
Temporally adaptive networks:

Analysis of GasNet robot 
ontrollers

Tom Smith

�1

, Phil Husbands

2

and Mi
hael O'Shea

1

Centre for Computational Neuros
ien
e and Roboti
s (CCNR)

1

S
hool of Biologi
al S
ien
es,

2

S
hool of Cognitive and Computing S
ien
es

University of Sussex, Brighton, UK

�

toms�
ogs.susx.a
.uk

A good performan
e, like a human life, is a temporal a�air: a pro
ess in time.

- Mortimer J. Adler

Abstra
t

There are immense problems in developing arti�
ial nervous systems for autonomous ma
hines

operating in non-trivial environments. In parti
ular, no prin
ipled methodology is in pla
e to de
ide

between solution 
lasses and representations, and between methods by whi
h solutions might be de-

veloped using hand-design or sear
h te
hniques. In this paper we apply the te
hniques of dynami
al

systems theory to the analysis of su

essfully evolved robot 
ontrol systems, in order to identify useful

properties of the underlying 
ontrol ar
hite
ture. We investigate the suitability of two di�erent neural

network 
lasses for a roboti
 visual dis
rimination task, through analysis of both su

essful 
ontroller

behaviour and 
ontinued evolution of su

essful solutions in environments with modi�ed 
hara
ter-

isti
s. We argue that the temporally adaptable properties of the GasNet 
lass identi�ed through

dynami
al systems analysis, and found to be useful in order to re-evolve in modi�ed environments,

are 
ru
ial to the evolution of su

essful 
ontrollers for the original environment.

1 Introdu
tion

Identi�
ation of 
ontrol system 
lasses 
apable of generating adaptive behaviour over time is a bla
k

art. Many pra
titioners rely on systems that have \always worked in the past", others may use trial-

and-error until su

ess, but 
arry out no subsequent analysis of why that parti
ular system a
tually

worked. A major problem with su
h approa
hes is that it is extremely diÆ
ult to develop a more general

understanding of the properties ne
essary for generating adaptive behaviour. In parti
ular, is a parti
ular

solution 
lass appropriate for a parti
ular problem? Addressing this issue is 
ru
ial if we are to su

essfully

apply te
hniques su
h as evolutionary 
omputation to more 
omplex adaptive behaviour problems than

at present.

In this paper we develop an approa
h based on analysis of su

essfully evolved solutions. This allows us

to identify properties of network 
lasses that are potentially useful over a wider 
lass of problems than

the original task. We then develop a methodology for testing these properties, through analysis of the

evolved solutions in modi�ed environments.

We overview two 
lasses of neural network, the \GasNet" and \NoGas", used as 
ontrollers in a visual

shape dis
rimination problem, and give eviden
e that the GasNet 
lass is more amenable to evolutionary

sear
h than the NoGas 
lass. We then use the te
hniques of dynami
al systems analysis to identify possible

reasons for this in
reased evolutionary speed, and frame a number of hypotheses for the suitability of the

GasNet 
lass to robot 
ontrol. In parti
ular, we show how the properties of gas di�usion 
an be used to
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�lter out sensor input noise, produ
e simple pattern generation networks, and swit
h networks from one

stable state to another. We hypothesise that these properties lead to GasNet solution spa
es in whi
h it

is easier to �nd good 
ontrollers than the 
orresponding NoGas solution spa
es.

We go on to 
ompare the operation of two 
ontrollers, one GasNet solution and one NoGas solution, whi
h

utilise the same visual shape dis
rimination strategy. We argue that the GasNet 
ontroller is easier to tune

to the parti
ular 
hara
teristi
s of the environment than the fun
tionally equivalent NoGas 
ontroller, and

�nd eviden
e to support su
h an argument through re-evolution of the fun
tionally equivalent 
ontrollers

in modi�ed environments. We then extend the re-evolution analysis to a larger sample of previously

evolved GasNet and NoGas 
ontrollers, showing that GasNet 
ontrollers are faster to re-evolve in modi�ed

environments. Finally, we evolve GasNet and NoGas 
ontrollers for a simple pattern generation task,

ba
king up the hypothesis that GasNet 
ontrollers are easier to tune to the parti
ular 
hara
teristi
s of

the environment, or in this 
ase tuning to the parti
ular desired output pattern.

We argue that the key feature of the GasNets seen to be useful on this task is the ability to smoothly adapt

to the temporal 
hara
teristi
s of the environment. We further argue that it is this temporal adaptivity

of the GasNet 
lass that enables the su

essful evolution of networks 
apable of generating adaptive

behaviour. Finally, we propose that if we are to further develop evolvable arti�
ial neural network 
lasses

for adaptive 
ontrol, the starting point must be from within the 
lass of temporally adaptive networks of

whi
h the GasNet is a member.

The paper pro
eeds as follows. Se
tions 2 to 5 overview the GasNet and NoGas neural network 
lasses, and

the eviden
e for faster evolutionary sear
h. Readers familiar with the GasNet 
lass of network 
ontrollers

may skip these se
tions. Se
tion 6 addresses the question of what might lead to di�eren
es in evolutionary

sear
h time, outlining a number of possibilities. In se
tion 7 we introdu
e the methods of dynami
al

systems analysis, illustrating the te
hniques through analysis of both a predator-prey population model,

and the operation of a GasNet 
ontroller pattern generation subnetwork. In se
tion 8 we analyse in detail a

single GasNet robot 
ontroller, with se
tion 9 
omparing two fun
tionally equivalent 
ontrollers. Se
tion

10 details the re-evolution of evolved 
ontrollers in modi�ed environments, while se
tion 11 des
ribes

evolution of simple pattern generation networks. The paper 
loses with dis
ussion.

2 The GasNet and NoGas 
lasses

The \GasNet" 
lass of neural networks (Husbands, 1998; Husbands et al., 1998) in
orporates an abstra
t

model of a gaseous di�using neuromodulator into a more standard arti�
ial neural network. In previous

work the networks have been used in a variety of evolutionary roboti
s tasks, 
omparing the speeds of

evolution for networks with and without (the \NoGas") the gas signalling me
hanism a
tive. In a variety

of roboti
s tasks, GasNet 
ontrollers evolve signi�
antly faster than networks without the gas signalling

me
hanism (see e.g. Husbands, 1998; Husbands et al., 1998). Initial work aimed at identifying the reasons

for this faster sear
h has fo
used on the sear
h spa
es underlying the GasNet 
ontrol 
lass, investigating

the ruggedness and modality of the spa
es (Smith et al., 2001b), non-adaptive phases of evolution (Smith

et al., 2001a), and the lo
al lands
ape evolvability surrounding solutions (Smith et al., 2002b). In this

paper we analyse su

essfully evolved 
ontrollers in order to highlight the properties of GasNets leading

to faster evolutionary sear
h.

In the GasNet 
lass, the instantaneous a
tivation of a node is a fun
tion of both the inputs from 
onne
ted

nodes and the 
urrent 
on
entration of gas(es) at the node. The basi
 network model 
onsists of 
onne
ted

sigmoid transfer fun
tion nodes overlaid with a model of gas 
on
entration; the gas does not alter the

ele
tri
al a
tivity (from here on, we shall refer to a
tivity propagated a
ross synapse 
onne
tions as

ele
tri
al a
tivity) in the network dire
tly but rather a
ts by 
hanging the gain of transfer fun
tion

mapping between node input and output, in other words modulating the node properties.

The networks used in the experiments des
ribed in this paper 
onsist of sigmoid transfer fun
tion nodes


onne
ted by weighted links. The networks operate in dis
rete time; on ea
h \ti
k of the 
lo
k", for all
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nodes i, the output O

t

i

at time-step t is 
al
ulated as a fun
tion of the sum of the inputs to that node,

as des
ribed by equation 1. This de�nes the basi
 NoGas 
lass:

O

t

i

= tanh

2

4

K

t

i

0

�

X

j2C

i

w

ji

O

t�1

j

+ I

t

i

1

A

+ b

i

3

5

(1)

where C

i

is the set of nodes with 
onne
tions to node i with 
onne
tion weights w

ji

, O

t�1

j

the output of

node j on the previous time-step, I

t

i

the external (sensory) input to node i at time t, and b

i

a geneti
ally

set bias. Ea
h node has a geneti
ally set default transfer fun
tion parameter K

0

i

, and for the NoGas 
lass

this transfer parameter is �xed over the operation of the network: K

t

i

= K

0

i

8t.

In the GasNet 
ontrol system, in addition to this underlying network in whi
h ele
tri
al signals 
ow

between units, an abstra
t pro
ess loosely analogous to the gaseous di�using modulators des
ribed above

is at play. Some units 
an emit gases whi
h di�use and are 
apable of modulating the behaviour of other

units through altering their transfer fun
tions. As des
ribed below, this modulation 
hanges the transfer

parameter K

t

i

as the network runs, thus the a
tual shape of the node's transfer fun
tion is altered via the

gas modulation me
hanism. This form of modulation allows a kind of plasti
ity in the network in whi
h

the intrinsi
 properties of units are 
hanging during the operation of the network, that is during the robot


ontroller lifetime. In the next se
tions we des
ribe the gas di�usion and modulation me
hanisms.

2.1 Gas di�usion in the networks

Two gases are used in the GasNet model, gas 1 and gas 2. Gas 1 in
reases the transfer fun
tion parameter

K in a 
on
entration dependent fashion, while gas 2 similarly de
reases K. It is geneti
ally determined,

in other words spe
i�ed in the 
ontroller genotype, whi
h gas ea
h node will emit. This is one of the

following: gas 1; gas 2; or neither. It is also geneti
ally determined under what 
onditions emission will

o

ur, one of the following: when the ele
tri
al a
tivation, or output a
tivity, of the node ex
eeds some

threshold; when the 
on
entration of gas 1 in the vi
inity of the node ex
eeds some threshold; or when the


on
entration of gas 2 in the vi
inity of the node ex
eeds some threshold. In the experiments des
ribed

later in this paper, we typi
ally use an ele
tri
al threshold of 0:5, and a gas 
on
entration threshold of

0:1.

In order to in
orporate the gas 
on
entration model, the network is pla
ed in a 2D plane, with node

positions spe
i�ed geneti
ally. The network ar
hite
ture is detailed in se
tion 3, but for now all that

must be borne in mind is that ea
h node has some position on this plane. A very abstra
t model of

gas di�usion is used in order to allow the required 
omputations to be 
arried out in real time for robot


ontrol. For an emitting node, the 
on
entration of gas C(d; t) at distan
e d from the node and time t is

given by equations 2 to 4

1

:

C(d; t) =

�

C

0

� e

�(d=r)

2

� T (t) d < r

0 else

(2)

T (t) =

�

H(

t�t

e

s

) emitting

H(H(

t

s

�t

e

s

)�H(

t�t

s

s

)) not emitting

(3)

H(x) =

8

<

:

0 x � 0

x 0 < x < 1

1 else

(4)

where r is the geneti
ally determined radius of in
uen
e of the node (
on
entration falls to zero for d > r,

whi
h is loosely analogous to the length 
onstant of the natural di�usion of NO, related to its rate of de
ay

1

In the early GasNet work (Husbands et al., 1998), the de
ay with length is given as the exponential e

�2d=r

. Here we

use the Gaussian e

�(d=r)

2

; experiments show that this di�eren
e is not signi�
ant.
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through oxidation), C

0

is a global 
onstant, t

e

is the last time at whi
h emission was initiated, t

s

is the

last time at whi
h emission 
eased, and s is a geneti
ally determined 
onstant. It should be emphasised

that r; C

0

; s are determined uniquely for ea
h node by the network genotype, and t

e

; t

s

will typi
ally be

di�erent for ea
h node in the network during operation, so the GasNet network 
lass is heterogeneous in

the sense that node properties are not the same a
ross the network.

In other words, the gas 
on
entration varies spatially as a Gaussian 
entred on the emitting node. The

height of the Gaussian at any point within the 
ir
le of in
uen
e of the node linearly in
reases or de
reases

over time depending on whether or not the node is emitting gas, a

ording to the fun
tion T (t) whi
h

saturates at a maximum of 1 and a minimum of 0. The total 
on
entration at any point in the network

is found by summing the 
on
entrations from all emitting nodes. Figure 1 shows a possible GasNet, with

node 3 emitting gas. In
reased gas 
on
entration is shown 
entred on the emitting node, extending out

as far as node 2; thus node 3 
an a�e
t node 2 via the modulatory gas e�e
t despite there being no dire
t

synapti
 
onne
tions.

Node 1

Node 2

Node 4

Node 3

Node 5

Node 6

Figure 1: A hypotheti
al GasNet, with node 3

emitting gas. In
reased gas 
on
entration is shown


entred on the emitting node, extending out as far

as node 2; thus node 3 
an a�e
t node 2 via the

modulatory gas e�e
t despite there being no dire
t

synapti
 
onne
tions. All other nodes lie outside

the radius of gas 
on
entration, so are not a�e
ted

by the gas 
on
entration. However, nodes 5 and 6

are a�e
ted by synapti
 output from node 3. Nodes

1 and 4 similarly a�e
t node 3 through synapti


output.

It should be stressed that the model is a greatly simpli�ed form of the real di�usion pro
ess, and 
ertainly

does not model the physi
s of di�usion a

urately. Di�usion o

urs instantaneously, with no spread of gas


on
entration over time. In other words nodes 
lose to the emitting node are a�e
ted at the same time as

nodes far from the emitting node. Also, individual node 
ontributions are summed independently without

regard to the lo
al 
on
entration gradient, thus 
on
entration 
an 
ow from areas of low 
on
entration

to areas of high 
on
entration. Finally, the two gases do not intera
t, so 
on
entration of one does not

a�e
t the di�usion of the other. However, even su
h an abstra
t model 
an 
apture some of the properties

of real di�using gaseous modulation, and in the next se
tion we des
ribe the modulatory e�e
ts of gas


on
entration.

2.2 Modulation by the gases

As outlined above, the GasNet transfer fun
tion parameter K

t

i

is modulated during the operation of the

network through the 
on
entrations of gas 1 and gas 2, in e�e
t 
hanging the gain of the transfer fun
tion

given by equation 1. This modulation 
an o

ur on any time-step over the lifetime of the network,

allowing a form of plasti
ity very di�erent from that found in most traditional arti�
ial neural networks.

The transfer parameter K

t

i

for node i on time-step t is des
ribed by equations 5 to 8:

K

t

i

= P[D

t

i

℄ (5)

P = f�4:0;�2:0;�1:0;�0:5;�0:25;�0:125; 0:0; 0:125; 0:25; 0:5; 1:0; 2:0; 4:0g (6)

D

t

i

= f

�

D

0

i

+

C

t

1

C

0

�K

(N �D

0

i

)�

C

t

2

C

0

�K

D

0

i

�

(7)

4



f(x) =

8

<

:

0 x � 0

bx
 0 < x < N

N � 1 else

(8)

where P[i℄ refers to the ith element of set P, D

t

i

is the node i's pointer into the set P of possible dis
rete

values that K

t

i


an assume, N is the number of elements in P (13 are shown in equation 6), D

0

i

is

the geneti
ally set default value for D

t

i

(note that in se
tion 2 we stated that the values for K

0

i

were

geneti
ally determined, however more pre
isely D

0

i

is geneti
ally determined), C

t

1

is the 
on
entration of

gas 1 at node i on time-step t, C

t

2

is the 
on
entration of gas 2 at node i on time-step t, and C

0

and K

are global 
onstants (both set to 1 in the experiments reported in this paper ).

In other words, the presen
e of gas 1 in
reases D

t

i

, while the presen
e of gas 2 de
reases D

t

i

. This

modulation is dependent on both the 
on
entrations of gases 1 and 2, and on the geneti
ally spe
i�ed

value of D

0

i

, so the same 
on
entration of the same gas at di�erent nodes will not in general produ
e

the same e�e
t. Figure 2 shows the family of node input-output transfer fun
tion 
urves, for a variety of

transfer parameters K.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input O
j

n−1

O
u
tp

u
t 
O

in

Figure 2: Family of 
urves de�ned by y =

tanh(kx) transfer fun
tion for a range of values of

K. Ea
h 
urve shows the relationship between x

(over the range [-5,5℄) and y for a di�erent value of

K. The following set of K values are illustrated:

f�4;�2;�1;�0:5;�0:25;�0:125; 0; 0:125; 0:25;

0:5; 1; 2; 4g:

Thus over time, ele
tri
al a
tivity 
ows around the network as in more standard ANNs, alongside a


hanging pattern of gas 
on
entration. Gas is emitted under 
ertain 
onditions, with 
on
entration

in
reasing linearly during emission, and de
reasing as a Gaussian fun
tion of distan
e from the node.

Ele
tri
al a
tivity 
an indire
tly a�e
t gas 
on
entration through providing the 
onditions for nodes to

start or stop emitting gas, while gases indire
tly a�e
t ele
tri
al a
tivity through modulation of the

input-output fun
tions of nodes where gas 
on
entration is non-zero. Thus the GasNet model 
onsists

of two intera
ting dynami
al pro
esses operating over di�erent temporal and spatial s
ales. In the next

se
tion we detail the genotype-to-network mapping used in the experiments.

3 GasNet neural networks

The GasNet genotypes spe
ify an arbitrary re
urrent ANN, with a large number of the network parameters

under evolutionary 
ontrol. In parti
ular, the network genotype spe
i�ed the size of the network, the

network 
onne
tivity, node properties, and the input morphology (in this 
ase the input pixel positions).

Se
tion 3.1 spe
i�es the individual node en
oding s
heme, while se
tion 3.2 des
ribes how the network


onne
tivity is formed.

3.1 The node en
oding s
heme: genotype to phenotype mapping

Ea
h GasNet was en
oded on a variable sized genotype 
oding for a variable number of nodes. A genotype


onsisted of an array of integer variables, ea
h lying in the range [0; 99℄. For 
ontinuous variables,
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the phenotype value was obtained by normalising the genotype value to lie in the range [0:0; 1:0℄

2

and

multiplying by the relevant variable range. For nominal values, su
h as whether the node has a visual

input or not, the phenotype value was 
al
ulated through the binary modulo division operator:

p =

�

g=99 
ontinuous p

g mod N

nom

nominal p

(9)

where p is the phenotype value, g the genotype value, N

nom

the number of possible nominal phenotype

values, and mod the binary modulo division operator, that is the remainder when g is integer divided by

N

nom

.

Ea
h node in the network had either 19 or 25 variables asso
iated with it, depending on whi
h of two

possible 
onne
tivity en
oding s
hemes were used (se
tion 3.2). All variables were under evolutionary


ontrol, see �gure 3. A single genotype thus 
onsists of a string with length as some multiple of 19 or 25,


oding for a variable number of network nodes.

< genotype > :: (< gene >)

�

where < gene > :: < x >< y > (< Conne
tion >)

�

< I

on

>< I

r

>< I

�

>< I

thr

>

< re
 >< TE >< CE >< s >< R

e

>< D

0

>< bias >

Ar
s: < Conne
tion > :: < R

p

>< �

1p

>< �

2p

>< R

n

>< �

1n

>< �

2n

>

Points: < Conne
tion > :: (< Pt

x

>< Pt

y

>< Pt

w

>)

4

Figure 3: The genotype-to-phenotype mapping for the ar
s and 
onne
tions network s
hemes des
ribed in se
tion

3.2.

The en
oding shown in �gure 3 was used to generate networks 
on
eptualised to exist on a 2D Eu
lidean

plane. < x > and < y > give the position of a network node on the plane. The next 6 or 12 numbers

de�ne the synapti
 
onne
tivity of the network; se
tion 3.2 gives details of the ar
 and point s
hemes

used to derive the 
onne
tivity. The rest of a gene is interpreted as follows. < I

on

> is a binary swit
h

that determines whether or not a node has visual input. If it does, the following three variables en
ode

the polar 
oordinates of a pixel in the 
amera image that the node will take input from, and a threshold

below whi
h input from that pixel is ignored (visual input is normalised to lie in the range [0:0; 1:0℄, this

is the range of the threshold). See se
tion 3.3 for details of the visual input to the network.

The value of < re
 > determines whether the node has an ex
itatory re
urrent 
onne
tion, an inhibitory

re
urrent 
onne
tion or no re
urrent 
onne
tion to itself. < TE > provides the 
ir
umstan
es under whi
h

the node will emit a gas. These are one of either: not at all; if the node ele
tri
al a
tivity ex
eeds some

threshold; if the 
on
entration of gas 1 at the node site ex
eeds some threshold; or if the 
on
entration of

gas 2 at the node site ex
eeds some threshold (the ele
tri
al and gas thresholds are set at 0:5 and 0:1 as

des
ribed in se
tion 2.1). < CE > spe
i�es the gas that the node 
an emit under the 
orre
t 
ondition,

either gas 1 or gas 2. < s > is used to 
ontrol the rate of gas build up/de
ay as des
ribed earlier by

equation 3, its value ranges from 1 to 11. < R

e

> is the maximum radius of gas emission, this ranges

from 10% � 50% of the plane dimension. < D

0

> is the default value for the index used in equation 7

to determine the transfer parameter value K

t

i

for ea
h node. Finally, < bias > is the bias term b

i

in the

node transfer fun
tion (equation 1), restri
ted to the range [�1:0; 1:0℄.

The en
oding s
heme used was the same for both the GasNet and NoGas 
lasses, with the NoGas

genotypes e�e
tively en
oded with a number of introns. For the NoGas 
ontrollers, 
ertain of the genotype

parameters were ignored 
ompletely. These parameters were < TE >;< CE >;< s >;< R

e

>, en
oding

for the parameters of gas di�usion at ea
h node.

2

This 
an be regarded as an approximation to a 
ontinuous [0; 1℄ range; experiments show no signi�
ant di�eren
e

between the two setups.
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3.2 The network 
onne
tivity: Ar
s and points

Two di�erent s
hemes were used to 
al
ulate the synapti
 
onne
tions between the nodes, see �gure 4.

The �rst, the ar
 s
heme, 
onne
ts the start node to any nodes lying in either the positive or negative


onne
tion ar
s surrounding the node position in the 2D node plane. The radius and angles of the two ar


segments are spe
i�ed geneti
ally (< R

p

>< �

1p

>< �

2p

>< R

n

>< �

1n

>< �

2n

>), while 
onne
tion

weights are set at �1, depending on whether the 
onne
ted node lies in the positive or negative 
onne
tion

ar
. The se
ond point s
heme 
onne
ts the start node to the nodes that lie 
losest to ea
h of a set of four


onne
tion points. The x; y node plane positions of ea
h of the 
onne
tion points, and the 
onne
tion

weights in this s
heme are set geneti
ally (< Pt

x

>< Pt

y

>< Pt

w

>)

4

. See �gure 4 for details.

Θ2p

Θ2n

Θ1p

Θ1n

Excitatory Link

Inhibitory Link

Node

Rp

Rn

(a) Conne
tion ar
s

x1, y1

x2, y2

Excitatory Link

Inhibitory Link

Node

(b) Conne
tion points

Figure 4: Conne
tivity of the network is de�ned by either positive and negative ar
s, or 
ir
les 
entred on x; y


oordinates. Networks develop and fun
tion on a 2D plane.

3.2.1 Conne
tion ar
s

R

p

gives the radius of the `positive' ar
, �

1p

its angular extent and �

2p

its orientation. R

n

, �

1n

and

�

2n

similarly de�ne a `negative' ar
. The radii range from zero to half the plane dimension, the angles

range from zero to 2�. The ar
s are illustrated in �gure 4(a). Any node that falls within a positive ar


has an ex
itatory (+1 weighting) link made to it from the ar
's parent node. Any node that falls within

a negative ar
 has an inhibitory (-1 weighting) link made to it from the ar
's parent node. If the ar
s

interse
t, nodes lying in the interse
tion will have both ex
itatory and inhibitory links made to them.

3.2.2 Conne
tion points

x; y 
oordinate points are used to de�ne node 
onne
tivity. Ea
h node has four outgoing 
onne
tions.

Two variables < Pt

x

>;< Pt

y

>, spe
ify ea
h link, de�ning the 
entre of a 
ir
le on the network plane.

The nearest node to this 
entre within a threshold radius (10% of the plane) has a 
onne
tion made to it.

If no node lies within the threshold radius, no link is made. The 
onne
tion weight is spe
i�ed through

the third link variable < Pt

w

>. When this 
onne
tivity s
heme is used, the six variables of the ar
s

s
heme are repla
ed with the twelve needed to en
ode the four 
ir
le 
entres and weights. An alternative

7



was also investigated whereby two of the points en
oded +1 weighted 
onne
tions, and two �1 weighted


onne
tions, but no signi�
ant di�eren
es were seen.

3.3 The network visual input and motor output

Node plane

Visual inputVisual Input node

Motor node (fixed position)

Hidden node Gas diffusion radiusInhibitory link (-1)

Excitatory link (+1)

Visual input positions in camera




Node 4

Left-forward motor

Right-forward motor Left-back motor

Node 5

Node 6

Node 7

Right-back motor

Node 7

Node 6

Figure 5: An example GasNet evolved network. The node positions, 
onne
tions and gas radii are shown in

the node plane on the left (gas radii are shown only where the node emits gas during operation). Note the four

motor nodes in the four 
orners of the plane: it was found to be signi�
antly more diÆ
ult to evolve su

essful


ontrollers when these nodes were allowed to 
hange position. The positions of visual input pixels are shown in

the right half of the diagram, showing the nodes whi
h re
eive sensory input. This example network is analysed

in se
tion 8.

The �rst four nodes on the genotype (the genotype was required to 
ode for at least �ve nodes) were

taken to be the motor nodes, di�ering from other nodes in that their position on the plane was �xed to

the four 
orners. Visual input was not permitted to the motor nodes. The four motor nodes were used

to drive the two wheels as follows. Ea
h wheel had asso
iated `forward' and `ba
k' motor nodes, with

ea
h of the nodes 
onsidered to be `on' (+1:0) if the node a
tivity was greater than zero, and `o�' (0:0)

otherwise. The a
tual wheel speeds are set proportional to the output of the relevant forward node minus

the output of the relevant ba
kward node. In other words, the output of the network for ea
h wheel 
an

be one of three values: If both the forward and ba
k motor nodes for that wheel are either on or o�, the

output is 0. If the forward node is on while the ba
k node is o�, the output is 1. If the ba
k node is on

while the forward node is o�, the output is �1. This may seem a 
rude model of motor 
ontrol, but it

allows evolved 
ontrol systems to operate su

essfully on transfer to the real world.

External sensory information 
an be input to the network at any of the network nodes, ex
ept for the

motor nodes. As des
ribed above, ea
h node en
odes whether or not it re
eives visual input, and the

polar 
oordinates of the input in the visual �eld. At ea
h time-step, the node re
eives the intensity level

8



at the pixel position in the visual �eld spe
i�ed by the node input 
oordinates. This intensity is s
aled

to the range [0; 1℄, with only visual input intensity higher than the node visual input threshold a
tually

input to the node.

This 
ompletes the de�nition of the GasNet 
lass; a set of sigmoid transfer fun
tion neurons with weighted


onne
tions, overlaid with a model of di�using gaseous neuromodulation. Figure 5 shows an example of

a su

essfully evolved network. In the next se
tion we des
ribe the evolutionary roboti
s visual shape

dis
rimination experiment used in this paper.

4 The robot task

4.1 The Gantry robot

(a) The gantry robot and arena (b) The gantry robot 
amera

Figure 6: The Gantry robot. (a) The horizontal girder moves along the side rails of the arena, and the robot is

suspended from a platform whi
h moves along this girder. (b) The 
amera inside the top box points down at the

in
lined mirror, whi
h 
an be turned by the stepper-motor beneath, to give the illusion of rotation. The gantry

is best thought of as a two-wheeled robot with �xed 
amera pointing straight-forward; dedi
ated hardware and

software is used to translate motor 
ommands to the relevant girder, platform and mirror movements, and the


amera input is transformed to appear as if re
eived from an onboard 
amera pointing straight-forward.

The robot task made use of a minimal simulation of the Sussex Gantry Robot (Jakobi, 1998a). Figure 6

shows the real gantry robot.

The robot 
onsists of a CCD 
amera suspended from the gantry frame, with the 
amera pointing straight

down at a mirror angled at 45

o

to the verti
al (see �gure 6(b)). The gantry frame 
an move freely along

the x; y; z axes, and the mirror 
an rotate around the verti
al axis, in order to simulate the e�e
t of the

robot rotating.

Dedi
ated software takes input as left and right motor 
ommands, and 
onverts the movement into x; y; �

translations for the gantry frame and 
amera (note that in the work des
ribed in this paper, movement

along the z dire
tion is not used). The visual input is also transformed, in order to appear as if to 
ome

from a robot at the x; y; z position of the gantry head, and looking along a dire
tion spe
i�ed by the �

angle of the mirror. This transformed visual input appears as a 
amera view of 20 pixels radius with an

a

eptan
e angle of 39

o

, giving approximately 1250 pixels in total that 
an potentially be used as input

by the evolutionary pro
ess.

The gantry is overall best thought of as a two-wheeled robot with a 
amera pointing straight-forward, in

9



whi
h the experimenter has a

ess to 
ertain global position information that is not passed dire
tly to

the evolutionary pro
ess. This position information may be used in the �tness fun
tion, for example to

determine how 
lose the robot approa
hed to the triangle.

The minimal simulation of the gantry was developed by Jakobi (1998a,b). The base set of robot-

environment intera
tions upon whi
h behaviour 
ould be reliably based, 
onsisted of only two members.

First, the way in whi
h pixels of the 
amera image that are sampled from the walls of the arena (but

not from the 
oor or above the walls) return grey-s
ale values within 
ertain intervals: over the range

[14; 15℄ for pixels that proje
t onto either the triangle or the square, and over the range [0; 13℄ for pixels

that proje
t onto the walls of the arena, but not onto either the triangle or the square. Se
ond, the way

in whi
h the robot moves in response to motor signals.

To ensure that 
ontrollers were both base set robust and base set ex
lusive, in other words that 
ontrollers

relied only on base set intera
tions and not on implementation aspe
ts of the model, all other parameters

were modelled unreliably. Over the possible ranges of pixel inputs, [14; 15℄ for pixels that proje
t onto

either the triangle or the square, [0; 13℄ for pixels that proje
t onto the walls of the arena, and the entire

[0; 15℄ range for other 
ases, values were returned unreliably (remember that the base set aspe
t is the

range over whi
h the pixel values are returned, not the way in whi
h they are set over this range). This

unreliability was set at the start of ea
h trial, with possible e�e
ts varying pixel inputs as a fun
tion of

time, or as a fun
tion of the orientation of the robot, or �xed for the entire evaluation at a random level

set before ea
h trial. The momentum of the robot was also made unreliable, with the momentum being

�xed at the start of ea
h trial. Similarly, small o�sets were added to the wheel speeds, 
amera horizontal

and verti
al angles, and the positions of the shape verti
es, with the o�sets set randomly at the start of

ea
h trial. For further details see Jakobi (1998a,b).

4.2 Visual shape dis
rimination

Starting from an arbitrary position and orientation in a bla
k-walled arena, the robot must navigate under

extremely variable lighting 
onditions to one shape (a white triangle) while ignoring a se
ond shape (a

white square). Fitness over a single trial was taken as the fra
tion of the starting distan
e moved towards

the triangle by the end of the trial period, and the evaluated sele
tive �tness for ea
h 
ontroller was

returned as the weighted sum of N trials of the 
ontroller from di�erent initial 
onditions:

F =

2

N(N + 1)

i=N

X

i=1

i(1�

D

F

i

D

S

i

) (10)

where D

F

i

is the distan
e to the triangle at the end of the ith trial, D

S

i

the distan
e to the triangle at the

start of the trial, and N the number of trials, sorted in des
ending order of (1�

D

F

i

D

S

i

). Thus good trials,

in whi
h the 
ontroller moves some way towards the triangle, re
eive a smaller weighting than bad trials,

en
ouraging robust behaviour on all trials. In pra
ti
e we use 16 trials, 
hanging the relative positions of

the triangle and square, and the starting orientation and position of the robot, on ea
h trial.

Evaluations are 
arried out in a minimal simulation (Jakobi, 1998a) of the gantry robot, des
ribed in

se
tion 4.1, with large amounts of noise added to sensor and motor readings, so that 
ontrollers will

transfer to robots operating in the real environment. Figure 7 shows the �tness distribution of a single

genotype evaluated 10; 000 times in the minimal simulation environment, while �gure 8 shows a s
reen

shot of a simulated evaluation. As in many problems requiring 
ontrollers to provide sensor-to-motor

mappings over time, �tnesses are extremely time 
onsuming to evaluate (in the work presented here,

evaluating a sample of 10

6

�tnesses takes around 24 hours on a Pentium II 700MHz ma
hine) and

inherently extremely noisy. Su

ess in the task was taken as an evaluated �tness of 1:0 over thirty

su

essive generations of the evolutionary algorithm.

GasNet 
ontrollers were fully under evolutionary 
ontrol, with the network 
onne
tivity, node properties,

and input morphology (in this 
ase the input pixel positions) spe
i�ed by a network genotype. Full details

10
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Figure 7: The �tness distribution of a

single genotype evaluated 10; 000 times in

the minimal simulation evaluation environ-

ment. 95% of the �tnesses lie in the range

[0:1343; 0:2856℄, with possible 
ontroller �t-

ness 2 [0; 1℄.

Figure 8: S
reen shot of the simulated arena and robot. The bottom-right view shows the robot position in the

arena with the triangle and square. Fitness is evaluated on how 
lose the robot approa
hes the triangle. The

top-right view shows what the robot `sees', along with the pixel positions sele
ted by evolution for visual input.

The top-left view shows the 
urrent a
tivity of all nodes in the neural network. The bottom-left view shows the

robot 
ontrol neural network: the visual input positions in the 
amera are shown on the right, with the nodes they


onne
t to pla
ed in the network plane on the left. The motor output nodes RF, LF, RB and LB are shown in the

four 
orners of the network plane, and high gas 
on
entrations are shown by shading, su
h as that surrounding

node 8.

of the GasNet 
ontrollers used in the gantry visual dis
rimination task are given in se
tion 3, along with

the genotype-to-network mapping.

In the next se
tion we detail the evolutionary algorithms used in the visual shape dis
rimination experi-

ments.
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5 The evolutionary ma
hinery

5.1 Mutation and re
ombination operators

Three mutation operators were applied to solutions with probability �% during the evolution and re-

evolution experiments reported in this paper (for the experiments detailed here, � = 4). First, ea
h

integer in the string had a �% probability of mutation in a Gaussian distribution N(0; 10) 
entred on

its 
urrent value (20% of these mutations 
ompletely randomised the integer). Se
ond, there was a �%


han
e per genotype of adding one neuron to the network, in
reasing the genotype length by 19 or 25

depending on the synapse 
onne
tivity used (se
tion 3.2). Third, there was a �% 
han
e per genotype of

deleting one randomly 
hosen neuron from the network, de
reasing the genotype length by 19 or 25 (note

that these two operators 
he
ked that the length did not pass 
ertain minimum and maximum bounds;

the network was not allowed to 
ontain greater than 50 neurons or fewer than 5 neurons).

It should be noted that the value of � = 4 used in these experiments is a mu
h larger level of mutation than

typi
ally used in arti�
ial evolution optimisation (and 
ertainly mu
h larger than in biologi
al evolution).

However, lower levels of mutation produ
e extremely slow evolution of su

essful solutions, mainly due

to the extremely high level of neutrality seen in the solutions found through evolution (Smith, 2002).

For the NoGas networks, 
ertain parameters 
oding for the gas di�usion details were simply ignored, with

parts of the genotype e�e
tively 
oded as introns. This does not a�e
t the mutation rate per lo
us as

the rate is spe
i�ed per genotype lo
us, however it does a�e
t the expe
ted mutation rate per genotype.

Thus the expe
ted number of mutations for a GasNet 
ontroller is greater than the expe
ted number of

mutations for the same sized NoGas 
ontroller, by a fa
tor of the ratio of their lengths (25=21 for the point

en
oding s
heme, 21=17 for the ar
 en
oding s
heme, des
ribed in se
tion 3.2). However, experiments in

whi
h the mutation rates were varied by mu
h greater fa
tors showed 
omparable results (Smith, 2002).

Re
ombination operators were also investigated, with two di�erent types implemented. The �rst version

used a version of two-parent uniform 
rossover (Mit
hell, 1996), however instead of ea
h genotype lo
us

having equal probability of being taken from ea
h parent, ea
h neural network node had equal probability

of being taken from either parent. In other words the unit of 
rossover was the network node rather than

the genotype lo
us. The se
ond version used two-parent one-point 
rossover (Mit
hell, 1996) in whi
h a


ut-point was 
hosen at random; geneti
 material lying before this point was taken from parent A, while

geneti
 material lying after the 
ut-point was taken from parent B.

5.2 The evolutionary algorithm

The evolutionary experiments des
ribed in this paper used a steady-state distributed evolutionary algo-

rithm. A population of 100, initially randomly generated, solutions were arranged on a 10x10 grid, with

all initial �tnesses evaluated. In a breeding event, a single solution was pi
ked at random on the grid,

and a mating pool of 9 solutions 
reated, 
onsisting of the randomly pi
ked solution plus the 8 nearest

grid neighbours. Rank-based roulette sele
tion was used to sele
t a single parent, and the o�spring 
re-

ated through appli
ation of the mutation operator. The o�spring was pla
ed ba
k into the mating pool,

repla
ing a solution 
hosen through inverse rank-based roulette sele
tion, that is sele
tion proportional

to the solution rank in order of as
ending �tness. The parental �tness was probabilisti
ally re-evaluated

to avoid over-valued solutions 
ontributing too mu
h geneti
 material to the next generation. One gen-

eration was spe
i�ed as 100 su
h breeding events, and the evolutionary algorithm run for a maximum of

10; 000 generations, or until su

essful solutions had been produ
ed.

In all experiments, the evolutionary populations were initially seeded with networks 
ontaining ten nodes,

and evolution was 
ontinued until the best �tness found did not fall below 1:0 over thirty 
onse
utive

generations.
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5.3 Speed of evolution results

The evolution of solutions based on the GasNet 
lass 
onsistently produ
es su

essful robot 
ontrol

solutions in signi�
antly fewer evaluations than required by the evolution of solutions based on the

NoGas 
lass. This result holds over a number of di�erent evolutionary algorithms, with a number of

di�erent mutation and re
ombination rates used, in
luding �xed length genotypes, uniform and one-

point 
rossover re
ombination, and mutation rates a�e
ting from 1% to 62% of the genotype lo
i. Two

di�erent network 
onne
tivity s
hemes were also investigated, ar
s and points, with both seen to show

faster GasNet evolution. For full results, see Smith (2002). Figures 9 and 10 show example results.
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(a) Uniform, one-point, and no re
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(b) No re
ombination, varying mutation rate

�

Figure 9: The mean number of evaluations required for (a) Uniform, one-point and no re
ombination, and (b)

No re
ombination, varying mutation rate � 2 f0:01; 0:02; 0:04; 0:08; 0:16; 0:32; 0:64g. Data averaged over twenty

runs of the distributed evolutionary algorithm. The error bars represent 95% 
on�den
e limits for the mean, the

number above the bar gives the per
entage of runs failing to �nish in 1; 000; 000 evaluations.

In the next se
tion, we outline possible reasons for this evolutionary speed di�eren
e.

6 Why are GasNets more evolvable?

What are the reasons for the speed of evolution di�eren
es seen between the GasNet and NoGas spa
es,

shown in �gures 9 and 10? We 
an frame many of the possible reasons as properties of the underlying

�tness lands
apes. There may simply be many more su

essful GasNet than NoGas solutions, simplifying

the sear
h problem. The underlying sear
h spa
es may di�er in their ruggedness, lo
al modality, degree

of neutrality or some other property, making it easier for sear
h pro
esses to �nd solutions of in
reasing

�tness. More subtle e�e
ts may also be important, as properties of the �tness lands
apes may not be

homogenous a
ross the spa
e; for example the GasNet spa
e may 
ontain smaller regions that are easier

to sear
h in some way.

In previous work, Smith et al. (2001b) have shown no eviden
e for in
reased numbers of GasNet solutions

in the sear
h spa
e; massive random sampling shows very few solutions of either 
lass above 50% �tness,

even though this �tness is relatively easy to �nd through dire
ted sear
h. It is entirely possible that the

number of high �tness GasNet solutions is signi�
antly larger than the number of NoGas solutions, but

this is extremely diÆ
ult to show without exhaustive sampling of the spa
e, whi
h is 
learly impra
ti
al.

Similarly, it was seen that the spa
es do not measurably di�er in ruggedness and modality at di�erent

�tness levels. Smith et al. (2002a) develop the te
hnique of �tness evolvability portraits, using the �tness
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(a) Variable and �xed length genotypes
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(b) Ar
s and points 
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tivity s
hemes

Figure 10: The mean number of evaluations required for (a) variable and �xed length genotypes, and (b) Ar
s

and points 
onne
tivity s
hemes. Data averaged over twenty runs of the distributed evolutionary algorithm. The

error bars represent 95% 
on�den
e limits for the mean, the number above the bar gives the per
entage of runs

failing to �nish in 1; 000; 000 evaluations.

distribution of the sear
h spa
e surrounding solutions to build up a des
ription of the �tness lands
ape.

However, applying su
h measures to the GasNet and NoGas sear
h spa
es shows no measurable di�eren
es

in ruggedness, modality and neutrality between the lands
apes underlying the two 
lasses (Smith et al.,

2002b).
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Figure 11: Robustness of GasNet and NoGas solu-

tions; Fitness of the one-point mutations from sam-

ple of su

essfully evolved 
ontrollers. Fitness eval-

uated in non-noisy simulation.

The 
ontrol 
lasses are also of similar robustness to mutation; �gure 11 shows the �tness distribution of all

one-point mutations from the sample of su

essfully evolved 
ontrollers used in se
tion 10. The robustness

of the GasNet and NoGas 
ontrollers are extremely similar; in both 
ases roughly 80% of mutations are

neutral, with 10% 
atastrophi
 (it should be noted that the mutation operators used during optimisation

typi
ally mutate more than one lo
i value, so the observed degree of neutrality will be signi�
antly smaller

than this 80%).

However, the understanding of sear
h diÆ
ulty in terms of the �tness lands
ape properties is not simple

in su
h a 
omplex sear
h spa
e. The di�eren
es between the spa
es may be small enough to be obs
ured

by variation; it may be the 
ase that sear
h pro
esses only `re
ognise' these di�eren
es when iterated

over large numbers of �tness evaluations. It is also possible that the distin
tions between the spa
es

are not measurable by the te
hniques at hand; some other property of high-dimensional sear
h spa
es

may be involved. In this paper we develop a di�erent approa
h, through analysis of su

essfully evolved
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ontrollers, allowing us to identify general properties of the GasNet and NoGas 
lasses that may hold in

a wider 
lass of problems than just the visual shape dis
rimination task used here. In the next se
tion

we introdu
e the te
hniques of dynami
al systems analysis.

7 Dynami
al systems analysis

The dynami
al systems approa
h analyses how a system behaves over time, in parti
ular investigating

the future behaviour of the system given its 
urrent state. In this se
tion we outline the basi
 theory

appli
able to dynami
al systems in general, and apply the theory to a simple example system from

the biologi
al literature; the predator-prey population model. We then investigate the behaviour of

an example subnetwork from the robot 
ontroller analysed more fully in se
tion 8, showing how the

dynami
al systems method 
an fully explain the pattern generation properties of this subnetwork.

A full des
ription of dynami
al systems theory and analysis is well beyond the s
ope of this paper; there

is an extremely large body of literature dealing with a variety of dynami
al systems, in
luding physi
al

(see for example Goldstein, 1980), biologi
al (see for example Rosen, 1970; Rubinow, 1975) and 
hemi
al

systems (see for example Gavalas, 1968). However for the sake of 
ompleteness, in this se
tion we give a

brief overview; for further information the reader should 
onsult a standard text.

7.1 Introdu
tion to dynami
al systems

A dynami
al system is de�ned by some �nite set of state variables, and some dynami
al law by whi
h the

state variables 
hange over time. If the state variables are suÆ
ient to des
ribe the system fully, the system

is said to be autonomous. If other variables need to be taken into a

ount to des
ribe the full behaviour,

the system is said to be non-autonomous. A non-autonomous system 
an generally be transformed into

an autonomous system by simply in
orporating the external variables into the des
ription. However this

is not always useful or pra
ti
al, for example in systems in whi
h the dynami
al law 
hanges over time.

Given the initial 
onditions for the state variables, the dynami
al law des
ribes the future behaviour of

the system. Thus we 
an represent the system as a single point in the phase spa
e of state variables

(both the phase and state spa
e refer to the spa
e produ
ed when mapping one dimension for ea
h state

variable); the phase spa
e portrait of the system shows the movement over time of this point, and hen
e

the evolution of the system. Typi
ally the number of state variables is greater than three, so this state

spa
e 
annot be viewed dire
tly, and only two or three variables of interest are mapped in su
h a way.

For example, even a single atomi
 parti
le requires six state variables for its position and velo
ity in

spa
e: three variables for the x; y; z 
oordinates, and three for the P

x

; P

y

; P

z

momenta (in this 
ase, the

dynami
al law would typi
ally take the form of the for
e exerted on the parti
le through an external

�eld). Thus in most systems of interest, we will have to fo
us on parti
ular measurements of the system.

In general, we are unlikely to be able to solve the dynami
al equations dire
tly. However, we may be able

to �nd the equilibrium states (or �xed points) of the system, at whi
h the system remains un
hanged

over time. These will 
orrespond to points in the phase spa
e at whi
h the derivatives of all the state

variables are zero, and 
an be stable (if perturbed, the system will return to the �xed point) or unstable

(if perturbed, the system will not return to the �xed point). A simple example of a system with two

su
h �xed points is that of a needle balan
ed on a table. The �rst �xed point is the needle in a perfe
t

upright position, whi
h is 
learly unstable sin
e any small movement will inevitably topple the needle.

The se
ond �xed point is the needle lying on its side - the stable equilibrium it will fall into from nearly

every other initial position

Over time the system is likely to fall into these stable attra
tor states, or os
illate with �xed period in

some limit 
y
le behaviour (although 
haoti
 behaviour is also possible). Generally, the goal of dynami
al

systems analysis is to �nd this long-term behaviour given the dynami
al law and initial states of the sys-

tem. A related goal is to des
ribe the 
onditions under whi
h the system may fall into another behaviour,
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through approa
hing a di�erent attra
tor state. Su
h analysis has been 
arried out to understand the

behaviour of a variety of evolved robot 
ontrollers, most espe
ially in the work by Beer and 
o-workers

(see for example Beer, 1990; Beer and Gallagher, 1992; Beer, 1995; Chiel et al., 1999; Calvatti and Beer,

2001). However, in this paper we are interested in analysing the 
ontrollers operation in terms of how

easy or diÆ
ult su
h 
ontrollers may be to evolve, espe
ially when using di�erent robot 
ontrol 
lasses. In

the next two se
tions, we apply the basi
 te
hniques to two example dynami
al systems; a predator-prey

population model, and an evolved pattern generation GasNet 
ontroller.

7.2 An example dynami
al system: Predator-prey populations

The 
lassi
 biologi
al dynami
al system is the predator-prey (or host-parasite) population model famously

studied by both Lotka (1925) and Volterra (1926). In this model we are interested in how the populations

of the two spe
ies vary over time, espe
ially with respe
t to initial 
onditions of the state variables.

Consider a population x. Over time, the population in
reases exponentially in size through breeding, but

with a self-limiting fa
tor dependent on the 
urrent population size, for example due to over
rowding or

limited food resour
es. Thus we derive the di�erential equation for the rate of 
hange of the population:

dx

dt

= a:x(1� b:x) (11)

Now 
onsider a prey population x, and a predator population y. Both populations 
hange over time as

given by equation 11, although we negle
t the self-limiting fa
tor for the prey population as we assume

the predators never let the prey population rea
h su
h a level. However, there is an additional population

intera
tion term when both predator and prey are present: the probability of a predator-prey en
ounter

is proportional to the produ
t of both the predator and prey populations. Thus the predator population

in
reases, and the prey population de
reases, with rate proportional to the produ
t of the two populations.

From these premises we derive the di�erential equations, or dynami
al laws, governing the rate of 
hange

of the two populations:

dx

dt

= a:x(1� y) (12)

dy

dt

= b:y(1� 
:y + x) (13)

the Volterra equations for the predator-prey system. In the rest of this paper, we 
onsider dis
rete time-

step neural networks in whi
h the a
tivity of a network node is derived dire
tly, rather than through

di�erential equations. Thus we use the dis
rete form of the above equations (Sandefur, 1990, gives a

good introdu
tion to dis
rete dynami
al systems):

x

t+1

� x

t

�t

= a:x

t

(1� y

t

) (14)

y

t+1

� y

t

�t

= b:y

t

(1� 
:y

t

+ x

t

) (15)

the 
hange in x and y from time-step t ! t + 1. Without loss of generality, we 
an take the time-step

�t = 1. Thus we have our dynami
al equations for the predator-prey system A

t+1

= F(A

t

):

�

x

t+1

y

t+1

�

=

�

a:x

t

(1 + 1=a� y

t

)

b:y

t

(1 + 1=b� 
:y

t

+ x

t

)

�

(16)

Now, we are interested in the behaviour of the system over time, so we need to �nd the equilibrium

values. When the system is in equilibrium, the state variables do not 
hange over time: dA=dt = 0, or

A

t+1

= A

t

. Solving for our system, we �nd three equilibrium values at (0; 0); (0; 1=
) and (
� 1; 1).
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The next question is whether these equilibrium states are stable or unstable to small perturbations, and

is the system likely to 
onverge to one of the states? In general, the stability of a system with m state

variables is found through the partial di�erential matrix R of the m-ve
tor valued fun
tion F at the �xed

points A of the system:

A =

0

B

B

B

�

a

1

a

2

.

.

.

a

m

1

C

C

C

A

F =

0

B

B

B

�

f

1

(A)

f

2

(A)

.

.

.

f

m

(A)

1

C

C

C

A

(17)

R �
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�
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1
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1

(A)

Æa

2

: : :

Æf

1

(A)

Æa

m

Æf

2

(A)

Æa

1

Æf

2

(A)

Æa

2

: : :

Æf

2

(A)

Æa

m

.

.

.

.

.

.

.

.

.

.

.

.

Æf

m
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Æa

1

Æf

m

(A)

Æa

2

: : :

Æf

m

(A)

Æa

m

1

C

C

C

C

A

(18)

We �nd the stability of the equilibrium values from the norm of the partial di�erential matrix R, that is

the absolute value of the largest eigenvalue r:

jjRjj = jlargest rj (19)

where (R� rI) = 0 (20)

jjRjj =

8

<

:

< 1 stable equilibrium value

> 1 unstable equilibrium value

= 1 in
on
lusive; need to look at higher derivatives

(21)

Let us suppose our parti
ular predator-prey system has values a = 1:3; b = 0:4; 
 = 4:0. Now the

equilibrium values are (0; 0); (0; 0:25) and (3; 1), and we have the partial di�erential matrix R:

R =

�

2:3� 1:3y

t

�1:3x

t

0:4y

t

1:4� 3:2y

t

+ 0:4x

t

�

(22)

Solving for our equilibrium values shows that the points (0; 0) and (0; 0:25) are unstable (jjRjj > 1), but

that (3; 1) is stable (jjRjj < 1). We also have 
omplex eigenvalues r for the point (3; 1), whi
h suggests

that the system will os
illate around this point (Sandefur, 1990). Figure 12(a) shows the phase plane

analysis of the system around this point. The prey and predator populations are shown on respe
tively

the x and y axes. The ve
tor 
ow �eld (shown by the set of ba
kground arrows) represents the size

and dire
tion of the movement of the system from any initial starting state. The heavy line shows the

evolution of the system over time, when started in the neighbourhood of the point (3; 1). The equilibrium

state is shown by a �lled bla
k 
ir
le; as predi
ted, the �xed point is stable, with the system os
illating

around this equilibrium state.

In �gure 12(b) we show the basins of attra
tion of the �xed point; from whi
h starting points does the

system fall into the stable equilibrium state? As before, the stable equilibrium state is shown by a �lled

bla
k 
ir
le. From ea
h initial starting point, the system was iterated for a �xed number of time-steps,

stopping if any state variable fell outside some given range. The plot shows the number of time-steps

for whi
h the system remained stable from ea
h initial state. White areas show initial population values

for whi
h the system falls towards the stable �xed point. Bla
k areas fall qui
kly away from the �xed

point, with intermediate shades representing initial values whi
h take some time to fall away from the

�xed state, that is systems with initial parameters that nearly fall into the limit 
y
le. We 
an see that

the plot shows 
omplex features - it is 
on
eivable that the system shows fra
tal features for this stability

(the well-known Mandelbrot set is generated through the same stability analysis of an iterated mapping

in the 
omplex plane, see for example Devaney, 1989).
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Figure 12: Figure 12(a) shows the phase plane analysis of the system around the �xed point. The prey and

predator populations are shown on respe
tively the x and y axes. The ve
tor 
ow �eld (shown by the set of

ba
kground arrows) represents the size and dire
tion of the movement of the system from any initial starting

state. The heavy line shows the evolution of the system over time, when started in the neighbourhood of the

point (3; 1). The equilibrium state is shown by a �lled bla
k 
ir
le; as predi
ted, the �xed point is stable, with the

system os
illating around this equilibrium state. Figure 12(b) shows the basins of attra
tion for the �xed point;

from whi
h initial populations does the system fall into the �xed point? White areas show initial population

values for whi
h the system falls towards the stable �xed point. Bla
k areas fall qui
kly away from the �xed

point, with intermediate shades representing initial values whi
h take some time to fall away from the �xed state.

Thus we 
an 
hara
terise the behaviour of the system over time. There are three �xed equilibrium points

of the system, two of whi
h are unstable, one stable. If the system is initially pla
ed exa
tly on either

unstable equilibrium, it will remain there inde�nitely. However, any small perturbation will result in the

system moving qui
kly away from these points. If pla
ed in the vi
inity of the stable equilibrium state,

the system will os
illate around this �xed point inde�nitely. The initial values from whi
h the system will

rea
h this equilibrium value tend to 
luster around the �xed point, but show 
omplex stru
ture further

out from the point. Thus for a wide range of initial parameters the system will rea
h stability, with both

the predator and prey populations os
illating over time. In the next se
tion, we apply the te
hniques to

a more relevant example, an evolved robot 
ontrol subnetwork.

7.3 A dis
rete dynami
al pattern generation network

In this se
tion we 
onsider a two node pattern generation network, part of the evolved robot 
ontroller

analysed more fully in se
tion 8, and shown in �gure 13. In parti
ular, we want to see how the properties

of both the individual nodes and the gas di�usion me
hanism lead to pattern generation.

In the robot 
ontroller shown in �gure 13, the two node subnetwork in the top-right of the node plane

a
ts as a pattern generator, in whi
h the output of the right-ba
k motor node `spikes' on
e every eight

time-steps. Figure 14 gives the behaviour of the two nodes over 100 time-steps, showing node output (the

bottom two graphs Y

2

; Y

5

), node transfer parameter (graphs K

2

;K

5

), and the 
on
entrations of the two

gases (graphs C

1

Y

2

; C

1

Y

5

; C

2

Y

2

; C

2

Y

5

). Note the spiking behaviour shown in the motor node Y

2

graph;

on
e in every eight time-steps, the output of this motor node is positive.

As we shall see in se
tion 8.2, this spiking behaviour is 
ru
ial to the �nal �tness of the solution; with
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Figure 13: Open-loop GasNet visual dis
rimination network. Gas di�usion radii are shown only where di�usion

o

urs. The node plane is shown with x; y positions of ea
h node, the 
onne
tions between ea
h node (indi
ating

whether ex
itatory/inhibitory) in
luding re
urrent 
onne
tions, and the position in the visual �eld of any external

inputs.

both motors on, the robot will move straight-forwards. However, the right-ba
k motor node turning on

on
e in every eight time steps produ
es a slow 
lo
kwise turn in the robot, whi
h results in the robot

ar
ing ba
k towards the triangle. So, how is this spiking behaviour generated?

The two systems are des
ribed by the dynami
al equations for the nodes, governed by the input-output

transfer fun
tion (equation 1). For our two-node system, the right-ba
k motor node (Y

2

) re
eives an

inhibitory re
urrent input, and an ex
itatory input from the se
ond node in the network (Y

5

). The

se
ond node does not re
eive any input, and neither node re
eives external sensor input. Both nodes

are potential gas di�usion emitters, with the motor node emitting gas 1 (thus in
reasing K on nearby

nodes) when output a
tivity is high, and node 5 emitting gas 2 (de
reasing K on nearby nodes) when

the 
on
entration of gas 1 at node 5 is high. Thus we 
an write down our dynami
al equations for the

nodes:

Y

t

2

= tanh

�

K

t

2

(�Y

t�1

2

� Y

t�1

5

)� 0:66

�

(23)

Y

t

5

= tanh

�

K

t

5

:(0) + 0:48

�

� 0:44 (24)

Note that be
ause node 5 re
eives no input, re
urrent or otherwise, it has a 
onstant output over time of

approximately 0:44 for all values of the transfer parameter K

5

.

The transfer parameter K is dependent on the 
urrent 
on
entrations of gas at the node (se
tion 2.2),

and as shown in �gure 14 
hanges during the operation of the network. To 
onsider the dynami
al system

as autonomous, we would need to in
orporate the 
hange of K over time into the equations. However, we


an instead regard the dynami
al equations as non-autonomous, 
hanging over time through responding

to external input, and solve for the values of K that the system is likely to en
ounter. By default (the

geneti
ally determined value) K

2

= 4, thus our motor node system is simply the one-dimensional:

y = tanh (4(x� 0:44)� 0:66) (25)
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Figure 14: For nodes 2 (the right-ba
k motor node) and 5, involved in the `spiking' subnetwork, the �gure shows

data over a run of 100 time-steps for node output Y 2 [�1; 1℄, node transfer parameter K 2 [�4; 4℄, positive and

negative gas 
on
entrations C

1

; C

2

2 [0; 1℄ at the node site. Area between the output and time axis is shaded for


larity.

with Y

t

2

rewritten as y, and Y

t�1

2

rewritten as x. By 
omparison with the M -dimensional 
ase, we �nd

the �xed point(s) by setting y = x and solving, obtaining a single �xed point for the motor node at

y = x = a = Y

2

� �0:48. Now we want to know the stability of this point a. For the one-dimensional


ase we 
an use the �rst di�erential dire
tly (Sandefur, 1990):

�

�

�

�

dy

dx

�

�

�

�

y=x=a

8

<

:

< 1 stable equilibrium value

> 1 unstable equilibrium value

= 1 in
on
lusive; need to look at higher derivatives

(26)

Now, for the tanh transfer fun
tion used in this paper:

y = tanh (kx+ b) (27)

�

�

�

�

dy

dx

�

�

�

�

y=x=a

=

�

�

K(1� a

2

)

�

�

(28)

whi
h gives us the �xed point at Y

2

� �0:48 as unstable. Intuitively, we 
an understand this instability

as a result of the high level of inhibitory feedba
k on the motor node. The output over time of the node,

in the absen
e of high gas 
on
entrations, will thus be an os
illating �1 2-
y
le. In other words the node

behaviour is a limit 
y
le of period 2, in whi
h node output alternates between +1 and �1, see �gure

15(a).

However, when the a
tivity of the motor node is high, whi
h will happen on every other time-step on
e

transients have died down, the motor node will emit gas 1. The distan
e between the nodes in the

subnetwork is su
h that the 
on
entration of gas 1 near node 5 will 
ause node 5 in turn to emit negative
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gas 2. Consideration of the 
on
entration of this negative gas in the region of the motor node shows that

K

2

will de
rease from 4 to 0:25, seen in �gure 14). Appli
ation of �xed point stability analysis shows that

the new one-dimensional system for the motor node possesses a stable equilibrium point at Y

2

� �0:55,

understood intuitively through the mu
h smaller inhibitory re
urren
y on the motor node. Figure 15

shows the output over time of the motor node under the two gas 
on
entrations.
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= 4 has an unstable �xed point at
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� �0:48. When gas 
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entration is low,

the behaviour is a �1 2-
y
le.
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(b) K

t

2

= 0:25 has a stable �xed point at

y

2

� �0:56 when gas 
on
entration is high.

Figure 15: y

t

2

= tanh (�K

t

2

(y

t�1

2

+ 0:44) � 0:66) behaviour over time for di�erent K

t

2

values (modulated by the


on
entration of gas 2 at the node). The gas 
on
entration mediated swit
h between these two dynami
al states

is the basis for pattern generation.

Now, this stable �xed point will result in the motor node 
easing to emit gas due to low output a
tivity,

whi
h in turn results in node 5 
easing to emit gas, as emission was stimulated by the presen
e of gas 1.

The fall in gas 
on
entration will then in
rease K

2

, destabilising the �xed point. The motor node will

return to the �1 2-
y
le, and the pattern repeats.

Thus we have explained the pattern generation subnetwork. The base behaviour of the motor node is

a �1 2-
y
le os
illation, providing the single spike seen in �gure 14. This spike stimulates gas emission

from both nodes, resulting in the 
reation of a stable �xed point to whi
h the motor node returns. This

equilibrium state is destabilised by the subsequent de
ay of gas 
on
entration, and the pattern repeats.

Thus it is the intera
tion between the gas and ele
tri
al me
hanisms in the network that produ
es the

�xed limit 
y
le spiking behaviour; high ele
tri
al a
tivity of node 2 stimulates gas emission, whi
h in

turn inhibits node 2, in turn stopping the emission of gas whi
h in turn �nally allows node 2 to return

to high ele
tri
al a
tivity.

In a number of other su

essfully evolved GasNet 
ontrollers we have observed similar subnetworks; it

appears that the properties of the GasNet 
lass lend themselves readily to pattern generation. In the

next se
tion, we des
ribe the operation of an entire robot 
ontrol network used for visual dis
rimination

in a noisy environment, using the te
hniques developed in this se
tion.

8 Open-loop GasNet 
ontroller analysis

In this se
tion we analyse in detail the operation of the GasNet 
ontroller shown in �gure 13. It is seen

that the me
hanism underlying su

essful triangle dis
rimination is a permanent open-loop swit
h from

one dynami
al system to another, regulated by gas modulation of node properties. The open-loop nature

of the swit
h ignores further external input. We show that the dynami
al systems approa
h 
an be used
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to identify a number of possible reasons for the evolvability of the GasNet 
lass, and also analyse the

failure modes of the 
ontroller.

Figure 16: Two evaluations of the open-loop 
ontroller analysed in se
tion 8, showing the arena with the triangle

and square shapes on the wall. The robot is represented by the bla
k 
ir
le, with the line showing the forward

dire
tion. Note how the robot 
urves ba
k in towards the triangle on
e it starts moving forwards, due to the

pattern generation subnetwork analysed in se
tion 7.3.

Figure 13 shows the network layout for the open-loop GasNet 
ontroller, while �gure 16 shows two

evaluations of the 
ontroller. In both evaluations, the robot rotates 
ounter-
lo
kwise until after it has

rotated past the triangle, at whi
h point it moves forwards with a slow 
lo
kwise ar
ing turn whi
h brings

it ba
k to the triangle.

The 
ontroller behaviour is based on the two subnetworks in the right-hand 
orners of the node plane

(�gure 13); both are required for a

urate triangle �nding behaviour, despite the la
k of expli
it intera
tion

between the two networks. The �rst pattern generation subnetwork (
onsisting of nodes 2 and 5) was

des
ribed fully in se
tion 7.3. This subnetwork produ
es a periodi
 output of the right-ba
k motor node,

in whi
h the motor node is on for one time-step in every eight, produ
ing the slow 
lo
kwise turn on
e

the triangle has been rotated past. The se
ond subnetwork (
onsisting of nodes 3, 6 and 7) is des
ribed

in se
tion 8.1, and produ
es a �xed behaviour in whi
h the subnetwork permanently swit
hes from one

stable state to another, again on
e the triangle has been rotated past. Both networks rely heavily on gas

di�usion e�e
ts (disabling gas di�usion results in the failure of both networks), and both are required for

the overall triangle dis
rimination behaviour.

The network is des
ribed by the node transfer fun
tions:

y

t

0

= tanh (�0:5y

t�1

0

+ 0:48) � 0:31 (29)

y

t

1

= tanh (0:16) � 0:16 (30)

y

t

2

= tanh (K

t

2

(�y

t�1

2

� y

t�1

5

)� 0:66) (31)

y

t

3

= tanh (K

t

3

(�y

t�1

3

+ y

t�1

7

) + 0:62) (32)

y

t

4

= tanh (0:25y

t�1

4

� 0:28) � �0:35 (33)

y

t

5

= tanh (0:48) � 0:44 (34)

y

t

6

= tanh (K

t

6

(y

t�1

6

+ I

t

6

)� 0:38) (35)

y

t

7

= tanh (K

t

7

(y

t�1

7

+ I

t

7

)� 0:32) (36)

where �xed values for the transfer fun
tion parameters K

t

i

are shown only for nodes where no in
rease

in gas 
on
entration o

urs during evaluation.

None of the three nodes not involved in the subnetworks re
eive any external input; nodes 0 and 1

(respe
tively the right and left-forward motor nodes) stabilise at 
onstant positive values given by y

0

=
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tanh (�0:5y + 0:48) and y

1

= tanh (0:16) respe
tively, while node 4 stabilises at a 
onstant negative value,

y

4

= tanh (0:25y � 0:28) but is unused by the network. Thus both forward motor nodes are 
ontinually

on, and behaviour is governed by the two subnetworks a
ting on the ba
k motor nodes. In the next

se
tion we analyse the swit
hing subnetwork.

8.1 Stable state swit
hing
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Figure 17: For nodes 3 (the left-ba
k motor node), 6 and 7, involved in the `swit
h' subnetwork des
ribed fully

in se
tion 8.1, the �gure shows data over a run of 100 time-steps for node output Y 2 [�1; 1℄, node transfer

parameter K 2 [�4; 4℄, positive and negative gas 
on
entrations C

1

; C

2

2 [0; 1℄ at the node site. Area between

the output and time axis is shaded for 
larity.

In the open-loop 
ontroller, the only nodes re
eiving external visual input are in the subnetwork involved

in the triangle dis
rimination network, 
onsisting of the left-ba
k motor node 3, and nodes 6 and 7. The

subnetwork, shown in the bottom-right 
orner of the node plane (�gure 13), regulates the left-ba
k motor

node through ele
tri
al synapse and gas di�usion e�e
ts. Both nodes 6 and 7 re
eive re
urrent and visual

input, while the motor node 3 re
eives re
urrent input, plus an input from node 7. Figure 17 shows the

output Y , transfer fun
tion parameter K, and gas 
on
entrations C

1

; C

2

for the three nodes. The three

node subnetwork produ
es a dynami
 system whi
h 
an produ
e a permanent swit
h from one stable

state to another, when a spe
i�
 
ombination of high external sensory input is re
eived. Note that we

are treating the subnetwork as a non-autonomous dynami
al system, re
eiving external input from the

environment. External visual input is re
eived by nodes 6 and 7, but only when the visual input level

is above the geneti
ally spe
i�ed node input thresholds. We analyse the subnetwork behaviour for the


ases when inputs are below threshold, and when inputs are above visual input threshold levels.
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8.1.1 Inputs below threshold

Both nodes 6 and 7 have the same high visual input threshold, with only intensities above 0:84 having

any e�e
t. So we 
an investigate the 
ase when input is below this, where the equations simplify to

y

t

6

= tanh (y

t�1

6

� 0:38) and y

t

7

= tanh (2y

t�1

7

� 0:32) (in the absen
e of gas, K

t

3

= �1;K

t

6

= 1 and

K

t

7

= 2). The stable solution to these equations is y

3

� 1:0; y

6

� �0:8; y

7

� �1:0. Note that y

7

has

3 stable �xed points, but applying �xed point stability analysis (se
tion 7) shows that from an initial

position of y

7

= 0:0, the y

7

� �1:0 solution is rea
hed. However, the other y

7

solutions are 
ru
ial when

input is above threshold, a situation that is analysed in the se
tions below. Both nodes 6 and 7 emit

negative gas when output a
tivity is high, but this is not the 
ase for the stable point. In the presen
e of

negative gas, node 3 emits positive gas - again this is not the 
ase for the stable point.

Thus we have the general pi
ture when no visual input is re
eived above the threshold level of 0:84. Both

visual input nodes 6 and 7 are highly inhibited, and the left-ba
k motor node 3 is highly ex
ited. No

nodes are emitting gas, and gas 
on
entrations are zero in the neighbourhood of ea
h node. Thus the left

motor is inhibited, and the robot 
ir
les 
ounter-
lo
kwise, due to the right motor being on for seven in

eight time-steps (remember that the spiking subnetwork on the left-ba
k motor node only turns o� the

motor one in eight time-steps, see se
tion 7.3). So what happens when inputs are above threshold?

8.1.2 Inputs above threshold

The following analysis assumes inputs take their maximum value of 1:0, but is qualitatively the same

for all values above the visual input thresholds of 0:84. In the presen
e of high input to both nodes

(again in the absen
e of high gas 
on
entrations), the equations simplify to y

t

6

= tanh (y

t�1

6

+ 0:62)

and y

t

7

= tanh (2y

t�1

7

+ 1:68); the stable solution is y

3

� �0:8; y

6

� 0:9; y

7

� 1:0. Note how all the

node output a
tivities have reversed; the previously inhibited nodes 6 and 7 are now ex
ited, while the

previously ex
ited left-ba
k motor node is now inhibited. The input threshold has produ
ed an on/o�

`swit
h'. The immediate e�e
t of high visual input to node 7 is to turn o� the left-ba
k motor node

through the inhibitory 
onne
tion, thus turning on the left motor, so the robot goes in a straight line.

However, the pi
ture is 
ompli
ated by the emission of gas from the subnetwork nodes. Both nodes 6 and

7 emit negative gas when highly a
tive, and node 3 emits positive gas in the presen
e of high negative

gas 
on
entrations. Three di�erent s
enarios are investigated: where both inputs go high at the same

time, and where either input goes high �rst.

In the model of gas di�usion used, gas 
on
entration builds up a

ording to equations 2 to 4, rea
hing

a maximum 
on
entration C = C

0

e

�(d=r)

2

. The node 6 
hara
teristi
s ensure negative gas spreads out

very qui
kly over a large area: the 
on
entration of negative gas at node 7 due to node 6 emission qui
kly

a�e
ts the transfer fun
tion (on the very next time-step). The small distan
e between nodes 6 and 7,

and the high value of the radius of gas emission r for node 6, produ
e a gas 
on
entration that drops K

7

from 2 to �0:25. Now y

t

7

= tanh (�0:25y

t�1

7

� 0:57) has a stable negative solution (�0:43) even with high

positive sensory input. Thus, if node 6 re
eives bright input before node 7, node 7 is inhibited despite

re
eiving bright input, so does not inhibit the left-ba
k motor node, and the robot 
ontinues rotating.

The 
ase where both inputs are bright at the same time is very similar to the 
ase where node 6 re
eives

high input before input 7, due to the faster di�usion of gas from node 6. Node 7 will inhibit the left-ba
k

motor node brie
y (even more so as the 
ombined negative gas from nodes 6 and 7 is 
on
entrated enough

to a�e
t the left-ba
k motor node transfer fun
tion parameter) but the negative gas build up due to node

6 qui
kly inhibits node 7, and the left-ba
k motor node will return to its previous ex
ited state where

y

3

� 1:0.

Finally we turn to the 
ase where node 7 re
eives bright input before node 6. The immediate e�e
t is

for node 7 to inhibit the left-ba
k motor node. The se
ondary e�e
t is for node 7 to emit negative gas.

Despite the slower di�usion of gas from node 7 gas than from node 6, it is still enough to inhibit node 6 so

long as node 7 re
eives bright input for four or more time-steps before node 6; this time period is 
ru
ial to
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the behaviour. Even with high input, node 6 
annot now produ
e output suÆ
ient to emit gas so 
annot

inhibit node 7. Now, the three solutions to the node 7 equation with no input (y

t

7

= tanh (2y

t�1

7

� 0:32))

mentioned previously 
ome into play. From an initial 
ondition of y

7

� 1:0, even with no external input,

there is a stable solution at y

7

� 0:9. Thus the network is now in a highly stable state with node 7 output

at near maximum with or without external input, node 6 inhibited due to negative gas emitted by node

7, and the left-ba
k motor inhibited due to node 7 synapse output. The overall e�e
t is to swit
h the

network into a permanent open-loop behaviour where further external input is irrelevant. Due to the

inhibition of the left-ba
k motor node, the left motor is on and the robot 
ontinues straight-ahead. So

under what 
onditions does node 7 re
eive bright visual input four or more time-steps before node 6?

8.1.3 Visual input positions, su

ess and failure modes

Figure 13 shows that the visual inputs to nodes 6 and 7 are verti
ally aligned in the visual �eld, with

7 dire
tly below 6. S
anning a
ross the square will 
ause both nodes to re
eive bright input at roughly

the same time, thus node 7 will be inhibited by node 6, and the robot will 
ontinue rotating. However,

s
anning a
ross the triangle will 
ause node 7 to re
eive bright visual input signi�
antly before node 6,

thus inhibiting node 6. This in turn will 
ause the network to swit
h into the permanent open-loop state,

and the robot will 
ontinue straight-ahead. Table 1 summarises the behaviour of the robot as determined

by the swit
hing subnetwork.

Node 6 input Node 7 input Node re
eiving Left-ba
k motor node Robot motion

�rst bright input

dark dark - ex
ited 

w rotation

bright dark 6 ex
ited 

w rotation

bright bright 6 ex
ited 

w rotation

bright bright same time ex
ited 

w rotation

dark bright 7 inhibited straight-forward

bright bright 7 inhibited straight-forward

Table 1: Summary of `swit
h' subnetwork behaviour, showing the robot motion based on the visual input to

nodes 6 and 7. The robot rotates 
ounter-
lo
kwise (

w) for the 
ases where no bright visual input is re
eived,

and for the 
ases where node 6 re
eives bright input before or at the same time as node 7. The robot moves

straight-forward only when node 7 re
eives bright input signi�
antly before node 6. Due to the visual input to

node 6 being higher in the visual �eld than the input to node 7, node 7 will only reliably re
eive bright visual

input before node 6 when the triangle is s
anned a
ross. Thus the robot will rotate past the square, but move

straight-forwards when the triangle is en
ountered.

We 
an also see the failure modes from this analysis. It is the four (or more) required time-steps of bright

input to node 7, without bright input to node 6, that produ
es visual input noise �ltration. However,

an extremely noisy environment may `fool' the 
ontroller into the permanent dynami
al system swit
h,

through only node 7 re
eiving bright input. Su
h a situation may o

ur with 
ashes of light aimed at only


ertain parts of the arena, whi
h might be erroneously identi�ed as triangles by the 
ontroller. Similarly,

bright shapes with angled edges leading to node 7 re
eiving input before node 6 will be identi�ed by the


ontroller as triangles, and approa
hed. Finally, triangles with edges insuÆ
iently angled to allow input

7 to be bright for 4 time-steps before input 6 will not be approa
hed by the 
ontroller. Among these

unidenti�ed triangles will be upside-down triangles and right-angled triangles.

In the next se
tion, we summarise the overall behaviour of the 
ontroller, and draw some general prin
iples

of GasNet robot 
ontroller operation.
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8.2 Open-loop GasNet 
ontroller summary

The overall behaviour of the robot 
ontroller 
an be summarised as follows. In the absen
e of bright

visual input, the robot rotates 
ounter-
lo
kwise, with the right motor permanently ex
ited, and the left

motor inhibited by the swit
hing subnetwork. This behaviour 
ontinues, until the robot s
ans a
ross a

bright obje
t, su
h that the lower half of the visual �eld re
eives bright input signi�
antly before the

upper half. This permanently swit
hes o� the left-ba
k motor node, ex
iting the left motor and 
ausing

the robot to move straight-forward. Now the e�e
t of the spiking subnetwork is seen; on
e every eight

time-steps the right motor is turned o�, thus the robot moves in a slow 
lo
kwise ar
 ba
k towards the

triangle, whi
h it has rotated past. So we have explained in full the behaviour seen in the two example

evaluations, shown in �gure 16.

The two subnetworks analysed are 
ru
ial to the understanding of the robot 
ontroller triangle dis
rimi-

nation, in 
onjun
tion with the robot-environment 
oupling. The primary robot-environment 
oupling is

the permanent swit
h me
hanism; s
anning a
ross the square will produ
e no 
hange in the robot motion

beyond a slight slowing of the turn. By 
ontrast, s
anning a
ross the triangle will lo
k the robot into a

�xed behaviour in whi
h no subsequent external input a�e
ts the network, and with both motors full on

the robot goes forward towards the bright obje
t. The se
ond subnetwork is used by the 
ontroller to


ompensate for both the relatively slow time-s
ale of the permanent swit
h mediated by the gas di�usion,

and the momentum of the robot. While rotating past the triangle the permanent swit
h behaviour will


ome into play, but the robot motors will take several time-steps to over
ome momentum and fri
tion to

a
tually produ
e the straight motion. It is the right motor turning o� on
e in every eight time-steps that

adjusts for this, turning the robot ba
k towards the triangle. Without this spiking behaviour, the robot

would overshoot and run into the wall past the triangle; it is the la
k of a
tive `
losed-loop' tra
king that

produ
es the need for this 
ompensation.

In the next se
tion we hypothesise why the GasNets network 
lass is more evolvable than the NoGas

network 
lass.

8.3 Why are GasNets good for evolution?

From this detailed analysis of the open-loop 
ontroller, we 
an frame some preliminary 
on
lusions on

the usefulness of the me
hanisms utilised in GasNet 
ontrollers for the generation of adaptive behaviour

over time.

First, tunable pattern generation is extremely easy to produ
e using GasNet 
ontrollers. In general,

pattern generation is based on limit 
y
le behaviour, with the system 
y
ling through some set of states

(Beer et al., 1999; Chiel et al., 1999). As we have seen from the analysis in se
tion 7.3, the spiking

subnetwork used by the open-loop 
ontroller operated in exa
tly su
h a fashion; the high �tness of the


ontroller is due to this subnetwork slowly turning the robot ba
k towards the triangle. This leads to

our �rst hypothesis for why the GasNet 
lass is more evolvable than the NoGas 
lass; the GasNets are

more amenable to being `tuned' to the spe
i�
 
hara
teristi
s of the environment. The pattern produ
ed

in whi
h the right-ba
k motor node spiked on
e in every eight time-steps was perfe
tly tuned to the

speed and size of the robot wheels, the size of the triangle, and the size of the arena in whi
h the robot

operated. A di�erent pattern would not have produ
ed su
h high �tness in this environment, and the

same pattern would not have produ
ed su
h high �tness in a di�erent environment. We hypothesise that

the same kind of environmental tuning is more diÆ
ult with the NoGas 
lass.

The tuning of generated patterns is 
losely related to our se
ond hypothesis regarding useful properties in

the GasNet 
lass for adaptive behaviour; the ability to swit
h between stable states, in other words a dis-


ontinuous 
hange of behaviour determined by external input, and the ability to mediate su
h swit
hing.

This is 
learly possible to a
hieve without gas modulation, but the features of the gas di�usion me
hanism

allow su
h a swit
h to take pla
e over several time-steps, through the build-up of gas 
on
entration levels.

This was seen in the fun
tionally equivalent me
hanisms of se
tion 8.1, where the swit
h from rotation
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to straight-forwards motion was inhibited by bright input, only when su
h bright input was re
eived over

several time-steps. Thus the swit
hing 
an be based on input patterns re
eived over time, not just at a

single time-point.

Finally, the ability to �lter out noisy input is straight-forward to produ
e when using the GasNet 
ontroller


lass, similarly through requiring that input be 
onsistent over several time-steps. This was seen in the

requirement that bright input was re
eived several time-steps earlier by visual input nodes lower in the

visual �eld, before the 
ontroller responded (se
tion 8.1). Thus bright 
ashes and other noisy environment

e�e
ts were eÆ
iently ex
luded by the robot 
ontroller.

In the next two se
tions, we investigate these hypotheses in two ways. First, we analyse and 
ompare

two solutions utilising the same shape dis
rimination strategy, one GasNet 
ontroller and one NoGas


ontroller, in order to 
ompare the underlying me
hanisms. Se
ond, we re-evolve previously evolved 
on-

trollers in an environment with di�erent 
hara
teristi
s to the environment in whi
h they were originally

evolved, in order to 
ompare the tunability of the me
hanisms used by the evolved 
ontrollers.

9 Fun
tionally equivalent GasNet and NoGas 
ontrollers

Two 
ontrollers, one evolved using the GasNet 
lass and one evolved using the NoGas 
lass, were analysed

using the dynami
al system methods of the previous se
tions. It was found that both employed the same

strategy for the triangle-square dis
rimination task, based on a method of timing the duration for whi
h

bright visual input was re
eived in the upper half of the visual �eld. Due to triangles being narrower at

the top than squares, this allows the 
ontrollers to su

essfully dis
riminate between the two shapes. In

this se
tion we investigate the GasNet and NoGas me
hanisms for timing the duration over whi
h bright

input is re
eived, and argue that the GasNet me
hanism is simpler to tune to the 
hara
teristi
s of the

environment.

Right-forward motor

Node 4

Node 8

Node 9

Left-back motor

Node 8

Node 4

=

Visual input

GasNet controller NoGas controller

Figure 18: The two fun
tionally equivalent subnetworks analysed in se
tion 9. Both employ the same strategy for

triangle-square dis
rimination; timing the duration of re
eiving bright input in the upper half of the visual �eld.

Due to triangles being narrower than squares at the top, this allows the shapes to be su

essfully dis
riminated.

Figure 18 shows the two fun
tionally equivalent subnetworks; both 
ontrollers time the duration over

whi
h bright input is re
eived from visual inputs in the upper half of the visual �eld. A se
ond visual

input me
hanism (not shown) a
ts simply as a \bright obje
t �nding dete
tor". This bright obje
t �nding

me
hanism is `later' in the visual �eld than the timing me
hanism, in the sense that the position of visual

input and dire
tion of robot rotation is su
h that the bright obje
t �nding me
hanism will `see' things

after the timing me
hanism. The bright obje
t behaviour is inhibited if the duration of bright input to
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the timing me
hanism is suÆ
iently long, whi
h is the 
ase when s
anning a
ross the square, but not

when s
anning a
ross the triangle. Thus the 
ontroller approa
hes the triangle, but rotates past the

square. In the next se
tions we des
ribe the methods by whi
h the GasNet and NoGas solutions produ
e

su
h a timing me
hanism.

9.1 The GasNet \timer"

With the GasNet 
lass, it is simple to produ
e a timing me
hanism that retains a
tivity for some time

after the initial input has been re
eived. A single node re
eiving visual input, and with the property

that gas emission o

urs when the node output a
tivity is high, will start emitting gas when bright input

is re
eived. The gas 
on
entration built-up during emission will take some time to de
ay on
e bright

input is no longer re
eived, with this de
ay time being a fun
tion of the geneti
ally spe
i�ed rate of gas


on
entration build-up. Remember from equations 2 to 4 (se
tion 2.1) that gas 
on
entration de
ays in a

Gaussian fashion with distan
e from the emitting node, but in
reases linearly over time during emission,

and de
reases linearly over time on
e emission stops. As the time taken for gas 
on
entration to build

up to a maximum is spe
i�ed by the genotype, the me
hanism is simple to tune to the 
hara
teristi
s of

the environment.
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Figure 19: Gas 
on
entration C

0

over 200 time-steps. A square wave external visual input of in
reasing width

is applied as input, to illustrate the di�eren
es between the output seen for the triangle and for the square. Area

between the output and time axis is shaded for 
larity.

For this timing me
hanism to a�e
t the 
ontroller operation, we require the built-up gas 
on
entration

to a�e
t the motor node a
tivity. Again, this is relatively simple to e�e
t, as the gas 
on
entration 
an

modulate either the motor node, or as in the 
ontroller analysed here, another visual input node whi
h

has an output 
onne
tion to the motor node. The left-hand side of �gure 18 shows the subnetwork

responsible for the GasNet timing me
hanism; bright input to nodes 8 and 9 produ
es 
on
entration of

gas 1 at node 4. If gas 
on
entration is high enough, the in
rease in the node 4 transfer parameter K

in
reases output suÆ
iently to inhibit the right-forward motor node. Thus the robot rotates 
lo
kwise

past the square, but moves straight-towards the triangle. In the next se
tion we des
ribe the intuitively

less-obvious operation of the NoGas timing me
hanism.

9.2 The NoGas \timer"

A fully 
onne
ted three-node subnetwork based around a motor node (see the right-hand side of �gure

18) allows the NoGas solution to 
reate exa
tly the same timing me
hanism seen in the previous se
tion.

Dynami
al systems analysis of the subnetwork shows a single stable equilibrium point for the system
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when visual input is below the input threshold, and a di�erent single stable equilibrium when visual

input is above threshold.

The key to the timing me
hanism is how the system moves between these �xed points when the visual

input 
hanges. The fully 
onne
ted feedba
k nature of this three node system makes it impossible to give

a full quantitative des
ription of the behaviour, but qualitative features 
an be outlined. With no bright

input to node 8, the system settles into the �rst stable �xed point des
ribed above, while with bright

input the system moves towards the se
ond stable point. On
e bright input is no longer re
eived, the

system slowly de
ays ba
k to the �rst stable �xed point.
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Figure 20: Node output data (ranging from �1) for nodes 3, 4 and 8 over 200 time-steps. A square wave external

visual input is applied to node 8 to illustrate the two �xed points of the system, and the slow de
ay from one

state to the other. Area between the output and time axis is shaded for 
larity.

The feedba
k between the nodes ensures that the de
ay between stable states is fairly slow, produ
ing

an e�e
t whi
h 
an build-up and de
ay over time, in a similar fashion to that of gas 
on
entration. The

longer that bright input is re
eived for, the nearer to the high visual input stable state the system rea
hes,

and the longer it takes to de
ay ba
k to the low visual input stable state. Figure 20 shows the outputs

for the three nodes in the system when a square wave visual input is applied to node 8, and 
learly shows

the slow 
hange from one state to another when visual input 
hanges from dark to bright, and vi
e versa.

It takes roughly ten time-steps for node 3 to rea
h the bright input stable state, and roughly thirty steps

to de
ay ba
k to the dark visual input regime. The motor node a
tivity y

3

is the 
ru
ial value; as this

goes from negative to positive, the left motor is inhibited, and the robot does not approa
h the bright

obje
t. Only when suÆ
ient bright input has been re
eived will this o

ur, for instan
e when the square

has been s
anned a
ross.

Thus we have our NoGas timing me
hanism. Instead of using the GasNet build-up and de
ay of gas


on
entration to modulate motor node properties, the NoGas version uses a fully 
onne
ted subnetwork

whi
h de
ays from one stable equilibrium state to another, depending on the level of visual input re
eived.
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As proposed in se
tion 8.3, we hypothesise that the GasNet version is easier to tune to the spe
i�



hara
teristi
s of the environment than the NoGas version. In the next se
tion, we test this hypothesis

for the two fun
tionally equivalent 
ontrollers through re-evolving the 
ontrollers in environments with

modi�ed properties.

10 Re-evolution of 
ontrollers in modi�ed environments

The hypothesis that GasNet 
ontrollers are easier to tune to the spe
i�
 properties of the environment

than NoGas 
ontrollers 
an be investigated through the behaviour of the 
ontrollers in environments with

modi�ed properties. In this se
tion, we analyse 
ontrollers when evaluated in two separate environments,

where the robot motor speeds are respe
tively set to double and quarter the usual motor speeds. This

has the e�e
t of making the robot move at a di�erent speed in the arena, in parti
ular spinning past

the two shapes at very di�erent rates to the speeds en
ountered during the original evolutionary phase.

Note that the environments 
ould similarly be modi�ed through altering the size and properties of the

shapes, and/or the size of the arena. Other modi�
ations 
ould also investigate the e�e
t of re-evolving

from lesioned or similarly modi�ed 
ontrol networks. However, in this work we fo
us on modi�
ation of

the robot motor speeds.

10.1 Re-evolution of the fun
tionally equivalent 
ontrollers

We would expe
t the 
ru
ial timing me
hanisms des
ribed in se
tion 9 to be a�e
ted by evaluation in

environments with modi�ed robot speeds, with the time spent spinning past the triangle and square mu
h

shorter in the double speed environment, and mu
h longer in the quarter speed environment. However, the

hypothesis that the GasNet me
hanism is in some sense easier to tune to the parti
ular properties of the

environment 
an be tested through seeding the 
ontrollers ba
k into the evolutionary pro
ess, with �tness

based on evaluation in the modi�ed environments. We 
an then re-run the evolutionary pro
ess from the


ontroller seeds, assessing how long before 
ontrollers of 100% �tness are again a
hieved. Although this

will not tell us dire
tly how easy the 
ontroller was to originally tune to the environment, we argue that

the evolutionary tuning pro
esses involved are similar. In other words, if it is mu
h easier to tune the

evolved GasNet 
ontroller to the spe
i�
 
hara
teristi
s of the modi�ed environment, it would also have

been mu
h easier to tune the GasNet 
ontroller to the original environment.

The two 
ontrollers were used to seed the initial populations for the distributed evolutionary algorithm

(se
tion 5.2), and evolution repeated twenty times for ea
h 
ontroller in ea
h modi�ed environment until


ontrollers of 100% �tness were observed. In this re-evolution, we allow only the parts of the genotype

involved in the timing me
hanism to be a�e
ted by the evolutionary pro
ess; we are assessing how easy

it is to modify the a
tual me
hanism itself, not the rest of the network.

Results for re-evolution studies of the two 
ontrollers are given in table 2. In the double speed environ-

ment, both 
ontrollers drop in �tness to well under 20%, with no signi�
ant di�eren
es seen between the

�tness of the two 
ontrollers. However, there is massive di�eren
e in the number of generations required

to re-evolve 
ontrollers of 100% �tness; the GasNet 
ontroller is mu
h easier to tune to the modi�ed

properties of the environment (10 generations on average 
ompared with 409 generations). In the quarter

speed environment, the GasNet 
ontroller a
hieves signi�
antly higher �tness than the NoGas 
ontroller,

but the di�eren
e in the number of generations required to rea
h 100% �tness 
ontrollers is mu
h larger

than might be predi
ted by this �tness di�eren
e (30 generations on average 
ompared with 591 gener-

ations). So in both modi�ed environments, the GasNet 
ontrollers are mu
h easier to evolve su

essful


ontrollers than would be predi
ted from their �tnesses; the GasNets are more tunable.

From the results presented in this se
tion, we 
an support the hypothesis of the previous se
tion; namely

that the GasNet 
ontrollers are easier to tune to the spe
i�
 properties of the environment than the


orresponding NoGas 
ontrollers. In the next se
tion we extend this to a sample of previously evolved
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Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 20 20 20 20

Mean evaluated �tness (�) 0.17 (0.074) 0.15 (0.066) 0.36

�

(0.10) 0.21 (0.016)

Mean re-evolution generations (�) 10 (5)

��

409 (336) 30 (31)

��

591 (346)

Median re-evolution generations 10

��

360 19

��

608

Table 2: Data for the two fun
tionally equivalent networks shown in �gure 18, re-evolved in two modi�ed

environments. The robot motors are set to double-speed and quarter-speeds respe
tively, and the two 
ontrollers

evaluated 100 times for �tness, then used to seed the initial populations for the evolutionary algorithm until 100%

�tness 
ontrollers were produ
ed (20 runs were performed for ea
h 
ontroller on ea
h 
ondition). The evaluated

�tnesses, and mean, median and standard deviation of the number of generations of re-evolution required to

rea
h 100% �tness 
ontrollers are shown, with signi�
ant di�eren
es between the GasNet and NoGas 
ontrollers

highlighted (both parametri
 T-tests and non-parametri
 Mann-Whitney U tests were performed

�

p < 0:05;

��

p <

0:01).


ontrollers.

10.2 Re-evolution of a sample of 
ontrollers

It may be argued that the two fun
tionally equivalent 
ontrollers investigated are based on a me
hanism

whi
h is in prin
iple easier to both produ
e and tune using the GasNet 
ontrol 
lass. Thus re-evolving the

timing me
hanism in modi�ed environments will unfairly favour the GasNet 
ontroller. By 
ontrast other

me
hanisms may favour NoGas 
lasses; here we 
ounter this argument through extending the re-evolution

analysis to a random sample of forty previously evolved GasNet and NoGas 
ontrollers of 100% �tness.

Double speed Quarter speed

GasNet NoGas GasNet NoGas

Number of runs 200 200 200 200

Mean evaluated �tness (�) 0.27 (0.13) 0.26 (0.18) 0.35 (0.27) 0.29 (0.19)

Mean re-evolution generations (�) 107 (190)

��

240 (363) 108 (229) 116 (252)

Median re-evolution generations 36

�

49 13

��

21

Table 3: Data for a sample of twenty GasNet and twenty NoGas 
ontrollers, re-evolved in two modi�ed environ-

ments. The robot motors are set to double-speed and quarter-speeds respe
tively, and the two 
ontrollers evaluated

100 times for �tness, then used to seed the initial populations for the evolutionary algorithm until 100% �tness


ontrollers were produ
ed (10 runs were performed for ea
h 
ontroller on ea
h 
ondition). The evaluated �tnesses,

and mean, median and standard deviation of the number of generations of re-evolution required to rea
h 100%

�tness 
ontrollers are shown, with signi�
ant di�eren
es between the GasNet and NoGas 
ontrollers highlighted

(both parametri
 T-tests and non-parametri
 Mann-Whitney U tests were performed

�

p < 0:05;

��

p < 0:01).

The forty 
ontrollers were used to seed the initial populations for the distributed evolutionary algorithm,

whi
h was run until 
ontrollers on
e more showed 100% �tness, with �tness evaluated in the same double-

and quarter-speed environments des
ribed in the previous se
tion. Table 3 shows the results for the two


onditions, averaged over ten evolutionary runs of ea
h of the forty 
ontrollers. The results are not as

striking as those from the fun
tionally equivalent 
ontrollers, lending some weight to the hypothesis that

the previous analysis unfairly favoured the GasNet me
hanism. However, the GasNet 
ontrollers still

showed signi�
antly faster re-evolution than the NoGas 
ontrollers. In the double speed environment,

both samples of 
ontrollers fell to average �tnesses of 0:26, but the GasNet 
ontrollers on average re-

evolved in 107 generations 
ompared with 240 generations for the NoGas 
ontrollers. In the quarter

speed environment, the di�eren
es are mu
h smaller, with 
omparable mean numbers of generations for
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re-evolution, however there is eviden
e of faster evolution from the median numbers of generations. Thus

from our sample of GasNet 
ontrollers, we also see eviden
e of signi�
antly faster re-evolution to modi�ed

environments; the GasNets are more tunable.

In the next se
tion, we investigate the hypothesis further, using a more abstra
t �tness evaluation. We

evolve GasNet and NoGas networks for a 
entral pattern generation problem, in whi
h the output of

a single node is evaluated against a test pattern. We then use su

essfully evolved networks to seed

the initial populations for a re-evolution environment where �tness is evaluated against a di�erent test

pattern.

11 Evolving 
entral pattern generator networks

In this se
tion, we test the GasNet and NoGas 
lasses further in a 
entral pattern generation (CPG)

experiment. We evolve fully 
onne
ted GasNet and NoGas networks, with output tested against some

required test pattern, then re-evolve su

essful 
ontrollers against di�erent test patterns. We argue that

the in
reased evolutionary speed seen for the GasNet 
lass over the NoGas 
lass on both the original

evolution and the re-evolution experiments lends support to the hypothesis that the GasNet 
lass is more

tunable to the 
hara
teristi
s of the environment, whi
h in this 
ase 
orrespond to the desired pattern

output.

11.1 The 
entral pattern generation network

The networks used in the CPG experiment 
onsisted of four fully-
onne
ted nodes, in
luding re
urrent


onne
tions (other size networks were also investigated, with 
omparable results). Conne
tion weights

between the four nodes were geneti
ally spe
i�ed, and were 
onstrained to lie in the range f�1; 1g. Ea
h

node re
eived a geneti
ally spe
i�ed �xed bias input, and the same tanh input-output transfer fun
tion

was used as in previous experiments:

O

t

i

= tanh

2

4

K

t

i

0

�

X

j2C

i

w

ji

O

t�1

j

1

A

+ b

i

3

5

(37)

where O

t

i

is the ith node a
tivity at time-point t, K

t

i

the transfer fun
tion parameter, �xed for the NoGas

networks, but able to vary for the GasNet networks, w

ji

the 
onne
tion weight from node j to node i,

and b

i

the bias input to node i.

Gas di�usion and modulation o

urred exa
tly as des
ribed for the robot visual dis
rimination problem

in se
tion 2. Ea
h node had a set x; y position in the gas di�usion plane, and was able to emit one

of two gases, respe
tively in
reasing or de
reasing the transfer fun
tion parameter K

t

i

of nearby nodes.

However, it should be emphasised that in the CPG networks the ele
tri
al ar
hite
ture, in other words

the pattern of synapti
 
onne
tions between the nodes, was not spe
i�ed arbitrarily in the gas di�usion

plane, but spe
i�ed dire
tly on the genotype in terms of the weights between nodes. Figure 21 shows the

network setup.

The NoGas genotype 
onsisted of 18 integers in the range [0; 99℄, en
oding the 4 node biases b

i

, 4 node

transfer parameters K

i

, and 10 
onne
tion weights w

ji

. The GasNet genotype 
onsisted of the NoGas

genotype plus an extra six parameters per node for the gas di�usion parameters (the type of gas emitted

< CE >, the 
onditions under whi
h gas emission o

urs < TE >, the radius of gas emission r, the

gas build-up parameter s, and the x; y 
o-ordinates of the node in the 2D gas plane), thus the GasNet

genotype 
onsists of 42 integers in the range [0; 99℄.
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0011010 ... 110


pattern output

Figure 21: The fully-
onne
ted 
entral pattern

generator experiment networks. Ea
h node pro-

vides output to, and re
eives input from, ev-

ery other node in the network (in
luding itself).

Weights are spe
i�ed by the genotype over the

range f�1; 1g, and the �nal output pattern is spe
-

i�ed as the output of the �rst node in the network.

11.2 Fitness evaluation

Four simple test-patterns were used, all 
onsisting of a number of ones followed by a number of zeros,

repeating for the entire 200 time-steps of �tness evaluation. The Ten:Four pattern 
onsisted of a repeated

blo
k of ten ones followed by four zeros. Similarly Eleven:Five, Eleven:Seven, and Seven:Five


onsisted of repeated blo
ks of the relevant numbers of ones and zeros. Other patterns showed 
omparable

results.

Networks were evaluated over 200 time-steps, with �tness evaluated on the output of the �rst node in

the network. The pattern output of the network was spe
i�ed as one if this node had positive a
tivity,

zero otherwise. The full pattern over the 200 time-steps was 
ompared with the test pattern, re
eiving

positive s
ore for 
orre
t pattern output on ea
h time-step. The s
ores allo
ated for ea
h 
orre
t output

were weighted to give equal weighting to ones and zeros, with �tness s
aled to the range [0; 1℄. In other

words, ea
h output one that mat
hed the required test pattern s
ored inversely proportional to the total

number of ones in the test pattern, while similarly ea
h zero that mat
hed the required test pattern

s
ored inversely proportional to the total number of zeros in the test pattern.

11.3 Evolutionary results

The distributed steady-state evolutionary algorithm des
ribed in se
tion 5 was used. Two other evo-

lutionary algorithms showed 
omparable results (a generational tournament algorithm and simulated

annealing algorithm). Similarly, the mutation and re
ombination operators des
ribed in se
tion 5 were

used. We report results only from experiments using mutation rate � = 8%, with no re
ombination.

Table 4 and �gure 22 show the evolution results for the four test patterns. Results are given for the

number of evaluations required before su

essful 
ontrollers of 100% �tness are evolved. For ea
h of the

test patterns, �fty evolutionary runs were 
arried out for the GasNet and NoGas 
lasses. We see 
learly

that the GasNet 
lass evolves su

essful pattern generators signi�
antly faster than the 
orresponding

NoGas 
lass, typi
ally in about half the number of evaluations.

In �gure 23 we show the results for the re-evolution of su

essful 
ontrollers, when evaluated against a

di�erent test pattern from the original evolution. The �fty 
ontrollers for ea
h of the four test patterns

evolved above were used to seed the initial populations for the evolutionary algorithm, and 10 evolutionary

runs 
arried out for ea
h of the previously evolved 
ontrollers against ea
h of the other three test patterns.

Again we see that the GasNet 
lass produ
es signi�
antly faster evolution for ea
h of the re-evolution

experiments.

The results for the re-evolution of pattern generation networks show a number of 
ases where the number

of evaluations required to re-evolve to a di�erent test pattern is not signi�
antly smaller than the original

evolution (and even some 
ases where re-evolution is slower than the original evolution). However, in all


ases the GasNet 
lass shows signi�
antly faster evolution and re-evolution of CPG networks than the

NoGas 
lass.
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Pattern Statisti
 GasNet NoGas

Seven:Five Mean (�) 16390 (34060) 33530 (45910)

Median 2500 3260

Ten:Four Mean (�) 18000 (36080) 36000 (46230)

Median 2120 5010

Eleven:Five Mean (�) 22410 (39100) 43830 (48060)

Median 3070 5470

Eleven:Seven Mean (�) 13750 (32130) 31610 (45080)

Median 1460 2980

Table 4: The number of evaluations required to evolve su

essful GasNet and NoGas networks, for the four exper-

iments where �tness is evaluated over the four di�erent test patterns: Ten:Four, Eleven:Five, Eleven:Seven,

and Seven:Five.
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Figure 22: The number of evaluations required

to evolve su

essful GasNet and NoGas networks,

for the four experiments where �tness is evaluated

over the four di�erent test patterns: Ten:Four,

Eleven:Five, Eleven:Seven, and Seven:Five.

Mean data shown, with the error bars represent-

ing 95% 
on�den
e intervals. The numbers above

the error bars show the number of runs not �nish-

ing. GasNet data is given by the light grey bars,

NoGas data by the dark grey bars.

So again, the results support our hypothesis that the GasNet 
lass is well suited to being tuned to the

spe
i�
 properties of the environment when 
ompared with the NoGas 
lass. In the next se
tion we draw

together the various experiments 
arried out in this paper.

12 Summary

The detailed analysis of a number of GasNet and NoGas 
ontrollers allowed us to frame two hypotheses

regarding the suitability of the GasNet 
lass to robot 
ontrol.

First, the ability to both produ
e and modify 
entral pattern generation output was seen to be 
entral to

a number of evolved 
ontrol solutions. This seems surprising. We are not investigating su
h behaviours

as walking and swimming gaits, or rhythmi
 feeding, where behaviour is often based on 
entral pat-

tern generation. Our visual shape dis
rimination task might not at �rst sight appear to be related to

su
h pattern generation. However, a number of GasNet 
ontrollers were seen to use pattern generation

subnetworks in the �nal evolved behaviour.

Se
ond, the ability to swit
h between dynami
al states dependent on external input, and the ability to

mediate this swit
h over a number of time-steps was seen to be extremely useful both in behaviour gener-

ation and �ltering environmental noise. From analysis of the fun
tionally equivalent GasNet and NoGas


ontrollers we argued that the kinds of timing me
hanisms able to mediate su
h behaviour swit
hing and

noise �ltration were mu
h easier using the GasNet 
lass.

The twin hypotheses that GasNet 
lasses were more amenable to both the development and tuning of

pattern generation and the development and tuning of swit
hing me
hanisms were supported by the
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(a) Seven:Five pattern
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Figure 23: The number of evaluations required to re-evolve su

essful GasNet and NoGas networks for 
entral

pattern generation, when evaluated on di�erent patterns to the initial evolution. Controllers originally evolved

on one of the four patterns were re-evolved on the other three patterns. Mean data shown, with the error bars

representing 95% 
on�den
e intervals. The numbers above the error bars show the number of runs not �nishing.

GasNet data is given by the light grey bars, NoGas data by the dark grey bars.

re-evolution studies. We saw that the fun
tionally equivalent GasNet 
ontroller was mu
h easier to tune

to a modi�ed environment than the 
orresponding NoGas 
ontroller. To a lesser extent, although still

signi�
ant, this same re-evolution tunability was seen over a large sample of previously evolved 
ontrollers.

We further supported the pattern generation hypothesis through the evolution and re-evolution of GasNet

and NoGas 
ontrollers on a simpli�ed pattern output task. Again we saw that not only were GasNet

solutions mu
h easier to evolve to the original pattern output, but that the GasNet networks were faster

to re-evolve to a di�erent pattern than the NoGas networks.

So 
an we draw any 
on
lusions from this work on what makes an evolvable network 
lass for the visual

dis
rimination problem? The simple answer is yes. The key feature of the GasNets seen to be useful

on this task is the ability to smoothly adapt to the temporal 
hara
teristi
s of the environment. This

en
ompasses the initial development and subsequent tuning of the 
ontrollers to the detailed properties

of the robot and environment in whi
h it �nds itself. In
luded in this ability to smoothly adapt to

the temporal 
hara
teristi
s of the environment, is the ability to generate a ri
h variety of temporal

patterns, through the intera
tion of the gas di�usion me
hanism and the ele
tri
al synapti
 me
hanism.
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The di�erent time-s
ales over whi
h these two me
hanisms operate was seen to be 
ru
ial to this pattern

generation.

In the �nal se
tion, we 
on
lude with dis
ussion of temporally adaptive networks.

13 Dis
ussion: Temporally adaptive networks

One feature 
ommon to many of the neural network 
lasses used for generating adaptive behaviour, is the

in
orporation of time. Few evolutionary roboti
s pra
titioners rely on feedforward networks 
onsisting

of nodes that retain no a
tivity over time, with most using network 
lasses that are able to a

ess some

form of memory through either re
urren
y or retaining some level of node a
tivity. In simple terms, the


urrent behaviour of the robot is not solely a fun
tion of the 
urrent sensory input, but a fun
tion of the


urrent and previous sensory inputs, and the 
urrent and previous internal network a
tivity. In prin
iple

this allows a mu
h ri
her range of dynami
al behaviours to be generated; the robot is not merely rea
ting

to the environment, but intera
ting with the environment.

From the analysis of the operation of GasNet and NoGas robot 
ontrollers in the visual dis
rimination

task, we see that the e�e
t of time is 
ru
ial to the development of robot 
ontrol solutions, even for a

task in whi
h timing might not be thought to play any role. Although the NoGas 
ontrollers potentially

have a

ess to previous sensory input and a
tivity through the arbitrarily re
urrent network ar
hite
ture,

the ability of the GasNet 
ontrollers to adapt to the parti
ular 
hara
teristi
s of the environment was

seen to be extremely powerful in generating pattern output, and mediating behaviourial swit
hing. Su
h

temporal adaptation enabled the evolutionary pro
ess to more easily tune 
ontrollers to the parti
ular

environment, swit
h between dynami
al states on the basis of sensory input over extended time periods,

and eÆ
iently �lter out environmental noise.

With this result we have provided some support for the intuition of many evolutionary roboti
s pra
ti-

tioners, that robot 
ontrollers operating in the real world must in
orporate temporal stru
ture, and that

the evolutionary pro
ess must be able to easily adapt that stru
ture

3

. On this fundamental prin
iple of

temporal adaptivity, the GasNet neural network 
lass falls squarely into a mu
h larger 
lass 
ontaining

among others 
ontinuous time re
urrent networks (Beer and Gallagher, 1992), pulsed neural networks

(Maass and Bishop, 1999), and networks with time-lagged synapti
 a
tivity (Harvey, 1993). However, we

argue that simple re
urrent networks su
h as the NoGas are not members of this 
lass; although a
tivity

is retained over time, it is not straight-forward for the evolutionary pro
ess to temporally modify the

a
tivity of the network

4

. It seems plausible that if we are to further develop evolvable arti�
ial neural

network 
lasses for robot 
ontrol, the starting point must be from within this 
lass of temporally adaptive

networks.
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For example, Harvey (1993) makes the point that \. . . in environments where physi
al events have natural times
ales,

the dimension of time is not an optional extra, but fundamental." Similarly, Gallagher and Beer (1999) state that \. . .

nontrivial behavior requires the integration of experien
es a
ross time and the ability to initiate a
tions independent of an

agent's immediate 
ir
umstan
es."

4

Of 
ourse the ar
hite
ture of the NoGas networks may be arbitrarily modi�ed, however it does not seem an eÆ
ient

method by whi
h to 
arry out su
h temporal adaptation.
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