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Abstra
t

A network of homeostati
 relaxation os
illators

is evolved to produ
e non-rhythmi
 photota
ti


behaviour in a simulated robot. Neural os
illa-

tions take pla
e at a faster times
ale than that

of performan
e, and are designed to maintain an

average a
tivation value whi
h is independent of

sensory or synapti
 input. In this way, neural a
-

tivation 
annot 
orrelate dire
tly with any a
tion-

relevant sensory information, but must be 
ontin-

uously modulated by sensorimotor 
oupling. Evo-

lution �nds robust 
ontrollers whi
h work by al-

tering their 
entral os
illation patterns. Robot

are evolved with a �xed set of body parameters,

in
luding sensor positions. Radi
al sensor robust-

ness is shown by inverting the position of the sen-

sors and also by removing either of them in turn

{ operations that do not alter the su

ess of the

strategy. Fast dynami
s and long-term homeosta-

sis seem to be required for robustness; slowing

down the times
ale of os
illations results in less

robustness. The need for long-term homeostasis

is shown both by modifying the os
illators and

by running 
ontrol experiments using a network

of FitzHugh-Nagumo neurons. In none of these


ases robustness is obtained. A general hypothe-

sis is proposed a

ording to whi
h removing fun
-

tional spe
i�
ity from the lower-level me
hanisms

is likely to result in robust performan
e at the

global level.

1. Introdu
tion

There is an in
reasing interest within the 
ontext of

autonomous robot design in biologi
ally inspired 
on-

trollers 
apable of a
ting over a large range of times
ales

(Husbands et al., 1998) as well as in 
ontrollers that


ombine medium and slow times
ales (Beer, 1990,

Yamau
hi and Beer, 1994, Floreano and Urzelai, 2000,

Fujii et al., 2001, Di Paolo, 2000) and medium and

fast times
ales (Floreano and Mattiussi, 2001). Harvey

(1997) has emphasized the importan
e of robot 
on-

trollers implementing a wide range of times
ales in the


ontext of dynami
al a

ounts of adaptive behaviour.

Despite this interest the majority of work in this area

has 
on
entrated on 
ontrol ar
hite
tures operating at a

single preferred times
ale: the typi
al times
ale of be-

havioural performan
e. The average time it takes for

an element of performan
e to be a
hieved does not dif-

fer signi�
antly from the average time the robot 
on-

troller takes to 
hange from one state to another. This

is more apparent in neural network 
ontrollers under-

going no plasti
 
hange, where the neural elements do

not have any intrinsi
 time 
onstants di�erentially af-

fe
ting their dynami
s. Controllers in su
h 
ases are

`driven' Braitenberg-vehi
le style by the sensorimotor


oupling obtained while the robot is behaving. The no-

table ex
eption to this trend is the growing body of re-

sear
h into os
illatory 
ontrollers of limbs for legged lo-


omotion (Beer et al., 1992, Fujii et al., 2001), rhythmi


arm movement (Williamson, 1998) and multi-segmented

robot 
ontrol (Ijspeert et al., 1998). There is, however,

little resear
h on the use of 
ontrollers produ
ing au-

tonomous and 
entral dynami
 patterns for tasks that

are not ne
essarily rhythmi
.

Data from neuros
ien
e indi
ate that not only do

many neuronal pro
esses operate at a range of times
ales

signi�
antly faster than that of behavioural performan
e,

but also real neurons tend to adapt their �ring prop-

erties homeostati
ally as a 
onsequen
e of their re
ent

history of a
tivation (Turrigiano, 1999). Put together,

these properties signify that it is in
reasingly diÆ
ult to

think of single neuronal a
tivation as playing the role of

a `re
ord' of a relevant a
tion-oriented event (the lega
y

of a 
omputational view of 
ognition), sin
e for many


lasses of neurons �ring patterns will tend to rapidly

lose any transient information at a times
ale whi
h is

faster than that of behavioural performan
e. In 
ontrast,

global variables su
h as relative phase between neuronal

assemblies and mode of os
illation be
ome more rele-

vant (Rodriguez et al., 2001, Varela et al., 2001). Even

though real nervous systems 
an get around these prob-

lems by resorting to di�erent means (e.g. slower pro-


esses, bistable neurons, or synergisti
 e�e
ts between

intera
ting neuronal assemblies), the question of what

sort of performan
e would obtain if only fast os
illatory

neurons with homeostati
 average a
tivation were used

be
omes one of 
on
eptual and pra
ti
al interest for evo-

lutionary roboti
s.

This paper explores some of the issues that arise from



evolving neural 
ontrollers whi
h operate under these


onditions, i.e. at times
ales faster than that of perfor-

man
e, and whose elements tend to 
ompensate for long

term patterns of a
tivation by keeping their average a
ti-

vation as 
lose as possible to a middle range, thus making

it diÆ
ult for a
tion relevant information to be stored in

su
h individual elements. In order to fa
ilitate under-

standing of the results and 
omparative analysis (and

for other reasons explained below) a simple task of pho-

totaxis is 
hosen. The next se
tion further dis
usses the


on
eptual and pra
ti
al motivations of this work. Se
-

tion 3 des
ribes the experimental setup and the neuron

model whi
h is a simple extension of a 
ontinuous-time

network ar
hite
ture. The results are presented in se
-

tion 4 whi
h shows that evolved 
ontrollers are highly

robust to radi
al sensor perturbations su
h as ex
hange

of sensor position and removal of one sensor. For ev-

ery single 
ase studied robots were able to perform the

desired task as long as they had at least one sensor in

the frontal half of the body. Robustness de
reases as the

allowed times
ale of os
illation is made 
loser to that of

performan
e. An analysis of the evolved strategy is also

presented in this se
tion. It is suggested that fast os-


illations are not suÆ
ient for robustness but that long-

term homeostati
 behaviour of neural a
tivation is also

ne
essary. This 
laim is supported by evolving a net-

work of fast non-homeostati
 FitzHugh-Nagumo os
illa-

tors whi
h turn out to be mu
h less robust. The �nal

se
tion dis
usses the impli
ations of these results.

2. Motivations

This is an exploratory pie
e of work aiming at generating

hypotheses. The motivations are 
on
eptual as well as

pra
ti
al.

An animal nervous system is a 
omplex network of

relational patterns of ele
tro
hemi
al a
tivity whi
h is


oupled with the rest of the organism and its medium

through its sensorimotor surfa
es. Neural dynam-

i
s present spontaneous extended patterns, 
hara
ter-

ized by their own measures of 
oheren
e. Su
h pat-

terns are 
onstantly happening in real brains. One

of the lega
ies of the information pro
essing perspe
-

tive on 
ognition, typi
al of 
ognitivism but whi
h 
an

be tra
ed to the behaviourist movement it purported

to repla
e, is that su
h inherent brain dynami
s are

driven by sensory input and drive motor output in an

almost linear 
ausal manner. This view has had its

strong opponents in di�erent periods: Dewey (1896)

and Merleau-Ponty (1942/1963) in their respe
tive 
ri-

tiques of the 
on
ept of the re
ex ar
 and S-R explana-

tions in psy
hology, proponents of 
entral views on neu-

ral population a
tivity (Skarda and Freeman, 1987) and,

more re
ently, alternative, dynami
al views of 
ogni-

tion (Beer, 1995, Varela et al., 1991). A

ording to su
h

views, dynami
 patterns in the brain are autonomous

and sensory input is best understood as parametri


perturbation or modulation of the intrinsi
 dynami
s

(Maturana and Varela, 1980). Te
hnologi
al improve-

ments that permit non-invasive studies of brain patterns

in behaving animals, as well as 
omplex modelling te
h-

niques have in
reased the appeal of this point of view,

not only in neuros
ien
e (for instan
e in resear
h into


ell assemblies and large s
ale syn
hronization, Varela

et al., 2001), but also amongst roboti
ists sympatheti


with the dynami
al approa
h.

Still, the latter have not been able to shake o� en-

tirely the 
omputational lega
y. This is a point that is

diÆ
ult to defend, sin
e often a dynami
al perspe
tive

is outspokenly argued for by resear
hers in autonomous

roboti
s. But even in su
h 
ases (the present author

in
luded) there is a tenden
y to think of a robot 
on-

troller mostly as a task-driven devi
e rather than as

an autonomous system (as the very word \
ontroller"

implies)

1

. One reason for this is that under 
ertain


ir
umstan
es des
riptions in terms of 
omputations

(e.g., nodes in a neural network representing or keep-

ing tra
k of a
tion-relevant information) and dynami
s

seem to �t equally well to the 
ase at hand. Su
h is

the 
ase of Brainteberg-like or behaviour-based ar
hite
-

tures (Braitenberg, 1984, Brooks, 1986) whi
h demon-

strate just how interesting performan
e 
an be a
hieved

by exploiting relevant environmental 
ouplings but are

limited to mostly rea
tive behaviour.

There is some justi�
ation, therefore, for the proje
t of

trying to purposefully devise robot 
ontrollers in whi
h

the 
ontrast between a 
omputational and a dynami
al

approa
h is maximal. Su
h a proje
t would help illumi-

nate the degree or kind of di�eren
e between these points

of view in very 
on
rete terms. Of 
ourse, notable ex-

amples already exists, typi
ally when 
ontrollers (often

neural networks) exhibit an expli
it variety of spatial and

temporal s
ales (Husbands et al., 1998). In those 
ases

a dynami
 interpretation of how they work is typi
ally

easier to envision. One of the aims of this paper is to

explore su
h a 
ontrast in a simple setup.

Real nervous systems operate at a large range of

times
ales. The faster end of this range 
an roughly

be des
ribed as the 1/10, and 1 times
ales. The fast

1/10 times
ale in
lude intrinsi
 
ellular rhythms (e.g.,

in bursting interneurons) ranging from 10 to 100 mil-

lise
onds. The 1 times
ale 
orresponds to durations of

the order of a few se
onds, roughly the times
ale of the

formation of large-s
ale 
oherent assemblies, per
eptual

integration and behavioural a
ts. Slower times
ales are

also a
tive for instan
e in a
tivity-dependent regulation

of intrinsi
 neural properties and modi�
ations to synap-

ti
 eÆ
a
y.

1

The issue of organismi
 autonomy, 
learly, extends beyond en-

dogenous dynami
 patterns in the nervous system, not only to

other physiologi
al pro
esses, but also to behavioural and bodily

intentional dimensions.



A large part of 
urrent work in understanding


entral pattern-generating 
ir
uits (CPGs) is fo-


used on their role in the generation of rhyth-

mi
 behaviour su
h as lo
omotion and respira-

tion (Marder and Bu
her, 2001). This is also true

in roboti
s (Beer et al., 1992, Fujii et al., 2001,

Ijspeert et al., 1998, Williamson, 1998). Rhythmi


neural a
tivity (not ne
essarly asso
iated with CPGs)

may also be involved in the generation of patterns of

behaviour or per
eption that are non-rhythmi
 and

happen at signi�
antly longer times
ales that those of

os
illations (Rodriguez et al., 2001). This aspe
t has

been less explored but it should be of 
onsiderable

pra
ti
al interest in roboti
s. If a system is synthe-

sized to produ
e a large s
ale pattern with a typi
al

times
ale whi
h is mu
h longer than the times
ale of

its mi
ro-
omponents, then 
ertain degree of robustness

of performan
e should be expe
ted, as, by design, no

single mi
ro-
omponent 
an take a large share in the


ontrol of the overall system { the faster mi
ro-times
ale

would not allow this { and so the system must make

use of long range synergies that tend to be highly

robust. Similar phenomena have been demonstrated in

di�erent 
ontexts, (Di Paolo, 2001, Thompson, 1996)

but apparently has not been applied in roboti
s so far.

Whether su
h robustness 
ould also happen in robots

is one of the main angles of investigation of this work.

For this purpose, a task that is not intrinsi
ally rhyth-

mi
 has been 
hosen deliberately. Photota
ti
 behaviour

in a wheeled robot 
an easily be a
hieved by rea
tive,

non-os
illatory 
ontrollers exhibiting the same internal

and behavioural times
ale. Thus phototaxis provides an

ideal initial testbed for the exploring homeostati
 os
illa-

tory neurons as building blo
ks not only be
ause of ease

of analysis but also be
ause of the maximum 
ontrast in


omparison with rea
tive 
ontrollers.

Tied to the issue of robustness is the issue of sta-

bility. Previous investigations have addressed the im-

portan
e and bene�ts of balan
ing stability and 
hange

when trying to design plasti
 robot 
ontrollers. Based

on Ashby's idea of ultrastability (Ashby, 1960), adapta-

tion to radi
al sensorimotor perturbation has been ob-

tained when single neural elements in the 
ontroller are

evolved with the further requirement of long term home-

ostati
 behaviour (Di Paolo, 2000). These biologi
ally-

inspired neural 
ontrollers (Turrigiano, 1999) have been

evolved in order to maintain their elements within al-

lowed ranges of a
tivation while the robot performs its

task. Lo
al plasti
ity is indu
ed by unstable elements

until a new stable state is rea
hed. This pro
ess 
an

lead to sensorimotor adaptation to perturbations in sen-

sor and motor gains and inversion of the visual �eld. The

whole pro
ess operates at a slow times
ale (of the order

of 10 to 100 times the times
ale of a behavioural event).

Of the many questions that derived from this pie
e of

work, one is the issue of what sort of behaviour would

be obtained from evolving neural elements that were in-

trinsi
ally homeostati
. Although in the present 
ontext


ontrollers will not be plasti
, the relation between long-

term homeostasis of 
omponents relates similarly to the

potential robustness of the whole system as the use of

fast times
ales. Neurons that always 
ompensate for in-

put 
urrents will not be able to keep long-term re
ords

of any kind, and so this for
es the evolution of strategies

based on global patterns of a
tivation, and so, hopefully,

robustness and stability of performan
e.

3. Methods

3.1 Homeostati
 relaxation os
illators

A simple modi�
ation is made to the equations governing

the a
tivation of 
ontinuous-time re
urrent neural net-

works (CTRNN) (Beer, 1990) to transform ea
h neuron

into a relaxation os
illator whi
h maintains a 
onstant

average a
tivation over long periods. The equations de-

s
ribing traditional CTRNNs are:

�

i

dy

i

dt

= �y

i

+

X

j

w

ji

z

j

+I

i

; z

j

=

1

1 + exp[�(y

j

+ b

j

)℄

;

where, using terms derived from an analogy with real

neurons, y

i

represents the membrane potential, �

i

the

de
ay 
onstant (range [0.4,4℄), b

i

the bias, z

i

the �ring

rate, w

ij

the strength of synapti
 
onne
tion from node

i to node j (range [-8,8℄), and I

i

the degree of sensory

perturbation on the sensory node (modelled here as an

in
oming 
urrent, this term is always 0 for the other

nodes). These equations are extended by turning the

bias in ea
h neuron into a responsive variable that \keeps

tra
k" of the opposite value of the membrane potential

with a �

b

i

whi
h greater than �

i

:

�

b

i

db

i

dt

= �(b

i

+ y

i

); �

b

i

= �

i

G

i

;

where G

i

ranges from 1 to T and is geneti
ally set. The

response variable always has a longer time 
onstant than

the membrane potential. The 
onsequen
e of adding this

equation is that the bias term is no longer 
onstant but

adapts so as to maintain a long term average �ring rate of

0.5, regardless of all the other parameters and input pat-

tern. This modi�
ation transform ea
h node in a spe
ial


ase of a 
entre-
rossing dynami
al neuron (Mathayom-


han and Beer, submitted).

3.2 Experimental setup

Simulated robots are evolved to perform photota
ti
 be-

haviour on a series of light sour
es. Robots are modelled

as solid 
ir
ular bodies of radius R

0

= 4 with two dia-

metri
ally opposed motors and two light sensors. The



angle between sensors is always of 120 degrees (60 de-

grees ea
h to the body 
entral midline).

Motors 
an drive the robot ba
kwards and forwards in

a 2-D unlimited arena. Robots have a very small mass,

so that the motor output is the tangential velo
ity at the

point of the body where the motor is lo
ated. The trans-

lational movement of the whole robot is 
al
ulated using

the velo
ity of its 
enter of mass (the ve
torial average

of the motor velo
ities), and the rotational movement by


al
ulating the angular speed (the di�eren
e of the tan-

gential velo
ities divided by the body diameter). There

is no inertial resistan
e to either form of movement.

Light from point sour
es impinges on sensors with a

lo
al intensity proportional to the sour
e intensity and

the inverse square of the distan
e from sensor to sour
e.

The model in
ludes shadows on sensors produ
ed when

light is o

luded by the body (i.e., a sensor angle of a
-


eptan
e of 180 degrees). Input 
urrent from ea
h sensor

are fed to a 
orresponding neuron.

Ea
h motor is 
ontrolled by the �ring rate of a single

motor neuron (mapped so as to produ
e both positive

and negative values). Alternatively, ea
h motor 
an be


ontrolled antagonisti
ally by two neurons whose �ring

rates are summed with opposite signs. Results were the

same in both 
ases and will be presented only for the

former. All neurons are fully 
onne
ted. Tests were run

with 4, 6, 8, 10 and 20 neurons in the network with

similar results.

Motor and sensor signals are multiplied by a geneti-


ally set gain whi
h is left-right symmetri
al and taken

from the range [0.1,10℄. Uniform noise with range 0.1 is

applied to both input and output signal priors to gain

s
aling.

Ea
h time step the network is updated using an Euler

integration method with a time step of 0.2.

A population of 30 robots is evolved using a genera-

tional geneti
 algorithm with trun
ation sele
tion. The

population is ranked a

ording to �tness, the top third is


opied to the next generation and used as parents for in-

dividuals that repla
e the bottom two thirds of the pop-

ulation. All parameters are en
oded in a real-valued ve
-

tor, ea
h 
omponent en
oding a single parameter in the

neural network. These 
omponents belong to the range

[0,1℄ and are linearly s
aled to the range 
orresponding

to the parameter en
oded (with the ex
eption of gain

values whi
h are exponentially s
aled). A global muta-

tion operator is used (Beer, 1996) whi
h adds a small

random ve
tor to the whole genotype ea
h time a muta-

tion o

urs. The mutation rate is of 2% per lo
us and

the standard deviation of ve
tor displa
ement is of 0.25.

Re
ombination was not used.

Ea
h individual robot is run for 4 independent eval-

uations. Fitness is 
al
ulated by averaging the �tness

obtained in ea
h evaluation minus one standard devia-

tion to favour low variability. Ea
h evaluation 
onsists
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Figure 1: Average relative robustness (measured as propor-

tion of unperturbed performan
e) for left-right inversion of

sensors and di�erent values of T .

of the sequential presentation of 6 distant light sour
es

whi
h the robot must approa
h in turn and remain 
lose

to. Only one sour
e is presented at a time for a rela-

tively long period T

S


hosen randomly for ea
h sour
e

from the interval [300,500℄. After T

S

the sour
e is extin-

guished and another one appears at a random distan
e

and angle. The initial distan
e between robot and sour
e

is uniformly 
hosen from the interval [60,80℄, the angle

from [0,2�) and the intensity of ea
h sour
e from the

interval [500,1500℄, so that, on average, the intensity of

light at the initial stages is of the same order of magni-

tude as the noise on the sensors.

Fitness is 
al
ulated a

ording to:

F =

1

T

S

Z

fdt; f = 1�

d

D

i

if the 
urrent distan
e to the sour
e d is less than the

initial distan
e D

i

, otherwise f = 0.

The parameter T indi
ating the range of allowed val-

ues for �

b

i

was set for di�erent series of runs at 2, 5,

and 10 in order to study the e�e
t of in
reasingly longer

times
ales of os
illation.

4. Results

4.1 Robustness

In all 
ases the geneti
 algorithm was run for 2000 gen-

erations; �tness values stabilizing at around 1000 gen-

erations. Control runs were performed using standard

CTRNNs with geneti
ally set but �xed bias terms from

the range [-3,3℄. The following results 
orrespond to 6-

node neural 
ontrollers. Ea
h data point is taken by av-

eraging the performan
e over 10 trials of 5 independently

evolved robots over a series of 50 light sour
es. Robots

are evolved that approa
h light sour
es equally well {
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Figure 2: Average relative robustness (measured as propor-

tion of unperturbed performan
e) for removal of right sensor.
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Figure 3: Average relative robustness (measured as propor-

tion of unperturbed performan
e) for removal of left sensor.

the range of �nal distan
es to the sour
e was the same

in all 
ases (between 3 and 10 units). However, be
ause

the �tness bene�ts fast traje
tories absolute performan
e

was signi�
antly better for the 
ontrol runs (0:56�0:06)

than for the os
illatory 
ontrollers (0:35�0:04 for T = 2,

0:42� 0:03 for T = 5 and 0:35� 0:08 for T = 10) whi
h

take a longer time to rea
h the sour
e.

Figures 1, 2 and 3 show the proportional de
ay in

performan
e for a series of radi
al sensor perturbations.

Inversion 
onsists in swapping the sensor positions left

and right. Sensor removal 
onsists in making the 
or-

responding in
oming 
urrent equal to 0 and pla
ing the

other sensor at an equal angle between the motors (
en-

tral midline). Error bars indi
ate standard deviation.

In all 
ases the leftmost bar 
orresponds to 
ontrol runs.

For all three sensor perturbations os
illating neural 
on-

trollers show high robustness whi
h in
reases as T is
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Figure 4: Absolute performan
e vs. angular sensor displa
e-

ment for a 
ontrol individual.
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Figure 5: Absolute performan
e vs. angular sensor displa
e-

ment for individual evolved using fast homeostati
 os
illators.

made smaller, i.e., when the range of allowed os
illa-

tions is 
onstrained to higher frequen
ies. Observed be-

haviour is un
hanged by these radi
al perturbations for

T = 2. On appli
ation of the sensor distortion, the robot


ontinues moving along its traje
tory as if the perturba-

tion had not been applied. This justi�es the des
ription

in terms of robustness rather than adaptation sin
e no

maladapted period has ever been observed in any of the

trials.

Robustness against sensor perturbation 
an also be

appre
iated by studying the dependen
e of absolute per-

forman
e on angular sensor displa
ement along the 
ir-


ular body of the robot. In these tests, the position of

both sensors is shifted by a same angle between -180

and 180 degrees. Figures 4 and 5 show this relation

for the unperturbed robot and for the three sensor per-

turbations des
ribed above for the 
ontrol 
ase and an
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Figure 6: Compensatory behaviour of sensor neurons to step


hanges in left sensor 
urrent. Similar behaviour for steps in

right sensor 
urrent.

os
illator-
ontrolled robot evolved with T = 2 respe
-

tively. The 
ontrol robot shows a heavy relian
e on a

single sensor. Displa
ement of this sensor results in very

di�erent angular ranges for high �tness, and removal of

the same results in negligible performan
e. In 
ontrast,

the os
illator-
ontrolled robot shows pra
ti
ally the same

angular distribution for all 4 
ases, indi
ating that the

strategy used by this robot will work as long as there

is at least one sensor (any sensor) fa
ing in the forward

dire
tion of the robot.

4.2 Analysis

Analysis of the evolved strategy has been performed for a

4-neuron network. The strategy itself and the behaviour

of single neurons do not di�er signi�
antly from 6-neuron


ontrollers.

All neurons behave as os
illators entrained to a 
om-

mon frequen
y of 0.11 
y
les per unit of time. If all but

self-
onne
tions are removed, neurons os
illate at their

proper frequen
ies (0.094 for left motor neuron, 0.119

for right motor neuron, 0.211 for left sensor neuron and

0.237 for right sensor neuron). Homeostati
 
ompensa-

tion to step 
hanges in input 
urrent is shown in �gure

6. At the start of an step, sensor neurons 
hange their

os
illation pattern but for no longer than one 
y
le. The

perturbation is 
ompensated for and an opposite e�e
t

obtains when an opposite step is applied. The e�e
ts on

the other neurons is similar in duration and smaller in

s
ale. Robot traje
tories are a�e
ted only temporarily

by su
h step fun
tions and the way they are modi�ed

depend on pre
ise timing of the onset of the step.

In all the 
ases tested the strategy used by the robot is

a variation of the strategy shown in �gures 7 and 8. Fig-

ure 7 
orresponds to the robot behaving in the absen
e

of light sour
es. The top right plot shows the two mo-

tor neurons. These os
illate with a same frequen
y and

maintaining a roughly 
onstant phase di�eren
e whi
h

means that for 
ertain periods they will be both at their

top range or both at their bottom range, while the rest of

the time they will be at alternate high and low values of

a
tivations. These top and bottom values 
orrespond to

the motors moving forwards and ba
kwards respe
tively.

The traje
tory shown at the top and bottom left in �gure

7 
an then be des
ribed as alternated segments where the

robot moves forwards, rotates on the spot about three

quarters of a full turn, moves ba
kwards (but keeping in

roughly the same general dire
tion), rotates on the spot,

moves forwards, and so on. Rotation points are marked

in the �gure. Be
ause of the imposed limitations on

the neural 
ontroller, the robot must use an a
tive s
an-

ning strategy for phototaxis, as sensor neurons will lose

any instantaneous information they might a
quire from

the input 
urrents. Sensor neurons also os
illate in anti-

phase (bottom left).

Large-angle on-the-spot rotation provides the basis for

the a
tive strategy. Figure 8 reveals more detail of be-

haviour in the presen
e of a light sour
e. As a
tion-

relevant information 
annot be maintained in levels of

single neuron a
tivation (neither in the short or long

term) the neural 
ontroller resorts to using input 
ur-

rents to modulate intrinsi
 os
illations and make the net-

work swit
h between os
illating regimes. This be
omes


lear by observing the behaviour of the sensor neurons

(�gure 8 bottom right) whi
h show a 
hange of regime

from low amplitude os
illations to rapid \
ip-
op" be-

haviour 
overing the whole range of a
tivation when the

robot is near the sour
e of light (distan
e to the sour
e is

shown in the bottom left plot). The os
illations of sensor

neurons turn out to be unstable in the presen
e of the

intermittent pattern of input 
urrents 
aused by rotating

near the light sour
e. The new regime in turn modulates

the relative phase of the motor neurons. The same tran-

sitions 
an be observed by estimating the relative phase

of the sensor neurons and plotting it in relation to pe-

riods when the robot is far away from a sour
e of light

or near it. Figure 9 shows pre
isely this; the line indi-


ates when the robot is further (top) or 
loser (bottom)

than 20 distan
e units. The phase relation 
hanges from

a very noisy anti-phase to a highly ordered state where

only a few dis
rete values are taken when the robot is

near the sour
e.

As mentioned earlier, the e�e
t of step-wise in
re-

ments or de
rements in input 
urrents is 
on
entrated

in the transients after the onset of ea
h step and their

e�e
t on the robot traje
tory depends on their pre
ise

timing (whi
h depends obviously on the robot's 
urrent

ve
tor). The 
omplex relation that maintains the robot


lose to the light sour
e has yet to be fully elu
idated.

Closer analysis of the transition stage between the near
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Figure 7: Robot behaviour and neural a
tivation in the ab-

sen
e of light sour
es.

and far regimes throws some light into the approa
h-

ing strategy and the origins of robust behaviour. Even

though very low input 
urrents do not alter the os
illa-

tion mode of the neurons, they do modulate the phase of

os
illation. The e�e
t of this phase modulation seems to


orrelate with whether, during rotations, the robot fa
es

the general dire
tion of the light sour
e or the opposite

dire
tion. In the �rst 
ase, the angle of the rotation is

made smaller as a 
onsequen
e of the in
rease in input


urrent. In the se
ond 
ase, the angle is not a�e
ted, re-

sulting in a deviation of the traje
tory towards the sour
e

of light. Interestingly, for su
h a strategy the pre
ise lo-


ation of the sensors is not a very sensitive parameter,

as long as they are pla
ed towards the front of the body.

4.3 Fast os
illations are not enough

The above results show that when single neurons are pre-

vented from storing long-term information in their a
ti-

vation values, good solutions 
an nevertheless evolve that

make use of the relative 
oordination between neural os-


illators to solve the desired task. Additionally, these

solutions tend to be extremely robust to sensory pertur-

bation. Two essential 
omponents seem to be needed for

this: the times
ale of os
illation must be faster than the

times
ale of performan
e (otherwise transient informa-

tion in the a
tivation 
ould be used) and the long-term

average a
tivation of ea
h neuron must 
onserve an un-

di�erentiated average value independently of the history

of inputs.

Figures 1, 2 and 3 show that when the times
ale of

os
illation is allowed to approa
h that of behaviour,

robustness de
reases, thus demonstrating that robust-

ness relies on fast os
illations. The ne
essity of long-
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Figure 8: Robot behaviour, neural a
tivation and distan
e to

light sour
e during phototaxis.

term homeostati
 and uniform a
tivation remains to be

shown. In order to do this, two series of experiments us-

ing non-homeostati
 fast relaxation os
illators was 
ar-

ried out.

In the �rst series, the modi�ed CTRNN equations

were slightly altered. The se
ond equation now reads:

�

b

i

db

i

dt

= �(b

i

+K

i

y

i

);

with K

i

a geneti
ally determined 
onstant within [0,1℄

that spe
i�es for ea
h neuron the proportion of re
overy

for b

i

. When K

i

is near 1 the neuron will maintain an

average a
tivation in the middle range. At the other

extreme (K

i

= 0), b

i

will approa
h zero and remain there

in the long term. Neurons 
an di�erentiate in terms of

the mean value of their os
illations in this 
ase.

In the se
ond series the experimental set-up was main-

tained with the ex
eption of the neural a
tivation whi
h

is now governed by a set of FitzHugh-Nagumo equations

suitable 
oupled (Kanamaru and Okabe, 2000)

�

i

du

i

dt

= �v

i

+ u

i

� u

3

i

=3 +

X

j

w

ji

u

j

+ I

i

;

dv

i

dt

= u

i

� �

i

v

i

+ 


i

;

where u

i

is the fast variable representing the a
tivation

of the neuron and v

i

is the response variable. �

i

and




i

are geneti
ally set with values taken from the range

[0.8,1.2℄, the range for weight values is [-1,1℄ and for �

i

[0.4,4.0℄.

In all of these 
ases (5 runs in ea
h series) high �tness

s
ores were rapidly evolved (e.g., 0:4� 0:04 for the F-N
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Figure 9: Relative phase of os
illation between the two sensor

neurons during phototaxis. The solid line indi
ates when the

distan
e to the sour
e is more (up) or less (down) than 20

units. Highly ordered modes are observed when the robot is

near the sour
e.

network), but in none of them robustness against sensor

perturbation was obtained (e.g., proportion of original

�tness under inversion: 0:008 � 0:004 for the F-N net-

work). This result 
on�rm that fast os
illations are not

suÆ
ient for robustness and gives support to the hy-

pothesis that undi�erentiated homeostati
 behaviour is

ne
essary. Obviously further analysis and tests will be

required for understanding why this seems to be the 
ase.

5. Con
lusions: A hypothesis

By 
onstraining the 
lass of neural 
ontrollers that evo-

lution 
an make use of, the solution spa
e is, in prin-


iple, similarly 
onstrained. Su
h a move would ap-

pear as 
ontrary to the obje
tive of enhan
ing evolv-

ability that is embra
ed by a good part of resear
h

in evolutionary roboti
s. Yet the quality of solutions

so 
onstrained is signi�
antly di�erent and interesting

to deserve more exploration. This work is part of a

more general trend towards using syntheti
 te
hniques

not just to arrive at more interesting robot behaviour,

but to understand what are the global e�e
ts of biolog-

i
ally inspired mi
ro-me
hanisms when these are imple-

mented in 
ontrollers for well understood tasks. Exam-

ples of this trend in
lude visual shape dis
rimination us-

ing di�usible neuromodulators (Husbands et al., 1998),

navigation and obsta
le avoidan
e using spiking

neurons (Floreano and Mattiussi, 2001), and photo-

taxis using homeostati
 regulation of lo
al plasti
ity

(Di Paolo, 2000). The design and study of novel inte-

grated systems of this sort may well be one way for evo-

lutionary roboti
s to 
ontribute useful information ba
k

to biology in the proximate future.

The above results show that signi�
ant and 
onsistent

robustness is obtained by introdu
ing 
ertain 
hanges in

neural 
ontrollers. These 
hanges, at �rst sight, appear

unintuitive and yet they �nd their motivation in bio-

logi
al data both on neural me
hanisms and the role of


entral patterns of nervous a
tivity. The 
ombination

of os
illatory and 
ompensatory dynami
s at the level of

the individual neuron means that a 
ontroller will not be

able to rely on `informational tra
es' at this level, and

so, mu
h less on 
omputation as a design strategy. In


ontrast, a dynami
al perspe
tive 
ome into fo
us as the

natural operational and explanatory option for su
h sys-

tems. The impossibility of fun
tional spe
i�
ity at the

neuronal level seems the most likely sour
e of robustness

at the performan
e level. When fun
tional spe
i�
ity is

allowed, either by slowing down the permitted periods of

os
illations, or allowing di�eren
es in long-term average

a
tivation, robustness disappears, as is also absent in the

non-os
illatory non-homeostati
 
ontrol runs.

The impli
ations of these results are not just 
on
ep-

tual. On the pra
ti
al side of things, it is of extreme

interest to understand the origins of adaptivity, robust-

ness, and stability in robot 
ontrollers and other 
om-

plex systems. The results presented here suggest that

when dealing with multi-
omponent systems, the less

the 
ausal and explanatory burden is 
on
entrated at

the mi
ro-level, the more the whole system is for
ed into

globalised and de-
entralised solutions. Su
h solutions,

by de�nition, 
an be expe
ted to be more robust than

solutions that depend on 
ausal spe
i�
ity at the level of

single 
omponents. Removing the 
apability of arti�
ial

neurons to assume spe
i�
 fun
tional roles a

ording to

their state is one way of doing this. Evolution is 
on-

strained to �nd solutions that integrate 
entral patterns

with sensorimotor 
ouplings in ways that the desired be-

haviour is a
hieved. This should not be taken as imply-

ing that real nervous systems a
hieve robustness in the

same way.

In view of this 
on
lusion it is possible to advan
e the

following hypothesis: In 
omplex multi-
omponent sys-

tems, robustness will be likely to be obtained if fun
tional

spe
i�
ation at the level of individual 
omponents is min-

imized. The only 
ourse left for su
h systems is to a
hieve

the desired performan
e by means of large-s
ale 
oordi-

nation between 
omponents. Fun
tionality is obtained

at a level whi
h is di�erent from that of the lower me
h-

anisms. Su
h systems are diÆ
ult to design. Constraints

on performan
e and robustness do not translate 
leanly

into obvious mesos
opi
 synergies. The most promising

design strategy for su
h systems remains, therefore, a

syntheti
 approa
h su
h as evolutionary roboti
s.

It is important to emphasize that this hypothesis

presents a one way link. Robust performan
e may

well result from di�erent design prin
iples. Further

investigation into similarly 
onstrained ar
hite
tures is



needed to test the usefulness and limitations of this idea

and explore its relation to other not-so-distant issues

su
h as plasti
ity and adaptivity.
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