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Learning in Arti cial Life: Conditioning, Concept
Formation, and Sensorimotor Loops

Terry Stewart

Summary

The rst half of this thesis is a review of neural models of @dative learning, with a particular
focus on two things: the ability to form “concepts” (extiiact patterns from the sensory data) and
the capability of dealing with embodied agents. This futiga of features is not readily apparent
in any one model, but the architecture of these models isthathhey may be able to complement
one another in a combined system. The key models discussé&ttlaiman's Theory of Neuronal
Group Selection, Hinton's Recti ed Gaussian Belief Netk&rand the University of Zurich's
Distributed Adaptive Control.

The second half of this thesis details a closer examinati@isiributed Adaptive Control, in
light of the previous discussion. A series of experimengsparformed on a re-implementation of
this learning algorithm which compare its associativerieag characteristics to those of the most
basic of natural associative learning methods: classmadlitioning. This includes the standard
aspects of acquisition, extinction, generalization, gyetlization, as well as studying the sorts
of concepts (i.e. regularities) it is able to develop.

The result is that while Distributed Adaptive Control mayshthe surface capabilities of
classical conditioning (the ability to have a conditionéchslus act as a predictor for an uncon-
ditioned stimulus), it does not have the deeper abilitiedadsical conditioning. In particular, the
types of concepts it can extract are limited by having to eisse large values of one sensor type
with large values in another sensor. Also, it does not exliilgi property of extinction, meaning
that it cannot lose associations which are no longer valid.

Itis hoped that this thesis provides the research commuiittytwo things. Firstly, it presents
an experimental regimen for evaluating various aspecttassical conditioning, and shows how
one particular algorithm fares under these tests. Secahdlyesults of these tests highlight those
areas which future work needs to examine, if we are to evéptaaive at a model with the
important properties of natural associative learning.
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Chapter 1

Motivation

My personal goal in working in this eld is to understand lif@ddmittedly, this is a rather far-
fetched goal, but this does not stop me from using it to shiapeath that my research follows.
Intertwined and inseparable from this goal is the creatidifieo(or, possibly equivalently, creating
simulations of life). | believe that a signi cant part of uaitanding something is in the ability
to actually make it. | believe that we cannot really underdtavhat life is until it is possible
for us to create it, and that along the way towards this goalkconceptions of the fundamental
characteristics of life will change drastically. In padtiar, | feel that developing models of the
style of learning observed in animals and then in people ead to important and deeply useful

insights into who we are and what we do.

1.1 Arti cial Intelligence and Arti cial Life

“Life” and “Intelligence” are highly linked terms. Furth@iore, they resist any sort of rigid de -
nition. However, we do generally agree that living thingsrego exhibit various different char-
acteristics that we call intelligent. “Intelligence”, hewer, seems to be something that can have
different levels: we feel reasonably comfortable sayirag #ome things are more intelligent than
other things, but we seldom say that one thing is more alige tmother. One must, of course,
note that we are arguing here from introspection, but itsg#ms to be an interesting distinction.
In the eld of Cognitive Science, the term “Arti cial Inteigence” tends to mean high-level
intelligence. This is the sort of intelligence associatéthlWwuman beings, and generally involves
symbol manipulation (i.e. some sort of “internal languag¢hought” that the creature uses to
reason and solve problems). More recently, this has beerreefto as “Good Old-Fashioned Al”,
or GOFAI. This research has led to remarkable advances mgsHike chess-playing software,
and has shed insight into how real creatures use (and ggnéoahot use) logic in their problem

solving.
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“Arti cial Life”, on the other hand, is associated with muchore low-level behaviour. It typ-
ically studies creatures such as insects and takes theaghpod combining a number of different
very simple rules of action together in order to produce ntam@plex and “life-like” behaviour.
One of the greatest insights out of this approach is the ghgen that extremely simple rules can
produce very unexpected and complicated behaviour. Tmiplg and reasoning approach taken
by the GOFAI researchers seems to be completely unnecdssaygreat many tasks, such as
avoiding obstacles, nding optimal routes, or catching ettm ball.

Whether Arti cial Intelligence includes Arti cial Life, @ vice-versa, is a debate that | do not
wish to discuss here, as it is well beyond the scope of thigpapome people want to expand
the de nition of Arti cial Intelligence to include Arti cial Life, and other people feel that it is
obvious that the study of creating life includes the studygrmefating intelligence. | believe the
guestion itself is meaningless, as it is an attempt to impasgid hierarchy on two concepts that
do not have any widely accepted de nitions. At the currenihpin my research, | am drawing
from work that has generally been called Arti cial Life (ah@xpect to continue to work at this
level for some time into the future). | take Mother Nature agiale here: very simple life forms
existed long before creatures capable of complex symblditning behaviour. This observation
leads me to believe that the behaviours exhibited by moreptaxrcreatures are built upon the
behaviours exhibited by simpler creatures. It thereforkeaaense to study simplistic behaviours

rst, before moving up to higher levels.



Chapter 2

Learning

As revealed by the title of this paper, | am primarily inteegbsin the study of learning, as it seems
to be fundamental to both life and intelligence. Howevefplewe talk about learning in arti cial

life situations, we must rst take a closer look at what is miglay the term “learning” itself.

2.1 What is learning?

To start our discussion of the term “learning”, let us takeghly general de nition of the word,
and then narrow our focus. “Learning” clearly refers to s@og of change within an organism.
Furthermore, that change within the organism should ch#mgbehaviour of the organism (oth-
erwise, the effect of the learning is not measurable). Hawewe are not interested in directly
physical changes, such as the change in a bird's ying abitihen its wings are clipped. This
leaves us with internally-caused changes: changes whelindirectly caused by a creature's
stimuli.

| do wish to point out that this de nition quickly leads us in& con ict between the terms
“learning” and “development”. Certain internal changeshivi an organism seem to happen re-
gardless of the stimulus. This includes not only such thamybone growth, but also the devel-
opment of the nervous system. An incredible amount of dgreénmt occurs during the gestation
period of most living creatures, and this occurs with vergimial (if any) stimuli. However, when
we consider such things as the development of the speedes@fithe human brain, we quickly
discover that this development does not occur without tineudtis of human speech.

Even though development may require certain basic sensiarylation, it does not seem to
be driven by that input — rather, it makes use of the sensdegyitia is available. This leads us to
conclude that we should use “development” to refer to aspafcinternal change that are driven
by genetics, and “learning” to refer to aspects of interiage driven by individual stimuli. It is

very important to note that the stimuli that are required thgvelopment” must be evolutionarily
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stable. That is, they should be present in the normal enwiesn of the creature. This allows us
to say that we develop our ability to speak (since the preseftiuman speech something that
is constant on an evolutionary time-scale), but that wenlé¢hat “dog” refers to a four-legged
barking mammal.

For the purposes of this thesis, we are more interested indngdual “learning” aspect rather
than the “development” aspect, but it may not be possibletpietely separate the two. After
all, how can we expect to talk about learning what “dog” refeerwithout mentioning the general

fact of the gradual development of the human speech centre?

2.2 Why is learning necessary?

At rst glance, it may seem odd that it is necessary for crezduo learn. Why is it that living
things slowly develop skills over their lifetime? Woulditte much better, from an evolutionary
point of view, for newborn infants to already have the skiflsvalk? (Note that this is, in fact, the
case with some animals). Why not have full adult functidyadtraight from birth? Surely this
would be an evolutionary advantage.

The simple answer to this question is that we actually dorhiwbehaviours to be pre-
speci ed. Living creatures exist in a highly complex and egag environment. Behaviours
that are suitable in certain environs are not t at all in gte#guations. Humans living in cold
climates should certainly learn different patterns of lvétar (like putting on something warm
before going outside) than humans living in warm climateatsdiving in a house should learn
different patterns (like not scratching the furniture)rteats living in the wild. If behaviour was
predetermined by genetic codes, these sorts of adaptiNgeshivould not exist. In fact, the ability
to learn during an individual's lifetime would seem to be avsal advantage to that individual,
S0 it is unsurprising that the process of evolution has lead@ptable behaviour. Of course, we
should remember that there may also be drawbacks to takériganing approach, such as having

to maintain a more complex nervous system.

2.3 What do things learn?

Up to this point, we have been talking about learning justdmahge”. This is a fairly nebulous

term, and it is interesting to examine exactly what this ¢jeais.

2.3.1 Optimization

The simplest form of change is a sort of “optimization of paegers”. In this fairly simple form
of change, there is a known range of options available to teatere, and whatever learning
algorithm exists simply has to choose from the availabléomgt The standard example of this

optimization process would be the basic genetic algoritppr@ach, where a large number of
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different possible values are chosen (i.e. a large popuds created with randomly chosen
parameters), and those that are successful survive to toenbdsis of the next generation. In
this case, the optimization is happening over the lifetiofamany individuals, and the “best” (or
“suf ciently good”) parameter settings are those thatallbe creature to survive and breed.

We can also do this sort of optimization within the lifetinfesingle individual. The organism
can by itself try out different options and learn from expade what the best option is. This
process does require the use of a slightly more limited rafgaptions, as if the penalty for
trying out a “bad” option is fatal, then the creature canearh from its mistakes. One reasonably
well-studied example of this process would be the adaptiemting of a barn owl.

The owl uses both auditory and visual cues to nd its prey. mialty, the owl rst hears a
noise, then orients its eyes in that direction. The dif gult determining what that direction is,
based on the sounds received by the owl's two ears. To coatplinatters, the translation from
sounds to direction is dependent on the geometry of the @al's and the size of the owl's head,
both of which change during the lifetime of the owl. The imi@rprocess of connecting these
two sensory modalities must adapt to the changing situakllomever, this adaptation is within a
fairly narrow range of possibilities, as it is not going tarstusing a completely new system for
orienting. Thus, we can view this form of learning as a fornc@fplex optimization. For details
of a computer model based on this owl behaviour, see [28].

In this form of change, the creature need only nd which optfor range of options) is “best”.
De ning what is “best” is generally seen as the role of theaonigm's genetics. For the owl, having
the eyes and ears able to focus at the same point is consiolesgdind so the learning algorithm
is based on that property. In this case, it is considereddfddhe owl, after hearing a sound,
looks in a direction which then exhibits movement.

This approach has been very successful, as demonstratée Ipppularity of genetic algo-
rithms. The optimizing behaviour of genetic algorithms (oore correctly, the “robust satis c-
ing” behaviour, as they tend to nd a range of “good enoughdwaers, rather than the one best
one) gives a strong argument for their importance in livingamisms. However, this approach to
learning does not seem to capture the range and diversibeddrts of learning generally asso-
ciated with living creatures, as most genetic algorithmrapphes are limited to learning within
a speci c range of possibilities. It could perhaps be argtled more complex learning is simply
optimization of extremely complicated, interrelated paeters, but that does not seem to lead us
towards a better understanding of the process.

This optimization approach can also be used to describe rolithe research into neural
networks. As will be discussed in more detail later, mostrakeuetwork models keep the number
of neurons constant and learn the best connection weightebe them. However, some models
allow the use of new neurons in a manner which starts to walkitle between development and

learning (see section 3.3).
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For an opposing point of view, the reader is directed to Dmaigd Colombetti's work in Robot
Shaping [8], which uses a genetic approach to generatirdyptimn system rules to allow a robot
to learn behaviours in a manner based on operant conditjamliving creatures. This work is not
examined in more detail in this paper, since | wish to focueeurral and physiologically plausible

models of learning.

2.3.2 Concepts

A more intuitive way of thinking about what things learn is lopking at concepts. This tends to
be what we think of when we talk of someone learning somethiihgs applies to both high-level
abstract learning of facts (for example, to learn about agteng, we learn the concepts of a screen
and a keyboard, input, output, data storage, and so on) antktl@l learning of associations (the
concept of “re” being “painful” and thus “bad”, or an animaften nding food in a particular
location). Both the concepts and the relationships betweeooncepts are learned.

However, there are some rather unexplained issues withagsoach. Where do concepts
come from? How do we form new ones? How can we make them bditestad exible enough
to be useful? What types of relationships between conceptthare? How do we use these in
such a way as to make decisions about what to do? These queati® generally referred to as
the grounding problem, and point out that something moreéxiad to make a complete theory.
However, the idea of a “concept” is so pervasive and useatlittseems to be a vital part of any
theory of complex cognition and learning.

Of course, certain aspects of cognition do not seem to betsaifor being looked at as “con-
cepts”. The emotional experience of hearing a piece of méisicexample, would seem to be
rather dif cult for one to describe in terms of concepts. Hmwesr, at the moment we will not deal
with this somewhat esoteric point, in the hopes that dealiitig this problem is not fundamental
to our current level of exploration of cognition.

In this paper, we will look at learning methods which work byracting what can be thought
of as concepts (or patterns) from the environment. All suethmds will not be covered: instead,
we will look only at the neurally-based models. For an ovewof these models we will not be

examining, see [10], which looks at these models from a GQiek$pective.

2.3.3 Facts

Once we have concepts, we can also learn a very particulaofm@iationship among concepts:
facts. “The pyramids are in Egypt.” “The earth goes arouredstin.” These sorts of statements can
form the basis for highly complex, organized informationgessing and, arguably, represent the
current peak of complexity and utility for life forms on thitanet. As such, they are completely
outside of the scope of this thesis. This sort of learningnse® only happen within humans and

possibly within a very few other mammals. There is no conggemas to how this sort of learning
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occurs, or even on how we should think about these syntaetiersents. For this thesis, | follow
the idea that perhaps once we can understand the more basgcdblearning, that will shed some

insight into how we can build up to this level of complexity.

2.3.4 Associations

However, there is one particular way of combining concepgticlvis of particular relevance for
this thesis. Certain concepts can &ssociatedvith each other. As mentioned in the section
on concepts (see section 2.3.2), we can learn to associeteith pain. Of course, this simple
example is something that could conceivably be speci ecegjeally, since itis an association that
should be learned by all creatures within a species thatdvetounter re.

A more complex example could be learning about a new mildiggrous plant by associating
eating it with physical discomfort. Most of the original essch in experimental psychology was
in investigating these sorts of associations. In the sedaioclassical conditioning (see section
3.2), we will discuss this type of learning in more detail.

We have thus arrived at a clearer picture of the sort of legrthiat is under consideration for
this thesis. We are looking for a system which allows for therfation of associations between

learned concepts, based on the creature's interactiontwigmvironment.

2.4 How can we model learning?

However we end up representing the things we learn, thehei§ierhaps) more important ques-
tion of how this learning takes place (actually, these ame parts of the same question). Other
than in formal education situations, we are not directhspreed with facts to learn; we must infer
them somehow from our surroundings. How this can be donedmasdeen the question analysed

by developmental psychology, in both animals and humans.

2.4.1 Traditional Approaches

The constructivism approach (as exempli ed by Piaget) naéivs that creatures start with a certain
base set of skills and abilities, and slowly build onto tkgsia various ways. We learn new topics
by relating them to old topics. Thus, the genetic code neadlsto specify an initial “core”
system, and the developmental processes control the rdst gfeature's abilities. There is also
an emphasis on developmental “stages”, sudden jumps inaducess ability. Constructivism
regards this as what happens when a new set of abilitiesrsefhr

Nativism, on the other hand, argues that the basic struetitde brain are much more innate.
Learning is not about building onto the existing structimg, about ne-tuning it (much closer to
optimization). Fodor, for example, portrays a view of netim where the brain is divided into basic
modules right from the beginning, and the modules are rjgidid into certain patterns of opera-

tion, and speci ¢ means of communicating between one amo#fsewell, nativism tends towards
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domain-speci ¢ behaviour, and arguments for it tend to usamles from the animal world. For
example, observing that rats more readily associate b&hkgvith food than anything else makes
it likely that they have some sort of innate (native) struetthat makes such associations more
readily.

For a more comprehensive overview of these theories frompetspective of modern cognitive
science, the reader is directed to [29]. Work on mergingwloetheories can be found in [18]. The
Rutkowska paper in particular uses the same sorts of pamasdigd world-views as will be found

in the rest of this paper.

2.4.2 Dynamic Systems

More recently, a few researchers have been looking for a t=isip different way of looking

at development. The hope is that the contradictions thattklese traditional techniques can be
explained by a completely new view. In particular, the “Dgma Systems” approach is gaining
support in Cognitive Science circles [34], [37], [4]. Théléaving sections hope to introduce the

reader to this approach and explain its take on the issueanfitey.

What is Dynamic Systems?

In its simplest form, the dynamic systems approach lookshangs” (animals, ecosystems, so-
cieties, etc.) in terms of their interaction with their enaviment over time. Also of fundamental
importance is the recognition that understanding how a eegstem works does not come from
analysing the functional details of the individual subcamgnts of the system: rather, useful
understanding comes from seeing how the subcomponentaghte

A few concepts relevant to learning systems are key partseoflynamic systems literature.
Autopoesis refers to the process of self-organization¢tvis a vital part of maintaining a stable
structure in a complex and changing environment. Maintgmternal stability is a major reason
why living organisms need to adapt (for example, food is meglto maintain energy levels in a
creature, so it must be able to nd food in various differemd @ovel circumstances). The concept
of autopoesis also keeps in mind a fundamental rule of phy#ie second law of thermodynam-
ics. This law, traditionally ignored in cognitive sciensays that in order to maintain an ordered
structure, it is necessary to produce disorder in the systemironment. This sort of argument
can be taken to the extreme point of arguing that the veryquapf life is to produce disorder in
its environment.

A second useful concept from Dynamic Systems is the ideaedltfack. In this area, dynamic
systems shows the side of itself sometimes referred to agr@gtcs: originally the study of
feedback in control situations. The basis of this concepihds feedback loops are vital to any
control task, and the very presence of this feedback sigmitly complicates standard analytical

mathematical techniques. Feedback generally leads tdimear differential equations, which do
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not lend themselves to simple analysis or to linear appration. Thus, a different approach to
analysing such systems is needed, since linearity is a basiomption in the majority of such
techniques.

In its simplest form, this new approach (from classical ey theory) focuses on identifying
positive and negative feedback loops within the systemte&ms of mathematically solving the
system, we look for behavoural generalities. Positive lfeed loops are situations where if one
aspect of the system increases (or decreases), it affecteghof the system, which in turn ends
up further increasing (or decreasing) the original aspEleis process continues, with that aspect
increasing (or decreasing) rapidly. This is not a good tHorga structure that is trying to be
self-organizing. This is why the analysis of most living &yas tends to result in the discovery
of negative feedback loops instead. These loops tend totamaivarious patterns in the system.
The classic example in biology is homeostasis (the abititydif-regulate various things such as
body temperature). One of the recurring themes of dynansitegys is that it is studying the loops
of interaction between various components that gives teatgst insight into the functioning of a
system, rather than a linear “input-processing-outpullysis.

The third Dynamic Systems concept to be examined here igeegis. This is the “process of
development” or “how the system got to be where it is now”.sldrnphasises the temporal nature
of systems. The claim is that we can understand better hostarsyworks now by looking at how
it came to be this way: at its history. This puts even more irtgsee on the issue of development
and learning.

Fourthly, there is the eld of stability theory (also knows aatastrophe theory, and tightly
related to chaos theory). Here, the idea is that systeméntallcertain natural rhythms based
on their structure, and they will maintain these rhythmsha face of minor changes in their
environment. However, if changes build up over time, thaesyswill be disturbed enough to
jump to a new rhythm. These “state-space transitions” betvwaifferent “attractors” can take
place extremely suddenly, even if the environmental chaugggreceding it was very small. Most
importantly, once the system has jumped to the new attrattwill be inclined to stay there. It
will not naturally fall back to the original state, even i§ énvironment has returned to its original
state. The properties of the system are thus not de ned pumelerms of its structure and its

environment, but also in terms of the system's history.

Infant Development

The clearest example of how the Dynamic Systems approachderstanding learning differs
from the traditional approaches is a look at human infarasnieg to walk. Nativism claims
that humans have an innate ability to walk, and as an infantiscles grow stronger and more
controllable, this innate ability is simply found. This iften tied in with the idea of Central

Pattern Generators (CPGs): groups of neurons that simglynra regular sequence, and this



Chapter 2. Learning 17

sequence of rings somehow controls the leg movements tdywre the regular patterns observed
in walking behaviour. This is basically an argument thatahiity to walk is pre-speci ed in the
genetic code itself.

Constructivism takes a slightly more complex view of leagiio walk. It argues that an infant
passes through certain steps along the way to learning tq aradl the skills and abilities learned at
the previous steps are built upon to reach the next steg.tkéginfant learns synchronized kicking
of both legs together (or perhaps there is innate knowletitf@overy simple skill). Eventually,
it learns to kick out of phase. When ipped over, this sort ofian can lead to learning to crawl,
and so on and so forth until the infant learns to walk.

The Dynamical Systems hypothesis, however, says that Hdttose methods are much too
rigid to explain what actually happens in human developmehése speci ¢ steps that construc-
tivism argues for may be observable when one looks at a deogexall perspective of develop-
ment, but when actually looking at development in one spetidividual, these rigid stages are
not clear at all. In some individuals, stages may be skippedeveloped concurrently. There may
even be periods where the infant slips back into previouggestaSpeci cally, the dynamic systems
approach strongly argues that we should not be looking gestr the “average” individual: each
individual follows their own path, as determined by theieiractions with their environment, for
learning to walk [34].

Or, indeed, for not learning to walk. In [30], a number of exées are given showing that such
behaviours as using walking for locomotion may not arispeteing on the infant's environment
[7]. The other examples include the ability of people bortheut arms to use their legs and feet to
perform tasks that are normally done with the hands. It isulifto see how either constructivism
or nativism can explain the infants learning a “scootinghé@e&our instead of walking. The key
aspect that dynamical systems provides here is the focusednteraction with the environment.
Without this complex interaction, learning does not tak&cpl The reason for the appearance
of a regular progression of development is that as the ilsfhiody grows, the dynamics of the

body-environment interaction gradually change.

Sensorimotor Coordination

Dynamic systems also strives to get as far away as possitetfre “Input, Processing, and Out-
put” approach. This is typi ed by having a system which usessers to gather information about
the environment, then performs some processing on thatniafiion (and upon whatever informa-
tion the system may have stored previously), and then pagi@n action. This sort of approach
(and the associated “computational metaphor”) has becorseramon that it is sometimes hard
to think that it could be any other way.

However, there is a vitally important step that is left outtliis mind-set: the role of the

environment. The environment responds to the output andlyoes new inputs to the systéhat
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Figure 2.1: The traditional view of cognitive processing.

are based on the system's outputhere thus is feedback in the system, which opens the door to
an entirely new way of looking at it.

Initially, this feedback “revelation” may not seem to beywanpressive. After all, is it really
fundamentally new? It's not like all the previous researstdidn't notice that the output affects
the input. What's the big deal about focussing on it like this

One classic example to show that the feedback aspect ignitgdortant to keep in the fore-
front of one's mind is a feature of insect walking that had fosed researchers for quite some
time. In order for an insect to walk, there has to be some hagéllof coordination between the
legs (especially on rough, complex terrain). The insectade know things like whether or not
each leg has a solid grip on something, or if the ground underfaot has suddenly disappeared,
and so on and so forth. However, the speed with which the inseble to react to these sorts
of situations is much faster than any signal seems to be alle transmitted through the insect's
very simple nervous system. How can it possibly do this?

The answer is, of course, feedback. What happens when thedjumder one leg starts falling
away? The insect starts to tip, of course. Tihimediatelycauses the pressure on the other legs to
change. The information is thus transmitted without thedh&aving to do anything at all [6].

The Dynamic Systems approach maintains that this sort afithe environment is the norm,

rather than the exception. The world itself is its own bestielpand it is likely that a successful
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Figure 2.2: The dynamic systems view of cognitive procegsin

creature will make use of this fact whenever possible.

The other key difference that focussing on sensorimotgrdqooduces is that it is not neces-
sary to nd the perfect answer right away. The creature isanstant interaction with the world,
and so does not have to produce the perfect output for any giyeut. An example will make
this clear. The Braitenberg Vehicle 2A [5] is widely congielé to be the simplest possible way
of having a robot move in an interesting way. It consists of sensors (one on the right and
one on the left) and two motors (left and right as well) tha¢eltwo wheels. The sensor on the
left directly controls the motor on the right, and vice ver3dus, if the sensors are brightness
detectors, then the robot will turn towards any light sowamod drive towards it. If the sensors are
range- nders, then the robot will run around avoiding waltsdoes not seem possible at all to get
this sort of behaviour from any simpler system, and inde&ldtchitecture is very appealing in
its elegance.

This was true until researchers at the University of Zuriebided to make use of the creature's
interaction with the environment. They were able to prodiheesame behaviour using only one
sensor and two motors. They made use of the fact that the rsealse would be changing over
time in response to the system's interaction with the wolldhe sensor value wasn't changing
much, then the robot probably didn't need to turn much. Ifdskasor value was getting smaller

(i.e. the robot was getting closer to a wall), then this is@ina sign that the robot is turning the
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wrong way, and it should change directions. Thus, the rokmtlgy when it encountered a wall,

turn one way or the other somewhat randomly. If this turnedmmnake the robot's situation worse
by bringing it slightly closer to the wall, then it would chgendirections. This would happen so
quickly that it would be unapparent to an outside observed, s0 the behaviour would seem to
be identical to the more complex Braitenberg system [20]e $ticcess of this simpler control
system shows that making use of the environment in this nréarmart of the key to developing

the ef ciency and robustness found in nature.

A further issue that arises when looking at sensorimotopsois their level of complexity.
This is the main focus of [19], in which Keijzer states thdté'behaving system needs complex
behavioral capacities at a proximal scale — call it room fanoeuvring — to counteract the many
proximal disturbances that will occur in a natural envir@min Only by bringing into play many
different options for proximal behavior — that is when thesay-motor system has many degrees
of freedom — can stable distal regularities be ensured urataral circumstances.” In other words,
a complex sensorimotor system is required to deal with a t@mgnvironment. This is a direct
result of Ashby's Law of Requisite Variety: “Only variety malestroy variety” [1]. Keijzer goes
further in his paper and argues that by using simple senadrsators we do not gain insightinto
how an organism can deal with the complex sensors and mdtarsite required. In particular,
he focuses on the difference between using wheels for loiommther than the complex mus-
culature and skeletal system that animals use. His recoufaien is to stop viewing actions as a
simple unit (such as “go forward”), and rather to look at thére sensing and acting systems that
interact over time to produce something that we can therritbesas “moving forward”. The ac-
tual behaviour of a creature that is “moving forward” is iedibly complex, never the same twice,
and is highly dependent on the agent's current environnTdris dependence is an important part
of how an organism can function in a complex environment,igndring it may signi cantly limit
research in the eld.

Another strong supporter of the sensorimotor view is [24¢ifEr's paper contains numerous
citations arguing that “classi cation, perception, andmuey should be viewed as sensory-motor
coordinations rather than as individual modules.” Manyladse references are also made use
of in this document, especially [34] (see section 2.4.2) @idsee section 3.3). Furthermore,
a signi cant amount of work is being done on this issue atfef& Al Lab at the University of

Zurich, and so the curious reader is directed there.

Values

One vital aspect of development that has not been mentiomed wet is what actually directs
the development. How does the system choose what to chaogeitdelf? This is an incredibly
complicated question, and is, indeed, at the very core ofdisgussion of learning. Different

approaches to answering this question lead to completigrelit development architectures.
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Sometimes this thing which directs development is refetoes a goal. However, this choice
of word seems to imply that there is some sort of ideal entdstavards which the system is
moving. This sort of approach is completely opposite to theadnical systems approach, which
focuses on the path the development takes. Therefore,thé'talues” is often used, as it deals
with how the system wants to change at a particular time, aradgarticular situation. Unfortu-
nately, the word “value” is also loaded with connotatioke lihose of “goal”, which can still lead
to some confusion. It is hoped that the reader will keep indhtivat “value” here refers only to
the basic, immediate rules governing the organism.

Values, then, are the low-level, generally unchangeabf@ets which drive the development
of a system. We can see them as being speci ed by the gendtibe @reature, or the initial
con guration and rules of a complex system. One of the staythnd non-intuitive results of both
Arti cial Life research and Dynamic Systems research ist tiery simple values can result in
enormously complex and unexpected behaviour. This isrexfdbd asemergence

One common example of a value used in learning is regulatidnthe most basic level,
living creatures need to maintain certain features of teeiironment at a regular level (such as
body temperature, or the availability of food). We have adie mentioned the phenomenon of
homeostasis in terms of a negative feedback loop (see s&cti®), where a creature's body will
automatically initiate actions such as shivering when c¢oldhaintain body temperature. If we
extend this concept further, we can look at learning as alfigtmplex negative feedback loop
which allows us to adjust high-level behaviour in order tantein regularities. This point of view
offers a solution to one of the major questions in the eld ediining: what exactly should we
learn? Why do we learn one thing and not another? To give aarartexample, why don't | learn
to stand in a corner hitting my head against a wall? The answet least part of the answer, is
that we learn things that help us to regulate our environment

For further information, [31] gives a broad range of exaraéthe use of value systems in

both natural and arti cial systems.

2.5 On Concepts and Existence

Before going further, |1 would like to take a moment to disctesrelationship between concepts
and “existence”. While this is not a thesis focussing ongguphy, | do feel that it is relevant to
describe the approach | take on this issue, because it iafia@dital to the direction that this thesis
takes.

| would like to talk about existence in one of the simplestrfeavorks possible: Conway's
Game of Life [11]. This is a standard cellular-automata exystwhere each square in the grid
can be in one of two states: full or empty. At each time step stlate of each square is changed

according to two simple rules: if a full square has less thandr more than three full neighbours
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(including diagonals) then it becomes empty, and if an ersgtyare has exactly three full neigh-
bours, it becomes full. Generally, the squares in the waddat into a certain state, and then the
system is left to run for a while on its own.

Some experimenting with this very simple world can lead tmsoery interesting results.
Certain patterns seem to come up frequently. For examplehyaZsquare is stable and, once
formed, does not change until something else comes neatiite/f 3 full squares will continu-
ally alternate between horizontal and vertical (until itlisturbed). Another remarkable structure
is the glider, where a particular pattern will actually maaoss the world. There are even com-
plex systems referred to as glider guns which will actuatBate an in nite number of regularly

spaced gliders.

Figure 2.3: Two simple stable patterns in Conway's Game @.LThe square does not change
over time, and three cells in a horizontal line will cycleweéen horizontal and vertical ad in ni-

tum.

Now, let us consider what “existence” means in this worldsdems clear that the squares
in the grid do, in fact, “exist”. Everyone can agree on whahds a square, it has a particular
location, and it has particular states. What | am interestethough, is the following question:
does the “glider” exist?

I would argue that there exists a point of view from which thieley does not exist. We

may call this point of view the “objective” point of view (&lbugh “objective” tends to imply
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Figure 2.4: The classic glider. Over the course of four teteps, the glider moves one square

down and one square left. Images thanks to Mirek's Cell@mad46].

“correct”, which is not my intention here), or even “the waigl point of view”. As far as the
world is concerned, all that exists are grid points, staed,rules for determining the next state.
This is a completely objective and universal point of vielattcan be considered to represent
the objective “Reality”. However, it is true that if a glidier shown to almost any observer, they
will immediately recognize it as a “thing”. It is a regularbgervable pattern. We can make
predictions about it. We can talk about its properties ligeexd and direction. Importantly, it can
be independently discovered by different people.

However, it must be noted that referring to that pattern alidegis not always the best way
to refer to it. When the glider interacts with other full ggduares, what happens is best described
and understood by referring to the squares themselves. ndeyeon the con guration of the
squares the glider is running into, the glider may “ceas«ist’e | would note, however, that it is
a pattern that is ceasing to exist, not something “Real”.

| hope that the analogy to the actual world is clear. | woutgliarthat something like a “table”
does not “Really” exist. It is a pattern in whatever the uhdeg “Reality” is. However, we can
form predictions about it. We can talk about its properti&&. can all generally agree that it is a
“thing”, and, indeed, it is useful to call it a “thing” in mosircumstances. However, in extreme
situations, we cannot in fact achieve a consensus on céraéisthe table may have. For example,
is a scratch on the table part of the table? In fact, is a dtitgelf a “thing”? If something stains

the tabletop, is that substance now part of the table or doomehave two things intermixed in
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space?

The important point in all of this is to note that pretty mualesything that we refer to as
“existing” is actually a pattern, and as such, is subject®#ferent people, with different back-
grounds, nd different patterns in what may be the same ugihgr Reality. This is a sort of
subjectiveness which is completely apart from the subjigtcaused by different observers re-
ceiving slightly different data. This is a subjectivity caa by different world-views. Patterns are
identi ed as “regularities in our environment that we obseover time”, and since individuals
come from different environments, they will nd differerggularities in the exact same data.

If people are raised in the same culture, and thus have venjasienvironments to nd pat-
terns in, they will generally form similar patterns. Thes®ple can then communicate to each
other reasonably well, since they will be able to connectovar sounds (words) with various
patterns (or “concepts”) in a relatively similar manner.

Sometimes, however, we will nd dif culties where a pattewe have seen is not a pattern
that the other person has seen. In this case, the only wayhteveccommunication is to expose
the other person to situations where that pattern existeugh actual experience, or perhaps
education and imagination), and allow them to identify {hettern.

| believe that this is how we form “concepts”. We observe tagties in our environment.
People with similar experiences nd similar regularitiéexpect to see a similar process occurring
in arti cial life. The learning algorithms | will discuss ithis paper will be looked at in terms of

their pattern- nding and pattern-using capabilities.
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Learning in Arti cial Systems

3.1 What are Arti cial Systems?

For the purposes of this document, | am taking “Arti cial $g” to mean any software program
that takes in a known, nite set of input variables and praghia known, nite set of output
variables (and modi es its internal state) based on itsrimdkstate. This is the basic de nition of
a Turing machine, and as such covers a lot of ground. (It israed that the reader is familiar with
software programs and the concept of a Turing machine). Timwahis a little, | wish to focus
on connectionist systems (also known as Arti cial NeurahiMarks).

Arti cial Neural Networks consist of large numbers of verymgle components connected
together. The general design is somewhat inspired by osiseng of the nervous systems of
living creatures, which are formed from highly interconteecneurons. It must, of course, be
remembered that a single real neuron is much more comgditiad® any component implemented
in an ANN. However, like the real neurons, the arti cial neas (also called nodes) have inputs
and outputs, and the output is formed by combining the inmgsther in some way (generally
summing them) and then performing some function on thatev@uch as a sigmoid function).
Connections can be excitatory (positive) or inhibitorygatve), and generally each connection
has a weighting factor that indicates how strong a connedtis.

This sort of arti cial system has three important advantageer other sorts of software sys-
tems, such as classical Al's knowledge-based systemg ofaB, they allow for parallel, localized
computing. Secondly , they are actually neurologicallyplble. Thirdly, they tend to exhibit the
sort of generalization and simple learning capabilitied Hre expected.

We have not yet discussed how exactly these neurons are tonpected, nor have we dis-
cussed how connections between neurons (or the neuronseh&s) change and develop. These
factors are what distinguish various different ANNs froncleather. As this section progresses,

we will examine a few relevant systems developed by varieasarchers.
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3.2 Classical Conditioning and Association

Classical conditioning is, in essence, the forming of aisgimns. Initially, a certain stimulus (say,
the presence of food) is associated with a certain respaadiggting). The experimenter then
presents a new stimulus (the ringing of a bell) at the same {on around the same time) as
the initial stimulus. After a few trials, the subject will\gi the same response when presented
with the new stimulus by itself. This sort of behaviour is figuin pretty much all animate life
forms, including simple things like planarian worms. Theveof course, the question as to what
associations are being formed. Is the new stimulus beiragagsd with the response? Or is the
new stimulus being associated with the old stimulus, sowHegn the new stimulus is presented,
it is as if the old one is presented? And furthermore, what foims these associations? These
questions are the core of behaviourist psychology.

It must be noted, however, that behaviourist psychologiticnally only looks at associations
between stimuli (input) and responses (output). It hasinedacreasingly clear that this is a much
more limited domain than most living creatures use. For gtantreatures can associate actions
with certainplaces and a place is much more complicated than just a stimulust[&] clear that
there are intermediate things between stimuli and resposseh as internal states, that can also
form associations. This concept will be further developetthée section on the Theory of Neuronal
Group Selection (see section 3.3).

The simplest rule for forming these associations is Hehbits. rThis rule is, very simply, that
the connection between any two components in a connedtigystem should be strengthened if
both of those components are active at the same time. Itas letev a rule of this form can explain
the classical conditioning results in the example at thérmégg of this section. The stimulus that
the bell is ringing would activate a node in the network atsame time as the presence-of-food
node is active. Initially, the food node is strongly conrekcto the salivation node (perhaps by
genetic design, or perhaps by previous learning), and smtuge would become active. Now, the
bell ringing node is active at the same time as the salivataie, so the strength between them
would increase. If this happens a few times, then the newexdion will increase in strength until
eventually it is able to activate the salivation node all tsglf. Note that, most likely, all sorts of
other nodes representing other stimuli and responses (aed mternal states), will also be active
while this learning is going on. For example, there might mode active if the experimenter is
wearing a red shirt. If this is active while the feeding isitakplace, then an association will start
we can see that this sort of association forming is actuallidanti cation of regularities in the
environment.

One of the more complex models of conditioning can be fourjf@®h This model accurately

describes the acquisition of an association, the extinatiothat association, and the effect of
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blocking. However, it does this by assuming that the stimilas already been categorized into
different types of events. That s, there is no sense of fanity” between stimuli. This means that
it is incapable of handling the generalization of learnespomses to new situations, and avoids
the entire problem of determining when two different eveares actually instances of the same
stimulus.

More details about the various aspects of classical canditg will be examined in a later
section, where we examine the Distributed Adaptive Controtlel (see section 4.3). For now,
however, it is important to remember that classical conditig includes the ability to un-learn
associations that are no longer valid, and to both generali learn to discriminate between
initially similar patterns. All of these features are nesaey for a creature to deal with a complex

and changing environment.

3.3 Edelman's Theory of Neuronal Group Selection

The Theory of Neuronal Group Selection (TNGS) is a model ofegal learning developed by
Edelman (along with Reeke and others) that explicitly dedtls a number of the issues that have
been discussed so far in this paper. It focuses on being @logically plausible explanation of
learning, and exhibits some very interesting propertisshsas multimodal categorization. The
key book which details this theory Meural Darwinism: The theory of neuronal group selection
[9]. Of particular interest is the fact that it incorporabexth a developmental phase and a learning
phase, which | have previously argued to be important (set@se2.1).

In order to describe the theory, | believe two different ag@hes are necessary. First, | will
describe the theory from a developmental point of view, &t will describe it from an archi-

tectural point of view. After this, | will discuss some commte and criticisms of the theory.

3.3.1 TNGS: A Developmental Perspective

The inspiration for the theory came from Edelman's 1972 Nivize winning research on the
immune system. His work argued that the immune system usesags very similar to Darwinian
selection to develop antibodies for new foreign substatiwdsenter the body. The process is very
simple: large numbers of slightly different, randomly ntethantibodies are created, and those
that are successful are duplicated while those that areusoessful are not. Thus it is an example
of using the “blind-watchmaker” (design without a desigreemcept on an immediate, short-term
time scale, rather than at the level of evolving speciest ssnormally thought of in Darwinian
evolution.

With the TNGS, Edelman argues that this same process carebetaislevelop intelligence.
He starts with the observation made earlier in this docurtigattthe human genome is unable

to explicitly de ne all of the complex structure of the braiVhat is de ned, however, is a ba-
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sic framework for development. The question is what forns framework takes, and how this
development occurs.

This question may lead one to believe that the DNA de nes tiitgai state of the brain before
developmental learning occurs. Edelman speci cally asgagainst this point of view. His theory
holds that the vast majority of the neurons in the brain aregioed randomly. The overall
structure of the formation of neurons may be somewhat cthetrwia various chemicals, but this
is still a highly chaotic and non-deterministic process.e Tieurons (in the vast majority of the
brain) not only have highly varying and uncontrolled prdjeey, but also connect to each other in
a similarly chaotic fashion. This aspect of the theory ispgufed by the observation that, while
we may be able to nd common high-level structures in difféarpeople’'s brains, there is a huge
amount of variation at the neuronal level (both betweenviddials and within a single individual).

Thus, we start life with a pretty much random mishmash of eations of neurons in the
brain, separated into basic functional areas. How, theas dbis become a useful system for
controlling the complex actions that humans do? Edelmarssvar to this question is “selection”.
Because of the huge numbers of neurons in the brain, thiomarmagpproach guarantees a huge
“primary repertoire” of functionality. Some of the conniects between the neurons form useful
systems. Some do not. The connections that are “useful” dased by some pre-determined
“value” system (see section 2.4.2)) are strengthened.prbiess forms a large number of strongly
connected “neuronal groups”.

Of course, how we de ne “useful” is always a dif cult questiolt is, in fact, likely that there
is no one answer to the question, and that it depends on whatfssystem is being controlled
by the neural groups (i.e. what region of the brain the nexigoe in, or what sensor and motor
groups they may or may not be connected to). The process bewd simple as “strengthen those
connections which were used within a few minutes of feelinggy” (which could, perhaps, be
implemented through synapses that vary their strengthdb@senutual activity and the presence
of various hormones). It could also be much more complex. él@wthis is accomplished, the
theory states that the rst developmental step is in cregtins “secondary repertoire” of neuronal
groups.

There is now, however, the question of how these groups colime tonnected to one another.
Edelman postulates that, as these groups are forming, iatso a process of “reentrant map-
ping” going on. This is the creation of connections betweeurans in different groups based on
their statistical correlation to one another. This is theeas of making “associations” that was
discussed earlier (see section 3.2).

The following diagram shows the three major processes &t iIROFNGS.
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Figure 3.1: The three major processes of TNGS. First, thetfiraules of neurons creates a large
number of interconnecting neurons. Next, connections éetvthe neurons are strengthened and
weakened following built-in rules (“values”) based on teeeaived stimulus, forming a number of
neural groups. Finally, mappings are formed between theggrbased on the correlation of their
outputs given the same stimulus. These three processeslinagw at the same time. Based on
Figure 3.1 in Edelman, 1989

3.3.2 TNGS: An Architectural Perspective

Another way to look at the Theory of Neuronal Group Selecisdnom the perspective of the nal
developed architecture. In this way, we can try to undedstamat it does once the development is
mostly complete. Of course, we must remember that the psasedways continuing during life
(thus allowing us to learn new things). However, an archited view will allow us to compare

it to other approaches to Arti cial Life, as most other appches focus on the architecture, rather
than the developmental (or epigenetic (see section 2 gr8ess.

The basic architecture is a map of maps of maps. Recall frenséietion on classical con-
ditioning (see section 3.2) that one approach to “learniadd form associations (or mappings)
between inputs and/or outputs. One issue that the disecusstbat section revealed is that this
was not suf cient, and that associations needed to be alftatobetween internal state variables
to give the range of behaviours that we observe in livingtares. TNGS deals with this in the

following way.
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First, we note the sensors and motors of the agent are indagplex mappings to and from
the environment. For example, the information receivedieyelyes is not a nice three dimensional
breakdown of the world: instead, it is two dimensional ddtatorted by perspective, with much
more detail near the centre of the eld of view than the edgésere isn't even straight-forward
colour information available, since there are three sapdyges of colour sensors in the eyes,
each responding in differing ways to various different freqcies of light. These sorts of issues
are true for all but the simplest types of sensors and mot@itable to an agent, since they are
generally constrained by the physics of the agent-enviesamteraction. Why should we believe
that this raw data is suitable data on which the agent catecasaociations?

This question is, of course, nothing new. This is the sorssfié that is generally dealt with
by pre-processors and post-processors, systems whichgessee data into a more useful format.
In robotics, for example, it is quite common for the Al corigoto specify an output like “rotate
the arm to an angle of 65.2 degrees”, and then a post-praogestd translate that into a speci ¢
voltage to apply to the motor on the arm for a speci ¢ periodimie. Another example would be
the postulated range- nders used quite commonly in Artildiife experiments, and mentioned in
relation to the Braitenberg Vehicle in the section on seansaiior coordination. A real-life range-

nder is remarkably complicated, and has to do all sorts @fcessing in order to nally output a
value that says how far away the nearest object in a certegotdin is. All of these are examples
of mapping the raw sensor data (which is itself a mapping efrenmental data) into new data,
which is, in theory, a more useful value for the rest of theeys

One important point that TNGS makes is that this second mapgiiould be done more than
once. Why should we look at the raw data in only one way? Whylauk at the same data in
many different ways? Let us have multiple, completely iretatent mappings of the raw data.
In one early experiment following the TNGS philosophy, Edah and Reeke worked with a raw
sensor that looked at letters of the alphabet (drawn in uarilifferent styles). They then created
two different, completely independent mappings of this data. One mapping identi ed various
spatial features of the letter, and one identi ed variousperal features (i.e. how the letter was
drawn). Both neural groups received the same raw informatiat the structure of one group
was such that it extracted temporal information, and thectiire of the other was that it extracted
spatial information.

We now create mappings between the mappings themselvethdneords, we form associa-
tions between the outputs of these secondary mapping systdra real issue here is, how exactly
we would go about doing this. With TNGS, we allow the agentqoegience the world, and while
it does this, we strengthen connections between corretasedts of the different maps. In other
words, we form correlations between different “aspectsthefsensory data that are active at the
same time while we explore the world. This lets us see whigdh@$e randomly formed mapping

systems is likely to be a meaningful representation, sineammgful data is generally correlated
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to other meaningful data. Furthermore, it gives the systéof the capabilities of the associative
systems discussed earlier (see section 3.2), but with ¢imé cant advantage that the correlations
do not have to be made on the raw sensory data.

TNGS thus results in a map of maps of maps. The practicaltrebtiiis can be very inter-
esting. In the experiment mentioned above with the spatidltamporal features of letters, the
internal mapping resulted in a system that was able to |eecategorize letters, based only on be-
ing presented a large number of different letters drawn iy ddferent font styles. The important
point is that it was never told that there was a distinctiotwieen the 26 different letters (i.e. it
was never explicitly told thad was an A andA was an A, buB was a B). Simply by observing the
correlations between the spatial and temporal featuresytbtem formed 26 different signi cant
statistical correlations, with one corresponding to eattet. Importantly, it did this without even
being told that there were exactly 26 different patternsrtd.

This example is a very simple one, as it deals with a systeimaevity one sensory modality.
TNGS also works in situations where there is a more direetaution between the agent and the
environment. This has been done in experiments around DdHya robot arm that uses TNGS

to learn to follow moving objects.

3.3.3 Comments

A few aspects of this theory strike me as being important torsideration. The rst of these
is the scale at which the system works. Edelman's use of ticisitacture in a model of the
mammalian visual system uses 220,000 arti cial neurons &bdmillion connections between
them [9]. Current research in neural networks is seldom aethis scale. Most neural approaches
to intelligence take the philosophy of directly specifythg majority of connections in the model,
and then use some method to modify the strengths of thoseections. However, the standard
methods for doing this (such as genetic algorithms or baokgmation) do not seem to easily scale
up to large systems. In contrast, TNGS actuedlguireslarge populations of neurons, since that
is how it achieves the diversity of functionality that is eesary for interesting behaviour. Thus, it
may be that techniques which work on small neural networkid@ss complex environments are
unable to work on the level of complexity that | am interestedConversely, it is likely that TNGS
will have very little to say about simple nervous systems pgosed of merely dozens of neurons.
It should also be noted that TNGS is fairly unique among liegralgorithms in that it has no
pre-speci ed architecture. Recalling the discussion ol lglarning is necessary (see section 2.2),
exact speci cation of the connections in the brain is urllite be possible in a system as large as
the brain.

This is important in that it takes a concept from the “New Ad’l(.a. “Nouveau Al") approach
even farther. “New Al” researchers generally hold that idesrto create “intelligent” systems,

it is not feasible or even possible for a human designer toigpeverything about how the sys-



Chapter 3. Learning in Arti cial Systems32

tem works. That sort of direct, rigorous programming of bedwars is often seen as the reason
why “Good Old-Fashioned Al” was unsuccessful at produciygtems capable of interacting in
a complex environment. Instead, New Al researchers havantaRproaches such as de ning a
structure and having the system modify the connectionsdmatwthe parts of the structure through
experience. What TNGS argues is that we can take advantdpe #rger number of neurons in
a large-scale system by not specifying the architecturesslioiv level.

A second major point of interest is one that | have not seegispdy mentioned in dis-
cussions of TNGS, but is one which may perhaps not be obvimusany people reading about
the architecture. | present it here simply as a comment ordbabilities of the system. It con-
cerns the function of the “secondary repertoire” (the negiraups formed somewhat randomly
between which the correlations are made). These neurapgrane generally thought of as “pre-
processors” or “ Iters” on the incoming sensory data, whightheory, put the data into a more
useful form. While this terminology is accurate, it causespie to think of these Iters as being
time-invariant; that is, given the same input, they will ajxg give the same output.

This is not necessarily true. Many of these neural groupshaite complex, recurrent con-
nections between the neurons, forming loops and complagtsiies. These loops imply that the
neural groups can fairly easily have a memory, and can resfopatterns formed over time, not
just to patterns among the sensory data at one instant in flinis is because the output of the
group will be based not only on the inputs to the group, bui als the state of the group at the
previous moment. For example, in the following diagram abgut from the network will depend
not only on the input, but also on the current state of the taveairon. This is a general property
of any network containing loops.

Finally, it must be mentioned that the Theory of Neuronal@r&election has great intuitive
appeal. It is another example of the “brute-force” generabfem solving method used to great
success in natural evolution. The idea of trying lots and ¢didifferent possible approaches all at
the same time is simple, and yet it is also the exact antiludshe formal, step-by-step logical ap-
proach that represents most of scienti ¢ thought. Of coyitsmuld be argued that the reason that
the scienti ¢ approach has been so successful is that threrlaimye numbers of scientists work-
ing in parallel, each with their own unique (and somewhaticem) ideas and perspectives, with
an organized structure to allow them to nd correlationsnzsn their work and others'. In any
case, TNGS applies this approach to the development ofigente in a way that seems possible,
given what we know about brain structures and how neuroms.fdYe know that controlling the
exact formation of neurons and connections between theemiankably complicated and perhaps
impossible in many situations. It seems somehow right tleaskould embrace this randomness

and make use of it, rather than ghtingit.
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Figure 3.2: A simple network showing how recurrent conratdi(connections forming loops)
lead to memory. The outputis dependent not only on the inutalso on the state of the lower

neuron.

3.3.4 Criticisms

There are, however, two important problems with TNGS asaih@$. The rst of these has to
do with the fact that it is a rather under-speci ed theory.eTecond issue stands as more of a
warning: very few people have worked directly with the theor

In saying the theory is “under-speci ed”, | am making refece to the large number of un-
knowns within it. How exactly are the initially neural coratiens “randomly” formed? Edelman
explicitly talks about controlling this formation in natwia cell adhesion and substrate adhe-
sion molecules, which could generally control the size ae tof the clusters that are formed.
However, in an experimental situation, it is up to the indivkl experimenter to “tweak” these
parameters, controlling growth in various ways until it W®for the given situation. Furthermore,
the rules regarding the further development of the netwrelatso non-speci ed. TNGS is more
of a framework than a speci ¢ model, and there seems to bbe éisperimental evidence revealing
what sorts of con gurations are good for what sorts of praide

This lack of general experimental results stems from thergpnoblem with TNGS: there is
relatively little work being done within the framework. Modocuments describing the system

seem to be vague on details, and tend not to have a clearatigstimegarding what aspects are
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part of the theory, and what aspects are implementatioarsp&his lack of use means that there
exist few informed perspectives on its applicability inieais situations. Furthermore, it has led
to a lack of evolution of the theory, as not much has chang#umit since it was rst published.
This lack of new data from new experiments is troublesomen¢liough the theory does have a

few interesting and successful examples.

3.4 Pattern Discovery in Neural Networks

In the previous section, we used randomly formed “neuraligsdto change raw sensory data into
a (hopefully) more useful form. In this section, we will try $ee whether a more direct approach
would be more appropriate to the random one. After all, atgreay of the randomly generated
neural groups are likely to be useless. If we could speciftihm of these neural groups in such
a way that they would generally nd useful patterns and ulsefys of representing the sensory
data, then this could greatly improve the effectivenessiofati cial systems.

This section starts with a general discussion of unsupesvieural networks. It will then
move to a more in-depth look at the types of outputs that iffenetworks give, and in particular
how useful these representations may be for the sort of mssoeforming that was discussed in
the previous section. Next, two particular network modelshe examined, both of which seem
to be exactly the sort of systems that would be suitable fer Bmally, the limitations of this more

directed and controlled approach will be discussed.

3.4.1 Unsupervised Neural Networks

The world of neural networks can be, very roughly, dividegbitwo camps. On the one hand,
there is the study asupervisedheural networks. With supervised networks, we give theesgst
a large number of different input patterns, and for each tipaittern, we tell it what the output
pattern should be. Once the system has learned these esamplean give it new input patterns
that it has never seen before, and it will give some outputepags a “best guess” as to what the
output pattern should be, given its previous knowledge.

The problem with this approach is, of course, that in ouradia;n we do not know what the
outputs should be. We want the network to gure out its own wéayepresenting the data; we
don't want to impose a representation upon it. This take®ubd realm olunsuperviseaeural
networks. The network is shown a large set of input data, bachetwork nds patterns in the
data and bases its output on those patterns. The types efrgathat it nds is dependent on the
learning algorithm being used.

One question that may arise is “Why doesn't the network jugpot exactly what the input
is?” After all, this trivial output would be exactly based tire input data. Of course, this really
isn't what we want. In general, we would like to have the otifgfata besimplerthan our input

data. There is a huge amount of data coming into our sensestgrayevery moment. It is likely



Chapter 3. Learning in Arti cial Systems35

that we would need it in a simpler form in order to do anythirighit. So, in general with these

unsupervised networks, the amount of output data is lessttieaamount of input data.

3.4.2 Local Representation

If we want the output data to be simple, then the simplestagmr possible would be what is
referred to as a classi er. In this sort of network, each otitpeans a different “thing”, and only
one output is active at a time. For example, suppose the bopilte network was a picture of
something. Now imagine we have a number of different outguirons. One neuron becomes
active if the picture is of a rock; one neuron becomes actitheei picture is of a tree; one neuron
becomes active if the picture is of a car, and so forth. Thisfisrred to as “local representation”
because we represent the entire picture by the activity eihauron.

Given this example, it is dif cult to see how such a system ldowork. After all, we are
not telling the network “this picture is of a rock” and “thiscpure is of a tree”. That would be
supervised learning. Instead, we are just presenting tt ihumber of different pictures, and
the network is classifying them into different categorieattit invents itself. In most (if not all)
implementations of this form of learning, these categoaiesbased on similarity. If two inputs
are similar (under whatever measure of similarity we aragjsithen they are likely to be putinto
the same category.

The following example illustrates how this process may wiorlpractice. For simplicity,
consider a neural network receiving only two inputs. Thaseihputs will be measurements from
certain sensors: in this example, let us suppose these reazsuts are the size and the roundness
(eccentricity) of various fruits that are represented ®dkistem. If we plotted each fruit on the

following scatter-chart, we may see something like this:
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Figure 3.3: An example of the type of pattern that local repngation networks can easily identify.

These points can clearly be grouped into four general catgyjo This is exactly what an

unsupervised neural network implementing a classi eraystwould do. It would identify these



Chapter 3. Learning in Arti cial Systems36

four groups, and then whenever a new piece of data would lseprred, it would output which
of the four groups to which it belonged. This output would berfed by four separate output
neurons, one for each category. For any given input, exactty of the four outputs would be
“active” (represented by a 1), while the others would all bettive” (represented by a 0). Thus,
in general, the network could be given an input of two piedesata (size and eccentricity) and
would output one of (0,0,0,1), (0,0,1,0), (0,1,0,0), 00(Q,0). In this particular case, the group of
very small slightly eccentric shapes could be limes (010, @he slightly larger and much rounder
ones would be oranges (0,0,1,0), the much larger yet stilidayroup could be grapefruit (0,1,0,0),
and the largest and very eccentric ones would be banana8,®,0

It should be noted that it is also possible to have the netwotgut values that are not just 1's
and 0's. In this way, the network can output how sure it is thatinput falls into any particular
category (i.e. how similar this new input is to other exarspdéthis category). For example, it
could output (0.1, 0.2, 0.9, 0.4), which could be interpiets saying “I'm pretty sure it's of type
3, but it might be type 4, and it de nitely isn't types 1 or 2.

Even though the network has taken a two-dimensional inpdtca@ated a four-dimensional
output, the output is still simpler (in the sense of beingexa® use) than the input. In the rst
case, the network has taken its two-dimensional, real-ruetbinput and turned it into one of four
possible outputs. This is clearly a simpler format. In theogel case, there are four real-numbered
outputs, but it is still true that there will ke mostone large value in the output, representing the
best category match. The output data is thus much more inatebgliuseful than the original two
input values.

The exact method by which this grouping is done varies grdmtween different models.
The key issues involved are things like knowing how many gsoare used to break down the
data. Many algorithms have the user specify the number affgothus making it a supervised
algorithm to a certain degree. Another approach would beat@ lthe user specify the amount
of variation allowed within a group. A real problem also ocwhen groups are of signi cantly
different sizes. For example, in the following diagram,mid\ is closer to the centre of group 2

than group 1, yet it clearly should be classi ed as being pagroup 1.
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Figure 3.4: The naive approach of classifying a point by Inglat how close it is to the centre of

the known groups will fail in this situation.

These sorts of implementation issues, however, do not asidtkey problem inherent in
the concept of local representation. Going back to the ptevexample where a network was
presented with a picture of a tree, or of a rock, what wouldpleapif the picture was of both a
treeanda rock? Depending on the speci cs of the situation, the nétwould just classify it as
a picture of a tree, or perhaps of a rock, or perhaps it coddtera new category for “tree and
rock”. What we would prefer is if the network would simply neakoth the “tree” and the “rock”
output active. However, since these systems use localseptation, the algorithms that they use
only allow one of the output neurons to be active at a timeedss that what we need would be

a more distributed representation in our output.

3.4.3 Distributed Representation

The basic idea behind networks that use a distributed reptason is to use all of the output
nodes to represent a given input. Thus, instead of an oughng tof the form (0,0,1,0), it could
be of the form (0.2, 0.8, 1, -0.5). Note that this is fundarabiydifferent from the example in the
section on Local Representation where the values indidatedcon dent the network was that
the input was of the various different classes. Insteadetivalues indicate differemtspectof

the given input. To understand what this means, considdptloeving example where we have a
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two-dimensional input (i.e. there are two input neurong) asingle output.

Input 2
O
®

Input 1

Figure 3.5: An example input data set. How can we reduce tteefoam two dimensions to one

dimension with minimal loss of information?

Since we are reducing the number of dimensions from our itgoatir output, we are clearly
losing information. What we want to do is to lose the least am@f information possible. That
is, we want to choose the most accurate way of representofgaahose two-dimensional input
data points with only a single value.

The mathematics behind this are surprisingly straight+fwd. We normalize the data so that
the average value in each dimension is zero (i.e. we moveataest that the centre of the points
is at the origin), then we put all the data into a matrix, witttle data point as a column in that
matrix, and we nd the eigenvalues and eigenvectors of thatrisn The eigenvector with the
largest eigenvalue is the best single vector to transforof #ie data onto. If we want to have two
output values, then we also use the eigenvector with thensdaogest eigenvalue, and so on.

In the example diagram above, this corresponds to progetich data point perpendicularly
onto the line in the following diagram. The output value fack point would be the distance
along the line from the centre of the cluster to the projeptidt.

This process is referred to as Principal Component Analiisst importantly, the equivalent
process to the algebra described above can in fact be donedaral network. This means that

the process can be done automatically and does not reqeistdrage of all of the previous data
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Input 2
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Figure 3.6: Projecting the data onto the shown line will mmizie the error.

points.

It should also be noted that this process can become evercmogdicated. Speci cally, there
is also an algorithm known as Factor Analysis which begirth Wrincipal Component Analysis
and then takes it one step farther. Once the principal commqtsr(the largest eigenvectors) are
known, it takes advantage of the fact that one can rotatedauate spaces without losing infor-
mation. That is, instead of taking the eigenvectors theveselit tries to rotate them in various
ways so as to produce output distributions that are uneaie®! Being uncorrelated is an attempt
to make the outputs more “useful” without losing any infotima. It is, however, much more
complicated to implement in a neural network system. Imgletations generally make use of the
separation of recognition (forwards) and generative (haclls) weights, which will be discussed
in the next section in the context of sparse representatigmmithms.

One major dif culty with this style of analysis is that it issgerally linear. That s, it assumes
that all inputs are formed from Gaussian distributions. sTagpproximation limits it to nding
patterns of a particular type, and a great many useful pette not based on Gaussian distribu-
tions. More importantly, a fundamental problem with distiied representation in general is that
it represents any given input usiagl of the outputs. This is as much of a problem as Local Rep-
resentation's use of only one of the outputs for any giveminplaving a completely distributed

representation means that we cannot break it down into chumgtead, we have to always deal
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with the entire representation. Every bit of data is impaitand we have to look at all of it at
the same time to retain any meaning. If we could have a repratsen that was not completely
distributed, then we could “pick out” key aspects of the dadm the full representation. This idea
will become clearer with the example in the following sentishere we apply these approaches

to the “noisy bars” problem.

3.4.4 Sparse Representation

Sparse Representation is an attempt to nd a middle groutddsm Local and Distributed Rep-
resentation. In particular, it looks to combine the noredirity of Local Representation with Dis-
tributed Representation's advantages of being able to ose than one output at a time. However,
the eld is an extremely new one, and no algorithm has emetigatis clearly “best”. In this sec-
tion, | will discuss two promising examples of algorithmatiproduce sparse representations.

Before detailing these algorithms, it is useful to look aeaample of what Sparse Represen-
tation is supposed to do, in comparison to Local and DistethiRepresentations. In this case,
the “noisy bars” problem (as suggested in [13]) clearly shtve distinction between these three
approaches. The data presented in this example is takerff4jm

The major reason for presenting this example is to show theaise representation systems
will generally nd a representation that is similar to a lbcapresentation, except that it has the
capability of having more than one output with a large validost output values will still be
close to zero. Understanding the internals of this proces®i necessary for understanding its
usefulness.

The input in the “noisy bars” problem consists of 36 elemantanged in a 6 by 6 grid (larger
grids are, of course, possible). There are two types of sypassible: horizontal bars and vertical
bars. A particular input will have either horizontal or veal bars, but not both. Each of the
6 possible bars has an equal probability of appearing (géperound 0.3-0.4). Thus, possible

inputs could be:

A signi cant amount of noise (random variation in the randeptus or minus 0.5) is also

added to the inputs, resulting in input data of the followfioigm:



Chapter 3. Learning in Arti cial Systems41

5 e
i 83 =5
o L
B )
B = 5 5
L by o
o

Figure 3.7: 28 different sample inputs for the noisy barbfgm. The size of the square indicates

the magnitude of the input, with white being positive anctklaeing negative. (From [14])

We can now give this data to a Local, a Distributed, and a $paetwork and see what
characteristic results each gives. For the sake of congranige shall keep the number of output
nodes constant across the networks at a value of 24.

A Local Representation network (such as a basic classigguite capable of dealing with
the effects of noise. It will, generally, recognize the sgrattern of bars under noisy conditions.

However, since there are 126 different possible arrangenaodthe bars, it would need 126 output
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nodes to represent them all. As there are only 24 output nedest the system does is develop

outputs that correspond most strongly to common combinatidbars, as in the following gure:
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Figure 3.8: Results from a classi er system (local représtion) on the noisy bars problem. Each

of the 24 large blocks represents the input pattern that artecplar output neuron responds most
strongly to (i.e. what pattern that value in the output repres). The size of the small squares in
the blocks indicates the magnitude of the input, with whéeg positive and black being negative.
(From [14])

It can be seen that a number of the output nodes are respotadihg presence of multiple
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bars. Thus, the presence or absence of any particular bat something that can be readily
extracted from this representation.

The networks that produce distributed representationsrame dif cult to understand. In
this particular example, they in fact produce much lessulse$ults than the local representation
systems. The following diagram shows how the individuapatihodes correspond to strange

mixes of positive and negative bars.

Figure 3.9: Results from factor analysis (distributed espntation) on the noisy bars problem.
Each of the 24 large blocks represents the input patterrotieparticular output neuron responds
most strongly to (i.e. what pattern that value in the outgresents). The size of the small
squares in the blocks indicates the magnitude of the inpitit, white being positive and black

being negative. (From [14])
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About the only thing that is clear from this example is thaidimg at each output neuron
individually does not give us any sort of useful represéotedf the pattern at all.

This is clearly not what we want in a representation. Theasgmtation that would make the
most sense (to us) would be one that uses 12 output nodeseseapthe 12 possible bars. This
is exactly what a sparse representation network would d¢h Biothe models (RGBN and REC)
that will be discussed in more detail have been tested omptbidem, and both produced exactly
this result. If they have too many output nodes, then theaedtput nodes are not used. 12 of the
nodes, however, exactly correspond to the 12 possible bars.

Of course, the goal is not to form representations that aefulito us, but rather to form
representations that are useful to whatever is using theseptation. However, it does seem to
be telling that these two very different more general teghes both generate representations that

match our own expected representations.
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Figure 3.10: Results from RGBN (sparse representationhemoisy bars problem. Results of
the REC algorithm are similar. Each of the 24 large blocksasgnts the input pattern that one
particular output neuron responds most strongly to (i.e.atwdattern that value in the output
represents). The size of the small squares in the blockedtel the magnitude of the input, with

white being positive and black being negative. (From [14])

We can clearly see that the sparse representation appet es the twelve different pos-
sible bars. The representation that it forms for the inptesadéso highly ef cient, as the network
only uses twelve of the available 24 neurons to form its regmeation (the other neurons end up
trying to model the noise). Importantly, it has picked ouiuidual, separate aspects of the in-
put. This means that a larger system which used this sorpoésentation could then make use

of the fact that one particular neuron in this sparse reptatien signals the presence of, say, a
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horizontal bar at the top. None of the other representatistems would be capable of this.

The algorithms to achieve sparse representation are, irglemore complicated than those
for local or distributed representations. One major redsothis has to do with the idea gfen-
erativeweights. Generative weights are a set of backwards commectnh the neural network
that allow the network to act in reverse. For example, a logalesentation system running back-
wards would allow us to specify a particular classi catign king the states of what are normally
the output neurons, and the network would output (via thenabimput neurons) an example (or
prototype) of that class. A similar feat would be possibléwthe distributed representation net-
works. The important point is that this process is very sampith the classi er systems (local
representation) and with principal component analysistiithuted representation). With the clas-
si er system, only one output is active at a time, so we caemeine the best example of an input
that would create that output simply by looking at the fordvaonnection weights (also known as
recognition weights). With principal component analysie,have the assumption that everything
is linear, which means that we can look at each output indadigl, do a similar process as we did
with the classi er system, and add everything together tdlge nal prototype.

However, sparse representation explicitly allows mudtipiputs to interact in a non-linear
manner. This causes what is known as the “explaining awagblpm. Since most learning
algorithms depend upon doing backwards processing, itesatie learning to be much more
processor-intensive, and generally non-local. Indeedgeatgart of the dif culty in developing
networks that create sparse representations is to all@ptbcess to happen in a neurologically
plausible way. Neurons are inherently “local” devices, mieg that they do not have access to any
information other than that of the neurons directly coneédb them. Any large-scale algorithm
that required neurons to use data from all other neuronsaimétwork would not be a realistic
model of a biological process.

To get an idea of the “explaining away” problem, considemapté neural network with two
inputs and two outputs. Assume all the inputs are conneotaltiof the outputs with a connection
weight of 1. Now, if we are feeding forwards, and we input J0yte will get an output of (1,1).

If we input (1,0), we will also get (1,1). When we want to wohletnetwork in the other direction,
and we give a (1,1) to what are normally the output neurons,dam we determine what the input
should be? If we set either neuron in the input to a 1, then“dhadlains” both of the values in
the output. Note, of course, that this is an extreme examuléhas no clear solution, but it shows
that in general, it is non-trivial to get a neural network torwin both directions.

However, in recent years, there have been some promisirgjageaents in this eld. The
following two sections will look at two algorithms in partiar which have shown promise in

developing these sparse representations.
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The Recti ed Gaussian Belief Network

The Recti ed Gaussian Belief Network (RGBN) [14] is a neunaitwork model which tries to
learn non-linear distributed representations in a negiokdly plausible manner. In practice, the
representations that it does form are in fact sparse. Itighty based on the Boltzmann machine,
in that the generative weights (see section 3.4.4) form gooitant part of the model. However,
the architecture is that of an acyclic graph (in other wottlsre are no loops), which greatly
simpli es the mathematics required.

In order to introduce non-linearity into the system, the R@GBodel limits each neuron to only
outputting a positive value. This seemingly simple modiioa is the major difference between it
and the linear distributed approach (see section 3.4.8)bath complicates the mathematics in-
volved and allows the network to nd patterns that more clpseatch our conception of patterns.

One important aspect of the RGBN is how it deals with the “ekphg away” phenomenon
(the non-linear interference between the generative acagrétion weights). The model adds
lateral connections between individual neurons in the skayer and uses these connections to
coordinate the learning. Of course, it is infeasible to hemenections between all of the input
neurons in a large network (as that would be an exponentéatig number of connections). How-
ever, if these lateral connections are only between nedtlatsre physically close to each other,
then we are led to an interesting situation. This situatsotmat neurons that are close to one an-
other will be ones which respond to correlated patterns paodons which are far away, and thus
not directly connected, will generally respond to uncatedl events. This is a possible explana-
tion of the phenomenon of neural topographic maps, whidmageneral observation that neurons
in the brain tend to be organized in a reasonably coherenbenawith neurons that respond to

similar stimuli relatively near each other.

The Recurrent Error Correction Model

A completely different approach to this problem, but oneahigives similar results, is the Re-
current Error Correction model [12]. Instead of looking la¢ fproblem from the perspective of
“reducing the number of dimensions while keeping the maximamount of information” (see

section 3.4.3), REC takes the approach of reducing theqigddiity in the data.

Predictability is generally de ned in a mathematical, inf@tion-theoretic manner, but for the
purposes of this document, we can use a simpler, “intuitighition. Suppose we have a sensor
which returns two bits of information; that is, it gives tw@epes of information, each of which
can either be a zero or a one. Now, let us suppose that wheweuwgse this sensor, the two bits
of data are always the same. Whenever one is a zero, so istiee anhd the same with a one.
The second bit of data is entirely predictable based on téiebit. It would thus be more useful to
replace these two bits of data with a single bit. Note thastrae argument holds true if the two

bits are always the opposite of each other: we could stil@pthem with a single bit.
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This sort of process could be applied to, for instance, the caming in from the eye. Unless
we are looking at television static, the colour we see at aiptpis generally pretty much the
same as the colour we see at the point right next to it. Whytdee, instead of looking at the
colour at every single point, just simply identify the cotad a region, and identify the locations
where the colour changes drastically (i.e. edges)? Bettemhat about a pre-processor that takes
the point-by-point image received from our eyes and corvéitto something like “table with
three chairs™? Surely that would be a very useful format,iaodrtainly reduces the data down to
something which makes it much less self-predictable. Ieothords, what we want is a network
that takes the input data and outputs it in a form where it t$ighly redundant.

Of course, it is not that simple. That sort of pre-processowéll beyond the technologi-
cal capabilities of arti cial vision researchers, and fgtmore, such extreme measures would be
very domain-speci ¢ (that is, there would have to be a veiffedént system in place for vision
and for hearing, for example). What we really want to do, émss, is to arrange things so that
all of the bits of information the sensor gives are completetiependent of each other. Inter-
estingly enough, this problem has been very thoroughlysitigated and forms the foundation of
Information Theory. The solution is, very simply, data coagsion. This is in widespread use
in almost every computer when it is necessary to transmitge lamount of data from one place
to another place in the shortest period of time: you don'twarwaste time by transmitting data
that's predictable based on data already transmitted.

However, it turns out that a pure data-compression apprsauht the best approach, since it
loses useful regularities in the data. Looking at it as a aesgion problem ignores the fact that
we are going to actually need to use the data in its reduceel. sitawould be good if the data
“000000000111" was actually similar to the data “000000DD®W. Compression techniques do
not generally lead to situations like this: generally, ifiy@hange one bit of data in the compressed
data, it completely changes the meaning of the entire messkgus, the sort of “compression”
we are after is compression that gives a useful compresse@foThe point is thus not purely the
compression, but rather the reduction in redundancy.

The REC model solves this problem in a rather non-intuitianer. It makes explicit use
of the fact that the systems we are interested in are, intyeathmposed of neurons. This is
important in that it takes a lot of energy for a neuron to reénigwould mean that it would be to
the bene t of an organism for its neurons to re as seldom assfide (i.e. the output from the
system should be more like “000000110001" rather than “AD010101". By adding this aspect
to the general approach of reducing predictability, RECsempl developing the sorts of sparse
representations for which we are looking. We also note thetsbrts of mappings it creates have
neurophysiological signi cance; when REC is used to amalgs image, mappings result which
very closely match the feature analysis functions foundhawisual systems of mammals. This

includes forming speci ¢ neurons for detecting lines inivas orientations.
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Comments

My major interest in Sparse Representation is that it sérike as tting very comfortably within
the TNGS framework. The sorts of representations that aradavould seem to be ones that
would be correlated with other representations in a medmingay. Sparse representation al-
gorithms seem to offer a way of producing similar results tetWTNGS produces with its ran-
domized networks, but in a more directed (and thus more efigimanner. Instead of producing
purely random representations and hoping for the best, welmable to guide these structures,
through the aforementioned algorithms, to produce thes sfntepresentations that we recognize.
Local and distributed representations do not seem to bedheot representation upon which
TNGS would function well.

Criticisms

As interesting as these approaches to automatically ngatterns in the input data may be, there
are a few issues that should be considered. The rst of theeeirecognition that none of these
representation models have any sort of memory. As commaerged earlier (see section 3.3.3),
neural networks with recurrent connections (loops) cae basir outputs on previous data, not just
on the data currently presented to the network. The reptatsem models discussed here have no
capability of doing this, and there does not seem to be alfleasiay to give them this capability.
Itis true that it is possible to specify the inputs so thatitipit to the network is actually just the
values of one particular sensor over a speci ed amount oé tiout that still will not lead to the
richness of possible uses of memory available to a randaonigdd network. Of course, it is true
that very few randomly formed networks would give the soruséful representations that these
speci cally designed models will give.

Another issue is that each of these models nds only one qddi type of pattern. It is
unlikely that there is only one type of pattern that would Iseful: one of the great advantages
of TNGS is that it can, in theory, nd any sort of pattern. Strall of the models discussed here
nd very different patterns, it is conceivable that all oktin would be useful. We should not be
looking at these models and asking “Which one is best?” eltstit may be more fruitful to use
all of them at the same time.

The real question is, of course, “Is it useful?”. Do thesewoeks nd patterns that are at all
useful to arti cial agents interacting in a complex envinoent? None of the experiments using
any of these models have used the sort of data that would lmeietered by an agent's sensors.
The input data has been still pictures or made-up exampleseally see which of these models
would be useful to an interacting agent, we would need toadlgtimplement them in an actual
robot (or a simulated one in a reasonably complex simulate@t@ment) and see what patterns

itis able to nd. This idea will be the focus of the chapter orti&ial Life (see section 4).
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3.5 From Subsymbols to Symbols

It is now perhaps relevant to make a few high-level commeb&iwhat the discussion so far
might mean for cognition in general. In particular, the noeth described seem to point to how
a system might form representations (or concepts) aboehitsonment. In particular, the con-
cepts (patterns) that the system (organic or arti cialpisrare highly related to predictability and
regularity in the environment. Since the mappings devel@y time as the agent interacts with
its environment, the regularities and patterns that it mdi$be entirely dependent on the sorts of
experiences the agent has.

Firstly, this idea forms an interesting correlation witle tiesult from developmental psychol-
ogy that creatures who are not exposed to various diffetamtb during the initial stages of their
life do not develop the capability to detect that stimuli.orstandard examples of this are kittens
raised in environments with no horizontal lines, and cleildraised to speak a language where
certain phonemes are not used. In the rst case, later negicdl examinations of the kittens
show that the horizontal feature detectors which geneedigt in the mammalian brain do not
form. In the second case, experimentation shows that, &taite, people whose rst language
is Mandarin have great dif culty distinguishing the “r" arit! sounds familiar to native English
speakers.

Secondly, this hypothesis about how concepts are formedtttirpredicts that people with
different backgrounds will have dif culty communicatindpifferent backgrounds lead to differ-
ent concept formation, and so even if people are using the send to describe something, the
environmental patterns that they associate with that wag be very different. This also means
that there is no one “right” de nition of a word (except, paps, for words and concepts de ned
in abstract mathematical terms which do not have expesdkrdiunterparts). However, communi-
cation is certainly possible to some degree, since theligis cant overlap between the patterns

that people in slightly different environments develop.



Chapter 4

Learning in Arti cial Life

4.1 Whatis Arti cial Life?

A brief introduction to Arti cial Life was given at the begiring of this paper (see section 1.1). At
this point, | would like to revisit the concept and look atritthe light of the information presented
thus far.

Arti cial Life has one very important distinction betweeh and other forms of Cognitive
Science research. In particular, there is generally a cexngehd long-lasting environment with
which the organism interacts. This is in contrast to the gbsituation discussed in the section
on pattern discovery in neural networks (see section 3@that case, the experimenter would
simply present the system with a long series of inputs, aadylstem would learn to nd patterns.
In Arti cial Life situations, the inputs to the creature adetermined by its current location in
the world. Furthermore, its location in the world (and otfeatures in its environment) can be
changed by the creature's actions. This means that theuceeedn, to some degree, control its
own future input. It is this capability which opens the domthe types of powerful sensorimotor
interactions discussed earlier (see section 2.4.2). Tiésghe creature a completely new range
of behavioural possibilities, and necessitates a diftanay of analysing and understanding their
behaviour [25].

This is not to say that the sorts of approaches used in narciattLife research cannot
be applied here. Patterns in input data can still be founde—difference is that they may be
a different sort of pattern. For example, the input data eodteature will generally change only
slightly over time, as the creature’s situation in the eoiment is fairly similar from one instant to
the next. However, we must also realize that the creature attsallydo something in Arti cial
Life situations. The neural networks discussed previoustyely had to nd patterns and form
representations. Arti cial Life means that outputs areuiegd on a continual basis. The creatures

must move around and interact with their environment, nstt passively observe it.



Chapter 4. Learning in Arti cial Life 52

There are a number of other ways in which research in Artl tige is unique. The majority
of the work is done in “distributed” intelligence, where rastly do we have behaviour being the
result of a number of simple interacting rules, but thesegare implemented within multiple
interacting creatures. These creatures (much like antks of birds, or schools of sh) perform
group behaviour while acting individually, without any ¢etized control. Another unique aspect
of Arti cial Life is its interest in “life as it could be”. Rater than dealing with the speci cs of
life as we know it, we can explore other possibilities thataot bound by the physical constraints
of our world. However, for the purposes of this thesis, | vod dealing speci cally with the

interactive nature of Arti cial Life.

4.2 Simulation versus Reality

Before delving further into Arti cial Life, it is importanto take a close look at one of the aspects
of it that has caused a great division among researcherg irelith This is the question of using
actual physical robots or using computer simulations dirgirrobots. In both cases there is an
agent interacting inside an environment, but the importifférences are (a) the complexity of
the environment, and (b) the amount of control the reseatweover the environment.

Arti cial Life has its roots in both simulation and physicambodiment. The initial work
which spawned the eld included examples of both approaci&snway's Game of Life [11],
and Reynolds' “boids” [27] are prime examples of early workigh used simulation to show
that a very simple set of rules can create “life-like” beloavi There is also the striking example
of Grey Walter's light-seeking “tortoises” [44] which aregaiably the rst physical human con-
struction which exhibited “life-like” behaviour. Howevet soon became clear that the dif culties
of working with physical robots made simulation a much maiteaative option. With simula-
tion, you don't have to worry about motors breaking or vacuuires burning out or indeed the
rather dif cult process of constructing a robot in the rskage. Instead of a complex drive-train
and steering system, with batteries to maintain and cabheshwiangle, you can simply specify
that one of the actions the robot can do is “move forward” ametlzer is “turn”. Sensors are
also greatly simpli ed, as you don't have to worry about zions in light levels and re ectivity,
which make vision and infra-red sensors notoriously diftcun fact, you can even have sensors
that indicate if the object in front of the robot is “food” ofaall” or a “predator”. These sorts of
things are certainly not easily done in a real robot.

However, these advantages of simulation may also be seisadwdntages. In particular,
many of the issues that simulation allows you to avaid the very problems that need to be
solved How does a living being identify something as “food™? Howeddt convert complex
muscle coordination into “moving forward”? How do livingeatures deal with the uncertainty

and complexity of the natural environment? By trivializitggse questions, researchers working
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in simulation can miss a very signi cant piece of the puzZl@derstanding how life works.

This is not, however, to say that all simulation is bad. Fifstll, the question of understanding
how life works is so large that insights can certainly commrflooking at only one part of the
whole issue. Secondly, all of these objections to simutedii@ not against something inherent in
the concept of simulation itself. After all, it is certairppssible to simulate complex musculatures
for walking, and one can also avoid using unfeasible sengiemss. We can introduce random
variation (noise) into the simulation as well, and make gsinnpredictable. Our ability to create
powerful and complex simulations is increasing faster thanabilities to create complex, robust
robots, and so it perhaps makes sense to follow this routieerahan abandoning simulation
altogether.

However, | nd a third reason an even more compelling argunfienthe use of simulation.
This reason is simply that, in a simulatiojgu can speed up timdf we are looking for arti -
cial systems that can learn through experience, then thast Ine the time for them to gain that
experience. If that time is done in a physical robot, then Whows how long it may take to
learn required skills. Consider how long it takes a humarypahich is perhaps the most capable
learning machine known, to develop basic motor skills. Wauhot be much better if a robot
could learn these skills in a simulated environment at attyréecreased speed? In fact, if we are
going to be studying “learning machines”, and trying outimas different learning algorithms,
then it is vital that we can try them out at high speed. We donasit to evaluate these algorithms
by running each one on a robot for a full year and seeing whigs ¢if any) learn to walk. This
would take ridiculous amounts of time and make it infeastbléry out lots of variations on a
particular algorithm. Arti cial Life is an experimental snce, and simulation is necessary for
these experiments to take place. For more discussion of theses, see [21].

We are left, then, with the problem of how to do realistic siations. What we want is a
simulator that is good enough that we can take the agent,ibhes learned to do things in the
simulator, and put it into a real, embodied robot and it stitndl capable of performing the same
tasks. Itis, of course, likely that once in the real worlemiy need to do a bit of ne-tuning of its
learning (one wheel may have slightly more friction thanidtid the simulation, for example), but
overall it should work fairly well. Unfortunately, this hggnerally not turned out to be the case.
Most attempts at this have been disastrous, which is therglesmgument for why we should not
be using simulation in the rst place.

There have been some interesting approaches to solvingrtbiem. Most notable is Jakobi's
“Envelope of Noise” hypothesis in his “minimal simulatiérj&6] [17]. He has had remarkable
success in having agents transfer perfectly from simuiatioreality in a number of different
domains. His approach is to drown the system in large amafmsise (random variations in
the sensory system and in the environment itself). A verytféngs are decided upon as being

important values that the robot can rely on (and these arergkythings that good sensors do
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physically exist for, or basic fundamentals of the realtdphysics), and everything else has more
noise than the randomness in the real world could ever peoyidportantly, this noise is of a very
particular form, in that the amount of noise is, itself, adam amount. This is to stop the agent
from actually learning tasethe noise (i.e. the agent expects its sensors to be particulzisy,
and then its learned skills no longer work when that noisensaved). It is also interesting to note
that the use of noise means that the simulation itself doese®w to be at all accurate. We don't
need to simulate exact physical collisions of solid objaetthree dimensions if the noise is going
to make all of that extra calculation unnoticed. The reagltiigh-speed, bare-bones simulations
seem to offer hope for useful simulations.

Before leaving this topic, it is also relevant to note tharepeople who do work with physical
robots are guilty of the same simpli cations that simulatorake. In particular, almost all experi-
mentation with physical robots has taken place in “toy wsitld he environment that robots deal
with is not the complete complex “real-world” that animalelin. They are generally constrained
to at, hard oors, or inside mazes, generally with all-waiwvalls to simplify vision. These sim-
pli cations, while much less extreme than those encoumtérenost simulations, are nevertheless
the same sort of simpli cation that may cause eventual puisl. However, as stated before, the

eld of Arti cial Life is still in its early stages, and diffeent amounts of simpli cation are right

for different sorts of research.

4.3 Distributed Adaptive Control

We will now examine a learning method that was developedieXylto be a model of classical
conditioning within an embodied, arti cial life context.nls method, known as Distributed Adap-
tive Control (or DAC) was developed at the University of ZlriArti cial Intelligence Lab, and
has been the subject of a number of experiments and publicatiThe details of the algorithm
are given in [41]. In this section | will describe the methattaelate it to the work of other
researchers that has already been discussed.

The roots of DAC start in a paper by Verschure and Coolen [8Bkre they develop two con-
nectionist (i.e. neural network) models of classical ctinding (see section 3.2). These models
start with a system where there is an unconditioned stimilascauses an unconditioned re-
sponse. Over time, if a new stimulus is also given at the sameds the unconditioned stimulus,
then the system will learn to associate the new stimulus thigh same response. Furthermore,
their models have four other special properties.

Firstly, their models do not use a local representationviBus computer models of classical
conditioning, such as the Rescorla and Wagner model [2&)d lescal representation, and this
causes all the problems discussed earlier (see sectid?).3 .k particular, it means that there

must be a separate neural input for each and every possitlgliss or combination of stimuli
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that the organism might encounter. In other words, the asgamust have a pre-speci ed neural
connection for each and every thing that it might want torieduiring its lifetime. There is no
sense of “similarity” between different sensory events awvents are either both of the exact same
type (and are treated identically), or they are of compjediéferent types. This is an unfeasible
situation, as it causes a combinatorial explosion of cotiores, and does not allow for the sort of
generalization that living creatures require. Insteadbiitg this route, the DAC models make use
of any arbitrary type of representation. This can be evamngtirom a local representation to a fully
distributed representation. The system simply acceptsevbapatterned inputs are given to it,
be they local (only one value of the input set to 1, and therst@g distributed (arbitrary patterns
of 1's and Q's), or sparse (mostly 0's with a few 1's). Whatstimeans is that these models can
handle an aspect of classical conditioning which is not galyestudied: the ability to discover
new stimuli.

Secondly, their models are neurologically plausible. Tividual components that make
up the model are standard arti cial neurons, and the legrnihes used by the system are ones
that would be feasible to nd in the brain. Learning is basedte strengths of connections
between neurons, and the rule that speci es how a conneuwt@ght should change does not
require information about the state of the entire system.

Thirdly, their models exhibit blocking. This is a phenomarfound in natural studies of
classical conditioning, and deals with situations with tiplé new stimuli being learned. In these
cases, experiments show that the learned associatioyttsanetween the new stimuli and the
unconditioned stimuli are not independent of each othestebd, the one new stimulus with
the most predictive power (i.e. the one that is experiencedtmften with the unconditioned
stimulus) keeps its strong association with the unconoiibstimulus, and the other stimuli get a
lower association than they would normally. This is simitathe “explaining away” phenomenon
covered in the discussion on neural networks (see sectof)3lt is also related to the process of
extinction, which de nes how quickly (or slowly) an orgamswill lose an association that it has
learned, if the environment changes such that the new sisnsino longer a good predictor.

Fourthly, their models allow for second order conditionifis occurs when a system that has
already learned a new stimulus to associate with a respbased on an original unconditioned
stimulus-response pair), and then learns to associateemnioéw stimulus based on it occurring
at the same time as the previously learned new stimulus. dreléssic Paviov's dog example,
this would happen if, once the dog had learned to associatedahnd of a bell with the arrival of
food, we then started blowing a puff of air at the dog whenewerang the bell. The dog would
then learn to associate the puff of wind with the arrival aiddpand would soon be salivating in
response to the puff of air on its own.

The two models that Verschure and Coolen present are veilasimith one being an exten-

sion of the other. The models are based on very simple siagt-groups of neurons that are
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fully interconnected (referred to as elds). Initially,glinterconnection weights of the neurons are
con gured so that if we present the system with an uncondéibstimulus (i.e. set the activations
of all of the neurons to a particular, pre-speci ed pattesnyl then leave the system alone, the
pattern of activation will change to the unconditioned mse (i.e. the neurons will excite each
other until they settle into a different pre-speci ed pate We can then present the system with
a new stimulus (i.e. a new pattern of activation), followgdfwe original unconditioned stimulus.
Over time, it will learn to associate the new stimulus witk timnconditioned stimulus, and thus
elicit the response (i.e. we can set the neurons into the a&erp, and the interconnections will
cause the neuronal pattern to change to the unconditioinealgs pattern, which will then change
to the unconditioned response pattern). The second moteidscthis idea to multiple sensory
modalities, with multiple different groups of neurons @sponding to different types of inputs.

The learning rule that is used is basically the standard kelkarning rule, where the con-
nection between neurons is increased if both are active.edervthis had to be modi ed slightly
in order to produce the blocking behaviour desired. Thisimation takes the form of “compe-
tition” between the connections. The change in the weighsimength of a connection ends up
being weighted by the current strength of the connectiaifitdNote that this modi ed form of
Hebbian learning is still a local learning rule (the “conipen” is between connections of one
neuron, not the whole system), and so the system is stilohagically plausible.

The actual DAC learning algorithm is not exactly either otk two models, as various ap-
proximations and modi cations were made to transfer theesydrom its theoretical format to one
that is implementable in a physical robot. A complete desian of the actual DAC architecture
and its more recent extensions, with particular focus ooatmection to classical conditioning,
can be found in [43] and [38]. The DAC system does, howevemd®e inherit the major properties

of the theoretical models.

4.3.1 Implementation

This general approach forms the basis of the Distributedfida Control algorithm. DAC takes
this method of learning and places it inside a mobile robitihée in simulation or in reality), and
the robot will learn to move around and avoid obstacles. tfeoto understand how it does this,
we rst need to look at the physical structure of the robot #sdrossible interactions with its
environment. The following information refers to the rstample robot with which the Zurich
group worked. Since then, DAC has been applied (and ext@ridednumber of different robots
and tasks.

The basic robot used has three different types of sensdras 87 collision detectors arranged
around the front half of its body. These are triggered if thimot hits an obstacle with that part of
its body. There are two “ears” which detect the distance srget, one on each side of the robot.

There are 37 range- nders arranged around the front halhefitody. These are able to detect
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how far away a solid object is from the robot.

Initially, the robot has a set of built-in stimulus-respemsirs. These form the unconditioned
stimuli and responses. In particular, if the robot hits astabtle on its left side, it will back up and
turn right. If it hits something on its right side, it will bkaip and turn left. If the “ears” detect a
target on its left (or right) it will turn to the left (or right If none of these stimuli are occurring,
then the robot will go forward. Note that the robot's basipegoire of behaviours does not use
the range- nders at all. Instead, the DAC algorithm applissearning algorithm to associate the
range- nder stimulus with the collision and target- ndingpnconditioned stimuli. This learning
is done in real-time as the robot explores its environmenitially, the robot will run into walls,
since it has not yet learned to use the range- nders. Howéverobot will very quickly associate
a range- nder value indicating “near a wall” with a collisipand so it will learn to turn away
before the collisiontakes place. Itis thus able to use thggander as a predictor of the collision
stimulus.

In this particular case, it is relatively straight-forwaim envisage how this learning takes
place. As the robot wanders through its environment usgggt of initial movement rules, it will
soon collide with an object. During the moment of collisiamd, indeed, during the time just
before the collision, the range sensors will be indicatipgdicular pattern ( high values for those
sensors pointing directly in front of the robot). After a feimilar collisions, the DAC learning
algorithm will have learned to associate the high rangeemigtadings with a collision. The input
of a collision is the initial unconditioned stimulus, ancethct of backing away from the object
is the initial unconditioned response. The high range-mdalues are the new stimulus, which
the algorithm causes to be associated with a collision, lamsibacking away. Thus, in the future,
when the robot encounters a similar situation, the rangkerrvalues will be of a certain pattern,
which will cause the “collision” stimulus to be formed (eviéthe robot has not actually collided
with the object yet), which will cause the robot to turn awayni the object. This leads to the
robot being able to navigate around its environment witloolliding.

The simplest experiment with this control structure is tacel the robot in a walled environ-
ment with many obstacles and count how many targets it ndse{@ target would appear on the
other side of the room once the robot found the current tgrgatl how many times it collides
with an obstacle. According to [40], a typical run of 5000 ¢hsteps would consist of nding
32 targets while colliding 52 times. Finding targets woudgbpen at a very consistent rate, while
collisions would stop happening very early into the experiin

Various other experiments with this architecture havemyiméeresting and promising results.
For example, in one experiment, the robot was placed in aine@maent where targets were often
found near walls. In this case, the robot learned a genel&falimwing behaviour [42]. A more
complex avenue of research was followed in trying to add Hiléato learn a sequence of actions

[43]. The taskin this experiment started with the robot mgvaround in its environment as before,
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Figure 4.1: Copied from [40], gure 3. Collisions and targeding events for a typical run of the

basic DAC architecture.

nding targets using its target sensor and avoiding obstaking its learned responses. In this
case, the targets were placed at two speci ¢ locations, sadhot would travel to one location,
then to the other, and repeat the cycle over and over. Thetattet sensor was removed from the
robot, so it could no longer sense the target from a distadoever, the robot was still able to
robustly nd the targets by simply following its learned tporal associations. Because it had been
following the same route many times, it had built up assamistalong the path it was following.
So, for instance, it might be associating turning left witheaticular junction in its path. Once the
target sensor was removed, it would still turn left at thecfion, simply because it had done so in
the past. This seems to be a step towards the phenomenonifouetdral creatures of associating
an action with a place, which was mentioned earlier (seaase8t2). Originally, this addition
to the architecture (called DAC3) was not biologically ke, as it used an internal database
of previous states for a memory. However, a new implemeantatias able to achieve the same

results in a biologically plausible manner [38].



Chapter 4. Learning in Arti cial Life 59

4.3.2 Comments

Distributed Adaptive Control is important for our considiéon, as it seems to be a successful
model of classical conditioning being used to control a reknbot interacting with its environ-
ment. It shows us how this idea of “forming associations” barinstantiated, and gives us an idea
as to how a robot (or, indeed, how a living creature) couldass®ciations to act. It is also very
simple, and is expandable to handle multiple sensory mekaliFurthermore, the four properties
of the model listed earlier (see section 4.3): non-locaptausibility, exhibiting blocking, and
second-order conditioning, are all vital to any model whigks to explain (and use) the sort of

associative learning found in living creatures.

4.3.3 Criticisms

There is one minor criticism that should be brought up herés $omething that has been com-
mented on before, in the section on the Theory of Neuronal@8election (see section 3.3.2). In
particular, it was noted that we may not always want to forsoamtions between the raw sensory
inputs to our system. DAC as it stands always forms assoaistising the data coming into the
sensors, without any sort of preprocessing being invol¥bis means that the patterns with which
it forms associations cannot be as complicated as thos@N@s may use. For example, DAC
could not make use of a pattern that appeared to the sensrsroe.

This indicates how DAC ts into the ideas discussed earliethis paper. In particular, DAC
can be seen as a speci ¢ implementation of the associatibavieur inside TNGS. Much as
unsupervised sparse representational networks coulddkinstead of the standard randomly
formed “pre-processors” for a TNGS system (see sectiod3.DAC seems to be a possible
alternative implementation for the internal functioningTNGS. With basic TNGS, we form
associations between the outputs of a large number of ragdormed pre-processed views of
the sensory data. One advantage that DAC would have overagie BDNGS approach is that it
would take into account the phenomenon of blocking (seemedt3). Furthermore, the exact
algorithm used in TNGS is left generally unde ned. In anyesathe philosophy and approach
taken by DAC and TNGS researchers is clearly similar and cuitie.

The major problem with DAC at the moment is that the propsmithe learning process that
it undergoes have not been strongly established. The emeets performed by the Zurich group
have shown some classical-conditioning-like results thisthas been done purely looking at the
associative aspect of classical conditioning. Their waak hot looked at how well the system
un-learns associations (extinction), nor has it expliditoked at the generalization capabilities
of the system. Another key part of classical conditioninthis ability to discriminate, a process
whereby two stimuli are initially found by the organism todimilar, but after a period of training
it can learn to make ne distinctions. It is the goal of the ekmental part of this paper to do these

sorts of experiments on DAC, in order to determine if it ng#sla feasible candidate for being the
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core of a more complex learning system.

4.3.4 DAC and Operant Conditioning

So far, we have focussed on Distributed Adaptive Control esdel of classical conditioning.
Indeed, the papers published regarding DAC are all in @aksbnditioning terms. There is thus
an open question as to whether this approach can be sudasafmodel of operant conditioning
as well. Operant and classical conditioning are learninthous which share the basic property of
forming associations between patterns, which is the maardthm behind DAC. In this section,

I which to discuss the possibility of DAC serving as the bésisoth types of conditioning.

Put simply, operant conditioning is a process whereby adi\dreature learns to respond to
its environment in order to be more likely to experience fpes’ stimuli, and less likely to
experience “negative” stimuli. There is a slightly cirautke nition here, as positive stimuli are
de ned to be those things that the agent tries to have moreard, the opposite for negative
stimuli. However, positive stimuli tend to be fairly commamong living creatures: food, warmth,
affection, and other necessities. Negative stimuli termktdetrimental to the creature's livelihood,
such as electric shocks or illness. The impressive aspegayant conditioning is that the actions
that the creature can learn to do to achieve the positivaiiisican be very complex and nothing
like the actions the creature would normally exhibit. Foamyples of this, the reader is referred to
any circus or animal show.

Before going any further, it is important to not be confusgdabpoint of terminology. In
many of the DAC papers, the two hard-wired re exes of backamgl-turning-after-a-collision and
turning-to-face-the-target are referred to as the “nggainconditioned stimulus” and the “pos-
itive unconditioned stimulus”. This choice of terminolgdpowever, does not have any relation
to the “negative” and “positive” reinforcement referrednoperant conditioning. The two basic
DAC re exes are simply built-in reactions, and calling thénegative” and “positive” is merely
the judgement of the observer. DAC treats the two re exesaiguand does not try to achieve the
positive while avoiding the negative. To perform true opé@nditioning, the creature must be
able to modify its behaviour so that an action in a given situnavhich elicits a negative reinforce-
ment signal should have its associations decreased, windl¢hat elicits positive reinforcement
should be increased.

There are two major differences between operant and cgsinditioning that are generally
cited. Firstly, the operant conditioning results in new debur, while classical conditioning
merely causes an old behaviour to happen in a new situatiecorly, operant conditioning is
active, rather than passive, in that the creature initidtesction, rather than the experimenter. |
would argue that neither of these distinctions is usefuhfem implementation perspective.

In the rst case, we have the claim that operant conditiorpngduces new behaviour. My

problem with this statement is that the term “new behavitwa&$ no objective meaning. Whether
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the behaviour of a creature is new is completely subjectMeer all, a creature has a nite set
of muscles or effectors that it can use, so at the low level wete control, there can clearly be
nothing “new”. For example, consider the learning that th&i®DAC creature does when it learns
to avoid walls. Its initial behaviour is to collide with anjelot and then turn, and after a while it
learns to turn to avoid the walls. Is this a new behavioureitainly looks that way to an outside
observer. However, at the low level, there is nothing newpkeamg. What is new is how the
motor actions t into the sensorimotor loop. We can thus $e¢ tlassical conditioning is capable
of producing new behaviour, and the term “new behaviour't igarticularly easy to de ne. In
fact, | would recommend avoiding the term altogether.

The second case deals with the passive/active distincliamould again argue that this is
not a useful way of looking at the distinction between cleslsand operant conditioning. A
learning agent is always embodied in a world: it is alway®irgng inputs and creating outputs
simultaneously. In the so-called “active” operant cormditng, the agent is still stimulated by the
environment to do something: it needs to be in a situationrevitds appropriate to perform its
action. A dog operantly conditioned to perform tricks toaige a reward will only perform the
trick if there is someone there to give it the reward.

However, the active/passive aspect does bring up an impatiference between the two. In
operant conditioning, we reward a creature's behavéadter the action. Let us look at what this
means within the context of the DAC architecture.

In the DAC system we have examined so far, we can present ghesywith a new stimulus,
and it will then generate the original stimulus for itselusing the hard-wired response. So, we
present the creature with a high range- nder reading, ibaisges that with a collision, and thus
it turns. Now, in an operant conditioning situation, therage going to have some environmental
stimulus (the original situation the agent is in), it willfirm some action, and then we will give it
a reward stimulus. Note that the only real difference betvibis description of the events and that
of classical conditioning is the order of events. A secoredrsag difference would be that instead
of associating a stimulus with another stimulus, we are@asng a stimulus with a response.
Conveniently, this second difference is easily accomnegtiatithin DAC, since the things that it
forms associations between are merely seen as data pattem¥AC algorithm should deal with
response patterns as well as stimuli patterns.

DAC would, however, need to be able to deal with the modi edesrof events. In particular,
instead of simply forming associations between sensorytéall the time, it needs to also be
able to form associations based on whether that associatsotted in a later “good” stimulus.
(We can look at this “good” stimulus as being similar to theto electrode implanted into the
hypothalamus.) Also, this could be extended to “un-formsagsations in response to a “bad”
stimulus. Both of these are feasible within the DAC archiies, however, they would seem to

require a form of memory to handle the temporal aspect. Ratgly, this should be a fairly short-
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term memory, as operant conditioning tends to work bestéO#i0 second interval range. A
simple implementation of this approach would be possibjestbring the sensory and motor data
for the past few seconds. However, this naive approach wooide neurologically plausible.
Other possibilities do exist, such as using a more compledainaf a neuron which changes its
characteristics based on its ring pattern (i.e. the nedrasa simple memory of its past activity).
This could be similar to the more complex neural models wikiebp track of the depletion of

various neurotransmitters (for example, [36]).

4.4 Other Architectures of Note

Distributed Adaptive Control is one of the few algorithmstttiocuses on learning during an
individual's lifetime in a neurologically plausible mamméHdowever, there are a number of other
ongoing research projects which also examine conditioimiegnbodied agents, although through
very different means.

For example, Sutton's Dyna architecture [32] takes an agpgrdased on GOFAI-style plan-
ning and maximizing expected outcomes. The agent buildsvaidtains a model of the world
and tries out different possible actions in its model to oer the best current action. However,
the system seems to have dif culty dealing with real-worldldems, such as having multiple
goals.

Also of note is the ELDEN architecture [48], which has beeocsssfully run in embodied
robots. It consists of three interacting learning meth@dsh covering a particular task. The
rst handles transient changes, which do not involve madiythe robot's internal world model.
This would include people walking into the robot's path, siaug it to stop and wait or go around.
This is handled in a neural manner, similar to the standasait@rberg vehicle approach. The
second deals with constructing and maintaining a model efwbrld by building a cartesian
spatial map of visited locations, based on its range- néadings. The third deals with correcting
for wheel slippage (the difference between the robot'srédsnotion and its actual motion due to
real-world physics) by comparing current sensor readioggtat the internal world map predicts.
This model, however, requires that each learning methocbd-funed and speci ¢ to a particular
task.

The same researchers who developed ELDEN have also workmaréty neural models of
learning. In [47], they use arti cial evolution to developural networks which exhibit sequential
behaviour. They use the genetic algorithm as a way of produaperant conditioning results:
networks which perform well are kept to evolve further, wettihose which do not perform well
are eliminated. By running this process over many genarstithey are able to produce more
complicated behaviours. However, this is done in a tightilyesvised manner without a complex

environment. [8] also uses a genetic approach to “shapessys behaviour, although in this
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case the evolutionary process creates production systesmather than neural networks.
Another neural learning approach can be found in [35]. Is taise, particular focus is made
on forming internal representations through experientesés genetic algorithms and lifetime-
learning techniques to accomplish this in a task which ¢iyenvolves handling a dynamic en-
vironment. However, as it currently stands, the system doésandle noise in the environment

well, and its implementation of memory is tuned for the patar task.
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Implementation

We now turn to the implementation phase of this thesis. Thegating text has discussed various
issues surrounding learning in arti cial life, and some loé tapproaches that have been taken. It
is now time to put this information into practice.

The goal of this implementation is two-fold. Firstly, | wishhdevelop a number of tests which
can evaluate how close a particular situated associatweiteg algorithm comes to exhibiting the
complex characteristics of classical conditioning. Selgri wish to run these tests on the DAC
learning algorithm. Through this process, we can identifyse aspects of classical conditioning
for which we do have a good model, and those aspects for which research is needed.

Because the test suite will, to some degree, be constraipatebsort of implementation
chosen for DAC, this section starts rst with a look at the slation engine itself, followed by a
series of experiments which establish that it is actualipua tmplementation of DAC. Once this

is done, the following section will describe the variousdibioning experiments and their results.

5.1 Simulation Design

The simulation system used in this thesis is hot one whichmyt&nowledge, has ever previously
been used for cognitive science research. However, it ighatd have used for various purposes
in the past, and which | nd to be remarkably stable and suédbr this sort of work. In this
section, the major features of the basic engine itself vélbiscussed, as well as the speci cs of
my implementation of DAC within this environment.

This section is targeted at an audience of those somewhdigfamith the principles and
language of object oriented programming. It is also somegdyagarate from the rest of this thesis,
in that fully understanding this section is not a requiretrfen understanding the results of the
experiments that will be discussed in later sections. Hewef/you are interested in simulation

systems, | hope you will nd the description given herein ateresting alternative to the sort of
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simulation environments commonly used in this eld.

5.1.1 The Quake 2 Engine

All of the simulation work done for this thesis was performgging the Quake 2 engine [15].
Quake 2 is a highly popular commercial game developed by fth&ce and released in 1997.
Like the rest of the company's games (Wolfenstein 3D, Dooopm 2, Quake, and more recently,
Quake 3: Arena), the game focuses on high-speed graphicthie@dimensional world, with
signi cant interaction between the user and the objecthé@world. However, the most important
aspect of their software for the purposes of this thesisasctimpany's commitment to making
their games user-modi able.

With their rst few games, this modi ability was in terms ofllawing users to design their
own levels for the game, using custom graphics and world gégmHowever, starting with the
Quake series, the company has exposed the programminfaggeo the game logic itself. That
is, they have allowed users to completely change how the dfamsiéworks, not just what it looks
like. This has led to an explosion of new games developed tateum programmers who have
adapted the Quake engine to drive a large number of new gahieh bear little to no relation to
the original Quake series.

However, there seem to be very few people who are trying tothuseengine for purposes
other than games. This is unfortunate, since the Quake 2eidfers the researcher a stable and
fast three-dimensional environment, as well as a legiomtefrésted programmers who are quite
willing to answer gquestions and to help solve any problerasitiay be encountered.

One possible reason for the software's lack of use amonggaoming researchers is the fact
that Quake 2 uses the C language for user modi cation. Whiie &fast language, it generally
causes aggravation in the debugging stages of softwardogevent, since the majority of pro-
gramming errors cause the computer to crash (usually) witindicating exactly what the error
actually was. However, this problem is addressed by the @3d@ject [23]. This project, run by
an informal group of programmers, has developed an inteffacn Java to the Quake 2 engine.
This brings all the bene ts of Java into Quake 2, allowingailed debugging messages and the
use of the large (and growing) library of Java classes asailanline. Furthermore, the Q2Java
project has developed a much cleaner programming view ok€2gain particular by reorganizing
the system to separate the gaming aspects of the enginelfeopute simulation aspects.

The following list gives the major features of the Quake 2eys
a fully three-dimensional environment made up of polygdrarbitrary orientation

a large selection of modelling tools for designing the emwinent and placing objects within
it

movable world geometry (i.e. sliding doors, rotating tasyenoving platforms)
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animated, fully programmable objects within the world

collision detection between objects within the world antiigen the objects and the world

itself

networking support, allowing other computers to conne¢heocomputer running the sim-

ulation and observe or affect what is happening

separation of the simulation system from the graphicalesgsallowing simulations to run
without the overhead of drawing the visual display (notet tlhile running without the
graphical system, it is still possible to use the networldngport to connect to the simula-

tion system from a separate computer and view the simul&tom there)
shares computer resources nicely when running in the backdr permitting multitasking
compatibility with Windows, Linux, or Solaris operatingsgms

One point that should be made at this stage is to discuss faeltghysics within the Quake
2 engine. Quake 2 does not support complex physical infere;tsuch as modelling a robotic
arm picking up an object. Indeed, the built-in collisiontgys treats all of the moveable objects in
the world as rectangular boxes, although it is relativeygalbeit slower) to modify the system
to treat them as cylinders. The world geometry (the enviremirthat the objects move around in),
however, is modelled correctly. This limits the sort of slation that can be easily done to things
like basic solid-body collisions between a robot and anatsjor walls it may encounter.

As far as sensory systems are concerned, Quake 2 suppoaisdaist range- nder system.
This consists of specifying a point and a direction (or twd-@oints), and the system will detect
any solid object between these points. It is also possibteat® a solid volume along the line,
rather than a single point. This is suf cient for implemeargisimulated sonar systems and bump
(collision) sensors. It does not support vision sensotpafh some similar effects can be done

using the supported line-of-sight capabilities.

5.1.2 Software Design

The software architecture for the simulation is mainly ¢oaiaed by the structure imposed by the
Q2Java interface to Quake 2. In order to understand how thelaiion works, a bit of detail on
this system is required.

Quake 2 runs on a xed synchronous time-step. That is, it tgsitne state of the world (and
all of the objects within it) every tenth of a second (refdrte as one “frame” — or, more accurately,
as one “server frame”). Thus, in order to have code execute¢ldisystem, it is merely necessary
to add the code to the list of functions to be called each frémeugh a Java-style “listener”

interface). For example, the controller for the robot (wheets its current velocity and heading)
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is registered with the engine to be called each frame, angeyy &enth of a second a function in
the controller will be run.

It is important to note that this does not actually imposeiatdimitation on the programmer.
At rst glance, it seems that it would be impossible to write asynchronous control system
(one where things do not happen at a xed time-step). In fads, possible to do this via Java's
multithreading abilities. The asynchronous aspect of ytstesn can be done in a separate thread
(i.e. it would run independently of the Quake 2 system), dmahtevery tenth of a second Quake
2 could update itself with the current values of that otheedld. However, this sort of thing is
not needed for the purposes of this paper, since the DAC ithgoand, indeed, most control
algorithms used in simulation) is synchronous (i.e. thérerslystem has a state at timand a
state at time+1, but not at timeg+0.5).

The modules of code (Java objects) which are run each frambeany arbitrary Java code.
However, some of them can be directly tied to objects in thmukition itself. For example, the
code that controls the robot would be directly tied to theotolbself. This allows the code to
manipulate the robot in various way. For example, it can gkahe robot's location within the
world, or detect collisions between the robot and other abjésuch as the targets in the DAC
experiments). Furthermore, a special function is avadlablmove the object within the world
subject to physical constraints (i.e. collision detectidio do this, it is only necessary to specify
the current velocity of the object, and the object will moeeardingly. It is also straightforward
to use this to deal with elastic collisions and gravity.

Q2Java provides two basic ways of introducing objects intoworld. The rst is through the
map le, and the second is through the code itself. The magsgdeci es all of the environmental
geometry of the world. That is, it speci es the locations ddlls and oors (or highly complex
sculptures). Generally, this geometry is non-moveabtbpabh it is also possible to make simple
moveable geometry in this manner, such as doors or movirfpptas (neither of which are used
for this thesis). The map le is also used to specify objebt should appear in the world. For
example, in order to cause the four targets in the DAC exparirto appear in the world, the map
le would contain four pieces of data that say “put an objeattrolled by the code in the target
class here”.

In order to facilitate the design of these map les, a numbelitferent free software packages
are available. They provide a graphical representatioh®htap le, and provide various high-
level tools for producing complex environments (as well @alishg with lighting and the various
textures one can apply to the walls — neither of which is irtgodrfor simulation, but can be
important for aesthetic purposes). The map les for my satiohs were all made using QUArK
(Quake Army Knife) [33]. The following image shows a top-dowiew of the DAC environment,
modelled after the work done at the University of Zurich. &ltte four small crosses which

represent the locations where the targets will be created.
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Figure 5.1: A top-down view of the DAC map le, showing the \Uga&nd the locations that the
target objects will be created. Generated using QUArK [33]

We have not yet seen how the robot is actually inserted irisoethvironment. This is done
through the code itself. Q2Java allows for the creation of f@nsole commands” within Quake
2. Console commands are text commands which can be entewrt/hyser connected to Quake
2. When the command is entered (for example, if a user typgag™s the speci ed code is run.
This code can create new objects in the world simply by angatistances of the appropriate Java
classes. These objects can be told their initial startiegtion and orientation (or any number
of other arbitrary con guration commands, depending ondbgect itself). Once these objects
are created, they can add themselves to the list of objedie tgpdated each frame. The visual
representation of the robotis speci ed by referring to areaxal model le. Literally thousands of
user-created models are available online: for this pddidbesis, | chose a Dalek model available
at [45]. Note that the visual representation of the robotsduoa in any way affect the simulation
itself.

The nal major component of the simulation software is thpexg which actually controls the
experiment itself and records the results. This is anotlest dbject which is called each server
frame. In order to make it as easy as possible to run varidteselit types of experiments, this
experiment controller reads the experiment parameters &dext le. This le is simply a list
of parameter names and their values. For example, it carifgplee number of time steps that
the experiment should run for, the speed of the robot, thebsuraf collision sensors, the size
of the robot, and even which Java class should be used tootahé& robot's movements. The

experiment class uses this data to create the robot (withgbei ed controller). At each frame
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that the experiment is running, the class records variguscs of the robot's behaviour. This can
include the robot's location, the total number of targetsas found, and even internal aspects of
the control system, such as the state of individual neunotisa DAC system. All of this data is
written to a le for later analysis.

Some readers may have noticed a signi cant problem withithelgtion system as presented
here. In particular, one of the advantages for simulatisted in the section on Simulation and
Reality (see section 4.2) was that we can accelerate timenmnation to take advantage of faster
processors. Since the objects in the simulation enginepatatad once every tenth of a second, it
seems that Quake 2 cannot do this acceleration. Fortuntitislproblem is readily xed. Since all
of the source code for the Q2Java system is available, it asste nd the part of the code which
calls all of the objects each tenth of a second. It was themplsimatter of adding a new variable
to the system which speci ed the number of times each objextldvbe updated each tenth of a
second. This then acts as a time multiplier (setting theevtdul0 would cause each object to be
updated 10 times every tenth of a second). Of course, if Hligis increased past the capabilities
of the system, then Quake 2 is no longer able to keep to ithisfha-second schedule. Quake 2
handles this gracefully and simply updates as fast as ifilplggsan. For example, when doing the
DAC experiments, setting the multiplier to 20 caused théssygo update approximately 20 times

every fth of a second.

5.2 Duplication Experiments

In order to do any detailed experimentation with DAC, it i€@gsary to implement it and then to
test that implementation. This testing takes the form ohimg the same experiments described
in the Zurich papers. If the results are similar, then | wdl/e both validated the software itself,
and | will have provided evidence that DAC itself is reasdypabbust. After all, it must be kept
in mind that the physics of the simulation environment baisgd are not the same as those used
in the original DAC experiments. If DAC is not robust, there tresults achieved in the Zurich
simulations may be strongly dependent on features in tletiqular simulation system, and so
my implementation would not perform similarly.

In order to simplify the implementation, it is possible tdisPAC into two stages. DACO
is DAC without the learning system. That is, it only has thedhaired connections from the
collision and target sensors to the motors. It has no raegsisg ability, and its only behaviour
consists of simple stimulus-response patterns (for exampit hits a wall, it backs away and
turns). DAC2 (which has the learning capabilities) can b bato this in such a way as to not

disturb the original DACO aspects. The rst step, then, igédba working version of DACO.
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5.2.1 DACO

The implementation of the core DACO control system itselfiéé particularly dif cult, since it
simply consists of 37 collision sensors, each connecteaéood two “back up and turn” motor
outputs, and two target sensors connected to one of two thisrway” motor nodes. A simple
decaying inhibitory connection between the collision sessnd the target sensors is also needed.

This completes the core wiring diagram for DACO, as showméfollowing image.
Collision Target

Sensors (37) Sensors (2)

Inhibition

W=

Motor Actions

Hard-wired

prespecified

connection
weights

Figure 5.2: The basic DACO architecture.

There are, however, a number of other issues involved iy falblementing DACO into a
simulation. We need to determine the robot's movement ¥gi@cow far it moves between time
steps). We also need to determine its size relative to thecemaent. Fortunately, both of these
values can be readily estimated from diagrams such as tloe/foh one.

Once all of these values are de ned correctly, we can runitnelation. The robot is placed
randomly into the environment and allowed to run for 5000etisteps (as in the original Zurich
work). When this is done, we see that the robot moves aroumdrilironment and successfully
nds the targets in a manner very similar to the paths showthéZurich papers. The results give
the mean number of targets found as 30.225, with a samplatimsviof 3.246. Unfortunately,
there is no way of directly comparing this result to the Zargxperiments, since no quantitative
data is available for runs of merely DACO.

However, one worrying aspect is that occasionally the raliibget stuck by becoming backed
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Figure 5.4: DACO running in the Quake 2 simulation environmé\ote the three visible targets
circled in black: the fourth target (normally in the bottoeit) was previously picked up by the

robot.

into a sharp corner. This happens because one collisionisisiieggered on one side of the robot,

causing it to back up and turn. Since itis in a corner, phydoes not allow the robot to back up
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Figure 5.5: Another view of the simulation

through the walls, and so it merely turns in place. Now thagi turned, the collision sensor on
the other side of the robot is activated and the cycle coatintihis effect is not mentioned in the
Zurich papers. Itis possible that it is due to a differendsieen the two simulation environments
used. However, it could also be that it is not mentioned bsediuonly happens with DACO. A
robot running DAC2 may never (or seldom) get into such a sitnaand so this behaviour would
not be noted. Also, it was found that it is possible to elinériiis behaviour by rounding out the
sharp corners of the environment.

Summary of Experiment:
Time Steps: 5000
Number of Collision Sensors: 37
Number of Range Sensors: 0
Summary of Results:
Targets Found: 31.7 (s.d. 1.78)
Time Spent in Collisions: 1741.6 (s.d. 60.017)

Number of Collisions: 225.25 (s.d. 9.176)
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5.2.2 DAC2

Now that the very basics of the experimental system have inggiemented, it is time to add the
learning algorithm itself. This involves adding range seago0 the robot, a connection between
the range sensors and the collision/target sensors, addrimapting the learning method to adjust
this connection. We can then run the system, count the nuofitegets found and collisions over
time, and compare that to the results in [40].

Many questions arise when trying to add range sensors. Ronge, what should their max-
imum range be? Should they be linear? Should they only detecstraight line, or should each
range sensor handle a small angle? How much variation (nsierild there be in the response
from the range sensor?

Fortunately, the Zurich papers do give the exact non-litraasfer function of the range sen-
sors. This function takes the distance from the edge of thetiobody and converts it into a
number between 0 and 1. Since the function drops off to zerhaslistance gets larger and
larger, the “maximum range” of the sensor is simply the distaat which the transfer function

returns a value suf ciently close to zero.

Figure 5.6: The response pattern for the range nders. Aadist of O would be a solid obstacle

touching the robot's outer body.

The diagrams in the Zurich work imply that each range senaondles a small arc (approxi-

mately 5 degrees). However, there is no information on howtmwariation there is in the sensors,
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nor is there information on exactly how this region is haddlee. does the sensor respond to
the average distance to an obstacle in the region, or themaimidistance?). For the purposes of
this simulation, it was decided to answer both of these dquresby randomly varying the exact
orientation of the range sensor. For example, the rang@santhe very front of the robot would
randomly choose an exact orientation (between -2.5 degwes2.5 degrees) at each time step.
This adds both variability and a reasonable arc of senitatia minimal computational cost.

The connections between the range sensors and the basicyseystem is simply an array of
weights from each range sensor to each basic sensor. Thagesere all initialized to zero. As
in the Zurich work, the results of these weights are lineadged onto the output from the basic
sensor itself. That is, even if a particular collision sarismot active, its output is determined by

the weighted sum of the inputs from the range sensors.

Figure 5.7: Formula determining the output of a collisionarget sensor. The outpwl (s equal
to the sum of the weightsM) from each range sensor to this sensor times the output oatige

sensor (), plus the actual activation value of this sensmr (

In order to update the weights, we use the basic DAC2 learaliggrithm. This updates the
weights based on the difference between the current rangmisgalues ) and the predicted
value of the range sensom).( The predicted value is based on the current output of tHeus
basic sensory) and the same weightg/) as are used to allow the range sensors to affect the basic

Sensors.

Figure 5.8: The DAC learning algorithm.

The predicted value of a range sens@rig¢ the sum of all the outputs from the other sensors
(v) weighted by the connection from the range sensor to tharatnsory). The weight update

is the difference between this predictiag) and the actual valueau), times the activation of the
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sensor the weight connects 19,(times the learning rate). Also, the nal value for each weight
is constrained to be non-negative. Note that in the abovedtas,k denotes the various different
types of sensors (collision and target).

This leaves us with one further variable to specify. Theriézg rate” is determined by how
much the weights should change based on the current paditifference. This is generally a
variable in all weight-based learning systems, and is gijicomething around 0.01. In order to
choose an exact value, we can run experiments with the tearate set to various values. The
best result from these experiments can be taken as therigasate to generally use, as it is likely
that the original DAC work was done using the optimal value.

Figure 5.9: The DAC2 architecture.

Running these experiments requires us to store the numimllafions and the number of
targets found. The number of targets found is easy to doe shectarget is found at one particular
time step and then disappears. This means that the robohdbescounter the same target again
in the immediately following time step. However, this is tate for collisions. It is possible for
the robot to have collided with an obstacle at one time stehtlaen still be in contact with that
obstacle at the next time step. Should this be counted asdilisions or one collision?

This is actually an interesting point which brings up thdedénce between real-world experi-
ments (where there is no such thing as a “time-step” — or it it's very very small) and sim-

ulation experiments. In the real world, with an experimewoteserving a creature running around
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in an environment and colliding with walls, the experimemsemost likely to count each collision
with a wall once, regardless of the amount of time spent inctiksion itself. However, in the
simulation world, it is easier (and perhaps more intuittva programmer) to count the number of
time steps during which a collision is taking place. For eghanif the creature comes into contact
with a wall at a certain time, and then 5 time-steps later nagges to back away from the wall so
that it is no longer in contact with it, then we would intuiily call this one collision. However,
keeping track of collisions in this manner is more complcafrom a programming perspective
than simply adding one to variable every time-step that thatare is in contact with a wall. This
second measure would lead to a much higher value for the “pumbcollisions”. There is no
clear evidence as to which de nition of collision was usedhe original Zurich papers. When
using the rst “collision count” de nition, the results fim my simulations give values at or below
the Zurich group's few sample runs. When using the “collisione” de nition, the results are
generally above the Zurich results. In both cases, theafisercy is approximately 1-2 standard
deviations. However, the pattern of collisions over timedeapicted in the gure in the section on
implementing DAC (see section 4.3.1)) matches better vaghrésults using the “collision time”
de nition. The “collision count” approach does not grow asakly in the initial time steps of the
simlation. For clarity, | will be providing both measurenteim this thesis.

The following graphs show the effect of varying the learmiaig between 0 and 0.1. The three
lines on each graph denote the mean value and plus-and-omeustandard deviation over 100
trials at each learning rate. It can be seen that DAC worlksoregbly well over this range. A value
of 0.05 seems to be reasonably optimal for this particukdt,tand so will be used for the rest of

this thesis.
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Figure 5.10: Graph of amount of time spent in collisions farious different learning rates. Mean

and plus/minus one standard deviation are shown.

Figure 5.11: Graph of number of collisions for various diéiet learning rates. Mean and

plus/minus one standard deviation are shown.

With a learning rate of 0.05, the mean number of collisionsitg is 150.11 (sample deviation
71.982) and the mean number of targets found is 33.99 (sasepiation 3.335). This is not the
same as the example run given in [40], where the number abmik is 45 and the number of
targets found is also 45. However, this result is within tloeifds of variability. In fact, one

particular run gave a collision time of 23 and a target codidtzo Thus, this simulation can fairly
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Figure 5.12: Graph of number of targets found for variougedéint learning rates. Mean and

plus/minus one standard deviation are shown.

easily give results similar to the one sample run given inrtil paper. It should be remembered,
however, that the sample run is one fairly good run, not amaaserun. It should also be noted
that the robot no longer gets stuck in corners as it did wittCDA
With these experiments done, it seems that the implementafiDAC is faithful to the orig-

inal algorithm. The differences between these results hadet published by the Zurich group
could be reasonably explained by the differences in thetgtagsics of the two simulation sys-
tems. Also, the data available on DAC tends to discuss exanupis of the system, rather than
averages over many runs, making it dif cult to perform anyt®d precise numerical comparison.
However, the system is clearly qualitatively performing kind of learning that DAC is supposed
to do. We can thus go on and perform the other experiments evintarested in, reasonably
con dent that this implementation of DAC works.

Summary of Experiment:
Time Steps: 5000
Number of Collision Sensors: 37
Number of Range Sensors: 37
Best Learning Rate: 0.05
Summary of Results:

Targets Found: 33.99 (s.d. 3.335)
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Time Spent in Collisions: 150.11 (s.d. 71.982)

Number of Collisions: 26.1 (s.d. 9.73)

5.3 Ancillary Experiments

Before going on to the classical conditioning experimembsyever, there are two mini-experiments
which were performed on the DAC2 system. These were donaitty starious aspects of DAC
learning. The rst looks at what happens when the robot lasegbility to sense targets, and the

second looks at the effects of varying the number of senkeragent has.

5.3.1 Target Sensing Experiment

Most of the analysis of the DAC system focuses on its abibtitform associations between the
range sensors and the collision sensors. However, vdgyjifittaid about the associations between
the range sensors and the target sensors. To determinedfisheny useful learning occurring in
this area, an experiment was performed which compares tw'sdehaviour with and without
learning when it suddenly loses its ability to sense targets

This experiment is inspired by experiments performed meecemtly by the Zurich group while
developing DAC3. They used the loss of target sensing ghiita forum for testing their addition
of the learning of temporal chains to DAC. In [43], they penfiotests by having the system run
normally for 2000 time steps, then removing the target seabibity for 5000 time steps. They
then counted the number of targets and the number of caiidar DACO, DAC2, and their DAC3.
Oddly, the results for DAC2 were that it found signi cantivfier targets than DACO or DAC3 (34
for DAC2 versus 53 for both DACO and DAC3), indicating that &bility to learn hampered it in
the task of nding targets (of course, DAC2 collided with sigantly fewer walls than DACO).
This indicates that not only does learning not help it in tisktof nding targets, but that it in fact
signi cantly hinders it. This could, perhaps, be due to thetfthat the targets in the environment
are somewhat near to the walls, so after learning to avoitsuwtapends less time near targets as
well.

The results from performing the same experiment with my &tan are that there is no sig-
ni cant change in number of targets found between DACO an€€RADAC?2 found insigni cantly
fewer targets (29 versus DACO's 31), and collided signi tiaess often. From this, we can make
two tentative conclusions. Firstly, there is no evidena tharning between the range sensors
and the target sensors is affecting the robot's behavioaninway. Secondly, there seems to
be some signi cant variation between my simulation and theich simulation. This could take
many forms, but it is perhaps relevant to point out that nepeéxment was described in a 1999
publication, while the rest of the work that this thesis isdéion was published in the 1992-1994

range. In the intervening time, it is possible that varicestdires of the Zurich simulation have
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changed.

Summary of Experiment:
Time Steps: 7000
Stop Sensing Targets After: 2000 time steps
Number of Collision Sensors: 37
Number of Range Sensors: 37
Summary of Results:
DACO:

— Targets Found: 31.15 (s.d. 3.167)
— Time Spent in Collisions: 2497.9 (s.d. 72.935)
— Number of Collisions: 318.1 (s.d. 9.878)

DAC2:

— Targets Found: 28.9 (s.d. 3.582)
— Time Spent in Collisions: 184.9 (s.d. 102.678)
— Number of Collisions: 33.45 (s.d. 14.816)

5.3.2 Morphology Experiment

The second experiment starts to question the pattern-gdiilities of DAC. In particular, it
focuses on the simplistic mapping from range sensors tésmnil sensors in the standard DAC
con guration. Because there are exactly the same numbeolb§ion sensors as target sensors,
and since they are lined up in exactly the same way, the pattbat DAC needs to nd are simple
one-to-one mappings between each range sensor and itsprameing collision sensor. Since this
is the only sort of con guration used in the DAC experimelitsnpay be that DAC is incapable of
discovering more complex patterns. So, to test DAC's abditthis experiment varies the number
of target and range sensors (its sensor morphology) andiegarthe effects on the number of
collisions and number of targets found.

The values for the number of sensors were chosen to have fewnoa divisors, so as to
ensure complex relationships between the sensor systdmschibsen values were 6, 13, 21, 29,
37, and 45. Each combination of settings was run throughttivedard test of running for 5000
time steps and counting the targets found and the numberlifions. The mean results for 30

runs are shown in the following charts.
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Figure 5.13: Amount of time spent in collisions for diffetemumbers of range and collision

Sensors.

Figure 5.14: Number of collisions for different numbers afige and collision sensors.

The rst observation from these results is that DAC does equire the same number of range
sensors as collision sensors. For example, in the situeaiitn6 collision sensors and 37 range

sensors, the system does successfully learn to avoid ddsstalaile still nding the same number
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Figure 5.15: Number of targets found for different numbénsage and collision sensors.

of targets as the standard system with 37 collision sen$bis.means that there is no one-to-one
mapping limitation, which is a great relief, as one of theanaesign principles behind DAC is to
form associations between patterns, not individual sensor

The second observation is a more interesting one. Firstlofval can see that there is no
signi cant variation in the number of targets found for alltbese con gurations. However, there
is a very striking pattern in the number of collisions. Intparar, the system performs signi -
cantly better when there are more range sensors than oaliginsors. Conversely, having fewer
range sensors, performance is impaired. This means thatiregthe number of collision sensors
improves the agent's performance.

This is a somewhat non-intuitive result, but it is, in hirgldi, explainable. This can be done
by observing that the task that the robot is performing dagsantually require more than two
collision sensors. If it had just one large-angle collisgamsor on the left and one large-angle
collision sensor on the right, then the system would stilfkvperfectly well. Thus, reducing
the number of collision sensors does not reduce the rolfsretical ability to perform in any
way. However, reducing the number of collision sensors dedace the number of weights in
the system that need to be learned. Fewer collision seresmis ko a less complex system, which
should thus be easier to learn.

Another (admittedly more speculative) way of viewing thipomenon would be to appeal to
Ashby's Law of Requisite Variety [1]. What is actually hampag here is that the system is using

the range sensors to predict the values of the collisionosendf there are more range sensors
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than collision sensors, then there are more degrees ofdneedailable. Ashby's Law implies
that a system with a larger number of degrees of freedom hasch sasier time controlling or
predicting a system with fewer degrees of freedom. Conlxerisés very dif cult to use six range

sensor values to predict 37 collision sensor values.
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Conditioning Experiments

Now that we have gained some experience with the DAC sinmulateveloped for this thesis, it
is time to turn to the important experiments which can deieenthe characteristics of the DAC
learning algorithm. The hypothesis expressed so far istbato have, in DAC, an effective model
which explains associative learning in a way consisterti elassical conditioning. However, the
original Zurich experiments have only shown that DAC is ¢dpaf a particular aspect of classical
conditioning. This aspect, the ability to form an assoomatietween a new stimulus pattern and
an old stimulus pattern, is at the core of classical condiitig, but it is not the full story. A
hundred years of psychology experiments have uncovereg otaer quirks and characteristics
of classical conditioning, each of which may well be vitaleixplaining the effectiveness of this
style of learning. For example, the ability to acquire agsoans may not be very useful without
the ability to have these associations go away (extinguisa) time if the learned pattern is no
longer applicable. Does DAC have this characteristic?reiger tested in the Zurich experiments.
Answering these, and other, questions about DAC's reaiti@silis the goal of this section. |
will rst describe the particular aspects of classical citinthing which need to be evaluated, and

then detail the experiments performed.

6.1 Overview of Conditioning Test Suite

The tests for determining how well DAC matches with cladsiomditioning can be divided into
two parts. The rst part explores DAC's concept formatiorilities, and the second part examines
the more traditional aspects of classical conditioningjuégition, extinction, generalization, and
specialization. For the purposes of this thesis, blockimdjsecond order conditioning were not
examined. This is because these two features were exppeitt of the design of the DAC learning
model, as described earlier (see section 4.3). The inteatifito examine the other aspects of the

DAC model, in order to evaluate the match between it and abtilassical conditioning.
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The concept formation experiments are, in my view, the magrésting. Firstly, they ad-
dress a part of learning which does not get much attentitverit Arti cial Life research or in
Psychology research. In most models of classical conditgrihe concepts do not need to be
extracted from the sensor data, since the sensor datalgipeetents those concepts that the agent
is supposed to learn about. Secondly, the very process efrdigiing if a concept is formed is
problematic. How can we evaluate whether the agent has tbammarticular concept? Thisis a
guestion about mental states and the internal workingseofgent's “mind”. Even with DAC's
simple architecture, it is not easy to analyse the resuliigral network to determine the pres-
ence of various concepts. Indeed, according to the dynasystems view, these concepts may
not be found by looking solely at the organism'’s internaisiéad, the outside environment must
be examined as well. Thus, we can only answer this questitoyng at the actions of the agent
within its environment. The concept formation experimengtglve around a test which opera-
tionalizes the de nition of a “concept” in a manner that issbd on potential utility to the agent.
In other words, it is based on the agent being able to makeqgpi@us about its environment. The
dif culty of doing these experiments and in making strongiclusions based on the results points
out many of the intrinsic issues with trying to do experinasicience with something as nebu-
lous as a “concept”. However, the tests de nitely do proviggght into DAC's effectiveness as a
learning method for various tasks.

The further experiments which look at various standardufest of classical conditioning are
very typical experiments, based directly on those foundnidengraduate psychology textbooks
[2]. The only difference here is that they are being appled simulated organism, rather than
an organic one. The results are thus directly comparablea@xtpected results in behavioural
science. Deviations from the “natural” results indicate #émeas in which DAC does not match
well with real classical conditioning.

It is hoped that these tests are not solely applicable to (geh experiment is described in
terms of stimuli and responses, so that it would be in theossible to run the same set of tests
on a different learning algorithm. This could provide a ddiasis of comparison for researchers

trying to emulate classical conditioning. As far as | am ayao other test suite of this sort exists.

6.2 Concept Formation Experiments

There is no (known) way of dissecting a human's brain andyesnag it to determine if they have
the concept of, say, “ re”, for example. However, we are quiady to believe that people do have
internal representations of such concepts. This is becadm we observe individuals behaving
in an environment, they act as if they have certain concé&#eple act as if they know that a re
on one side of a room has similar properties to a re on anatltlr of the room. They can assume

that a new re that they see will also be “hot”, given that résey've met in the past have also
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been “hot”. Thus, the determination as to whether a certantept exists is done by examining
the behaviour of the organism. This side-steps the issuewfdoncepts are represented in the
brain by providing a functional test for the concept.

The question is, however, how do we do this with DAC? What gbtést can we do to see if
the agent behaves as if it has a certain concept? To starawithple concept, how can we test to
see if it can have the concept of “being near a wall"?

One way to do this would be to see if it could form an assoamietween “being near a wall”
and some unconditioned stimulus. We can change the qudstinri‘does it have this particular
concept?” to “can it perform some consistent action whenewefronted with a situation that we
would identify as a particular concept?” This is somethirgah can be directly tested through
an experiment.

We do this by introducing a new unconditioned stimulus-oese pair. This is a very simplis-
tic S-R con guration, with one neuron for the stimulus, wiis directly wired to the one neuron
response. This can be thought of in a similar manner to theepee of food causing drooling, or
any other standard unconditioned situation. Now, we allogvrbbot to explore its environment,
and whenever it encounters whatever concept we wish it toJe@# activate this new stimulus.
For example, whenever the robot comes “near a wall”, we d¢gger the unconditioned stimulus,
which res the unconditioned response, which we can recvd.now run our experiment to see
if the robot can learn associations based on this concepthér words, can it use its other sensors
(i.e. the range sensors) to predict this concept of beinganeaall?

The advantage of this test is that it can be applied to anyegirihat an experimenter can
dream up. This is also a disadvantage, since many of thesegtawill be completely impossible
for the robot to work with. For example, “being near someghitue” would not be something
that the basic DAC system could handle, since it has no celeusing ability.

However, it is important to note that the system would notessarily fail if tested on “being
near something blue”. It is quite conceivable that it coudize upon some other regularity in
the environment that the experimentor did not expect. Fample, if blue objects tend, in the
particular environment being tested, to be out in the opeh f@w other objects around them,
then DAC may well be able to form associations based on thatadty. DAC would thus appear
to be learning the concept of “being near something blue’ijanbhwas actually forming some
other pattern.

This observation is not a problem for this set of experimeindeed, it merely points out a
truth in all experimentation based on concepts: there isuavantee that the concept the exper-
imentor is using matches perfectly with the concept thataifganism is using. This is simply
something which should be kept in mind while performing antdiipreting these experiments.
For a more theoretical discussion of these issues, thenréadeferred back to the section “On

Concepts and Existence” (see section 2.5).
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In any case, interpreting these tests is a complex task infitself. At any given moment, the
new stimulus sensor could be active or not active, and ataime $ime the agent either predicts or
does not predict that the sensor should be active. Therbasddur distinct possibilities that may
happen at each time step. We call these “True Negative” € Rositive”, “False Negative”, and
“False Positive”, where “True” and “False” denote whether agent is correct in its predictions,
and “Negative” and “Positive” denote the agent's predictid his terminology is taken from the
standard experiments with supervised neural networks.

From any particular experimental run, we merely count thalmer of time steps the agent is
in each of the four states. The desired result would be laahgeg for True Negative and True
Positive and small values for the two False states. Thet®tueg complicated by the fact that
we cannot control how often the agent should actually haseghsor activated. For example, if
the concept under experimentation is “stuck in a corner” tiedagent never gets close enough
to a corner to be considered stuck, then there can be no TrigvEcstates (or, indeed, False
Negative states). The agent could simply never learn amgthnd would end up having a large
True Negative count and nothing in the other states. In dadesatch out for this sort of problem,
it is necessary to make sure that the experimental con ganasg such that the robot does spend a
signi cant amount of time both with its “concept” sensorigetand with it not active.

One possible way of combining these measurements to makarditgiive evaluation as to
whether a concept has been learned would be simply to takatibeof True states to False states.
This would determine what percentage of the time the agestri®ct about its prediction. This
is, however, not a particularly useful measurement, intlaftthe above observation about how
often the sensor itself is active. With a simple measureroéhiow often the agent is correct,
then an experiment where the sensor should be active 25pefdhe time would be successfully
completed by an agent which did not learn anything. By singhlyays predicting the sensor
should be off, the agent would be correct 75 percent of the.tim

We can get around this problem to some degree by looking aséwarate measurements: the
Positive Accuracy and the Negative Accuracy. The Positigeusacy is de ned to be the ratio of
the True Positive to the total of True Positive and False Megémathematically TP/(TP+FN)).
In other words, it is a measurement of how often the predidsaorrect when the concept sensor
should be active. The Negative Accuracy is the oppositeped by TN/(TN+FP). If both of these
ratios are above 0.5, then it can be clearly said that thetdgena representation of the concept
which works more that fty percent of the time. That is, if tsensor should be active, then it is
predicted to be active more than half of the time, and if itdtdmot be active than it is predicted
to be not active more than half of the time. If the rst ratiobislow 0.5, then the agent is under-
sensitive to the concept, and if the second ratio is beloywtBes the agent is over-sensitive to the
concept.

It is important to realise that being over-sensitive to aceqt is not necessarily a bad thing,
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especially if the concept is rarely encountered in the emvirent. Indeed, it could be argued that
the original DAC experiment's success is due to the factitiiatover-sensitive to the concept of

“colliding with a wall”. Once it has learned its obstacle alence behaviour, it predicts collisions

even when the robot is a few steps away from the obstacle.ifthien a False Positive prediction,

but it is still useful to the agent.

Indeed, even if the True Positive count is less than the Hadsdtive count, we should not
say that the concept has not been learned. This is a noniimetsitatement, since if there are
more False Positives than True Positives, then a positegigion will, on average, be a false
prediction. However, if the two afore-mentioned ratiosstittabove 0.5, then it can still be argued
that the concept has been learned, since the agent has atbattehance ability to predict the
actual value of the concept both when it is there and whemibighere.

The actual concept formation experiments were done usiagtidindard DAC architecture,
with the addition of the one new sensor which signals the ephito be learned. This one sensor
was directly wired to an output node which can be experimigntacorded. The environment
used was a simpler one than the DAC experiments: a single mibimfour enclosing walls,
approximately the same size as the environment in the @aligkperiments. The agent is allowed
to explore the environment over 5000 time steps, and a ceunade of the four possible states:
True and False Positive and Negative. The agent's currealigiion of the sensor value is made
based on what the output of the concept response node woblaeel solely on the range sensor
(conditioned) stimulus. This gets around a standard probielassical conditioning experiments,
where it is generally not possible to tell if the creaturessponse is due to the conditioned or
unconditioned stimuli. As in the original DAC experimerttse threshold for the agent's response
is 0.5.

Due to the simple nature of the sensors being used, very siogpicepts are required. The
rst concept is simply being near a wall. In this experimeht concept sensor is activated if the
agent is within a certain distance of any wall. Setting tipiscs ¢ distance to various values was
also examined. Because the standard morphology for the &geuach that it only has sensors
which cover the front half of its body, this concept of beireana wall is not trivial for the agent
to discover, and indeed it is impossible for it to learn thos@ept one hundred percent correctly.
This is because the agent cannot distinguish on the bas@whfd-pointing range sensors the
case of having its back to a wall from being out in the open.eNbat this is a situation where
DAC's lack of temporal memory causes real problems. Thigerpent was also carried out after
modifying the agent to have sensors which cover 270 degrgasng it the ability to see behind
itself.

The same style of experiment was also done for corners (vihergensor would be activated
if the agent was suf ciently close to two walls). Experimentere also done where the sensor

was activated whenever the agent was in a narrow corridochwtiivided two rooms. Further
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experiments were done with the opposite of these three ptéda these cases, the sensor would
be active at the times when it was non-active in the previaps@ments, and vice versa.

It should be noted that the task the robot must solve is nataaltas it may seem. Since the
DAC model has no temporal memory, the robot must make a judgebetween its being in a
corner and being in a corridor based on a single moment'shaadrtlata. Furthermore, its sensors
are affected by random variation, and thus do not providfeptly reliable data. For comparison,
in [22], a hand-designed algorithm for distinguishing wdhom cylinders achieved 35 percent

accuracy and an evolutionary algorithm achieved 70 peaxiracy.

6.2.1 Results

The following diagrams show the results of running the descrexperiments. For each con g-
uration, 10 experimental runs were made, and the mean vialueach measurement were taken.
The rst graph within each set of three gives the amount o&t{jout of a total of 5000 time units)
spent performing the different possible types of prediitioTrue Negative (TN), True Positive
(TP), False Negative (FN), and False Positive (FP). Therskgoaph combines TN and TP into a
total count of the correct predictions (True) and incorpretictions (False). The third graph gives
the agent's chance of forming a correct prediction if theaapt in question is present (Positive)

or absent (Negative).
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Figure 6.1: Results for learning the “wall” concept at vagalistances with 180 degree view.

Figure 6.2: Results for learning the “wall” concept at vasalistances with 270 degree view.

Figure 6.3: Results for learning the negative of the “watfhcept at various distances with 180

degree view.
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Figure 6.4: Results for learning the “corner” concept atouas distances with 180 degree view.

Figure 6.5: Results for learning the “corner” concept atougs distances with 270 degree view.

Figure 6.6: Results for learning the negative of the “cdteencept at various distances with 180

degree view.
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Figure 6.7: Results for learning the “corridor” concept ativus distances with 180 degree view.

Figure 6.8: Results for learning the “corridor” concept ativus distances with 270 degree view.

Figure 6.9: Results for learning the negative of the “caricconcept at various distances with

180 degree view.

From these results, we can see that the systemis quite eagfdbfming a better-than-chance
ability to recognize the concepts of “walls”, “corners”,dafcorridors”. Other than a slight dif -

culty with detecting very wide corridors, where the accyrdiops to a minimum of 0.46, DAC's
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accuracy is comfortably above 0.5 for both the presence bsdrse of these basic concepts (see
the nal graph in gures 6.1, 6.4, and 6.7). We can also seé¢ éxpanding the agent's eld of
view to 270 degrees slightly improves the performance ofsifstem, as expected (see the nal
graphin gures 6.2, 6.5, and 6.8). However, a limitation &Ois revealed in its inability to learn
the reverse (negative) of these concepts. For these rehataations, DAC performs substantially
worse. In fact, its accuracy for these concepts (see gurds@6, and 6.9) is approximately 1
minus its accuracy for the basic concept.

This dif culty is not uncommon to learning systems of thigpg; however. DAC is closely
related to Hebbian learning, and inherits its property abagting large values with other large
values. In other words, it cannot form an association batvegee value being large and another
being small. In statistical terms, this style of learningrkgosolely on positive correlations, not
negative ones. This is an important limitation on DAC's dlgis, and one not pointed out by the
initial research.

In an attempt to determine if this is the only problem withrféag these negative concepts, an
experiment was done exactly as above, but with the rang®sereversed. That is, their output
was set to be 1 minus their normal output (bounded by 0 and kis fEsulted in an improved
recognition ability, but even with this improvement, the®m's performance was not as good as
on the original concepts. The following three charts showCB3Aearned response for these three

con gurations of the wall concept test.
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Figure 6.10: Results for learning the “wall” concept withOldegree view. (repeat of gure 6.1)

Figure 6.11: Results for learning the negative of the “watihcept with 180 degree view. (repeat

of gure 6.3)

Figure 6.12: Results for learning the negative of the “watbhcept with 180 degree view and

reversed range sensors.
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Itis also interesting to compare DAC's ability in these #heen gurations with that of a simple
perceptron (two-layer neural network). By doing this, we #eat there is de nitely suf cient
information in the range sensor data for the learning systemd. This means that there is
de nitely a statistical correlation between the two typdsensory data. This is important as it
con rms that the task is, in fact, possible, and we are noeetipg the system to learn something
which cannot even in theory be extracted from the providad.d®f course, we should also
expect that a perceptron would outperform DAC, since DACsdu#t have the bene t of multiple
presentations of the data set. In fact, the perceptronipasfmentically on the three con gurations
mentioned above, and in all cases gives results slighttgbttan DAC does for the basic “wall”

concept.

6.3 Features of Conditioning Experiments

The following experiments speci cally examine particul@atures of classical conditioning. Since
these are to be directly compared to results derived froreraxgnts on living creatures, it is im-
portant to make the DAC situation as close as possible toedidife situation. For this reason,
these experiments do not use stimuli that are patterns taghet, but rather use a local repre-
sentation. That is, associations are formed between séegleor nodes. This is because the live
experiments do not consider the concept formation requntsnof classical conditioning in any
way. They consider something like “hearing the sound of ari@ying” to be a single sensory
input. We have discussed previously (see section 4.3) higiisthot a reasonable assumption, but

for the purposes of this section we will make it.

6.3.1 Acquisition

There are three standard acquisition methods used in plegghsimultaneous, delayed, and trace
conditioning. The difference between these three methoisthe timing of the presentation of
the conditioned and unconditioned stimuli, as shown in tileding gure.

Thus far in this paper, we have only considered simultaneonditioning, where the stimuli
that are being associated are always present at the sameHioneever, both trace and delayed
conditioning are apparent in living creatures. In this ekpent, we compare DAC's ability to
form associations in these three manners.

This is done quite simply by directly controlling a sensduesfor the unconditioned stimulus
and the conditioned stimulus. Note that the actual behawbthe agent does not affect this
experiment in any way (other than the one output tied to thenditioned stimulus). This is
to make the situation as close as possible to a standard glegghexperiment; the actions of
Pavlov's dogs do not affect when the stimuli are presentédk i merely part of the experimental

con guration.
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Figure 6.13: The three presentation methods for acquissg@ations via classical conditioning.

There is, however, one very important issue that is higldiglwhen trying to change this
typical experiment into one that can be done on the simuld#d agent: the temporal aspect.
In the standard experimental psychology point of view, thespntation of the two stimuli is
considered one single event. However, in the simulatiorgr@emmediately aware of the fact that
these events must take place over time, and that the longstithuli are presented together, the
more learning will occur. Note that this temporal issue isikir to the issue involving collisions
discussed earlier (see section 5.2.2). Also, this can bgamd to the one-sensor robot control
system described earlier (see section 2.4.2), as it woeleh $kat we would want sensors based
on the change in the raw sensor value.

We have two ways of dealing with this in the simulation. We eary the length of time that the
stimuli are presented, or we can vary the learning rate. Ehertearning rule and experimentation,
it is clear that these have equivalent effects on the bebawioDAC learning.

The following diagrams show the activity of the three keyuea in this experiment, for the

three different types of acquisition.
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Figure 6.14: Results of simultaneous conditioning with DA&ssociations are successfully
formed.

Figure 6.15: Results of delayed conditioning with DAC. Asistions are formed, but with a non-
typical pattern.

As can be seen from these results, DAC performs well on sanatius and delayed condi-
tioning, but completely fails on trace conditioning. Alsahile delayed conditioning does result
in a successfully formed association between the conditl@nd unconditioned stimuli (as evi-
denced by the CR response before the unconditioned stirfiug)sis encountered), the pattern of

activation is atypical. In particular, DAC actually givestonger response to the presence of the
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Figure 6.16: Results of trace conditioning with DAC. No asations are formed.

CS alone, as compared to the presence of both the CS and the US.

The fact that trace conditioning does not work is expectiedesDAC has no internal temporal
aspects. It was hoped that some evidence of trace conditj@oiuld appear due to the temporal
continuity of the agent's interaction with its environmeitowever, this particular test does not
make use of environmental interaction in any way, and it @dodif cult to come up with an
effective alternate test for this given the limited senspabilities of the agent.

Also, it must be pointed out that the simultaneous and delapaditioning trials exhibited a
characteristic not common to natural classical conditignihis is the afore-mentioned temporal
aspect of a stimuli being spread over time. In both of thetsatons, the strength of the learned
association is based on the amount of time the agent has Bpesegl to the relationship, not
the number of times the relationship has been shown to it.if&ance, an association can be
fully formed by presenting the US and the CS together onca fong period of time, rather than
presenting them for short periods of time over and over ad#inv long this period of time has to

be can be tuned via the learning rate.

6.3.2 Extinction

The main point of extinction is that an agent must be ablede bn association that it has learned.
That is, once an association is formed, if the agent makesdigiion based on that association
and that prediction is wrong, then the strength of that aafoa should be reduced.

There is also an interesting complication of this proceie¢aspontaneous recovery”, which
is observed after an association is extinguished. If thatare is allowed a “rest time” (a period

of time where there is no opportunity to test the associafien neither the conditioned stimulus
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nor the unconditioned stimulus is presented), and is thesgmted with the conditioned stimulus,

the association will occur (that is, the creature will peridhe conditioned response).

Figure 6.17: The typical classical conditioning extinatjgattern.

To test DAC's capabilities in this regard, two experimengrevdone. In the rst, the agent
was initially trained using simultaneous conditioning agséin the previous section. This formed
a simple association between one conditioned stimulusosemsl one unconditioned stimulus
sensor. Then, the response of the agent was observed whdening the conditioned stimulus
multiple times without the unconditioned sensor ever beictive. In the second experiment, the
agent was initially trained using the wall-concept applhodiscussed earlier (see section 6.2), and
the same extinguishing procedure was applied.

In both of these experiments, DAC failed. In neither sitoiilid any extinguishing at all oc-
cur. The response to the conditioned stimulus stayed aotrstar the repeated tests. In hindsight,
this is not surprising, since this is exactly what the DACtegsdoes in its original form; the agent
associated being close to walls with collisions, and themtinoes to use that association even
though it does not actually collide with any walls any more.

The explanation as to why the DAC learning algorithm actdis tnanner is reasonably clear
from the learning rule itself. The weights are modi ed basedhe difference between the current
range sensor values and the predicted range sensor valsed da the output of the collision

sensors. However, that output from the collision sensotisautput after the collision sensors
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have been modi ed by the associations between the rangeseasd the collision sensors. Thus,
even if there is no physical collision, the learning aldgamitworks based on the predicted collision,
and thus does not un-learn this association. It “halluesiathe collisions, and then learns based
on those hallucinations.

To clarify this explanation, consider the simple case of oamditioning sensor (the range
sensor) connected to one unconditioned sensor (the coserpor). Using the formulae for the
DAC learning rule (see section 5.2.2), we nd that the chaimgtae connection strength between

the neurons is:

n is the learning rate
v is the output of the concept sensor
u is the range sensor

c is the input to the concept sensor (the actual sensor valtheuwt the in uence of the

learned range sensor association)

Thus, the weight only stops changing when either v is zeraylm@n (u-w*v) is zero. Now,
what happens during the extinction process? Since an asisochas been formed previously
between the range and concept sensors, v will be non-zertodbe learned association. Thus,

the learning will stop when (u-w*v) is zero.

Since ¢=0 during the extinction process, this means thatdhe for w can end up at w=1,
not at the expected w=0. In any case, from this simple examelean see that the DAC learning
algorithm cannot support extinction.

Another analysis of this inability to extinguish would bertote that w=0 is an unstable equi-
librium, so that even without the concept sensor (c) beiriyacthe connection weight cannot
settle down to w=0. To explain this, consider the case whe&sealways O (i.e. the concept sensor

is always off) Now, the weight change is:
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So, if wis exatly zero, it will stay at zero, since (w-w*w*w)ilivalso be zero. Now, if, due to
prior learning (or due to some random event), w is slightlgipee, then (w-w*w*w) will also be
positive. So, if u (the range sensor) is non-zero, then dalgb be positive. This then increases
w, and the system enters a positive feedback loop which wélhially settle at w=1. Note that
this process happens with ¢ always being zero. Thus, DACddha association without the
concept ever being encountered. This association willlsémause w=1 is a stable equilibrium:
a slight variation in w causes dw to have the opposite signmiftg a negative feedback loop
which settles back to w=1. It should also be noted that thHecefvill happen even if there was
a continuous decay term added that gradually reduced tbegths of the connection weights
(unless, of course, that decay term is so strong as to diglugitance of learning).

Of course, this analysis only holds for c=0 and for systentls amly one unconditioned sensor
and one conditioning sensor. However, it seems clear thag an association is formed, DAC has
a very hard time of getting rid of it. This means that DAC asesrthat the environment it is
inhabiting is static. Its functionality is based on the (geally false) idea that the associations
it is forming will always be present. This is a severe linmiat and it is unclear if DAC can be

modi ed to avoid this problem.

6.3.3 Generalization

Generalization describes classical conditioning's &pit handle novel situations. In particular, it
is observed when a creature is conditioned with a partigtiarulus, and is then confronted with
a stimulus it has never before encountered, but is somewtmaiiar” to the original stimulus. The
result is that the agent will produce the conditioned respobut to a lesser degree. The more
different the two stimuli, the weaker the response.

However, there is no obvious and clear way of measuring tineifagity” of any two stimuli.

In conditioning experiments, “similarity” tends to meanns like tones of similar frequencies
or objects of similar size. Thus, to perform these experisien DAC, a modi ed version of the
concept experiments were done.

The experiments were based on the corridor-concept expeténThe agent was rst trained
(as in the previous experiment) to recognize a corridor gfexisc width (100). Then, the agent
was forced to run through a corridor of a different width wiglarning turned off. By recording
and averaging its prediction (the concept it was traineghwa)can arrive at the agent's prediction
for the new stimulus. Note that averaging the predictionmexssary, because the concept output

varies signi cantly as the agent moves down the corridor.
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Figure 6.18: The typical generalization response.

Figure 6.19: Results of generalization after a learningpgesn a corridor of width 100.

As can be seen, there is no clear bell-shaped generalizdtimoff for this particular test.
In fact, comparing the above graph to the graph for the corr@ncept experiment (see section
6.2.1) reveals no signi cant differences at all. In othemds the system is not learning to identify
corridors of various widths; it would be more accurate to et the system is identifying corri-
dors in general, and corridors of certain widths are mordyeiaenti able than others. Thus, the
learning is generalized, but not in the manner expected.

It is certainly possible that other generalization tasky io@ handled in a manner closer to

the standards of classical conditioning. These other vestdd perhaps require more sensors of
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different types and a more complex environment. Howevégyriaon this simple test is not a

promising beginning.

6.3.4 Specialization

Specialization is a process which occurs after generaizatVhen confronted initially with two
similar stimuli, the agent associates both with the samelitioned response, due to generaliza-
tion. If, however, further trials are done where the unctinded stimulus is presented when only
one of the two “similar” stimuli are presented, then the dgeiil eventually learn to distinguish
between the two. It can learn to respond differently to the stimuli, even though they were
initially deemed to be “similar”. We thus see that similgiis not only dif cult to de ne, but is
also dependent on the agent's experiential history.

Naturally, the experiments to test specialization are aaresion of the generalization exper-
iments. The exact process described above was done witlvéhsitmuli being two corridors of
different widths (70 and 140). The agent was rst placed ineamironment with a corridor of
width 70, and whenever the agent was in the corridor, its gphsensor was activated. Then, it
was placed in an environment with a width 140 corridor, ascc@ncept sensor was never acti-
vated. The prediction from classical conditioning wouldthat the agent would eventually learn
to distinguish between the two sizes of corridor, even tindutailed to do so initially.

The result from this experiment is that DAC failed to learntls manner, even after 100
repeated trials. Various other combinations of corridatthé were also tried, but with no success.
The agent's predictions did not vary in a statistically sicgmt manner.

This is, of course, unsurprising. Experiments describedipusly in this thesis (see section
6.3.2) have established that DAC does not exhibit extim¢tamd it is unclear how specialization
could possibly work without extinction. Thus, this test diat provide any particularly new insight
into DAC's functioning, other than arguing that its inabjlio lose old associations causes it to

also be unable to ne-tune previously learned associations

6.4 Discussion of Results

I think that it is clear from the results of the previous expents that DAC is not a full model of
classical conditioning. Of course, it was never supposdikta full model, but merely a step in
that direction. After going through the previous test soitexperiments, however, | feel that we
have a much clearer conception of exactly which aspectsatfileg need to be the focus of future
efforts.

The rst major missing aspect in DAC is extinction. As we haaen, without extinction the
agent cannot adapt to a changing environment (see sec8@),&or can it adjust and ne-tune
its learned associations to become more appropriate (stiersé.3.4). Adding this to DAC is

non-trivial: it is not suf cient to merely implement a decgarameter that causes associations
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to disappear slowly over time. A true extinction system dopérhaps be based on looking at
when the predictions of the system are wrong, not purely asehow often they are used.

Such a model may even use a learned inhibition to handle ttiection, and then a decay in

that inhibition could explain spontaneous recovery. Howhsa system would interact with the
concept-formation characteristics embedded in this vieglassical condtioning is unknown.

The second major issue is the limitations in the sorts of tepts” that can be formed. We
have seen how DAC is only capable of forming associationsét fairly simple patterns, and
that it has severe dif culties in forming associations lthe@ negative correlations (see section
6.2.1). To combat this problem, the reader is directed torgidalf of this thesis, which presents
many approaches which seem suitable for nding more compéterns. In particular, the sparse
representation networks (see section 3.4.4) may be a rischece for forming concepts.

A further step to expanding the concept-formation abilityhis system could be surprisingly
simple: add more sensors. With more sensors of differergtstythe system will suddenly have
a much broader range of data with which associations canipeeth This approach may be
compared to TNGS's reliance on huge numbers of randomlyrgézek data pre-processors (see
section 3.3.3).

It is also hoped that this series of experiments has somesirca on our ideas about classical
conditioning. In particular, we have seen some con ict amdae ning what “presenting a stim-
ulus” means. Does it mean presenting it for one instant, er avperiod of time? How long a
period of time? Importantly, how do these alternate pregamnts affect the learning? With DAC,
these options signi cantly change the outcome of the expenits. It is not clear how much this is
the case for natural creatures.

Also, there has been an underlying theme in this paper aloooibining concept formation in
with conditioning. We have seen that these two aspects ofileamay be tightly related, and are,
at the very least, dependent on one another. What use istimonidg without found regularities in
the environment to do the conditioning on? And what use igeptiformation if you are not doing
anything with those concepts? | do not see how these twosssrebe investigated separately, at

least not at this low level of simple behaviours that likehderlie all learning.
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