communicative act and change
their behaviour to provide more information; both awareness and
informal communication are supported.

2. BACKGROUND and RELATED WORK
Software development is a complex undertaking, with complex
dependencies across code modules and also across time. This
creates interesting requirements for coordination and awareness
support. Developers report that it is important to know things,
such as who is working on what or what changes have been made

[6, 11]. This might involve current parallel activity or it might
involve some unknown past or some unpredictable future activity.

Configuration management systems have been identified as
playing a key role as formal tools to support this coordination and
awareness. We will overview the specific experiences that have
been reported with these systems and also overview more recent
visualisation work making use of the data they contain. First
however, it is worth reviewing the importance of communication
as part of software coordination since communication figures in
various ways in the following discussions.

2.1 Communication and Awareness
Communication is talked about in different ways in discussions of
software development coordination: as mediated communication
and informal communication. Both are critically important for
supporting software coordination and complement one another.

Mediated communication happens through information being
conveyed or accessible to an individual, often via formal project
mechanisms such as CVS logs, project documentation, wall
charts, and so on. This has connotations of passive one-way
communication regardless of whether that information is
communicated automatically or explicitly sought out by the
person. Such mediated communication can result in increased
awareness of what is going on, which in turn can help a person
coordinate their activities with others.

Informal communication on the other hand is a socially-embedded
process involving two or more people engaging in ad hoc
discussions and interactions. Numerous studies highlight that
software engineers spend a significant proportion of their time
communicating. Perry et al. [17], for example, found that
developers spent 50% of their time in interactive activities other
than coding, and that 75 minutes per day was spent in informal
communication; De Marco and Lister [5] similarly report that
70% of developer time is spent in communication. Other
empirical studies of software teams confirm the prevalence and
importance of informal communication and spontaneous ad hoc
encounters, e.g., over the water cooler or by dropping into an
office [4, 10, 16]. It is in these discussions that ideas are
discussed, problems solved, conflicts negotiated, missing
information filled in, and so on. In a study of 65 projects/563
individuals, Kraut and Streeter [16] showed that informal
discussions with peers was the most highly valued coordination
technique and that ‘other people were the most used and valued
sources of help’.

It is no wonder then that co-location or at least physical proximity
are important factors in the frequency and quality of informal
communication [15, 16] and that coordination problems can be
exacerbated in distributed development teams because of the
increased difficulty of informal communications including
barriers such as lack of unplanned contact, knowing who to
contact about what, cost of initiating contact, ability to
communicate effectively, and lack of trust [12, 13].

However, Kraut and Streeter also point to issues with informal
communications. Apart from the need to be local to be most
effective, there are the transaction costs of engaging in lots of
pairwise interactions and the ephemeral nature of verbal
discussions compared to more archival sources such as email or
logs.

We now turn to configuration management systems as one of the
complementary formal communication mechanisms for software
coordination.

2.2 Configuration management systems
Configuration management (CM) systems are an important part of
how software development teams coordinate and manage multiple
software components and multiple people working on those
components [10].

Concurrent Version System (CVS) [1] is one type of
configuration management system. CVS maintains a current
central repository of source code along with multiple previous
versions. It offers an optimistic approach to configuration
management by supporting parallel development and allowing
multiple developers to work on the same code. Developers can
take a copy of a current file by checking it out, make changes,
then check it back (also termed ‘commit’) into the repository.
Support is provided on check-in for identifying and resolving
conflicts. De Souza et al. [6] talk about the importance of this
check-in process for transitioning code segments from a private
workspace to the public repository.

Associated log files are a part of this transition process in a CVS
repository. When developers check code back into the repository,
they are prompted to enter a comment into the log about the
changes they have just made.

The focus therefore is mainly on the role of the tool in providing a
central consistent code base from a more formal, process-oriented
view for coordination support [22], e.g. through timeline views,
being able to see the status of a checked-out artefact and related
code modules, and highlighting (or resolving) differences between
versions of the same code [9]. All of these mechanisms require
explicit effort on the part of the developers; with many CM
systems, this information is only available when a developer goes
to check out or check in a file or if they explicitly query the
system [18]. Further, these mechanisms do not support more
informal discussions and negotiation (articulation work as
described by [22]) around the formal process aspects [11, 12, 13].

2.2.1 CM and Mailing Lists
In view of this, many different practices have been developed to
augment CM tools so that code changes can be more easily
communicated to the wider development group and to enable
associated discussions to happen. Mailing lists form an important
part of these practices (e.g., see [6, 11])
Gutwin et al. [11] studied three distributed open source projects
that used CVS and found that the developer mailing list was both
a primary communication channel and awareness mechanism.
When a file is checked into the CVS, the change is automatically
sent to the mailing list. Just from reading the subject line,
developers reported that they could ‘keep an eye on’ what type of
changes were being made and by whom. The developers also used
the mailing list for both dissemination and discussion: to send
short emails stating what they have done or what they are going to
do, and to engage in discussions, e.g. about a bug or a proposed
feature.
De Souza et al. [6] describe a software development team of 25
members who made use of email in conjunction with a CM tool to
coordinate their work and to move work from their private space
back into the ‘public’ realm. While they had a formal team
process guideline about sending an email to the developers’
mailing list after changes had been made, de Souza et al. found

that the developers actually sent the email before they checked-in
code to give “a brief description of the impact that their work
[changes] will have on other’s work”. The purpose of this was to
give others time to “prepare for and reflect about the effect of
their changes”, often resulting in people coming to ask about the
change or asking for a delay, etc.
Yamauchi et al. [23] also studied two different distributed open
source projects, both using CVS, where mailing lists were pivotal
for coordination and awareness. Before check in, developers
would extract “the difference between the modified version and
the central master code with [the command] ‘diff’ and then submit
the differences to a mailing list” (p333).

In all of these cases email serves to meet an informal
communication and awareness need, but the informal
communication takes place in parallel to, but separated from the
CVS logs that anchor the discussions. They also require explicit
effort (apart from the automated sending of changes) on the part
of the developers to send the initial message and further describe
or discuss the changes.
Despite this, most developers reported that they felt that the
combination of a CM tool and email worked well. Email provided
a way of making actions on intangible software artefacts publicly
available in a timely way [6, 11]. People became aware of
interdependencies they were otherwise unaware of; they could
start to get a better sense of who was working on what and what
areas of expertise others had; it also served as a learning
mechanism [6]. Gutwin et al. [11] highlight the effort-benefit
disparity in this parallel use of email with CVS (the people
reading the message derive more benefit than the person who has
to put in the effort to send the message) but the developers did not
mind this as they knew they would also benefit at some other time
from someone else’s effort. However, even though the developers
stated that the combination worked for them, some studies [6, 22]
observed situations where it did not, for example rushing to
commit changes first to avoid being the person to deal with
merges.

Interestingly though, the CVS log itself, which Grinter [10]
identifies as an important organisational memory and coordination
resource, does not figure directly in these interactions. The extra
detail contained in the developer-generated emails is often not
associated directly with the log entry, creating a separation of the
action on the artefact and the discussion around it, and leaving the
burden with the reader to construct the full context for the
discussion.

Interestingly too, the CVS log files do not appear to feature
prominently for the developers as important mechanisms of
coordination, given the reports from various studies of people
using CM tools [6, 11]. When accessed explicitly by developers, it
is at a time removed from the actions documented in the log.
Gutwin et al. [11] also found that while “the commit log is the
only awareness source that is based on the actual manipulations of
the project artefacts” (p.77), some developers found that it was too
time-consuming and tedious to read about numerous commits and
to identify the ones of interest to them.

What this all tells us is that developers perceive that they derive
sufficient benefits from mailing lists to make the effort, and
indeed the avoidance workarounds, worthwhile. However, the
benefit is from the timeliness of the emails and discussions not
from the CVS logs per se. The system that we will talk about here
provides the timeliness of mailing lists for both awareness and

stimulating discussions but does not require specific effort on the
part of the developer to send out the initial notification nor to
process an inbox of email messages.

2.2.2 CM and Visualisation Systems
More recent approaches seek to exploit the coordination and
awareness role of configuration management systems for
developers, but without requiring explicit effort or parallel
separated mechanisms such as email. A number of visualisation
tools have been developed to provide awareness of activities and
artefacts in software development by extracting and manipulating
information from existing tools such as CVS [21]. Palantir and
Augur are two such examples. Palantir uses an event notification
service, Sienna, to collect and distribute relevant workspace
information (about the actions of other developers on artefacts)
which is then organised and presented via a graphical
visualisation on the developer’s desktop. The creators of Palantir
talk about this as continuous awareness versus the discrete
isolated information usually derived from these tools [18, 22].
Similarly, Storey et al. [21] talk of feedthrough awareness.

A common feature of many of these approaches is that they make
use of existing tools such as CVS and existing information held in
these tools. They do not require additional explicit effort on the
part of the developer (unless it is to set up more refined filtering
of the information displayed to them) to make that information
available. They do however require significant screen real estate if
benefit is to be derived from having such continuous views. They
are also yet another dedicated application that the developer has to
have running on their machine. The approach we will talk about
here also makes use of existing information without explicit effort
but uses a client interface that takes up minimal screen real estate
(similar to the Palantir tickertape interface but in contrast to the
graphical visualisations) and that the developers already have
running on their machines for a variety of other uses.

Many of the visualisation approaches support awareness through
mediated communication, however there is one system, Jazz, that
also incorporates a chat facility [14]. Similar to sticky notes [3],
Jazz provides a facility for developers to leave chat boxes visibly
anchored in the code to support conversations and collaborations
in context. By definition then, these will tend to be asynchronous
interactions separated in time and requiring explicit effort or
serendipity to come across as opposed to the more synchronous
and discursive nature of the chats generated by the system in this
paper.

3. CVS WITH ELVIN AND TICKERTAPE
The approach we talk about here also makes use of existing tools
such as CVS but does so by using information available at the
check-in of code to the CVS, in combination with an event
notification/router service called Elvin [19, 20] and a multi-
purpose client interface such as a tickertape [7, 8, 19, 20]. After
introducing Elvin and tickertape and its use with CVS, we will go
on to explore how it was used in two different projects and over a
period of seven years.

Elvin has been undergoing continuous development during the
period of use and data collection that we will be analysing here.
At its most general level of description, Elvin provides a means of
content-based addressing, sending simple structured messages
from some producer and allowing consumers or receivers to select
messages of interest through use of a subscription [19, 20]. The
Elvin server then routes the messages received to those who have

registered interest. Because the underlying event model in Elvin is
very generic, a producer or a consumer can be anything from a
software component to a person and it can be put to uses ranging
from systems-oriented middleware messaging, to people-oriented
filtering of information feeds from sources such as the web, and
informal chat.
For the people-oriented uses, a client interface is required to
display the messages received and to support the initial setting up
of the subscriptions. Again over the extended period of the cases
to be discussed here, a number of different client interfaces have
been developed but at a general level of description, an interface
in common use is a single-line scrolling tickertape that also has
the option of being viewed as a threaded chat window.

The users define producers as ‘group’ names and people can
subscribe to messages sent to that group, with optional additional
content-based filtering to personalise the information they see.
There is no technical limit to the number of different
subscriptions/groups a user can have via the same client. The
same ‘group’ can handle both system-generated messages and
user-generated messages as both have the same message structure.
When a message is sent to the client, the user will see the name of
the group the message is sent to, the name of the person or
software that has sent the message, and the content of the
message. MIME attachments can also be included with the
message.

The tickertape interface is highly configurable and users can
control parameters such as the look and feel, the scrolling speed,
and the time-out of messages. While the Elvin server itself does
not offer any persistent store of messages, users can optionally
choose to keep their own log of messages sent to tickertape. A
whole-of-groups view can be kept via capturing logs of all
messages sent to the different groups; such archival logs have
formed the basis of our study here.

Fitzpatrick et al. [7] describe in some detail the variety of uses and
experiences with Elvin and tickertape. In this paper, we want to
focus on the use of Elvin and tickertape to augment CVS being
used by two software development teams. In this case, the
developers have set up a group with their project name and CVS
has been augmented with a short script called ‘cvs2ticker’ to
generate an Elvin message whenever a person checks code into
the repository. The message sent to the tickertapes of those
subscribed to this group will have the form of <group name,
person checking file in, content (file name and log message)>
with an automatically included link to the web interface for CVS1;
this is shown in Figure 1. Developers can choose to use the same
group to send a chat message to others, e.g., in response to that
CVS-generated message; this would have the format of <group
name, person sending the chat, content of chat message>.

Figure 1. Tickertape window displaying CVS message

As was discussed in Section 2.2.1, De Souza et al. [6] talk about
CVS commits being an act of moving code from the private to the

1 See http://elvin.dstc.com/projects/producers/cvs2web.html for a

description of cvs2web. This includes a further link to a cvsweb
view of the repository (for a description, see
http://www.freebsd.org/projects/cvsweb.html).

public realm. However, it is only potentially public because it
relies on other people going to look at the log to see the
information now available. The use of Elvin-enabled tickertape
messages turns a potential for public availability into a much more
immediate event that becomes publicly available via targeted
‘broadcast’. This can support implicit awareness in the first
instance as other people in the team can glance at the message (cf.
Palantir [18]) and support the opportunity for timely informal
communication.

In the next section we first describe, using data from tickertape
logs and interviews, how CVS-generated tickertape messages
came to be used as an important awareness tool by the Elvin
development team, and how they integrated into tickertape
discussions. Then, motivated by comments made by some of the
developers during interviews, we go on to investigate whether
making CVS commit messages more temporally available to
developers through Elvin/tickertape may have had an impact on
the content of those messages.

4. INTEGRATION OF CVS MESSAGES
INTO TICKERTAPE CHAT
As discussed previously, Elvin was a long running software
infrastructure project at DSTC. It resulted in a spin-off company
in July 2003 and continues to be developed. Throughout the
period October 1993 to December 2004, a total of 15 developers
contributed to the project, resulting in 32506 logged changes to
the code. CVS was instrumented to send out Elvin notifications to
a group called ‘elvin’ in October 1998.

Here we overview the general use by the Elvin project team of
Elvin-enabled CVS via tickertape to determine its utility in
supporting communication and awareness. This overview is based
on an ongoing analysis of a log of tickertape messages. This
tickertape log contains 59472 tickertape messages logged between
August 1997 and April 1998 and between February 1999 and July
1999. It contains several types of messages sent to several groups,
including numerous chat messages, CVS commit messages, news
messages and content generated by various bots.

Throughout the tickertape logs there is repeated evidence of
tickertape being widely used in conjunction with CVS and
becoming an integral part of the way these developers ‘do’
development work. The fact that the tool has remained in
voluntary use over seven years and has continued to be evolved is
testament to the value the developers derive from using it.

The following is a typical example of how a CVS commit
message sent to tickertape triggers a conversation between
distributed team members involving friendly banter as well as
timely work discussion.

Figure 2. tickertape conversation triggered by CVS commit

message.
In the example presented in figure 2, it is late at night and Phelps
is working from home fixing a bug in some code. When he is
finished, he checks the file back into the CVS repository, entering
the comment “The gap doesn’t actually need to draw anything”.
This check-in event causes an Elvin notification to be generated
stating the name of the modified file, ‘gap.c’, and the associated
comment. The notification is then sent by the server to people
subscribed to the ‘elvin’ group. David (‘d’) is working late back in
the office and sees that Phelps has made some changes to the
‘gap.c’ file (history line 1). He sends a message joking “and you
tell me to go to bed!!!!;-)” (line 2). Phelps and David then engage
in some light-hearted banter about their working habits (lines 3-4).
Phelps goes on to explain a bit more about what else he has been
working on and they have a short discussion around that work
(lines 5-7). In the middle of the discussion, David has a problem
with his tickertape that illustrates the bug Phelps has been trying
to fix: “–i just had mine lock up! Like – freeze the scroller!” to
which we see Phelps starting to respond in the dialogue text box
“Cool! Tell me more?”. And so they continued to discuss the new
problem.

Table 1 contains a different example showing the use of tickertape
to negotiate and schedule inter-dependent work and how the
implicit messaging of a CVS notification is reinforced with a
follow-up chat message.

Table 1. Tickertape log extract

Time User* Message

05:06 alan Modified quad_ticker.htmi: some
reworking

05:07 alan Brian – when you’re done, we’d like to
move the edst sub-dir to the public web.
Can you ticker when you’re ready?

05:08 brian I need at least 10 more minutes...

05:09 alan cool ...

05:12 brian Modified quad_elfs.htmi: (Hopefully)
clarified wording.

05:12 brian Ok, I'm done wordsmithing.

* Names have been changed to preserve anonymity

These are compelling examples. Often multiple people would
participate in the discussions. Even if people didn’t directly take
part, the others subscribed to the group could oversee what was
happening. Interviews with the developer group, both in 1998 and
2005, show experience themes consistent with many of those
reported in Section 2.2.1 where mailing lists were used: greater
awareness of what was going on and the importance of timely
information and timely discussion. One developer in a city over
1000 miles away from the rest of the team stated that it was an
“absolutely essential” part of how he was able to work in the

team. The developers talked about it changing the way they used
the CVS logs, going to the logs much more frequently to get an
overview of what was happening either by following a link
attached to a message or catching up with the tickertape log at
various points, e.g., at the start of the day (especially when other
team members work across time zones), and following links from
there.
CVS via tickertape integrated with and augmented the developers’
everyday work environments to add another layer of information
and communication support for both implicit and informal
communication. Via one interface, they have been able to find out
about computer-based events as they happen, engage in social
chit-chat, have a timely work discussion, ‘be there’ when a
problem happens and then engage in collaborative diagnosis, and
negotiate the flow of work around a code check-in. They did not
have to go to separate tools for notification and for chat. They did
not have to forgo their preferred work environments. The implicit
communication provided via tickertape happened without any
explicit effort on anyone’s part. Contribution to a chat around the
message was entirely discretionary.

While there is clearly evidence, by virtue of ongoing use alone,
that tickertape provides a useful awareness and communication
tool for developers, there were two issues that arose from the
interviews that made us curious about if and how the use of
Elvin/tickertape impacted the content of the CVS logs themselves.

The first was the developers’ use of tickertape to promote ‘good’
software engineering practices. One of the team was known to
frequently commit code back to the CVS without a comment. One
of the other developers wrote a short ‘empty message watcher’
script that detected an empty CVS entry and immediately sent a
message to tickertape drawing attention to the empty CVS
message. On interview, the main culprit said that the messages
may have changed his practices but that they were more likely to
have changed the practices of others watching (he was the lead
developer). We were curious whether there was an effect on the
number of null entries as the developers believed.

The second was when one of the developers reported that he felt
he changed the content and frequency of his log messages because
he wanted to be seen as working hard and was aware of it being
more like a communicative act rather than just making an archival
log entry that no-one would read.

While the Elvin project CVS logs did not contain enough entries
logged prior to the augmentation of CVS to send out tickertape
messages to make a valid before and after comparison, we had
access to the CVS log of another project that did: the Orbit
project.
In the next section we report findings from an in-depth case study
of CVS commit messages written by the main developer on the
Orbit project. We carried out a content analysis to determine if

there were qualitative changes in the types of messages written
and, predicting that the increased awareness afforded by
tickertape might prompt developers to give more information
about code changes, compared the lengths of messages. As
developers on the Orbit project did not necessarily work
exclusively on that project throughout its course, we did not
compare frequencies of commit messages, as any findings could
have been attributable to changing work commitments.

In section 6 we go on to compare the findings from the case study
to the much larger Elvin project CVS log to determine whether
trends in that data might be comparable.

5. CASE STUDY OF ORBIT CVS LOG
5.1 Setting
The aim of the Orbit project was to develop a groupware tool. The
Orbit CVS log comprised 3122 entries generated between March
1997 and June 2000. Seven developers contributed code to the
project. CVS commit messages started being sent as Elvin
notifications on the 28th April 1998.

Jack Peterson2 (JP) worked as the main developer on Orbit
between March 1997 and November 1999, making 71% of the
changes to the code. He was the only developer to have worked
on the project both before and after CVS was augmented to send
out Elvin notifications, therefore this analysis focuses on CVS
commit messages composed by him.

5.2 Selection of data for analysis
Before analysis, the Orbit CVS log file was processed to remove
duplicate commit messages. Duplicate messages occurred
frequently when developers checked-in multiple files using the
same commit message. A log entry was classed as a duplicate if it
contained the same message, was sent by the same user, and was
sent within 60 seconds of the one preceding it. Deleting duplicates
reduced the size of the log file from 3122 to 1409 entries.

The log file was further reduced in size by deleting all entries
recorded during the period from 10th March 1998 to 3rd March,
1999 when Tickertape messages were not being logged; although
Elvin notifications started being generated from CVS commits on
the 28th April 1998, it was unclear how much information was
being included in the generated messages at this time, and they
were therefore excluded from the analysis.

Log entries from the first week of the Orbit log were also deleted.
This was because they did not represent activity by the
development team typical of that which occurred throughout the
rest of the project. Finally, all log entries not generated by JP were
removed. The processed data used in the analysis comprised 289
log entries recorded before CVS commit messages started to be
sent as Elvin notifications, and 181 entries after. These entries
were produced by the same developer, and at a similar stage in the
development process.

5.3 Coding the content of messages
A coding scheme was developed by selecting approximately 5%
of the Elvin CVS log entries and categorising them according to
the content of their commit messages. Whenever a message was
encountered that couldn’t be classified according to an existing
category, a new category was defined. The coding scheme
comprises messages containing the following categories:

2 Name changed to preserve anonymity

Description: a description of changes made to the code that named
the part of code changed. E.g. “Added event images to the Artifact
Avatars, and fixed IconView layout”

Basic description: a description of changes made to the code that
did not name the part of code changed. E.g. “Minor
modifications”

Effect: effects of the changes made to the code. E.g. “Added the
ability to change the title of the VideoView”

Rationale: a rationale for changes made to the code. E.g. “Added
db reader/writer code to fix logout problem”

Future/ incomplete: either mentions future work to be carried out,
or that changes to the code being checked in have been started,
but not completed. E.g. “LocaleViews now can be modified and
reverted (Naming yet to come...)”

Value judgment: contains a value judgment about the quality of
the code. E.g. “Improved the eloquence of the error messages...”
Empty message: commit message left blank.

Invitation: contains an invitation for other developers to look at or
work on the code checked in. E.g. “...feel free to change it”

Landmark: points to the significance of the changes to the code in
terms of the project. E.g. ‘finally in sync with the changes made
the day of "The great disk crash"’

Unsure/ hopeful: expresses uncertainty about the effects of
changes to the code. E.g. “Fixed a race condition?”

Communication: contains a statement that is explicitly
communicative in intent. E.g. “note the forced NOP for
everything”

Named other developer: contains the name of one of the other
developers
Smiley: the commit message contains a smiley, E.g. “:-)”
Only three of the categories in the coding scheme are mutually
exclusive: a message can only contain a description or a basic
description, but not both, and if a message is classed as empty, it
obviously cannot contain any of the other categories.

This scheme was then applied to the remaining messages in the
Orbit log by the second author; messages were classified as either
containing or not containing text from each of the categories. No
messages were encountered that could not be classified with the
coding scheme.

Reliability was assessed by having the third author apply the
coding scheme to a randomly selected 20% of the log. Inter-rater
reliability was estimated as high with a Cohen’s Kappa of
between .81 and 1.0 for each of the codes.

Frequencies of categories of commit messages were compared
before and after CVS messages started to be sent to tickertape.
Word counts were calculated for each CVS commit message and
compared before and after.

5.4 Frequency of log entry categories
The frequencies of CVS commit messages categorised as
containing text belonging to each of the thirteen categories in the
coding scheme are listed in table 2.

Table 2: Frequency of occurrence of types of messages

 Frequency of messages coded as
containing text belonging to the
category (percentage of total)

Category of log
entry

Pre Elvin
notifications

Post Elvin
notifications

Description 168 (58.1) 112 (61.9)

Basic description 52 (17.9) 20 (11.0)*

Effect 68 (23.5) 49 (27.1)

Rationale 55 (19.0) 40 (22.1)

Future/
incomplete

14 (4.8) 8 (4.3)

Value judgement 12 (4.2) 5 (2.8)

Empty message 18 (6.2) 0 (0)**

Invitation 0 (0) 0 (0)

Landmark 2 (0.7) 3 (1.7)

Unsure/ hopeful 1 (0.3) 2 (1.1)

Communication 2 (0.7) 1 (0.6)

Named other
developer

12 (4.2) 7 (3.9)

Smiley 1 (0.3) 1 (0.6)

Pre Elvin notifications: N=289; post Elvin notifications: N=181.
Pre and post frequencies were compared for each of the
categories using the χ2 statistic.
*p<0.05
**p<0.01

As table 2 shows, there was a decrease in the number of basic
descriptions and empty log messages after CVS messages started
to be sent as Elvin notifications. There was no significant change
in the frequency of any of any other categories of message.

5.5 Word Counts
The number of words in CVS commit messages logged before and
after CVS commit messages started to be sent as Elvin
notifications are summarised in figure 3.

Figure 3: Box plot summarising word count before and after

CVS messages started to be send as Elvin notifications.

The mean number of words in a CVS commit message (mean =
9.96, standard deviation = 8.74) sent after CVS had been
augmented to send out Elvin notifications was significantly
greater than the mean number of words (mean = 7.98, standard
deviation = 7.56) in messages logged beforehand (t(468) = -2.599,
p=0.005). This wasn’t simply due to the reduced number of empty
log messages in the later period. When empty log messages were
removed from the analysis, the mean number of words was still
larger after the cvs2ticker script started being used (t(450) =
-1.881, p<0.05)

5.6 Summary of case study findings
We had initially expected to find qualitative changes in the types
of commit message written after they started to be broadcast via
tickertape, especially as developers had reported at interview that
they viewed them as more of a communicative act. However we
found there to be few. One possible explanation for this finding is
that as CVS messages appear in the same tickertape interface as
chat messages, there is no need for the developers to be explicitly
communicative in the messages they write; tickertape-enabled
CVS messages may play a purely passive awareness function
embedded within ongoing chat conversations between developers.

Messages were found to be significantly longer after they started
to be sent to tickertape, there were significantly fewer basic
messages and the number of empty log messages decreased to
zero. We interpret these changes as being in line with developers’
comments about the importance of CVS messages on tickertape in
providing timely information to the development team; the
perception of an increase in the usefulness of information in CVS
commit messages influenced JP to give more, and more specific
information about his code changes, and to completely stop
leaving messages blank.

Although we were unable to carry out a comparison of Elvin CVS
log entries before and after they were sent as tickertape
notifications, we were keen to test whether effects found in the
Orbit log might exist as trends in the larger project and extend
over time and across individuals. We therefore selected Elvin
CVS messages sent as tickertape notifications and calculated the
correlation of both word count and the existence of empty
messages with time.

6. Elvin CVS log
6.1 Setting
Elvin was a larger project than Orbit both in terms of timescale
and number of people involved in the project; 11 developers
worked on Elvin in the period between October 1998 and
December 2004, 5 of whom were experienced developers with
several years experience of working on software project, and 6 of
whom were undergraduate or postgraduate students with varying
levels of experience working on software projects.

6.2 Selection of data for analysis
Given 6 years of Elvin CVS log entries numbering 32506
messages, we decided to make a systematic selection of data as a
subset for analysis. The first step was to process the log to remove
duplicate messages. As before, a log entry was classed as a
duplicate if it contained the same message, was sent by the same
user, and was sent within 60 seconds of the one preceding it.
Removal of duplicates reduced the size of the log to 12564
entries. Finally, log entries that occurred before October 1998,

when the cvs2ticker script was implemented, were deleted. 12129
log entries were used in the analysis

6.3 Word Counts
Word counts were calculated for each of the remaining messages
in the Elvin CVS log. Counts ranged from 0 words to 119. The
mean word count was 9.0 (standard deviation = 8.3)

The correlation of word count with time was calculated to
investigate whether the increase in commit message length found
in the Orbit log might extend to the much larger Elvin CVS log. A
small, highly significant positive correlation was found between
word count and time (r=.071, p<.001), a finding in line with the
interpretation that the increased public availability of CVS
commit messages afforded by tickertape may have encouraged
developers to write longer descriptions of code changes.
Correlations of commit message word counts with time for
individual developers are tabulated in table 3.
Table 3: Correlations of word count with time for individuals

Developer Description N r

1 Developer/researcher 1226 -0.085**

2 Lead
developer/researcher

1857 0.026

3 Developer/researcher 17 -0.180

4 Developer/researcher 2 a

5 Developer/researcher 2908 0.026

6 Student 2178 0.183**

7 Student 440 0.274**

8 Student 1189 -0.033

9 Student 380 0.027

10 Student 1197 -0.088**

11 Student 30 0.426*

N=number of messages, r = Pearson’s r statistic
*p<0.05, **p<0.01, a=N too small to calculate

6.4 Empty log entries
Overall, the number of empty log messages was low in the Elvin
CVS log: only 112 of the 12129 (0.9%) messages contained no
text.

The presence of empty log messages was correlated with time to
investigate whether the decrease in empty messages found in the
Orbit log might extend to the larger project.

A small, but highly significant negative point biserial correlation
was found between the presence of empty log messages and time
(rPB= -.073, p<.001).

Correlations of empty log messages with time for individual
developers are tabulated in table 4.

Table 4: Correlations of empty log messages with time for
individuals

Developer Description N rPB

1 Developer/researcher 1226 -0.141**

2 Lead
developer/researcher

1857 -0.027

3 Developer/researcher 17 a

4 Developer/researcher 2 b

5 Developer/researcher 2908 a

6 Student 2178 a

7 Student 440 -0.186**

8 Student 1189 0.024

9 Student 380 -0.153**

10 Student 1197 -0.114**

11 Student 30 a

rPB=point biserial correlation, N=number of messages
*p<0.05, **p<0.01,
a=no empty messages, b=N too small to calculate

6.5 Summary of Elvin CVS log
While we were unable to conduct a pre and post tickertape
analysis of the Elvin log as we did with Orbit, we can look at
trends of use with tickertape-enabled CVS over an extended
period of time for a number of people. Overall, these trends were
in line with the findings of the Orbit study: the length of messages
increased over time and the number of empty messages decreased.

There do seem to be individual differences in relation to the
increase in word count: only students showed significant increases
in word count over time. It is not possible to determine from the
logs whether this was due to the increased temporal awareness
provided by tickertape-enabled CVS having a differential effect
related to experience, or simply that new developers are likely to
increase the amount they write when making code changes
anyway. It would be interesting to further explore this question in
future work.

All but two of the developers either left no commit messages at all
empty when checking-in code or decreased in the frequency of
messages left empty. Of these two, developer 8 only had 6 null
messages out of 1189 (0.5%); developer 2 was the lead developer
on the project, who had at interview claimed that the ‘empty
message watcher script’ had changed his behaviour, but was more
likely to have changed the behaviour of others watching. This
does seem to have been the case.

7. DISCUSSION
Communication and awareness have been identified as critical
elements for successful software development. CVS has also been
identified as an important coordination tool. Approaches to date
for further supporting communication and awareness around the
use of CVS have either involved the parallel use of mailing lists or
the automated generation of tailorable visualisations of the code
repository. The focus of this paper has been on the use of a
lightweight tool that supports both the automated sending out of
CVS messages to tickertape and the ability to conduct chat in the
same place.

The volume of tickertape log data and the persistent level of
voluntary use of it over an extended period of time demonstrates
that the developers find it a helpful tool. This is supported by the
comments reported in interview.

Analyses of the Orbit and Elvin CVS logs further demonstrate the
importance of tickertape-enabled CVS in supporting awareness
and communication, influencing developers to write more
informative comments when checking-in code, and when
augmented with the ‘empty message watcher script’, encouraging
the ‘good’ software engineering practice of not leaving comments
blank.

We had initially expected to find qualitative differences in the
types of messages written after CVS was instrumented to send out
tickertape notifications, reflecting the developers’ view of CVS as
more of a communicative tool. However, we found little evidence
of such a change. We suggest that given the context in which CVS
messages appear, in a shared interface with chat and other
messages, it is unnecessary for developers to be explicitly
communicative in the types of message they write. We are
currently carrying out an in-depth analysis of logs of all messages
sent to tickertape. Preliminary findings suggest that CVS
messages are frequently embedded in ongoing conversations,
where they are used as a shared informational and communicative
resource by both the developer checking-in code and by others.

This leads us to why the combination of Elvin/Tickertape and
CVS has been so successful in this organisation: it gives timely
perceptual form to information that can be used as resource by the
developer group that previously required explicit effort to find
out. Furthermore, given that it relies on existing tools (CVS,
Tickertape) and existing effort (checking code back in and
entering comments), this information is essentially produced for
free.

Crucially, CVS messages are provided in the same interface as
chat messages, facilitating discussion about and negotiation
around code changes.

Other features of the tickertape interface encourage its wide
adoption across the organisation: it takes up minimal screen real
estate so is more likely to be running and in view; it tends to sit at
the periphery of attention by being position at the top or bottom of
the screen; it supports a discretionary model of use – one can
choose to attend to it or not and there are other mechanisms for
catching up if something is missed (e.g. a threaded chat interface,
the tickertape log, the CVS log); there is no requirement to clean
up or manage messages once a profile has been set up as messages
have a user-defined timeout for staying on tickertape; and
subscriptions can be filtered as required on content to deal with
potential overload issues.

It remains to be seen whether the lightweight, generic approach of
tickertape-enabled CVS would extend beyond the research
environment where it was developed. Indications are that it might:
while the people who are the user group in this study are also the
developers of the tool they are using, this instrumentation of CVS
to make use of Elvin/tickertape is incidental to their main work,
i.e., there was no organisational incentive or sanction for them to
use the tool. To reinforce that this is not simply an effect of
developers ‘needing’ to be seen to use their own tools, other
software development groups that are not part of the same
organisation have been using similar Elvin/tickertape
augmentation of CVS for a number of years (although we do not
have access to their log data). There is also the fact that this tool

has remained in use over many years and with many different
people coming and going in the team.

However, it does remain unclear whether it would scale to much
larger commercial development projects, and what the trade-offs
would be between the lightweight, generic, flexible approach and
more heavyweight dedicated systems offering more functionality,
such as the overview that visualisations offer, but with greater
costs in terms of effort, screen estate, etc. We see this as an
opportunity for future research.

8. CONCLUSION
In this paper we have described how a generic notification system
called Elvin and a tickertape interface came to be used to support
awareness of code changes in a CVS repository. Data from
interviews and a high-level log analysis demonstrate that the tool
was effective in supporting timely interaction around CVS entries.

Analysis of the CVS logs of two different projects show that when
using this tool, developers tended to provide more information
about code changes when checking-in code. We argue that this
reflects changes in developers’ attitudes to CVS logs as an
informational resource.
This research shows that a lightweight tool that integrates
notification and chat facilities with CVS can change the practices
of the developers around use of CVS and enable new forms of
conversations within the software development process.

Future work will focus on both the CVS and tickertape logs, to
look at how the public availability of CVS together with the
facility to chat affected working practices, for example
management and articulation of work flow, task coordination,
improved awareness, and social interaction. This paper has
demonstrated how CVS messages became longer and more
descriptive after the introduction of Elvin. Future work will
explore whether this finding is reflected in the more general use of
‘chat’ around CVS commits, and what affects did tickertape as a
communication tool have on the conversational practices within
the software development team?

9. ACKNOWLEDGMENTS
We would like to thank Bill Segall, David Arnold, Ted Phelps,
and other members of the Elvin development team for fruitful
discussions, participation in interviews and access to the CVS and
tickertape logs.

We would also like to thank John Halloran, Eva Hornecker, and
Hilary Smith for their comments on a draft of this paper.

10. REFERENCES
[1] B. Berliner. CVS II: Parallelizing software development. In

USENIX Association, editor, Proceedings of the Winter
1990 USENIX Conference, (Washington, DC, USA, January
22-26, 1990), Berkeley, CA, USA. USENIX. 341-352

[2] Chiang, R. and Mookerjee, V. S. Improving software team
productivity. Commun. ACM, 47, 5, (May 2004), 89-93.

[3] Churchill, E. F., Trevor, J., Bly, S., Nelson, L., and Cubranic,
D. 2000. Anchored conversations: chatting in the context of a
document. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '00) (The
Hague, The Netherlands, April 01 - 06, 2000). ACM Press,
New York, NY, 454-461.

[4] Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of
the software design process for large systems. Commun.
ACM 31, 11 (Nov. 1988), 1268-1287. _

[5] De Marco, T. and Lister, T. Peopleware: Productive Projects
and Teams. 2nd Ed. Dorset House Publishing, New York,
1999.

[6] de Souza, C.R.B., Redmiles, D., Dourish, P., ‘Breaking the
Code’, Private and Public Work in Collaborative Software
Development. In Proceedings of the International
Conference on Supporting Group Work (Group 2003)
(Sanibel Island, FL, November 2003) 105-114.

[7] Fitzpatrick, G., Kaplan, S., Mansfield, T., David, A., and
Segall, B. 2002. Supporting Public Availability and
Accessibility with Elvin: Experiences and Reflections.
Comput. Supported Coop. Work 11, 3 (Nov. 2002), 447-474.

[8] Fitzpatrick, G., Parsowith, S., Segall, B., and Kaplan, S.
1998. Tickertape: awareness in a single line. In Conference
Summary on Human Factors in Computing Systems (CHI 98)
(Los Angeles, California, United States, April 18 - 23, 1998).
ACM Press, New York, NY, 281-282.

[9] Froehlich, J. and Dourish, P. 2004. Unifying Artifacts and
activities in a visual tool for distributed software
development teams. In Proceedings of the 26th International
Conference on Software Engineering (ICSE 2004)
(Washington DC, USA). IEEE Computer Society, 387-396

[10] Grinter, R. E. Using a configuration management tool to
coordinate software development. In Proceedings of
Conference on Organizational Computing Systems (Milpitas,
California, USA, 1995). ACM Press, New York, NY, 168-
177

[11] Gutwin, C., Penner, R., and Schneider, K. 2004. Group
awareness in distributed software development. In
Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work (CSCW’04)(Chicago, Illinois,
USA, November 06 - 10, 2004). ACM Press, New York, NY,
72-81.

[12] Herbsleb, J. D. and Grinter, R. E. Splitting the organization
and integrating the code: Conway's law revisited. In
Proceedings of the 21st international Conference on
Software Engineering (ICSE 1999) (Los Angeles, California,
United States, May 16 - 22, 1999). IEEE Computer Society
Press, Los Alamitos, CA, 85-95.

[13] Herbsleb, J.D. and Grinter, R.E. 1999. Architectures,
coordination, and distance. IEEE Softw. 16, 5, 63-70

[14] Hupfer, S., Cheng, L., Ross, S., and Patterson, J. 2004.
Introducing collaboration into an application development
environment. In Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work (CSCW '04)

(Chicago, Illinois, USA, November 06 - 10, 2004). ACM
Press, New York, NY, 21-24.

[15] Kraut, R. E., Fish, R., Root, R. W. and Chalfonte, B.
Informal communication in organizations: form, function and
technology. In Oskamp, S. and Spacaman, S. (Eds) People’s
reactions to technologies in factories, offices and aerospace.
Sage Publications, 145-199

[16] Kraut, R. E. and Streeter, L. A. Coordination in software
development. Commun. ACM, 38, 3 (March 1995), 69-81.

[17] Perry, D., Staudenmayer, N. and Votta, L. G. People,
organizations, and process improvement. IEEE Software, 11,
4 (July 1994) 36-45

[18] Sarma, A., Noroozi, Z., and van der Hoek, A. 2003. Palantír:
raising awareness among configuration management
workspaces. In Proceedings of the 25th international
Conference on Software Engineering (ICSE 2003) (Portland,
Oregon, May 03 - 10, 2003). IEEE Computer Society,
Washington, DC, 444-454.

[19] Segall, B. and Arnold, D. “Elvin has left the building: A
publish/subscribe notification service with quenching,”
Proceedings AUUG Technical Conference (AUUG’97)
(Melbourne, Australia, September 1997) 243-255

[20] Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps,
T. Content based routing with Elvin4. In Proceedings
AUUG2K (Canberra, Australia, June 2000).

[21] Storey, M. D., Čubranić, D., and German, D. M. 2005. On
the use of visualization to support awareness of human
activities in software development: a survey and a
framework. In Proceedings of the 2005 ACM Symposium on
Software Visualization (SoftVis '05)(St. Louis, Missouri,
May 14 - 15, 2005). ACM Press, New York, NY, 193-202.

[22] Strauss. A. The articulation of project work: An
organizational process. The Sociological Quarterly, 29, 2
(1988) 163–178,.

[23] van der Hoek, A., Redmiles, D., Dourish, P., Sarma, A.,
Silva Filho, R., de Souza, C. Continuous Coordination: A
New Paradigm for Collaborative Software Engineering
Tools, Workshop on Directions in Software Engineering
Environments (WoDiSEE 2004), held in conjunction with
the 26th International Conference on Software Engineering
(ICSE 2004—Edinburgh, Scotland), May 2004, pp. 29-36

[24] Yamauchi, Y. Yokozawa, M., Shinohara, T. and Ishida, T.
Collaboration with lean media: how open-source software
succeeds. In Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work (CSCW’00)
(Philadelphia, Pennsylvania, USA, December 2-6, 2000)
ACM Press, New York, NY, 329-338

