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A good performane, like a human life, is a temporal a�air: a proess in time.

- Mortimer J. Adler

Abstrat

There are immense problems in developing arti�ial nervous systems for autonomous mahines

operating in non-trivial environments. In partiular, no prinipled methodology is in plae to deide

between solution lasses and representations, and between methods by whih solutions might be de-

veloped using hand-design or searh tehniques. In this paper we apply the tehniques of dynamial

systems theory to the analysis of suessfully evolved robot ontrol systems, in order to identify useful

properties of the underlying ontrol arhiteture. We investigate the suitability of two di�erent neural

network lasses for a roboti visual disrimination task, through analysis of both suessful ontroller

behaviour and ontinued evolution of suessful solutions in environments with modi�ed harater-

istis. We argue that the temporally adaptable properties of the GasNet lass identi�ed through

dynamial systems analysis, and found to be useful in order to re-evolve in modi�ed environments,

are ruial to the evolution of suessful ontrollers for the original environment.

1 Introdution

Identi�ation of ontrol system lasses apable of generating adaptive behaviour over time is a blak

art. Many pratitioners rely on systems that have \always worked in the past", others may use trial-

and-error until suess, but arry out no subsequent analysis of why that partiular system atually

worked. A major problem with suh approahes is that it is extremely diÆult to develop a more general

understanding of the properties neessary for generating adaptive behaviour. In partiular, is a partiular

solution lass appropriate for a partiular problem? Addressing this issue is ruial if we are to suessfully

apply tehniques suh as evolutionary omputation to more omplex adaptive behaviour problems than

at present.

In this paper we develop an approah based on analysis of suessfully evolved solutions. This allows us

to identify properties of network lasses that are potentially useful over a wider lass of problems than

the original task. We then develop a methodology for testing these properties, through analysis of the

evolved solutions in modi�ed environments.

We overview two lasses of neural network, the \GasNet" and \NoGas", used as ontrollers in a visual

shape disrimination problem, and give evidene that the GasNet lass is more amenable to evolutionary

searh than the NoGas lass. We then use the tehniques of dynamial systems analysis to identify possible

reasons for this inreased evolutionary speed, and frame a number of hypotheses for the suitability of the

GasNet lass to robot ontrol. In partiular, we show how the properties of gas di�usion an be used to
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�lter out sensor input noise, produe simple pattern generation networks, and swith networks from one

stable state to another. We hypothesise that these properties lead to GasNet solution spaes in whih it

is easier to �nd good ontrollers than the orresponding NoGas solution spaes.

We go on to ompare the operation of two ontrollers, one GasNet solution and one NoGas solution, whih

utilise the same visual shape disrimination strategy. We argue that the GasNet ontroller is easier to tune

to the partiular harateristis of the environment than the funtionally equivalent NoGas ontroller, and

�nd evidene to support suh an argument through re-evolution of the funtionally equivalent ontrollers

in modi�ed environments. We then extend the re-evolution analysis to a larger sample of previously

evolved GasNet and NoGas ontrollers, showing that GasNet ontrollers are faster to re-evolve in modi�ed

environments. Finally, we evolve GasNet and NoGas ontrollers for a simple pattern generation task,

baking up the hypothesis that GasNet ontrollers are easier to tune to the partiular harateristis of

the environment, or in this ase tuning to the partiular desired output pattern.

We argue that the key feature of the GasNets seen to be useful on this task is the ability to smoothly adapt

to the temporal harateristis of the environment. We further argue that it is this temporal adaptivity

of the GasNet lass that enables the suessful evolution of networks apable of generating adaptive

behaviour. Finally, we propose that if we are to further develop evolvable arti�ial neural network lasses

for adaptive ontrol, the starting point must be from within the lass of temporally adaptive networks of

whih the GasNet is a member.

The paper proeeds as follows. Setions 2 to 5 overview the GasNet and NoGas neural network lasses, and

the evidene for faster evolutionary searh. Readers familiar with the GasNet lass of network ontrollers

may skip these setions. Setion 6 addresses the question of what might lead to di�erenes in evolutionary

searh time, outlining a number of possibilities. In setion 7 we introdue the methods of dynamial

systems analysis, illustrating the tehniques through analysis of both a predator-prey population model,

and the operation of a GasNet ontroller pattern generation subnetwork. In setion 8 we analyse in detail a

single GasNet robot ontroller, with setion 9 omparing two funtionally equivalent ontrollers. Setion

10 details the re-evolution of evolved ontrollers in modi�ed environments, while setion 11 desribes

evolution of simple pattern generation networks. The paper loses with disussion.

2 The GasNet and NoGas lasses

The \GasNet" lass of neural networks (Husbands, 1998; Husbands et al., 1998) inorporates an abstrat

model of a gaseous di�using neuromodulator into a more standard arti�ial neural network. In previous

work the networks have been used in a variety of evolutionary robotis tasks, omparing the speeds of

evolution for networks with and without (the \NoGas") the gas signalling mehanism ative. In a variety

of robotis tasks, GasNet ontrollers evolve signi�antly faster than networks without the gas signalling

mehanism (see e.g. Husbands, 1998; Husbands et al., 1998). Initial work aimed at identifying the reasons

for this faster searh has foused on the searh spaes underlying the GasNet ontrol lass, investigating

the ruggedness and modality of the spaes (Smith et al., 2001b), non-adaptive phases of evolution (Smith

et al., 2001a), and the loal landsape evolvability surrounding solutions (Smith et al., 2002b). In this

paper we analyse suessfully evolved ontrollers in order to highlight the properties of GasNets leading

to faster evolutionary searh.

In the GasNet lass, the instantaneous ativation of a node is a funtion of both the inputs from onneted

nodes and the urrent onentration of gas(es) at the node. The basi network model onsists of onneted

sigmoid transfer funtion nodes overlaid with a model of gas onentration; the gas does not alter the

eletrial ativity (from here on, we shall refer to ativity propagated aross synapse onnetions as

eletrial ativity) in the network diretly but rather ats by hanging the gain of transfer funtion

mapping between node input and output, in other words modulating the node properties.

The networks used in the experiments desribed in this paper onsist of sigmoid transfer funtion nodes

onneted by weighted links. The networks operate in disrete time; on eah \tik of the lok", for all
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nodes i, the output O

t

i

at time-step t is alulated as a funtion of the sum of the inputs to that node,

as desribed by equation 1. This de�nes the basi NoGas lass:
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where C

i

is the set of nodes with onnetions to node i with onnetion weights w

ji

, O

t�1

j

the output of

node j on the previous time-step, I

t

i

the external (sensory) input to node i at time t, and b

i

a genetially

set bias. Eah node has a genetially set default transfer funtion parameter K

0

i

, and for the NoGas lass

this transfer parameter is �xed over the operation of the network: K

t

i

= K

0

i

8t.

In the GasNet ontrol system, in addition to this underlying network in whih eletrial signals ow

between units, an abstrat proess loosely analogous to the gaseous di�using modulators desribed above

is at play. Some units an emit gases whih di�use and are apable of modulating the behaviour of other

units through altering their transfer funtions. As desribed below, this modulation hanges the transfer

parameter K

t

i

as the network runs, thus the atual shape of the node's transfer funtion is altered via the

gas modulation mehanism. This form of modulation allows a kind of plastiity in the network in whih

the intrinsi properties of units are hanging during the operation of the network, that is during the robot

ontroller lifetime. In the next setions we desribe the gas di�usion and modulation mehanisms.

2.1 Gas di�usion in the networks

Two gases are used in the GasNet model, gas 1 and gas 2. Gas 1 inreases the transfer funtion parameter

K in a onentration dependent fashion, while gas 2 similarly dereases K. It is genetially determined,

in other words spei�ed in the ontroller genotype, whih gas eah node will emit. This is one of the

following: gas 1; gas 2; or neither. It is also genetially determined under what onditions emission will

our, one of the following: when the eletrial ativation, or output ativity, of the node exeeds some

threshold; when the onentration of gas 1 in the viinity of the node exeeds some threshold; or when the

onentration of gas 2 in the viinity of the node exeeds some threshold. In the experiments desribed

later in this paper, we typially use an eletrial threshold of 0:5, and a gas onentration threshold of

0:1.

In order to inorporate the gas onentration model, the network is plaed in a 2D plane, with node

positions spei�ed genetially. The network arhiteture is detailed in setion 3, but for now all that

must be borne in mind is that eah node has some position on this plane. A very abstrat model of

gas di�usion is used in order to allow the required omputations to be arried out in real time for robot

ontrol. For an emitting node, the onentration of gas C(d; t) at distane d from the node and time t is

given by equations 2 to 4

1
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where r is the genetially determined radius of inuene of the node (onentration falls to zero for d > r,

whih is loosely analogous to the length onstant of the natural di�usion of NO, related to its rate of deay

1

In the early GasNet work (Husbands et al., 1998), the deay with length is given as the exponential e

�2d=r

. Here we

use the Gaussian e

�(d=r)

2

; experiments show that this di�erene is not signi�ant.
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through oxidation), C

0

is a global onstant, t

e

is the last time at whih emission was initiated, t

s

is the

last time at whih emission eased, and s is a genetially determined onstant. It should be emphasised

that r; C

0

; s are determined uniquely for eah node by the network genotype, and t

e

; t

s

will typially be

di�erent for eah node in the network during operation, so the GasNet network lass is heterogeneous in

the sense that node properties are not the same aross the network.

In other words, the gas onentration varies spatially as a Gaussian entred on the emitting node. The

height of the Gaussian at any point within the irle of inuene of the node linearly inreases or dereases

over time depending on whether or not the node is emitting gas, aording to the funtion T (t) whih

saturates at a maximum of 1 and a minimum of 0. The total onentration at any point in the network

is found by summing the onentrations from all emitting nodes. Figure 1 shows a possible GasNet, with

node 3 emitting gas. Inreased gas onentration is shown entred on the emitting node, extending out

as far as node 2; thus node 3 an a�et node 2 via the modulatory gas e�et despite there being no diret

synapti onnetions.

Node 1

Node 2

Node 4

Node 3

Node 5

Node 6

Figure 1: A hypothetial GasNet, with node 3

emitting gas. Inreased gas onentration is shown

entred on the emitting node, extending out as far

as node 2; thus node 3 an a�et node 2 via the

modulatory gas e�et despite there being no diret

synapti onnetions. All other nodes lie outside

the radius of gas onentration, so are not a�eted

by the gas onentration. However, nodes 5 and 6

are a�eted by synapti output from node 3. Nodes

1 and 4 similarly a�et node 3 through synapti

output.

It should be stressed that the model is a greatly simpli�ed form of the real di�usion proess, and ertainly

does not model the physis of di�usion aurately. Di�usion ours instantaneously, with no spread of gas

onentration over time. In other words nodes lose to the emitting node are a�eted at the same time as

nodes far from the emitting node. Also, individual node ontributions are summed independently without

regard to the loal onentration gradient, thus onentration an ow from areas of low onentration

to areas of high onentration. Finally, the two gases do not interat, so onentration of one does not

a�et the di�usion of the other. However, even suh an abstrat model an apture some of the properties

of real di�using gaseous modulation, and in the next setion we desribe the modulatory e�ets of gas

onentration.

2.2 Modulation by the gases

As outlined above, the GasNet transfer funtion parameter K

t

i

is modulated during the operation of the

network through the onentrations of gas 1 and gas 2, in e�et hanging the gain of the transfer funtion

given by equation 1. This modulation an our on any time-step over the lifetime of the network,

allowing a form of plastiity very di�erent from that found in most traditional arti�ial neural networks.

The transfer parameter K

t

i

for node i on time-step t is desribed by equations 5 to 8:

K

t

i
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t

i

℄ (5)

P = f�4:0;�2:0;�1:0;�0:5;�0:25;�0:125; 0:0; 0:125; 0:25; 0:5; 1:0; 2:0; 4:0g (6)
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f(x) =

8

<

:

0 x � 0

bx 0 < x < N

N � 1 else

(8)

where P[i℄ refers to the ith element of set P, D

t

i

is the node i's pointer into the set P of possible disrete

values that K

t

i

an assume, N is the number of elements in P (13 are shown in equation 6), D

0

i

is

the genetially set default value for D

t

i

(note that in setion 2 we stated that the values for K

0

i

were

genetially determined, however more preisely D

0

i

is genetially determined), C

t

1

is the onentration of

gas 1 at node i on time-step t, C

t

2

is the onentration of gas 2 at node i on time-step t, and C

0

and K

are global onstants (both set to 1 in the experiments reported in this paper ).

In other words, the presene of gas 1 inreases D

t

i

, while the presene of gas 2 dereases D

t

i

. This

modulation is dependent on both the onentrations of gases 1 and 2, and on the genetially spei�ed

value of D

0

i

, so the same onentration of the same gas at di�erent nodes will not in general produe

the same e�et. Figure 2 shows the family of node input-output transfer funtion urves, for a variety of

transfer parameters K.
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Figure 2: Family of urves de�ned by y =

tanh(kx) transfer funtion for a range of values of

K. Eah urve shows the relationship between x

(over the range [-5,5℄) and y for a di�erent value of

K. The following set of K values are illustrated:

f�4;�2;�1;�0:5;�0:25;�0:125; 0; 0:125; 0:25;

0:5; 1; 2; 4g:

Thus over time, eletrial ativity ows around the network as in more standard ANNs, alongside a

hanging pattern of gas onentration. Gas is emitted under ertain onditions, with onentration

inreasing linearly during emission, and dereasing as a Gaussian funtion of distane from the node.

Eletrial ativity an indiretly a�et gas onentration through providing the onditions for nodes to

start or stop emitting gas, while gases indiretly a�et eletrial ativity through modulation of the

input-output funtions of nodes where gas onentration is non-zero. Thus the GasNet model onsists

of two interating dynamial proesses operating over di�erent temporal and spatial sales. In the next

setion we detail the genotype-to-network mapping used in the experiments.

3 GasNet neural networks

The GasNet genotypes speify an arbitrary reurrent ANN, with a large number of the network parameters

under evolutionary ontrol. In partiular, the network genotype spei�ed the size of the network, the

network onnetivity, node properties, and the input morphology (in this ase the input pixel positions).

Setion 3.1 spei�es the individual node enoding sheme, while setion 3.2 desribes how the network

onnetivity is formed.

3.1 The node enoding sheme: genotype to phenotype mapping

Eah GasNet was enoded on a variable sized genotype oding for a variable number of nodes. A genotype

onsisted of an array of integer variables, eah lying in the range [0; 99℄. For ontinuous variables,
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the phenotype value was obtained by normalising the genotype value to lie in the range [0:0; 1:0℄

2

and

multiplying by the relevant variable range. For nominal values, suh as whether the node has a visual

input or not, the phenotype value was alulated through the binary modulo division operator:

p =

�

g=99 ontinuous p

g mod N

nom

nominal p

(9)

where p is the phenotype value, g the genotype value, N

nom

the number of possible nominal phenotype

values, and mod the binary modulo division operator, that is the remainder when g is integer divided by

N

nom

.

Eah node in the network had either 19 or 25 variables assoiated with it, depending on whih of two

possible onnetivity enoding shemes were used (setion 3.2). All variables were under evolutionary

ontrol, see �gure 3. A single genotype thus onsists of a string with length as some multiple of 19 or 25,

oding for a variable number of network nodes.

< genotype > :: (< gene >)

�

where < gene > :: < x >< y > (< Connetion >)

�

< I

on

>< I

r

>< I

�

>< I

thr

>

< re >< TE >< CE >< s >< R

e

>< D

0

>< bias >

Ars: < Connetion > :: < R

p

>< �

1p

>< �

2p

>< R

n

>< �

1n

>< �

2n

>

Points: < Connetion > :: (< Pt

x

>< Pt

y

>< Pt

w

>)

4

Figure 3: The genotype-to-phenotype mapping for the ars and onnetions network shemes desribed in setion

3.2.

The enoding shown in �gure 3 was used to generate networks oneptualised to exist on a 2D Eulidean

plane. < x > and < y > give the position of a network node on the plane. The next 6 or 12 numbers

de�ne the synapti onnetivity of the network; setion 3.2 gives details of the ar and point shemes

used to derive the onnetivity. The rest of a gene is interpreted as follows. < I

on

> is a binary swith

that determines whether or not a node has visual input. If it does, the following three variables enode

the polar oordinates of a pixel in the amera image that the node will take input from, and a threshold

below whih input from that pixel is ignored (visual input is normalised to lie in the range [0:0; 1:0℄, this

is the range of the threshold). See setion 3.3 for details of the visual input to the network.

The value of < re > determines whether the node has an exitatory reurrent onnetion, an inhibitory

reurrent onnetion or no reurrent onnetion to itself. < TE > provides the irumstanes under whih

the node will emit a gas. These are one of either: not at all; if the node eletrial ativity exeeds some

threshold; if the onentration of gas 1 at the node site exeeds some threshold; or if the onentration of

gas 2 at the node site exeeds some threshold (the eletrial and gas thresholds are set at 0:5 and 0:1 as

desribed in setion 2.1). < CE > spei�es the gas that the node an emit under the orret ondition,

either gas 1 or gas 2. < s > is used to ontrol the rate of gas build up/deay as desribed earlier by

equation 3, its value ranges from 1 to 11. < R

e

> is the maximum radius of gas emission, this ranges

from 10% � 50% of the plane dimension. < D

0

> is the default value for the index used in equation 7

to determine the transfer parameter value K

t

i

for eah node. Finally, < bias > is the bias term b

i

in the

node transfer funtion (equation 1), restrited to the range [�1:0; 1:0℄.

The enoding sheme used was the same for both the GasNet and NoGas lasses, with the NoGas

genotypes e�etively enoded with a number of introns. For the NoGas ontrollers, ertain of the genotype

parameters were ignored ompletely. These parameters were < TE >;< CE >;< s >;< R

e

>, enoding

for the parameters of gas di�usion at eah node.

2

This an be regarded as an approximation to a ontinuous [0; 1℄ range; experiments show no signi�ant di�erene

between the two setups.
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3.2 The network onnetivity: Ars and points

Two di�erent shemes were used to alulate the synapti onnetions between the nodes, see �gure 4.

The �rst, the ar sheme, onnets the start node to any nodes lying in either the positive or negative

onnetion ars surrounding the node position in the 2D node plane. The radius and angles of the two ar

segments are spei�ed genetially (< R

p

>< �

1p

>< �

2p

>< R

n

>< �

1n

>< �

2n

>), while onnetion

weights are set at �1, depending on whether the onneted node lies in the positive or negative onnetion

ar. The seond point sheme onnets the start node to the nodes that lie losest to eah of a set of four

onnetion points. The x; y node plane positions of eah of the onnetion points, and the onnetion

weights in this sheme are set genetially (< Pt

x

>< Pt

y

>< Pt

w

>)

4

. See �gure 4 for details.

Θ2p

Θ2n

Θ1p

Θ1n

Excitatory Link

Inhibitory Link

Node

Rp

Rn

(a) Connetion ars

x1, y1

x2, y2

Excitatory Link

Inhibitory Link

Node

(b) Connetion points

Figure 4: Connetivity of the network is de�ned by either positive and negative ars, or irles entred on x; y

oordinates. Networks develop and funtion on a 2D plane.

3.2.1 Connetion ars

R

p

gives the radius of the `positive' ar, �

1p

its angular extent and �

2p

its orientation. R

n

, �

1n

and

�

2n

similarly de�ne a `negative' ar. The radii range from zero to half the plane dimension, the angles

range from zero to 2�. The ars are illustrated in �gure 4(a). Any node that falls within a positive ar

has an exitatory (+1 weighting) link made to it from the ar's parent node. Any node that falls within

a negative ar has an inhibitory (-1 weighting) link made to it from the ar's parent node. If the ars

interset, nodes lying in the intersetion will have both exitatory and inhibitory links made to them.

3.2.2 Connetion points

x; y oordinate points are used to de�ne node onnetivity. Eah node has four outgoing onnetions.

Two variables < Pt

x

>;< Pt

y

>, speify eah link, de�ning the entre of a irle on the network plane.

The nearest node to this entre within a threshold radius (10% of the plane) has a onnetion made to it.

If no node lies within the threshold radius, no link is made. The onnetion weight is spei�ed through

the third link variable < Pt

w

>. When this onnetivity sheme is used, the six variables of the ars

sheme are replaed with the twelve needed to enode the four irle entres and weights. An alternative
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was also investigated whereby two of the points enoded +1 weighted onnetions, and two �1 weighted

onnetions, but no signi�ant di�erenes were seen.

3.3 The network visual input and motor output

Node plane

Visual inputVisual Input node

Motor node (fixed position)

Hidden node Gas diffusion radiusInhibitory link (-1)

Excitatory link (+1)

Visual input positions in camera



Node 4

Left-forward motor

Right-forward motor Left-back motor

Node 5

Node 6

Node 7

Right-back motor

Node 7

Node 6

Figure 5: An example GasNet evolved network. The node positions, onnetions and gas radii are shown in

the node plane on the left (gas radii are shown only where the node emits gas during operation). Note the four

motor nodes in the four orners of the plane: it was found to be signi�antly more diÆult to evolve suessful

ontrollers when these nodes were allowed to hange position. The positions of visual input pixels are shown in

the right half of the diagram, showing the nodes whih reeive sensory input. This example network is analysed

in setion 8.

The �rst four nodes on the genotype (the genotype was required to ode for at least �ve nodes) were

taken to be the motor nodes, di�ering from other nodes in that their position on the plane was �xed to

the four orners. Visual input was not permitted to the motor nodes. The four motor nodes were used

to drive the two wheels as follows. Eah wheel had assoiated `forward' and `bak' motor nodes, with

eah of the nodes onsidered to be `on' (+1:0) if the node ativity was greater than zero, and `o�' (0:0)

otherwise. The atual wheel speeds are set proportional to the output of the relevant forward node minus

the output of the relevant bakward node. In other words, the output of the network for eah wheel an

be one of three values: If both the forward and bak motor nodes for that wheel are either on or o�, the

output is 0. If the forward node is on while the bak node is o�, the output is 1. If the bak node is on

while the forward node is o�, the output is �1. This may seem a rude model of motor ontrol, but it

allows evolved ontrol systems to operate suessfully on transfer to the real world.

External sensory information an be input to the network at any of the network nodes, exept for the

motor nodes. As desribed above, eah node enodes whether or not it reeives visual input, and the

polar oordinates of the input in the visual �eld. At eah time-step, the node reeives the intensity level
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at the pixel position in the visual �eld spei�ed by the node input oordinates. This intensity is saled

to the range [0; 1℄, with only visual input intensity higher than the node visual input threshold atually

input to the node.

This ompletes the de�nition of the GasNet lass; a set of sigmoid transfer funtion neurons with weighted

onnetions, overlaid with a model of di�using gaseous neuromodulation. Figure 5 shows an example of

a suessfully evolved network. In the next setion we desribe the evolutionary robotis visual shape

disrimination experiment used in this paper.

4 The robot task

4.1 The Gantry robot

(a) The gantry robot and arena (b) The gantry robot amera

Figure 6: The Gantry robot. (a) The horizontal girder moves along the side rails of the arena, and the robot is

suspended from a platform whih moves along this girder. (b) The amera inside the top box points down at the

inlined mirror, whih an be turned by the stepper-motor beneath, to give the illusion of rotation. The gantry

is best thought of as a two-wheeled robot with �xed amera pointing straight-forward; dediated hardware and

software is used to translate motor ommands to the relevant girder, platform and mirror movements, and the

amera input is transformed to appear as if reeived from an onboard amera pointing straight-forward.

The robot task made use of a minimal simulation of the Sussex Gantry Robot (Jakobi, 1998a). Figure 6

shows the real gantry robot.

The robot onsists of a CCD amera suspended from the gantry frame, with the amera pointing straight

down at a mirror angled at 45

o

to the vertial (see �gure 6(b)). The gantry frame an move freely along

the x; y; z axes, and the mirror an rotate around the vertial axis, in order to simulate the e�et of the

robot rotating.

Dediated software takes input as left and right motor ommands, and onverts the movement into x; y; �

translations for the gantry frame and amera (note that in the work desribed in this paper, movement

along the z diretion is not used). The visual input is also transformed, in order to appear as if to ome

from a robot at the x; y; z position of the gantry head, and looking along a diretion spei�ed by the �

angle of the mirror. This transformed visual input appears as a amera view of 20 pixels radius with an

aeptane angle of 39

o

, giving approximately 1250 pixels in total that an potentially be used as input

by the evolutionary proess.

The gantry is overall best thought of as a two-wheeled robot with a amera pointing straight-forward, in

9



whih the experimenter has aess to ertain global position information that is not passed diretly to

the evolutionary proess. This position information may be used in the �tness funtion, for example to

determine how lose the robot approahed to the triangle.

The minimal simulation of the gantry was developed by Jakobi (1998a,b). The base set of robot-

environment interations upon whih behaviour ould be reliably based, onsisted of only two members.

First, the way in whih pixels of the amera image that are sampled from the walls of the arena (but

not from the oor or above the walls) return grey-sale values within ertain intervals: over the range

[14; 15℄ for pixels that projet onto either the triangle or the square, and over the range [0; 13℄ for pixels

that projet onto the walls of the arena, but not onto either the triangle or the square. Seond, the way

in whih the robot moves in response to motor signals.

To ensure that ontrollers were both base set robust and base set exlusive, in other words that ontrollers

relied only on base set interations and not on implementation aspets of the model, all other parameters

were modelled unreliably. Over the possible ranges of pixel inputs, [14; 15℄ for pixels that projet onto

either the triangle or the square, [0; 13℄ for pixels that projet onto the walls of the arena, and the entire

[0; 15℄ range for other ases, values were returned unreliably (remember that the base set aspet is the

range over whih the pixel values are returned, not the way in whih they are set over this range). This

unreliability was set at the start of eah trial, with possible e�ets varying pixel inputs as a funtion of

time, or as a funtion of the orientation of the robot, or �xed for the entire evaluation at a random level

set before eah trial. The momentum of the robot was also made unreliable, with the momentum being

�xed at the start of eah trial. Similarly, small o�sets were added to the wheel speeds, amera horizontal

and vertial angles, and the positions of the shape verties, with the o�sets set randomly at the start of

eah trial. For further details see Jakobi (1998a,b).

4.2 Visual shape disrimination

Starting from an arbitrary position and orientation in a blak-walled arena, the robot must navigate under

extremely variable lighting onditions to one shape (a white triangle) while ignoring a seond shape (a

white square). Fitness over a single trial was taken as the fration of the starting distane moved towards

the triangle by the end of the trial period, and the evaluated seletive �tness for eah ontroller was

returned as the weighted sum of N trials of the ontroller from di�erent initial onditions:

F =

2

N(N + 1)

i=N

X

i=1

i(1�

D

F

i

D

S

i

) (10)

where D

F

i

is the distane to the triangle at the end of the ith trial, D

S

i

the distane to the triangle at the

start of the trial, and N the number of trials, sorted in desending order of (1�

D

F

i

D

S

i

). Thus good trials,

in whih the ontroller moves some way towards the triangle, reeive a smaller weighting than bad trials,

enouraging robust behaviour on all trials. In pratie we use 16 trials, hanging the relative positions of

the triangle and square, and the starting orientation and position of the robot, on eah trial.

Evaluations are arried out in a minimal simulation (Jakobi, 1998a) of the gantry robot, desribed in

setion 4.1, with large amounts of noise added to sensor and motor readings, so that ontrollers will

transfer to robots operating in the real environment. Figure 7 shows the �tness distribution of a single

genotype evaluated 10; 000 times in the minimal simulation environment, while �gure 8 shows a sreen

shot of a simulated evaluation. As in many problems requiring ontrollers to provide sensor-to-motor

mappings over time, �tnesses are extremely time onsuming to evaluate (in the work presented here,

evaluating a sample of 10

6

�tnesses takes around 24 hours on a Pentium II 700MHz mahine) and

inherently extremely noisy. Suess in the task was taken as an evaluated �tness of 1:0 over thirty

suessive generations of the evolutionary algorithm.

GasNet ontrollers were fully under evolutionary ontrol, with the network onnetivity, node properties,

and input morphology (in this ase the input pixel positions) spei�ed by a network genotype. Full details
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Figure 7: The �tness distribution of a

single genotype evaluated 10; 000 times in

the minimal simulation evaluation environ-

ment. 95% of the �tnesses lie in the range

[0:1343; 0:2856℄, with possible ontroller �t-

ness 2 [0; 1℄.

Figure 8: Sreen shot of the simulated arena and robot. The bottom-right view shows the robot position in the

arena with the triangle and square. Fitness is evaluated on how lose the robot approahes the triangle. The

top-right view shows what the robot `sees', along with the pixel positions seleted by evolution for visual input.

The top-left view shows the urrent ativity of all nodes in the neural network. The bottom-left view shows the

robot ontrol neural network: the visual input positions in the amera are shown on the right, with the nodes they

onnet to plaed in the network plane on the left. The motor output nodes RF, LF, RB and LB are shown in the

four orners of the network plane, and high gas onentrations are shown by shading, suh as that surrounding

node 8.

of the GasNet ontrollers used in the gantry visual disrimination task are given in setion 3, along with

the genotype-to-network mapping.

In the next setion we detail the evolutionary algorithms used in the visual shape disrimination experi-

ments.
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5 The evolutionary mahinery

5.1 Mutation and reombination operators

Three mutation operators were applied to solutions with probability �% during the evolution and re-

evolution experiments reported in this paper (for the experiments detailed here, � = 4). First, eah

integer in the string had a �% probability of mutation in a Gaussian distribution N(0; 10) entred on

its urrent value (20% of these mutations ompletely randomised the integer). Seond, there was a �%

hane per genotype of adding one neuron to the network, inreasing the genotype length by 19 or 25

depending on the synapse onnetivity used (setion 3.2). Third, there was a �% hane per genotype of

deleting one randomly hosen neuron from the network, dereasing the genotype length by 19 or 25 (note

that these two operators heked that the length did not pass ertain minimum and maximum bounds;

the network was not allowed to ontain greater than 50 neurons or fewer than 5 neurons).

It should be noted that the value of � = 4 used in these experiments is a muh larger level of mutation than

typially used in arti�ial evolution optimisation (and ertainly muh larger than in biologial evolution).

However, lower levels of mutation produe extremely slow evolution of suessful solutions, mainly due

to the extremely high level of neutrality seen in the solutions found through evolution (Smith, 2002).

For the NoGas networks, ertain parameters oding for the gas di�usion details were simply ignored, with

parts of the genotype e�etively oded as introns. This does not a�et the mutation rate per lous as

the rate is spei�ed per genotype lous, however it does a�et the expeted mutation rate per genotype.

Thus the expeted number of mutations for a GasNet ontroller is greater than the expeted number of

mutations for the same sized NoGas ontroller, by a fator of the ratio of their lengths (25=21 for the point

enoding sheme, 21=17 for the ar enoding sheme, desribed in setion 3.2). However, experiments in

whih the mutation rates were varied by muh greater fators showed omparable results (Smith, 2002).

Reombination operators were also investigated, with two di�erent types implemented. The �rst version

used a version of two-parent uniform rossover (Mithell, 1996), however instead of eah genotype lous

having equal probability of being taken from eah parent, eah neural network node had equal probability

of being taken from either parent. In other words the unit of rossover was the network node rather than

the genotype lous. The seond version used two-parent one-point rossover (Mithell, 1996) in whih a

ut-point was hosen at random; geneti material lying before this point was taken from parent A, while

geneti material lying after the ut-point was taken from parent B.

5.2 The evolutionary algorithm

The evolutionary experiments desribed in this paper used a steady-state distributed evolutionary algo-

rithm. A population of 100, initially randomly generated, solutions were arranged on a 10x10 grid, with

all initial �tnesses evaluated. In a breeding event, a single solution was piked at random on the grid,

and a mating pool of 9 solutions reated, onsisting of the randomly piked solution plus the 8 nearest

grid neighbours. Rank-based roulette seletion was used to selet a single parent, and the o�spring re-

ated through appliation of the mutation operator. The o�spring was plaed bak into the mating pool,

replaing a solution hosen through inverse rank-based roulette seletion, that is seletion proportional

to the solution rank in order of asending �tness. The parental �tness was probabilistially re-evaluated

to avoid over-valued solutions ontributing too muh geneti material to the next generation. One gen-

eration was spei�ed as 100 suh breeding events, and the evolutionary algorithm run for a maximum of

10; 000 generations, or until suessful solutions had been produed.

In all experiments, the evolutionary populations were initially seeded with networks ontaining ten nodes,

and evolution was ontinued until the best �tness found did not fall below 1:0 over thirty onseutive

generations.
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5.3 Speed of evolution results

The evolution of solutions based on the GasNet lass onsistently produes suessful robot ontrol

solutions in signi�antly fewer evaluations than required by the evolution of solutions based on the

NoGas lass. This result holds over a number of di�erent evolutionary algorithms, with a number of

di�erent mutation and reombination rates used, inluding �xed length genotypes, uniform and one-

point rossover reombination, and mutation rates a�eting from 1% to 62% of the genotype loi. Two

di�erent network onnetivity shemes were also investigated, ars and points, with both seen to show

faster GasNet evolution. For full results, see Smith (2002). Figures 9 and 10 show example results.
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(a) Uniform, one-point, and no reombina-
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(b) No reombination, varying mutation rate

�

Figure 9: The mean number of evaluations required for (a) Uniform, one-point and no reombination, and (b)

No reombination, varying mutation rate � 2 f0:01; 0:02; 0:04; 0:08; 0:16; 0:32; 0:64g. Data averaged over twenty

runs of the distributed evolutionary algorithm. The error bars represent 95% on�dene limits for the mean, the

number above the bar gives the perentage of runs failing to �nish in 1; 000; 000 evaluations.

In the next setion, we outline possible reasons for this evolutionary speed di�erene.

6 Why are GasNets more evolvable?

What are the reasons for the speed of evolution di�erenes seen between the GasNet and NoGas spaes,

shown in �gures 9 and 10? We an frame many of the possible reasons as properties of the underlying

�tness landsapes. There may simply be many more suessful GasNet than NoGas solutions, simplifying

the searh problem. The underlying searh spaes may di�er in their ruggedness, loal modality, degree

of neutrality or some other property, making it easier for searh proesses to �nd solutions of inreasing

�tness. More subtle e�ets may also be important, as properties of the �tness landsapes may not be

homogenous aross the spae; for example the GasNet spae may ontain smaller regions that are easier

to searh in some way.

In previous work, Smith et al. (2001b) have shown no evidene for inreased numbers of GasNet solutions

in the searh spae; massive random sampling shows very few solutions of either lass above 50% �tness,

even though this �tness is relatively easy to �nd through direted searh. It is entirely possible that the

number of high �tness GasNet solutions is signi�antly larger than the number of NoGas solutions, but

this is extremely diÆult to show without exhaustive sampling of the spae, whih is learly impratial.

Similarly, it was seen that the spaes do not measurably di�er in ruggedness and modality at di�erent

�tness levels. Smith et al. (2002a) develop the tehnique of �tness evolvability portraits, using the �tness
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(b) Ars and points onnetivity shemes

Figure 10: The mean number of evaluations required for (a) variable and �xed length genotypes, and (b) Ars

and points onnetivity shemes. Data averaged over twenty runs of the distributed evolutionary algorithm. The

error bars represent 95% on�dene limits for the mean, the number above the bar gives the perentage of runs

failing to �nish in 1; 000; 000 evaluations.

distribution of the searh spae surrounding solutions to build up a desription of the �tness landsape.

However, applying suh measures to the GasNet and NoGas searh spaes shows no measurable di�erenes

in ruggedness, modality and neutrality between the landsapes underlying the two lasses (Smith et al.,

2002b).
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Figure 11: Robustness of GasNet and NoGas solu-

tions; Fitness of the one-point mutations from sam-

ple of suessfully evolved ontrollers. Fitness eval-

uated in non-noisy simulation.

The ontrol lasses are also of similar robustness to mutation; �gure 11 shows the �tness distribution of all

one-point mutations from the sample of suessfully evolved ontrollers used in setion 10. The robustness

of the GasNet and NoGas ontrollers are extremely similar; in both ases roughly 80% of mutations are

neutral, with 10% atastrophi (it should be noted that the mutation operators used during optimisation

typially mutate more than one loi value, so the observed degree of neutrality will be signi�antly smaller

than this 80%).

However, the understanding of searh diÆulty in terms of the �tness landsape properties is not simple

in suh a omplex searh spae. The di�erenes between the spaes may be small enough to be obsured

by variation; it may be the ase that searh proesses only `reognise' these di�erenes when iterated

over large numbers of �tness evaluations. It is also possible that the distintions between the spaes

are not measurable by the tehniques at hand; some other property of high-dimensional searh spaes

may be involved. In this paper we develop a di�erent approah, through analysis of suessfully evolved
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ontrollers, allowing us to identify general properties of the GasNet and NoGas lasses that may hold in

a wider lass of problems than just the visual shape disrimination task used here. In the next setion

we introdue the tehniques of dynamial systems analysis.

7 Dynamial systems analysis

The dynamial systems approah analyses how a system behaves over time, in partiular investigating

the future behaviour of the system given its urrent state. In this setion we outline the basi theory

appliable to dynamial systems in general, and apply the theory to a simple example system from

the biologial literature; the predator-prey population model. We then investigate the behaviour of

an example subnetwork from the robot ontroller analysed more fully in setion 8, showing how the

dynamial systems method an fully explain the pattern generation properties of this subnetwork.

A full desription of dynamial systems theory and analysis is well beyond the sope of this paper; there

is an extremely large body of literature dealing with a variety of dynamial systems, inluding physial

(see for example Goldstein, 1980), biologial (see for example Rosen, 1970; Rubinow, 1975) and hemial

systems (see for example Gavalas, 1968). However for the sake of ompleteness, in this setion we give a

brief overview; for further information the reader should onsult a standard text.

7.1 Introdution to dynamial systems

A dynamial system is de�ned by some �nite set of state variables, and some dynamial law by whih the

state variables hange over time. If the state variables are suÆient to desribe the system fully, the system

is said to be autonomous. If other variables need to be taken into aount to desribe the full behaviour,

the system is said to be non-autonomous. A non-autonomous system an generally be transformed into

an autonomous system by simply inorporating the external variables into the desription. However this

is not always useful or pratial, for example in systems in whih the dynamial law hanges over time.

Given the initial onditions for the state variables, the dynamial law desribes the future behaviour of

the system. Thus we an represent the system as a single point in the phase spae of state variables

(both the phase and state spae refer to the spae produed when mapping one dimension for eah state

variable); the phase spae portrait of the system shows the movement over time of this point, and hene

the evolution of the system. Typially the number of state variables is greater than three, so this state

spae annot be viewed diretly, and only two or three variables of interest are mapped in suh a way.

For example, even a single atomi partile requires six state variables for its position and veloity in

spae: three variables for the x; y; z oordinates, and three for the P

x

; P

y

; P

z

momenta (in this ase, the

dynamial law would typially take the form of the fore exerted on the partile through an external

�eld). Thus in most systems of interest, we will have to fous on partiular measurements of the system.

In general, we are unlikely to be able to solve the dynamial equations diretly. However, we may be able

to �nd the equilibrium states (or �xed points) of the system, at whih the system remains unhanged

over time. These will orrespond to points in the phase spae at whih the derivatives of all the state

variables are zero, and an be stable (if perturbed, the system will return to the �xed point) or unstable

(if perturbed, the system will not return to the �xed point). A simple example of a system with two

suh �xed points is that of a needle balaned on a table. The �rst �xed point is the needle in a perfet

upright position, whih is learly unstable sine any small movement will inevitably topple the needle.

The seond �xed point is the needle lying on its side - the stable equilibrium it will fall into from nearly

every other initial position

Over time the system is likely to fall into these stable attrator states, or osillate with �xed period in

some limit yle behaviour (although haoti behaviour is also possible). Generally, the goal of dynamial

systems analysis is to �nd this long-term behaviour given the dynamial law and initial states of the sys-

tem. A related goal is to desribe the onditions under whih the system may fall into another behaviour,
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through approahing a di�erent attrator state. Suh analysis has been arried out to understand the

behaviour of a variety of evolved robot ontrollers, most espeially in the work by Beer and o-workers

(see for example Beer, 1990; Beer and Gallagher, 1992; Beer, 1995; Chiel et al., 1999; Calvatti and Beer,

2001). However, in this paper we are interested in analysing the ontrollers operation in terms of how

easy or diÆult suh ontrollers may be to evolve, espeially when using di�erent robot ontrol lasses. In

the next two setions, we apply the basi tehniques to two example dynamial systems; a predator-prey

population model, and an evolved pattern generation GasNet ontroller.

7.2 An example dynamial system: Predator-prey populations

The lassi biologial dynamial system is the predator-prey (or host-parasite) population model famously

studied by both Lotka (1925) and Volterra (1926). In this model we are interested in how the populations

of the two speies vary over time, espeially with respet to initial onditions of the state variables.

Consider a population x. Over time, the population inreases exponentially in size through breeding, but

with a self-limiting fator dependent on the urrent population size, for example due to overrowding or

limited food resoures. Thus we derive the di�erential equation for the rate of hange of the population:

dx

dt

= a:x(1� b:x) (11)

Now onsider a prey population x, and a predator population y. Both populations hange over time as

given by equation 11, although we neglet the self-limiting fator for the prey population as we assume

the predators never let the prey population reah suh a level. However, there is an additional population

interation term when both predator and prey are present: the probability of a predator-prey enounter

is proportional to the produt of both the predator and prey populations. Thus the predator population

inreases, and the prey population dereases, with rate proportional to the produt of the two populations.

From these premises we derive the di�erential equations, or dynamial laws, governing the rate of hange

of the two populations:

dx

dt

= a:x(1� y) (12)

dy

dt

= b:y(1� :y + x) (13)

the Volterra equations for the predator-prey system. In the rest of this paper, we onsider disrete time-

step neural networks in whih the ativity of a network node is derived diretly, rather than through

di�erential equations. Thus we use the disrete form of the above equations (Sandefur, 1990, gives a

good introdution to disrete dynamial systems):

x

t+1

� x

t

�t

= a:x

t

(1� y

t

) (14)

y

t+1

� y

t

�t

= b:y

t

(1� :y

t

+ x

t

) (15)

the hange in x and y from time-step t ! t + 1. Without loss of generality, we an take the time-step

�t = 1. Thus we have our dynamial equations for the predator-prey system A

t+1

= F(A

t

):

�

x

t+1

y

t+1

�

=

�

a:x

t

(1 + 1=a� y

t

)

b:y

t

(1 + 1=b� :y

t

+ x

t

)

�

(16)

Now, we are interested in the behaviour of the system over time, so we need to �nd the equilibrium

values. When the system is in equilibrium, the state variables do not hange over time: dA=dt = 0, or

A

t+1

= A

t

. Solving for our system, we �nd three equilibrium values at (0; 0); (0; 1=) and (� 1; 1).
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The next question is whether these equilibrium states are stable or unstable to small perturbations, and

is the system likely to onverge to one of the states? In general, the stability of a system with m state

variables is found through the partial di�erential matrix R of the m-vetor valued funtion F at the �xed

points A of the system:
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We �nd the stability of the equilibrium values from the norm of the partial di�erential matrix R, that is

the absolute value of the largest eigenvalue r:

jjRjj = jlargest rj (19)

where (R� rI) = 0 (20)

jjRjj =

8

<

:

< 1 stable equilibrium value

> 1 unstable equilibrium value

= 1 inonlusive; need to look at higher derivatives

(21)

Let us suppose our partiular predator-prey system has values a = 1:3; b = 0:4;  = 4:0. Now the

equilibrium values are (0; 0); (0; 0:25) and (3; 1), and we have the partial di�erential matrix R:

R =

�

2:3� 1:3y

t

�1:3x

t

0:4y

t

1:4� 3:2y

t

+ 0:4x

t

�

(22)

Solving for our equilibrium values shows that the points (0; 0) and (0; 0:25) are unstable (jjRjj > 1), but

that (3; 1) is stable (jjRjj < 1). We also have omplex eigenvalues r for the point (3; 1), whih suggests

that the system will osillate around this point (Sandefur, 1990). Figure 12(a) shows the phase plane

analysis of the system around this point. The prey and predator populations are shown on respetively

the x and y axes. The vetor ow �eld (shown by the set of bakground arrows) represents the size

and diretion of the movement of the system from any initial starting state. The heavy line shows the

evolution of the system over time, when started in the neighbourhood of the point (3; 1). The equilibrium

state is shown by a �lled blak irle; as predited, the �xed point is stable, with the system osillating

around this equilibrium state.

In �gure 12(b) we show the basins of attration of the �xed point; from whih starting points does the

system fall into the stable equilibrium state? As before, the stable equilibrium state is shown by a �lled

blak irle. From eah initial starting point, the system was iterated for a �xed number of time-steps,

stopping if any state variable fell outside some given range. The plot shows the number of time-steps

for whih the system remained stable from eah initial state. White areas show initial population values

for whih the system falls towards the stable �xed point. Blak areas fall quikly away from the �xed

point, with intermediate shades representing initial values whih take some time to fall away from the

�xed state, that is systems with initial parameters that nearly fall into the limit yle. We an see that

the plot shows omplex features - it is oneivable that the system shows fratal features for this stability

(the well-known Mandelbrot set is generated through the same stability analysis of an iterated mapping

in the omplex plane, see for example Devaney, 1989).
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Figure 12: Figure 12(a) shows the phase plane analysis of the system around the �xed point. The prey and

predator populations are shown on respetively the x and y axes. The vetor ow �eld (shown by the set of

bakground arrows) represents the size and diretion of the movement of the system from any initial starting

state. The heavy line shows the evolution of the system over time, when started in the neighbourhood of the

point (3; 1). The equilibrium state is shown by a �lled blak irle; as predited, the �xed point is stable, with the

system osillating around this equilibrium state. Figure 12(b) shows the basins of attration for the �xed point;

from whih initial populations does the system fall into the �xed point? White areas show initial population

values for whih the system falls towards the stable �xed point. Blak areas fall quikly away from the �xed

point, with intermediate shades representing initial values whih take some time to fall away from the �xed state.

Thus we an haraterise the behaviour of the system over time. There are three �xed equilibrium points

of the system, two of whih are unstable, one stable. If the system is initially plaed exatly on either

unstable equilibrium, it will remain there inde�nitely. However, any small perturbation will result in the

system moving quikly away from these points. If plaed in the viinity of the stable equilibrium state,

the system will osillate around this �xed point inde�nitely. The initial values from whih the system will

reah this equilibrium value tend to luster around the �xed point, but show omplex struture further

out from the point. Thus for a wide range of initial parameters the system will reah stability, with both

the predator and prey populations osillating over time. In the next setion, we apply the tehniques to

a more relevant example, an evolved robot ontrol subnetwork.

7.3 A disrete dynamial pattern generation network

In this setion we onsider a two node pattern generation network, part of the evolved robot ontroller

analysed more fully in setion 8, and shown in �gure 13. In partiular, we want to see how the properties

of both the individual nodes and the gas di�usion mehanism lead to pattern generation.

In the robot ontroller shown in �gure 13, the two node subnetwork in the top-right of the node plane

ats as a pattern generator, in whih the output of the right-bak motor node `spikes' one every eight

time-steps. Figure 14 gives the behaviour of the two nodes over 100 time-steps, showing node output (the

bottom two graphs Y

2

; Y

5

), node transfer parameter (graphs K

2

;K

5

), and the onentrations of the two

gases (graphs C

1

Y

2

; C

1

Y

5

; C

2

Y

2

; C

2

Y

5

). Note the spiking behaviour shown in the motor node Y

2

graph;

one in every eight time-steps, the output of this motor node is positive.

As we shall see in setion 8.2, this spiking behaviour is ruial to the �nal �tness of the solution; with

18



Node plane

Visual inputVisual Input node

Motor node (fixed position)

Hidden node Gas diffusion radiusInhibitory link (-1)

Excitatory link (+1)

Visual input positions in camera



Node 4

Left-forward motor

Right-forward motor Left-back motor

Node 5

Node 6

Node 7

Right-back motor

Node 7

Node 6

Figure 13: Open-loop GasNet visual disrimination network. Gas di�usion radii are shown only where di�usion

ours. The node plane is shown with x; y positions of eah node, the onnetions between eah node (indiating

whether exitatory/inhibitory) inluding reurrent onnetions, and the position in the visual �eld of any external

inputs.

both motors on, the robot will move straight-forwards. However, the right-bak motor node turning on

one in every eight time steps produes a slow lokwise turn in the robot, whih results in the robot

aring bak towards the triangle. So, how is this spiking behaviour generated?

The two systems are desribed by the dynamial equations for the nodes, governed by the input-output

transfer funtion (equation 1). For our two-node system, the right-bak motor node (Y

2

) reeives an

inhibitory reurrent input, and an exitatory input from the seond node in the network (Y

5

). The

seond node does not reeive any input, and neither node reeives external sensor input. Both nodes

are potential gas di�usion emitters, with the motor node emitting gas 1 (thus inreasing K on nearby

nodes) when output ativity is high, and node 5 emitting gas 2 (dereasing K on nearby nodes) when

the onentration of gas 1 at node 5 is high. Thus we an write down our dynamial equations for the

nodes:

Y

t

2

= tanh

�

K

t

2

(�Y

t�1

2

� Y

t�1

5

)� 0:66

�

(23)

Y

t

5

= tanh

�

K

t

5

:(0) + 0:48

�

� 0:44 (24)

Note that beause node 5 reeives no input, reurrent or otherwise, it has a onstant output over time of

approximately 0:44 for all values of the transfer parameter K

5

.

The transfer parameter K is dependent on the urrent onentrations of gas at the node (setion 2.2),

and as shown in �gure 14 hanges during the operation of the network. To onsider the dynamial system

as autonomous, we would need to inorporate the hange of K over time into the equations. However, we

an instead regard the dynamial equations as non-autonomous, hanging over time through responding

to external input, and solve for the values of K that the system is likely to enounter. By default (the

genetially determined value) K

2

= 4, thus our motor node system is simply the one-dimensional:

y = tanh (4(x� 0:44)� 0:66) (25)
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Figure 14: For nodes 2 (the right-bak motor node) and 5, involved in the `spiking' subnetwork, the �gure shows

data over a run of 100 time-steps for node output Y 2 [�1; 1℄, node transfer parameter K 2 [�4; 4℄, positive and

negative gas onentrations C

1

; C

2

2 [0; 1℄ at the node site. Area between the output and time axis is shaded for

larity.

with Y

t

2

rewritten as y, and Y

t�1

2

rewritten as x. By omparison with the M -dimensional ase, we �nd

the �xed point(s) by setting y = x and solving, obtaining a single �xed point for the motor node at

y = x = a = Y

2

� �0:48. Now we want to know the stability of this point a. For the one-dimensional

ase we an use the �rst di�erential diretly (Sandefur, 1990):

�

�

�

�

dy

dx

�

�

�

�

y=x=a

8

<

:

< 1 stable equilibrium value

> 1 unstable equilibrium value

= 1 inonlusive; need to look at higher derivatives

(26)

Now, for the tanh transfer funtion used in this paper:

y = tanh (kx+ b) (27)

�

�

�

�

dy

dx

�

�

�

�

y=x=a

=

�

�

K(1� a

2

)

�

�

(28)

whih gives us the �xed point at Y

2

� �0:48 as unstable. Intuitively, we an understand this instability

as a result of the high level of inhibitory feedbak on the motor node. The output over time of the node,

in the absene of high gas onentrations, will thus be an osillating �1 2-yle. In other words the node

behaviour is a limit yle of period 2, in whih node output alternates between +1 and �1, see �gure

15(a).

However, when the ativity of the motor node is high, whih will happen on every other time-step one

transients have died down, the motor node will emit gas 1. The distane between the nodes in the

subnetwork is suh that the onentration of gas 1 near node 5 will ause node 5 in turn to emit negative
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gas 2. Consideration of the onentration of this negative gas in the region of the motor node shows that

K

2

will derease from 4 to 0:25, seen in �gure 14). Appliation of �xed point stability analysis shows that

the new one-dimensional system for the motor node possesses a stable equilibrium point at Y

2

� �0:55,

understood intuitively through the muh smaller inhibitory reurreny on the motor node. Figure 15

shows the output over time of the motor node under the two gas onentrations.
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= 4 has an unstable �xed point at
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� �0:48. When gas onentration is low,

the behaviour is a �1 2-yle.
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(b) K

t

2

= 0:25 has a stable �xed point at

y

2

� �0:56 when gas onentration is high.

Figure 15: y

t

2

= tanh (�K

t

2

(y

t�1

2

+ 0:44) � 0:66) behaviour over time for di�erent K

t

2

values (modulated by the

onentration of gas 2 at the node). The gas onentration mediated swith between these two dynamial states

is the basis for pattern generation.

Now, this stable �xed point will result in the motor node easing to emit gas due to low output ativity,

whih in turn results in node 5 easing to emit gas, as emission was stimulated by the presene of gas 1.

The fall in gas onentration will then inrease K

2

, destabilising the �xed point. The motor node will

return to the �1 2-yle, and the pattern repeats.

Thus we have explained the pattern generation subnetwork. The base behaviour of the motor node is

a �1 2-yle osillation, providing the single spike seen in �gure 14. This spike stimulates gas emission

from both nodes, resulting in the reation of a stable �xed point to whih the motor node returns. This

equilibrium state is destabilised by the subsequent deay of gas onentration, and the pattern repeats.

Thus it is the interation between the gas and eletrial mehanisms in the network that produes the

�xed limit yle spiking behaviour; high eletrial ativity of node 2 stimulates gas emission, whih in

turn inhibits node 2, in turn stopping the emission of gas whih in turn �nally allows node 2 to return

to high eletrial ativity.

In a number of other suessfully evolved GasNet ontrollers we have observed similar subnetworks; it

appears that the properties of the GasNet lass lend themselves readily to pattern generation. In the

next setion, we desribe the operation of an entire robot ontrol network used for visual disrimination

in a noisy environment, using the tehniques developed in this setion.

8 Open-loop GasNet ontroller analysis

In this setion we analyse in detail the operation of the GasNet ontroller shown in �gure 13. It is seen

that the mehanism underlying suessful triangle disrimination is a permanent open-loop swith from

one dynamial system to another, regulated by gas modulation of node properties. The open-loop nature

of the swith ignores further external input. We show that the dynamial systems approah an be used
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to identify a number of possible reasons for the evolvability of the GasNet lass, and also analyse the

failure modes of the ontroller.

Figure 16: Two evaluations of the open-loop ontroller analysed in setion 8, showing the arena with the triangle

and square shapes on the wall. The robot is represented by the blak irle, with the line showing the forward

diretion. Note how the robot urves bak in towards the triangle one it starts moving forwards, due to the

pattern generation subnetwork analysed in setion 7.3.

Figure 13 shows the network layout for the open-loop GasNet ontroller, while �gure 16 shows two

evaluations of the ontroller. In both evaluations, the robot rotates ounter-lokwise until after it has

rotated past the triangle, at whih point it moves forwards with a slow lokwise aring turn whih brings

it bak to the triangle.

The ontroller behaviour is based on the two subnetworks in the right-hand orners of the node plane

(�gure 13); both are required for aurate triangle �nding behaviour, despite the lak of expliit interation

between the two networks. The �rst pattern generation subnetwork (onsisting of nodes 2 and 5) was

desribed fully in setion 7.3. This subnetwork produes a periodi output of the right-bak motor node,

in whih the motor node is on for one time-step in every eight, produing the slow lokwise turn one

the triangle has been rotated past. The seond subnetwork (onsisting of nodes 3, 6 and 7) is desribed

in setion 8.1, and produes a �xed behaviour in whih the subnetwork permanently swithes from one

stable state to another, again one the triangle has been rotated past. Both networks rely heavily on gas

di�usion e�ets (disabling gas di�usion results in the failure of both networks), and both are required for

the overall triangle disrimination behaviour.

The network is desribed by the node transfer funtions:

y

t

0

= tanh (�0:5y

t�1

0

+ 0:48) � 0:31 (29)

y

t

1

= tanh (0:16) � 0:16 (30)

y

t

2

= tanh (K

t

2

(�y

t�1

2

� y

t�1

5

)� 0:66) (31)

y

t

3

= tanh (K

t

3

(�y

t�1

3

+ y

t�1

7

) + 0:62) (32)

y

t

4

= tanh (0:25y

t�1

4

� 0:28) � �0:35 (33)

y

t

5

= tanh (0:48) � 0:44 (34)

y

t

6

= tanh (K

t

6

(y

t�1

6

+ I

t

6

)� 0:38) (35)

y

t

7

= tanh (K

t

7

(y

t�1

7

+ I

t

7

)� 0:32) (36)

where �xed values for the transfer funtion parameters K

t

i

are shown only for nodes where no inrease

in gas onentration ours during evaluation.

None of the three nodes not involved in the subnetworks reeive any external input; nodes 0 and 1

(respetively the right and left-forward motor nodes) stabilise at onstant positive values given by y

0

=
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tanh (�0:5y + 0:48) and y

1

= tanh (0:16) respetively, while node 4 stabilises at a onstant negative value,

y

4

= tanh (0:25y � 0:28) but is unused by the network. Thus both forward motor nodes are ontinually

on, and behaviour is governed by the two subnetworks ating on the bak motor nodes. In the next

setion we analyse the swithing subnetwork.

8.1 Stable state swithing
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Figure 17: For nodes 3 (the left-bak motor node), 6 and 7, involved in the `swith' subnetwork desribed fully

in setion 8.1, the �gure shows data over a run of 100 time-steps for node output Y 2 [�1; 1℄, node transfer

parameter K 2 [�4; 4℄, positive and negative gas onentrations C

1

; C

2

2 [0; 1℄ at the node site. Area between

the output and time axis is shaded for larity.

In the open-loop ontroller, the only nodes reeiving external visual input are in the subnetwork involved

in the triangle disrimination network, onsisting of the left-bak motor node 3, and nodes 6 and 7. The

subnetwork, shown in the bottom-right orner of the node plane (�gure 13), regulates the left-bak motor

node through eletrial synapse and gas di�usion e�ets. Both nodes 6 and 7 reeive reurrent and visual

input, while the motor node 3 reeives reurrent input, plus an input from node 7. Figure 17 shows the

output Y , transfer funtion parameter K, and gas onentrations C

1

; C

2

for the three nodes. The three

node subnetwork produes a dynami system whih an produe a permanent swith from one stable

state to another, when a spei� ombination of high external sensory input is reeived. Note that we

are treating the subnetwork as a non-autonomous dynamial system, reeiving external input from the

environment. External visual input is reeived by nodes 6 and 7, but only when the visual input level

is above the genetially spei�ed node input thresholds. We analyse the subnetwork behaviour for the

ases when inputs are below threshold, and when inputs are above visual input threshold levels.
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8.1.1 Inputs below threshold

Both nodes 6 and 7 have the same high visual input threshold, with only intensities above 0:84 having

any e�et. So we an investigate the ase when input is below this, where the equations simplify to

y

t

6

= tanh (y

t�1

6

� 0:38) and y

t

7

= tanh (2y

t�1

7

� 0:32) (in the absene of gas, K

t

3

= �1;K

t

6

= 1 and

K

t

7

= 2). The stable solution to these equations is y

3

� 1:0; y

6

� �0:8; y

7

� �1:0. Note that y

7

has

3 stable �xed points, but applying �xed point stability analysis (setion 7) shows that from an initial

position of y

7

= 0:0, the y

7

� �1:0 solution is reahed. However, the other y

7

solutions are ruial when

input is above threshold, a situation that is analysed in the setions below. Both nodes 6 and 7 emit

negative gas when output ativity is high, but this is not the ase for the stable point. In the presene of

negative gas, node 3 emits positive gas - again this is not the ase for the stable point.

Thus we have the general piture when no visual input is reeived above the threshold level of 0:84. Both

visual input nodes 6 and 7 are highly inhibited, and the left-bak motor node 3 is highly exited. No

nodes are emitting gas, and gas onentrations are zero in the neighbourhood of eah node. Thus the left

motor is inhibited, and the robot irles ounter-lokwise, due to the right motor being on for seven in

eight time-steps (remember that the spiking subnetwork on the left-bak motor node only turns o� the

motor one in eight time-steps, see setion 7.3). So what happens when inputs are above threshold?

8.1.2 Inputs above threshold

The following analysis assumes inputs take their maximum value of 1:0, but is qualitatively the same

for all values above the visual input thresholds of 0:84. In the presene of high input to both nodes

(again in the absene of high gas onentrations), the equations simplify to y

t

6

= tanh (y

t�1

6

+ 0:62)

and y

t

7

= tanh (2y

t�1

7

+ 1:68); the stable solution is y

3

� �0:8; y

6

� 0:9; y

7

� 1:0. Note how all the

node output ativities have reversed; the previously inhibited nodes 6 and 7 are now exited, while the

previously exited left-bak motor node is now inhibited. The input threshold has produed an on/o�

`swith'. The immediate e�et of high visual input to node 7 is to turn o� the left-bak motor node

through the inhibitory onnetion, thus turning on the left motor, so the robot goes in a straight line.

However, the piture is ompliated by the emission of gas from the subnetwork nodes. Both nodes 6 and

7 emit negative gas when highly ative, and node 3 emits positive gas in the presene of high negative

gas onentrations. Three di�erent senarios are investigated: where both inputs go high at the same

time, and where either input goes high �rst.

In the model of gas di�usion used, gas onentration builds up aording to equations 2 to 4, reahing

a maximum onentration C = C

0

e

�(d=r)

2

. The node 6 harateristis ensure negative gas spreads out

very quikly over a large area: the onentration of negative gas at node 7 due to node 6 emission quikly

a�ets the transfer funtion (on the very next time-step). The small distane between nodes 6 and 7,

and the high value of the radius of gas emission r for node 6, produe a gas onentration that drops K

7

from 2 to �0:25. Now y

t

7

= tanh (�0:25y

t�1

7

� 0:57) has a stable negative solution (�0:43) even with high

positive sensory input. Thus, if node 6 reeives bright input before node 7, node 7 is inhibited despite

reeiving bright input, so does not inhibit the left-bak motor node, and the robot ontinues rotating.

The ase where both inputs are bright at the same time is very similar to the ase where node 6 reeives

high input before input 7, due to the faster di�usion of gas from node 6. Node 7 will inhibit the left-bak

motor node briey (even more so as the ombined negative gas from nodes 6 and 7 is onentrated enough

to a�et the left-bak motor node transfer funtion parameter) but the negative gas build up due to node

6 quikly inhibits node 7, and the left-bak motor node will return to its previous exited state where

y

3

� 1:0.

Finally we turn to the ase where node 7 reeives bright input before node 6. The immediate e�et is

for node 7 to inhibit the left-bak motor node. The seondary e�et is for node 7 to emit negative gas.

Despite the slower di�usion of gas from node 7 gas than from node 6, it is still enough to inhibit node 6 so

long as node 7 reeives bright input for four or more time-steps before node 6; this time period is ruial to
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the behaviour. Even with high input, node 6 annot now produe output suÆient to emit gas so annot

inhibit node 7. Now, the three solutions to the node 7 equation with no input (y

t

7

= tanh (2y

t�1

7

� 0:32))

mentioned previously ome into play. From an initial ondition of y

7

� 1:0, even with no external input,

there is a stable solution at y

7

� 0:9. Thus the network is now in a highly stable state with node 7 output

at near maximum with or without external input, node 6 inhibited due to negative gas emitted by node

7, and the left-bak motor inhibited due to node 7 synapse output. The overall e�et is to swith the

network into a permanent open-loop behaviour where further external input is irrelevant. Due to the

inhibition of the left-bak motor node, the left motor is on and the robot ontinues straight-ahead. So

under what onditions does node 7 reeive bright visual input four or more time-steps before node 6?

8.1.3 Visual input positions, suess and failure modes

Figure 13 shows that the visual inputs to nodes 6 and 7 are vertially aligned in the visual �eld, with

7 diretly below 6. Sanning aross the square will ause both nodes to reeive bright input at roughly

the same time, thus node 7 will be inhibited by node 6, and the robot will ontinue rotating. However,

sanning aross the triangle will ause node 7 to reeive bright visual input signi�antly before node 6,

thus inhibiting node 6. This in turn will ause the network to swith into the permanent open-loop state,

and the robot will ontinue straight-ahead. Table 1 summarises the behaviour of the robot as determined

by the swithing subnetwork.

Node 6 input Node 7 input Node reeiving Left-bak motor node Robot motion

�rst bright input

dark dark - exited w rotation

bright dark 6 exited w rotation

bright bright 6 exited w rotation

bright bright same time exited w rotation

dark bright 7 inhibited straight-forward

bright bright 7 inhibited straight-forward

Table 1: Summary of `swith' subnetwork behaviour, showing the robot motion based on the visual input to

nodes 6 and 7. The robot rotates ounter-lokwise (w) for the ases where no bright visual input is reeived,

and for the ases where node 6 reeives bright input before or at the same time as node 7. The robot moves

straight-forward only when node 7 reeives bright input signi�antly before node 6. Due to the visual input to

node 6 being higher in the visual �eld than the input to node 7, node 7 will only reliably reeive bright visual

input before node 6 when the triangle is sanned aross. Thus the robot will rotate past the square, but move

straight-forwards when the triangle is enountered.

We an also see the failure modes from this analysis. It is the four (or more) required time-steps of bright

input to node 7, without bright input to node 6, that produes visual input noise �ltration. However,

an extremely noisy environment may `fool' the ontroller into the permanent dynamial system swith,

through only node 7 reeiving bright input. Suh a situation may our with ashes of light aimed at only

ertain parts of the arena, whih might be erroneously identi�ed as triangles by the ontroller. Similarly,

bright shapes with angled edges leading to node 7 reeiving input before node 6 will be identi�ed by the

ontroller as triangles, and approahed. Finally, triangles with edges insuÆiently angled to allow input

7 to be bright for 4 time-steps before input 6 will not be approahed by the ontroller. Among these

unidenti�ed triangles will be upside-down triangles and right-angled triangles.

In the next setion, we summarise the overall behaviour of the ontroller, and draw some general priniples

of GasNet robot ontroller operation.
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8.2 Open-loop GasNet ontroller summary

The overall behaviour of the robot ontroller an be summarised as follows. In the absene of bright

visual input, the robot rotates ounter-lokwise, with the right motor permanently exited, and the left

motor inhibited by the swithing subnetwork. This behaviour ontinues, until the robot sans aross a

bright objet, suh that the lower half of the visual �eld reeives bright input signi�antly before the

upper half. This permanently swithes o� the left-bak motor node, exiting the left motor and ausing

the robot to move straight-forward. Now the e�et of the spiking subnetwork is seen; one every eight

time-steps the right motor is turned o�, thus the robot moves in a slow lokwise ar bak towards the

triangle, whih it has rotated past. So we have explained in full the behaviour seen in the two example

evaluations, shown in �gure 16.

The two subnetworks analysed are ruial to the understanding of the robot ontroller triangle disrimi-

nation, in onjuntion with the robot-environment oupling. The primary robot-environment oupling is

the permanent swith mehanism; sanning aross the square will produe no hange in the robot motion

beyond a slight slowing of the turn. By ontrast, sanning aross the triangle will lok the robot into a

�xed behaviour in whih no subsequent external input a�ets the network, and with both motors full on

the robot goes forward towards the bright objet. The seond subnetwork is used by the ontroller to

ompensate for both the relatively slow time-sale of the permanent swith mediated by the gas di�usion,

and the momentum of the robot. While rotating past the triangle the permanent swith behaviour will

ome into play, but the robot motors will take several time-steps to overome momentum and frition to

atually produe the straight motion. It is the right motor turning o� one in every eight time-steps that

adjusts for this, turning the robot bak towards the triangle. Without this spiking behaviour, the robot

would overshoot and run into the wall past the triangle; it is the lak of ative `losed-loop' traking that

produes the need for this ompensation.

In the next setion we hypothesise why the GasNets network lass is more evolvable than the NoGas

network lass.

8.3 Why are GasNets good for evolution?

From this detailed analysis of the open-loop ontroller, we an frame some preliminary onlusions on

the usefulness of the mehanisms utilised in GasNet ontrollers for the generation of adaptive behaviour

over time.

First, tunable pattern generation is extremely easy to produe using GasNet ontrollers. In general,

pattern generation is based on limit yle behaviour, with the system yling through some set of states

(Beer et al., 1999; Chiel et al., 1999). As we have seen from the analysis in setion 7.3, the spiking

subnetwork used by the open-loop ontroller operated in exatly suh a fashion; the high �tness of the

ontroller is due to this subnetwork slowly turning the robot bak towards the triangle. This leads to

our �rst hypothesis for why the GasNet lass is more evolvable than the NoGas lass; the GasNets are

more amenable to being `tuned' to the spei� harateristis of the environment. The pattern produed

in whih the right-bak motor node spiked one in every eight time-steps was perfetly tuned to the

speed and size of the robot wheels, the size of the triangle, and the size of the arena in whih the robot

operated. A di�erent pattern would not have produed suh high �tness in this environment, and the

same pattern would not have produed suh high �tness in a di�erent environment. We hypothesise that

the same kind of environmental tuning is more diÆult with the NoGas lass.

The tuning of generated patterns is losely related to our seond hypothesis regarding useful properties in

the GasNet lass for adaptive behaviour; the ability to swith between stable states, in other words a dis-

ontinuous hange of behaviour determined by external input, and the ability to mediate suh swithing.

This is learly possible to ahieve without gas modulation, but the features of the gas di�usion mehanism

allow suh a swith to take plae over several time-steps, through the build-up of gas onentration levels.

This was seen in the funtionally equivalent mehanisms of setion 8.1, where the swith from rotation
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to straight-forwards motion was inhibited by bright input, only when suh bright input was reeived over

several time-steps. Thus the swithing an be based on input patterns reeived over time, not just at a

single time-point.

Finally, the ability to �lter out noisy input is straight-forward to produe when using the GasNet ontroller

lass, similarly through requiring that input be onsistent over several time-steps. This was seen in the

requirement that bright input was reeived several time-steps earlier by visual input nodes lower in the

visual �eld, before the ontroller responded (setion 8.1). Thus bright ashes and other noisy environment

e�ets were eÆiently exluded by the robot ontroller.

In the next two setions, we investigate these hypotheses in two ways. First, we analyse and ompare

two solutions utilising the same shape disrimination strategy, one GasNet ontroller and one NoGas

ontroller, in order to ompare the underlying mehanisms. Seond, we re-evolve previously evolved on-

trollers in an environment with di�erent harateristis to the environment in whih they were originally

evolved, in order to ompare the tunability of the mehanisms used by the evolved ontrollers.

9 Funtionally equivalent GasNet and NoGas ontrollers

Two ontrollers, one evolved using the GasNet lass and one evolved using the NoGas lass, were analysed

using the dynamial system methods of the previous setions. It was found that both employed the same

strategy for the triangle-square disrimination task, based on a method of timing the duration for whih

bright visual input was reeived in the upper half of the visual �eld. Due to triangles being narrower at

the top than squares, this allows the ontrollers to suessfully disriminate between the two shapes. In

this setion we investigate the GasNet and NoGas mehanisms for timing the duration over whih bright

input is reeived, and argue that the GasNet mehanism is simpler to tune to the harateristis of the

environment.

Right-forward motor

Node 4

Node 8

Node 9

Left-back motor

Node 8

Node 4

=

Visual input

GasNet controller NoGas controller

Figure 18: The two funtionally equivalent subnetworks analysed in setion 9. Both employ the same strategy for

triangle-square disrimination; timing the duration of reeiving bright input in the upper half of the visual �eld.

Due to triangles being narrower than squares at the top, this allows the shapes to be suessfully disriminated.

Figure 18 shows the two funtionally equivalent subnetworks; both ontrollers time the duration over

whih bright input is reeived from visual inputs in the upper half of the visual �eld. A seond visual

input mehanism (not shown) ats simply as a \bright objet �nding detetor". This bright objet �nding

mehanism is `later' in the visual �eld than the timing mehanism, in the sense that the position of visual

input and diretion of robot rotation is suh that the bright objet �nding mehanism will `see' things

after the timing mehanism. The bright objet behaviour is inhibited if the duration of bright input to
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the timing mehanism is suÆiently long, whih is the ase when sanning aross the square, but not

when sanning aross the triangle. Thus the ontroller approahes the triangle, but rotates past the

square. In the next setions we desribe the methods by whih the GasNet and NoGas solutions produe

suh a timing mehanism.

9.1 The GasNet \timer"

With the GasNet lass, it is simple to produe a timing mehanism that retains ativity for some time

after the initial input has been reeived. A single node reeiving visual input, and with the property

that gas emission ours when the node output ativity is high, will start emitting gas when bright input

is reeived. The gas onentration built-up during emission will take some time to deay one bright

input is no longer reeived, with this deay time being a funtion of the genetially spei�ed rate of gas

onentration build-up. Remember from equations 2 to 4 (setion 2.1) that gas onentration deays in a

Gaussian fashion with distane from the emitting node, but inreases linearly over time during emission,

and dereases linearly over time one emission stops. As the time taken for gas onentration to build

up to a maximum is spei�ed by the genotype, the mehanism is simple to tune to the harateristis of

the environment.
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Figure 19: Gas onentration C

0

over 200 time-steps. A square wave external visual input of inreasing width

is applied as input, to illustrate the di�erenes between the output seen for the triangle and for the square. Area

between the output and time axis is shaded for larity.

For this timing mehanism to a�et the ontroller operation, we require the built-up gas onentration

to a�et the motor node ativity. Again, this is relatively simple to e�et, as the gas onentration an

modulate either the motor node, or as in the ontroller analysed here, another visual input node whih

has an output onnetion to the motor node. The left-hand side of �gure 18 shows the subnetwork

responsible for the GasNet timing mehanism; bright input to nodes 8 and 9 produes onentration of

gas 1 at node 4. If gas onentration is high enough, the inrease in the node 4 transfer parameter K

inreases output suÆiently to inhibit the right-forward motor node. Thus the robot rotates lokwise

past the square, but moves straight-towards the triangle. In the next setion we desribe the intuitively

less-obvious operation of the NoGas timing mehanism.

9.2 The NoGas \timer"

A fully onneted three-node subnetwork based around a motor node (see the right-hand side of �gure

18) allows the NoGas solution to reate exatly the same timing mehanism seen in the previous setion.

Dynamial systems analysis of the subnetwork shows a single stable equilibrium point for the system
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when visual input is below the input threshold, and a di�erent single stable equilibrium when visual

input is above threshold.

The key to the timing mehanism is how the system moves between these �xed points when the visual

input hanges. The fully onneted feedbak nature of this three node system makes it impossible to give

a full quantitative desription of the behaviour, but qualitative features an be outlined. With no bright

input to node 8, the system settles into the �rst stable �xed point desribed above, while with bright

input the system moves towards the seond stable point. One bright input is no longer reeived, the

system slowly deays bak to the �rst stable �xed point.
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Figure 20: Node output data (ranging from �1) for nodes 3, 4 and 8 over 200 time-steps. A square wave external

visual input is applied to node 8 to illustrate the two �xed points of the system, and the slow deay from one

state to the other. Area between the output and time axis is shaded for larity.

The feedbak between the nodes ensures that the deay between stable states is fairly slow, produing

an e�et whih an build-up and deay over time, in a similar fashion to that of gas onentration. The

longer that bright input is reeived for, the nearer to the high visual input stable state the system reahes,

and the longer it takes to deay bak to the low visual input stable state. Figure 20 shows the outputs

for the three nodes in the system when a square wave visual input is applied to node 8, and learly shows

the slow hange from one state to another when visual input hanges from dark to bright, and vie versa.

It takes roughly ten time-steps for node 3 to reah the bright input stable state, and roughly thirty steps

to deay bak to the dark visual input regime. The motor node ativity y

3

is the ruial value; as this

goes from negative to positive, the left motor is inhibited, and the robot does not approah the bright

objet. Only when suÆient bright input has been reeived will this our, for instane when the square

has been sanned aross.

Thus we have our NoGas timing mehanism. Instead of using the GasNet build-up and deay of gas

onentration to modulate motor node properties, the NoGas version uses a fully onneted subnetwork

whih deays from one stable equilibrium state to another, depending on the level of visual input reeived.
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As proposed in setion 8.3, we hypothesise that the GasNet version is easier to tune to the spei�

harateristis of the environment than the NoGas version. In the next setion, we test this hypothesis

for the two funtionally equivalent ontrollers through re-evolving the ontrollers in environments with

modi�ed properties.

10 Re-evolution of ontrollers in modi�ed environments

The hypothesis that GasNet ontrollers are easier to tune to the spei� properties of the environment

than NoGas ontrollers an be investigated through the behaviour of the ontrollers in environments with

modi�ed properties. In this setion, we analyse ontrollers when evaluated in two separate environments,

where the robot motor speeds are respetively set to double and quarter the usual motor speeds. This

has the e�et of making the robot move at a di�erent speed in the arena, in partiular spinning past

the two shapes at very di�erent rates to the speeds enountered during the original evolutionary phase.

Note that the environments ould similarly be modi�ed through altering the size and properties of the

shapes, and/or the size of the arena. Other modi�ations ould also investigate the e�et of re-evolving

from lesioned or similarly modi�ed ontrol networks. However, in this work we fous on modi�ation of

the robot motor speeds.

10.1 Re-evolution of the funtionally equivalent ontrollers

We would expet the ruial timing mehanisms desribed in setion 9 to be a�eted by evaluation in

environments with modi�ed robot speeds, with the time spent spinning past the triangle and square muh

shorter in the double speed environment, and muh longer in the quarter speed environment. However, the

hypothesis that the GasNet mehanism is in some sense easier to tune to the partiular properties of the

environment an be tested through seeding the ontrollers bak into the evolutionary proess, with �tness

based on evaluation in the modi�ed environments. We an then re-run the evolutionary proess from the

ontroller seeds, assessing how long before ontrollers of 100% �tness are again ahieved. Although this

will not tell us diretly how easy the ontroller was to originally tune to the environment, we argue that

the evolutionary tuning proesses involved are similar. In other words, if it is muh easier to tune the

evolved GasNet ontroller to the spei� harateristis of the modi�ed environment, it would also have

been muh easier to tune the GasNet ontroller to the original environment.

The two ontrollers were used to seed the initial populations for the distributed evolutionary algorithm

(setion 5.2), and evolution repeated twenty times for eah ontroller in eah modi�ed environment until

ontrollers of 100% �tness were observed. In this re-evolution, we allow only the parts of the genotype

involved in the timing mehanism to be a�eted by the evolutionary proess; we are assessing how easy

it is to modify the atual mehanism itself, not the rest of the network.

Results for re-evolution studies of the two ontrollers are given in table 2. In the double speed environ-

ment, both ontrollers drop in �tness to well under 20%, with no signi�ant di�erenes seen between the

�tness of the two ontrollers. However, there is massive di�erene in the number of generations required

to re-evolve ontrollers of 100% �tness; the GasNet ontroller is muh easier to tune to the modi�ed

properties of the environment (10 generations on average ompared with 409 generations). In the quarter

speed environment, the GasNet ontroller ahieves signi�antly higher �tness than the NoGas ontroller,

but the di�erene in the number of generations required to reah 100% �tness ontrollers is muh larger

than might be predited by this �tness di�erene (30 generations on average ompared with 591 gener-

ations). So in both modi�ed environments, the GasNet ontrollers are muh easier to evolve suessful

ontrollers than would be predited from their �tnesses; the GasNets are more tunable.

From the results presented in this setion, we an support the hypothesis of the previous setion; namely

that the GasNet ontrollers are easier to tune to the spei� properties of the environment than the

orresponding NoGas ontrollers. In the next setion we extend this to a sample of previously evolved
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Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 20 20 20 20

Mean evaluated �tness (�) 0.17 (0.074) 0.15 (0.066) 0.36

�

(0.10) 0.21 (0.016)

Mean re-evolution generations (�) 10 (5)

��

409 (336) 30 (31)

��

591 (346)

Median re-evolution generations 10

��

360 19

��

608

Table 2: Data for the two funtionally equivalent networks shown in �gure 18, re-evolved in two modi�ed

environments. The robot motors are set to double-speed and quarter-speeds respetively, and the two ontrollers

evaluated 100 times for �tness, then used to seed the initial populations for the evolutionary algorithm until 100%

�tness ontrollers were produed (20 runs were performed for eah ontroller on eah ondition). The evaluated

�tnesses, and mean, median and standard deviation of the number of generations of re-evolution required to

reah 100% �tness ontrollers are shown, with signi�ant di�erenes between the GasNet and NoGas ontrollers

highlighted (both parametri T-tests and non-parametri Mann-Whitney U tests were performed

�

p < 0:05;

��

p <

0:01).

ontrollers.

10.2 Re-evolution of a sample of ontrollers

It may be argued that the two funtionally equivalent ontrollers investigated are based on a mehanism

whih is in priniple easier to both produe and tune using the GasNet ontrol lass. Thus re-evolving the

timing mehanism in modi�ed environments will unfairly favour the GasNet ontroller. By ontrast other

mehanisms may favour NoGas lasses; here we ounter this argument through extending the re-evolution

analysis to a random sample of forty previously evolved GasNet and NoGas ontrollers of 100% �tness.

Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 200 200 200 200

Mean evaluated �tness (�) 0.27 (0.13) 0.26 (0.18) 0.35 (0.27) 0.29 (0.19)

Mean re-evolution generations (�) 107 (190)

��

240 (363) 108 (229) 116 (252)

Median re-evolution generations 36

�

49 13

��

21

Table 3: Data for a sample of twenty GasNet and twenty NoGas ontrollers, re-evolved in two modi�ed environ-

ments. The robot motors are set to double-speed and quarter-speeds respetively, and the two ontrollers evaluated

100 times for �tness, then used to seed the initial populations for the evolutionary algorithm until 100% �tness

ontrollers were produed (10 runs were performed for eah ontroller on eah ondition). The evaluated �tnesses,

and mean, median and standard deviation of the number of generations of re-evolution required to reah 100%

�tness ontrollers are shown, with signi�ant di�erenes between the GasNet and NoGas ontrollers highlighted

(both parametri T-tests and non-parametri Mann-Whitney U tests were performed

�

p < 0:05;

��

p < 0:01).

The forty ontrollers were used to seed the initial populations for the distributed evolutionary algorithm,

whih was run until ontrollers one more showed 100% �tness, with �tness evaluated in the same double-

and quarter-speed environments desribed in the previous setion. Table 3 shows the results for the two

onditions, averaged over ten evolutionary runs of eah of the forty ontrollers. The results are not as

striking as those from the funtionally equivalent ontrollers, lending some weight to the hypothesis that

the previous analysis unfairly favoured the GasNet mehanism. However, the GasNet ontrollers still

showed signi�antly faster re-evolution than the NoGas ontrollers. In the double speed environment,

both samples of ontrollers fell to average �tnesses of 0:26, but the GasNet ontrollers on average re-

evolved in 107 generations ompared with 240 generations for the NoGas ontrollers. In the quarter

speed environment, the di�erenes are muh smaller, with omparable mean numbers of generations for
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re-evolution, however there is evidene of faster evolution from the median numbers of generations. Thus

from our sample of GasNet ontrollers, we also see evidene of signi�antly faster re-evolution to modi�ed

environments; the GasNets are more tunable.

In the next setion, we investigate the hypothesis further, using a more abstrat �tness evaluation. We

evolve GasNet and NoGas networks for a entral pattern generation problem, in whih the output of

a single node is evaluated against a test pattern. We then use suessfully evolved networks to seed

the initial populations for a re-evolution environment where �tness is evaluated against a di�erent test

pattern.

11 Evolving entral pattern generator networks

In this setion, we test the GasNet and NoGas lasses further in a entral pattern generation (CPG)

experiment. We evolve fully onneted GasNet and NoGas networks, with output tested against some

required test pattern, then re-evolve suessful ontrollers against di�erent test patterns. We argue that

the inreased evolutionary speed seen for the GasNet lass over the NoGas lass on both the original

evolution and the re-evolution experiments lends support to the hypothesis that the GasNet lass is more

tunable to the harateristis of the environment, whih in this ase orrespond to the desired pattern

output.

11.1 The entral pattern generation network

The networks used in the CPG experiment onsisted of four fully-onneted nodes, inluding reurrent

onnetions (other size networks were also investigated, with omparable results). Connetion weights

between the four nodes were genetially spei�ed, and were onstrained to lie in the range f�1; 1g. Eah

node reeived a genetially spei�ed �xed bias input, and the same tanh input-output transfer funtion

was used as in previous experiments:
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where O

t

i

is the ith node ativity at time-point t, K

t

i

the transfer funtion parameter, �xed for the NoGas

networks, but able to vary for the GasNet networks, w

ji

the onnetion weight from node j to node i,

and b

i

the bias input to node i.

Gas di�usion and modulation ourred exatly as desribed for the robot visual disrimination problem

in setion 2. Eah node had a set x; y position in the gas di�usion plane, and was able to emit one

of two gases, respetively inreasing or dereasing the transfer funtion parameter K

t

i

of nearby nodes.

However, it should be emphasised that in the CPG networks the eletrial arhiteture, in other words

the pattern of synapti onnetions between the nodes, was not spei�ed arbitrarily in the gas di�usion

plane, but spei�ed diretly on the genotype in terms of the weights between nodes. Figure 21 shows the

network setup.

The NoGas genotype onsisted of 18 integers in the range [0; 99℄, enoding the 4 node biases b

i

, 4 node

transfer parameters K

i

, and 10 onnetion weights w

ji

. The GasNet genotype onsisted of the NoGas

genotype plus an extra six parameters per node for the gas di�usion parameters (the type of gas emitted

< CE >, the onditions under whih gas emission ours < TE >, the radius of gas emission r, the

gas build-up parameter s, and the x; y o-ordinates of the node in the 2D gas plane), thus the GasNet

genotype onsists of 42 integers in the range [0; 99℄.
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pattern output

Figure 21: The fully-onneted entral pattern

generator experiment networks. Eah node pro-

vides output to, and reeives input from, ev-

ery other node in the network (inluding itself).

Weights are spei�ed by the genotype over the

range f�1; 1g, and the �nal output pattern is spe-

i�ed as the output of the �rst node in the network.

11.2 Fitness evaluation

Four simple test-patterns were used, all onsisting of a number of ones followed by a number of zeros,

repeating for the entire 200 time-steps of �tness evaluation. The Ten:Four pattern onsisted of a repeated

blok of ten ones followed by four zeros. Similarly Eleven:Five, Eleven:Seven, and Seven:Five

onsisted of repeated bloks of the relevant numbers of ones and zeros. Other patterns showed omparable

results.

Networks were evaluated over 200 time-steps, with �tness evaluated on the output of the �rst node in

the network. The pattern output of the network was spei�ed as one if this node had positive ativity,

zero otherwise. The full pattern over the 200 time-steps was ompared with the test pattern, reeiving

positive sore for orret pattern output on eah time-step. The sores alloated for eah orret output

were weighted to give equal weighting to ones and zeros, with �tness saled to the range [0; 1℄. In other

words, eah output one that mathed the required test pattern sored inversely proportional to the total

number of ones in the test pattern, while similarly eah zero that mathed the required test pattern

sored inversely proportional to the total number of zeros in the test pattern.

11.3 Evolutionary results

The distributed steady-state evolutionary algorithm desribed in setion 5 was used. Two other evo-

lutionary algorithms showed omparable results (a generational tournament algorithm and simulated

annealing algorithm). Similarly, the mutation and reombination operators desribed in setion 5 were

used. We report results only from experiments using mutation rate � = 8%, with no reombination.

Table 4 and �gure 22 show the evolution results for the four test patterns. Results are given for the

number of evaluations required before suessful ontrollers of 100% �tness are evolved. For eah of the

test patterns, �fty evolutionary runs were arried out for the GasNet and NoGas lasses. We see learly

that the GasNet lass evolves suessful pattern generators signi�antly faster than the orresponding

NoGas lass, typially in about half the number of evaluations.

In �gure 23 we show the results for the re-evolution of suessful ontrollers, when evaluated against a

di�erent test pattern from the original evolution. The �fty ontrollers for eah of the four test patterns

evolved above were used to seed the initial populations for the evolutionary algorithm, and 10 evolutionary

runs arried out for eah of the previously evolved ontrollers against eah of the other three test patterns.

Again we see that the GasNet lass produes signi�antly faster evolution for eah of the re-evolution

experiments.

The results for the re-evolution of pattern generation networks show a number of ases where the number

of evaluations required to re-evolve to a di�erent test pattern is not signi�antly smaller than the original

evolution (and even some ases where re-evolution is slower than the original evolution). However, in all

ases the GasNet lass shows signi�antly faster evolution and re-evolution of CPG networks than the

NoGas lass.
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Pattern Statisti GasNet NoGas

Seven:Five Mean (�) 16390 (34060) 33530 (45910)

Median 2500 3260

Ten:Four Mean (�) 18000 (36080) 36000 (46230)

Median 2120 5010

Eleven:Five Mean (�) 22410 (39100) 43830 (48060)

Median 3070 5470

Eleven:Seven Mean (�) 13750 (32130) 31610 (45080)

Median 1460 2980

Table 4: The number of evaluations required to evolve suessful GasNet and NoGas networks, for the four exper-

iments where �tness is evaluated over the four di�erent test patterns: Ten:Four, Eleven:Five, Eleven:Seven,

and Seven:Five.
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Figure 22: The number of evaluations required

to evolve suessful GasNet and NoGas networks,

for the four experiments where �tness is evaluated

over the four di�erent test patterns: Ten:Four,

Eleven:Five, Eleven:Seven, and Seven:Five.

Mean data shown, with the error bars represent-

ing 95% on�dene intervals. The numbers above

the error bars show the number of runs not �nish-

ing. GasNet data is given by the light grey bars,

NoGas data by the dark grey bars.

So again, the results support our hypothesis that the GasNet lass is well suited to being tuned to the

spei� properties of the environment when ompared with the NoGas lass. In the next setion we draw

together the various experiments arried out in this paper.

12 Summary

The detailed analysis of a number of GasNet and NoGas ontrollers allowed us to frame two hypotheses

regarding the suitability of the GasNet lass to robot ontrol.

First, the ability to both produe and modify entral pattern generation output was seen to be entral to

a number of evolved ontrol solutions. This seems surprising. We are not investigating suh behaviours

as walking and swimming gaits, or rhythmi feeding, where behaviour is often based on entral pat-

tern generation. Our visual shape disrimination task might not at �rst sight appear to be related to

suh pattern generation. However, a number of GasNet ontrollers were seen to use pattern generation

subnetworks in the �nal evolved behaviour.

Seond, the ability to swith between dynamial states dependent on external input, and the ability to

mediate this swith over a number of time-steps was seen to be extremely useful both in behaviour gener-

ation and �ltering environmental noise. From analysis of the funtionally equivalent GasNet and NoGas

ontrollers we argued that the kinds of timing mehanisms able to mediate suh behaviour swithing and

noise �ltration were muh easier using the GasNet lass.

The twin hypotheses that GasNet lasses were more amenable to both the development and tuning of

pattern generation and the development and tuning of swithing mehanisms were supported by the
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Figure 23: The number of evaluations required to re-evolve suessful GasNet and NoGas networks for entral

pattern generation, when evaluated on di�erent patterns to the initial evolution. Controllers originally evolved

on one of the four patterns were re-evolved on the other three patterns. Mean data shown, with the error bars

representing 95% on�dene intervals. The numbers above the error bars show the number of runs not �nishing.

GasNet data is given by the light grey bars, NoGas data by the dark grey bars.

re-evolution studies. We saw that the funtionally equivalent GasNet ontroller was muh easier to tune

to a modi�ed environment than the orresponding NoGas ontroller. To a lesser extent, although still

signi�ant, this same re-evolution tunability was seen over a large sample of previously evolved ontrollers.

We further supported the pattern generation hypothesis through the evolution and re-evolution of GasNet

and NoGas ontrollers on a simpli�ed pattern output task. Again we saw that not only were GasNet

solutions muh easier to evolve to the original pattern output, but that the GasNet networks were faster

to re-evolve to a di�erent pattern than the NoGas networks.

So an we draw any onlusions from this work on what makes an evolvable network lass for the visual

disrimination problem? The simple answer is yes. The key feature of the GasNets seen to be useful

on this task is the ability to smoothly adapt to the temporal harateristis of the environment. This

enompasses the initial development and subsequent tuning of the ontrollers to the detailed properties

of the robot and environment in whih it �nds itself. Inluded in this ability to smoothly adapt to

the temporal harateristis of the environment, is the ability to generate a rih variety of temporal

patterns, through the interation of the gas di�usion mehanism and the eletrial synapti mehanism.
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The di�erent time-sales over whih these two mehanisms operate was seen to be ruial to this pattern

generation.

In the �nal setion, we onlude with disussion of temporally adaptive networks.

13 Disussion: Temporally adaptive networks

One feature ommon to many of the neural network lasses used for generating adaptive behaviour, is the

inorporation of time. Few evolutionary robotis pratitioners rely on feedforward networks onsisting

of nodes that retain no ativity over time, with most using network lasses that are able to aess some

form of memory through either reurreny or retaining some level of node ativity. In simple terms, the

urrent behaviour of the robot is not solely a funtion of the urrent sensory input, but a funtion of the

urrent and previous sensory inputs, and the urrent and previous internal network ativity. In priniple

this allows a muh riher range of dynamial behaviours to be generated; the robot is not merely reating

to the environment, but interating with the environment.

From the analysis of the operation of GasNet and NoGas robot ontrollers in the visual disrimination

task, we see that the e�et of time is ruial to the development of robot ontrol solutions, even for a

task in whih timing might not be thought to play any role. Although the NoGas ontrollers potentially

have aess to previous sensory input and ativity through the arbitrarily reurrent network arhiteture,

the ability of the GasNet ontrollers to adapt to the partiular harateristis of the environment was

seen to be extremely powerful in generating pattern output, and mediating behaviourial swithing. Suh

temporal adaptation enabled the evolutionary proess to more easily tune ontrollers to the partiular

environment, swith between dynamial states on the basis of sensory input over extended time periods,

and eÆiently �lter out environmental noise.

With this result we have provided some support for the intuition of many evolutionary robotis prati-

tioners, that robot ontrollers operating in the real world must inorporate temporal struture, and that

the evolutionary proess must be able to easily adapt that struture

3

. On this fundamental priniple of

temporal adaptivity, the GasNet neural network lass falls squarely into a muh larger lass ontaining

among others ontinuous time reurrent networks (Beer and Gallagher, 1992), pulsed neural networks

(Maass and Bishop, 1999), and networks with time-lagged synapti ativity (Harvey, 1993). However, we

argue that simple reurrent networks suh as the NoGas are not members of this lass; although ativity

is retained over time, it is not straight-forward for the evolutionary proess to temporally modify the

ativity of the network

4

. It seems plausible that if we are to further develop evolvable arti�ial neural

network lasses for robot ontrol, the starting point must be from within this lass of temporally adaptive

networks.
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For example, Harvey (1993) makes the point that \. . . in environments where physial events have natural timesales,

the dimension of time is not an optional extra, but fundamental." Similarly, Gallagher and Beer (1999) state that \. . .

nontrivial behavior requires the integration of experienes aross time and the ability to initiate ations independent of an

agent's immediate irumstanes."

4

Of ourse the arhiteture of the NoGas networks may be arbitrarily modi�ed, however it does not seem an eÆient

method by whih to arry out suh temporal adaptation.

36



Referenes

Beer, R. (1990). Intelligene as Adaptive Behaviour: An Experiment in Computational Neuroethology.

Aademi Press, Cambridge, Massahusetts.

Beer, R. (1995). On the dynamis of small ontinuous-time reurrent neural networks. Adaptive Be-

haviour, 3(4):469{509.

Beer, R., Chiel, H., and Gallagher, J. (1999). Evolution and analysis of model CPGs for walking II.

general priniples and individual variability. Journal of Computational Neurosiene, 7(2):119{147.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamial neural networks for adaptive behaviour.

Adaptive Behaviour, 1:94{110.

Calvatti, A. and Beer, R. (2001). Analysis of a distributed model of leg oordination I. individual

oordination mehanisms. Biologial Cybernetis, 82:197{206.

Chiel, H., Beer, R., and Gallagher, J. (1999). Evolution and analysis of model CPGs for walking I.

Dynamial Modules. Journal of Computational Neurosiene, 7(2):99{118.

Devaney, R. (1989). Chaos, Fratals and Dynamis: Computer Experiments in Mathematis. Addison-

Wesley, Redwood, California.

Gallagher, J. C. and Beer, R. D. (1999). Evolution and analysis of dynamial neural networks for

agents integrating vision, loomotion, and short-term memory. In Banzhaf, W. and Smith, R. E.,

editors, Proeedings of the Geneti and Evolutionary Computation Conferene (GECCO'99). Morgan

Kaufmann, San Mateo, California.

Gavalas, G. R. (1968). Nonlinear Di�erential Equations of Chemially Reating Systems. Springer, Berlin.

Goldstein, H. (1980). Classial Mehanis. Addison-Wesley, Redwood, California, 2nd edition.

Harvey, I. (1993). The Arti�ial Evolution of Adaptive Behaviour. PhD thesis, Shool of Cognitive and

Computing Sienes, University of Sussex, UK.

Husbands, P. (1998). Evolving robot behaviours with di�using gas networks. In Husbands, P. and Meyer,

J.-A., editors, Evolutionary Robotis: First European Workshop, EvoRobot98, pages 71{86. Springer,

Berlin.

Husbands, P., Smith, T., Jakobi, N., and O'Shea, M. (1998). Better living through hemistry: Evolving

GasNets for robot ontrol. Connetion Siene, 10(3-4):185{210.

Jakobi, N. (1998a). Evolutionary robotis and the radial envelope of noise hypothesis. Adaptive Be-

haviour, 6:325{368.

Jakobi, N. (1998b). Minimal Simulations for Evolutionary Robotis. PhD thesis, Shool of Cognitive and

Computing Sienes, University of Sussex, UK.

Lotka, A. (1925). Elements of Physial Biology. Williams and Wilkins. Reprinted as Elements of

Mathematial Biology (1956), Dover, New York.

Maass, W. and Bishop, C., editors (1999). Pulsed Neural Networks. MIT Press, Cambridge, Mas-

sahusetts.

Mithell, M. (1996). An Introdution to Geneti Algorithms. MIT Press, Cambridge, Massahusetts.

Rosen, R. (1970). Dynamial System Theory in Biology, volume I. Stability theory and its appliations.

John Wiley and Sons, New York.

Rubinow, S. (1975). Introdution to Mathematial Biology. John Wiley and Sons, New York.

37



Sandefur, J. (1990). Disrete Dynamial Systems: Theory and Appliations. Oxford University Press,

Oxford, UK.

Smith, T., Husbands, P., Layzell, P., and O'Shea, M. (2002a). Fitness landsapes and evolvability.

Evolutionary Computation, 10(1):1{34.

Smith, T., Husbands, P., and O'Shea, M. (2001a). Neutral networks and evolvability with omplex

genotype-phenotype mapping. In Kelemen, J. and Sos��k, P., editors, Advanes in Arti�ial Life, 6th

European Conferene (ECAL'2001), pages 272{281. Springer, Berlin.

Smith, T., Husbands, P., and O'Shea, M. (2001b). Not measuring evolvability: Initial exploration of an

evolutionary robotis searh spae. In Proeedings of the 2001 Congress on Evolutionary Computation

(CEC'2001), pages 9{16. IEEE Press, Pisataway, New Jersey.

Smith, T., Husbands, P., and O'Shea, M. (2002b). Loal evolvability of statistially neutral GasNet robot

ontrollers. Biosystems. In press.

Smith, T. M. C. (2002). The Evolvability of Arti�ial Neural Networks for Robot Control. PhD thesis,

Shool of Biologial Sienes, University of Sussex, UK. Submitted.

Volterra, V. (1926). Flutuations in the abundane of a speies onsidered mathematially. Nature,

118:558{560. Reprinted in Real, L. and Brown, J.H. (1991). Foundations of Eology: Classi Papers

With Commentaries. University of Chiago Press, Chiago, Illinois.

38


