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Abstrat

A network of homeostati relaxation osillators

is evolved to produe non-rhythmi phototati

behaviour in a simulated robot. Neural osilla-

tions take plae at a faster timesale than that

of performane, and are designed to maintain an

average ativation value whih is independent of

sensory or synapti input. In this way, neural a-

tivation annot orrelate diretly with any ation-

relevant sensory information, but must be ontin-

uously modulated by sensorimotor oupling. Evo-

lution �nds robust ontrollers whih work by al-

tering their entral osillation patterns. Robot

are evolved with a �xed set of body parameters,

inluding sensor positions. Radial sensor robust-

ness is shown by inverting the position of the sen-

sors and also by removing either of them in turn

{ operations that do not alter the suess of the

strategy. Fast dynamis and long-term homeosta-

sis seem to be required for robustness; slowing

down the timesale of osillations results in less

robustness. The need for long-term homeostasis

is shown both by modifying the osillators and

by running ontrol experiments using a network

of FitzHugh-Nagumo neurons. In none of these

ases robustness is obtained. A general hypothe-

sis is proposed aording to whih removing fun-

tional spei�ity from the lower-level mehanisms

is likely to result in robust performane at the

global level.

1. Introdution

There is an inreasing interest within the ontext of

autonomous robot design in biologially inspired on-

trollers apable of ating over a large range of timesales

(Husbands et al., 1998) as well as in ontrollers that

ombine medium and slow timesales (Beer, 1990,

Yamauhi and Beer, 1994, Floreano and Urzelai, 2000,

Fujii et al., 2001, Di Paolo, 2000) and medium and

fast timesales (Floreano and Mattiussi, 2001). Harvey

(1997) has emphasized the importane of robot on-

trollers implementing a wide range of timesales in the

ontext of dynamial aounts of adaptive behaviour.

Despite this interest the majority of work in this area

has onentrated on ontrol arhitetures operating at a

single preferred timesale: the typial timesale of be-

havioural performane. The average time it takes for

an element of performane to be ahieved does not dif-

fer signi�antly from the average time the robot on-

troller takes to hange from one state to another. This

is more apparent in neural network ontrollers under-

going no plasti hange, where the neural elements do

not have any intrinsi time onstants di�erentially af-

feting their dynamis. Controllers in suh ases are

`driven' Braitenberg-vehile style by the sensorimotor

oupling obtained while the robot is behaving. The no-

table exeption to this trend is the growing body of re-

searh into osillatory ontrollers of limbs for legged lo-

omotion (Beer et al., 1992, Fujii et al., 2001), rhythmi

arm movement (Williamson, 1998) and multi-segmented

robot ontrol (Ijspeert et al., 1998). There is, however,

little researh on the use of ontrollers produing au-

tonomous and entral dynami patterns for tasks that

are not neessarily rhythmi.

Data from neurosiene indiate that not only do

many neuronal proesses operate at a range of timesales

signi�antly faster than that of behavioural performane,

but also real neurons tend to adapt their �ring prop-

erties homeostatially as a onsequene of their reent

history of ativation (Turrigiano, 1999). Put together,

these properties signify that it is inreasingly diÆult to

think of single neuronal ativation as playing the role of

a `reord' of a relevant ation-oriented event (the legay

of a omputational view of ognition), sine for many

lasses of neurons �ring patterns will tend to rapidly

lose any transient information at a timesale whih is

faster than that of behavioural performane. In ontrast,

global variables suh as relative phase between neuronal

assemblies and mode of osillation beome more rele-

vant (Rodriguez et al., 2001, Varela et al., 2001). Even

though real nervous systems an get around these prob-

lems by resorting to di�erent means (e.g. slower pro-

esses, bistable neurons, or synergisti e�ets between

interating neuronal assemblies), the question of what

sort of performane would obtain if only fast osillatory

neurons with homeostati average ativation were used

beomes one of oneptual and pratial interest for evo-

lutionary robotis.

This paper explores some of the issues that arise from



evolving neural ontrollers whih operate under these

onditions, i.e. at timesales faster than that of perfor-

mane, and whose elements tend to ompensate for long

term patterns of ativation by keeping their average ati-

vation as lose as possible to a middle range, thus making

it diÆult for ation relevant information to be stored in

suh individual elements. In order to failitate under-

standing of the results and omparative analysis (and

for other reasons explained below) a simple task of pho-

totaxis is hosen. The next setion further disusses the

oneptual and pratial motivations of this work. Se-

tion 3 desribes the experimental setup and the neuron

model whih is a simple extension of a ontinuous-time

network arhiteture. The results are presented in se-

tion 4 whih shows that evolved ontrollers are highly

robust to radial sensor perturbations suh as exhange

of sensor position and removal of one sensor. For ev-

ery single ase studied robots were able to perform the

desired task as long as they had at least one sensor in

the frontal half of the body. Robustness dereases as the

allowed timesale of osillation is made loser to that of

performane. An analysis of the evolved strategy is also

presented in this setion. It is suggested that fast os-

illations are not suÆient for robustness but that long-

term homeostati behaviour of neural ativation is also

neessary. This laim is supported by evolving a net-

work of fast non-homeostati FitzHugh-Nagumo osilla-

tors whih turn out to be muh less robust. The �nal

setion disusses the impliations of these results.

2. Motivations

This is an exploratory piee of work aiming at generating

hypotheses. The motivations are oneptual as well as

pratial.

An animal nervous system is a omplex network of

relational patterns of eletrohemial ativity whih is

oupled with the rest of the organism and its medium

through its sensorimotor surfaes. Neural dynam-

is present spontaneous extended patterns, harater-

ized by their own measures of oherene. Suh pat-

terns are onstantly happening in real brains. One

of the legaies of the information proessing perspe-

tive on ognition, typial of ognitivism but whih an

be traed to the behaviourist movement it purported

to replae, is that suh inherent brain dynamis are

driven by sensory input and drive motor output in an

almost linear ausal manner. This view has had its

strong opponents in di�erent periods: Dewey (1896)

and Merleau-Ponty (1942/1963) in their respetive ri-

tiques of the onept of the reex ar and S-R explana-

tions in psyhology, proponents of entral views on neu-

ral population ativity (Skarda and Freeman, 1987) and,

more reently, alternative, dynamial views of ogni-

tion (Beer, 1995, Varela et al., 1991). Aording to suh

views, dynami patterns in the brain are autonomous

and sensory input is best understood as parametri

perturbation or modulation of the intrinsi dynamis

(Maturana and Varela, 1980). Tehnologial improve-

ments that permit non-invasive studies of brain patterns

in behaving animals, as well as omplex modelling teh-

niques have inreased the appeal of this point of view,

not only in neurosiene (for instane in researh into

ell assemblies and large sale synhronization, Varela

et al., 2001), but also amongst robotiists sympatheti

with the dynamial approah.

Still, the latter have not been able to shake o� en-

tirely the omputational legay. This is a point that is

diÆult to defend, sine often a dynamial perspetive

is outspokenly argued for by researhers in autonomous

robotis. But even in suh ases (the present author

inluded) there is a tendeny to think of a robot on-

troller mostly as a task-driven devie rather than as

an autonomous system (as the very word \ontroller"

implies)
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. One reason for this is that under ertain

irumstanes desriptions in terms of omputations

(e.g., nodes in a neural network representing or keep-

ing trak of ation-relevant information) and dynamis

seem to �t equally well to the ase at hand. Suh is

the ase of Brainteberg-like or behaviour-based arhite-

tures (Braitenberg, 1984, Brooks, 1986) whih demon-

strate just how interesting performane an be ahieved

by exploiting relevant environmental ouplings but are

limited to mostly reative behaviour.

There is some justi�ation, therefore, for the projet of

trying to purposefully devise robot ontrollers in whih

the ontrast between a omputational and a dynamial

approah is maximal. Suh a projet would help illumi-

nate the degree or kind of di�erene between these points

of view in very onrete terms. Of ourse, notable ex-

amples already exists, typially when ontrollers (often

neural networks) exhibit an expliit variety of spatial and

temporal sales (Husbands et al., 1998). In those ases

a dynami interpretation of how they work is typially

easier to envision. One of the aims of this paper is to

explore suh a ontrast in a simple setup.

Real nervous systems operate at a large range of

timesales. The faster end of this range an roughly

be desribed as the 1/10, and 1 timesales. The fast

1/10 timesale inlude intrinsi ellular rhythms (e.g.,

in bursting interneurons) ranging from 10 to 100 mil-

liseonds. The 1 timesale orresponds to durations of

the order of a few seonds, roughly the timesale of the

formation of large-sale oherent assemblies, pereptual

integration and behavioural ats. Slower timesales are

also ative for instane in ativity-dependent regulation

of intrinsi neural properties and modi�ations to synap-

ti eÆay.

1

The issue of organismi autonomy, learly, extends beyond en-

dogenous dynami patterns in the nervous system, not only to

other physiologial proesses, but also to behavioural and bodily

intentional dimensions.



A large part of urrent work in understanding

entral pattern-generating iruits (CPGs) is fo-

used on their role in the generation of rhyth-

mi behaviour suh as loomotion and respira-

tion (Marder and Buher, 2001). This is also true

in robotis (Beer et al., 1992, Fujii et al., 2001,

Ijspeert et al., 1998, Williamson, 1998). Rhythmi

neural ativity (not neessarly assoiated with CPGs)

may also be involved in the generation of patterns of

behaviour or pereption that are non-rhythmi and

happen at signi�antly longer timesales that those of

osillations (Rodriguez et al., 2001). This aspet has

been less explored but it should be of onsiderable

pratial interest in robotis. If a system is synthe-

sized to produe a large sale pattern with a typial

timesale whih is muh longer than the timesale of

its miro-omponents, then ertain degree of robustness

of performane should be expeted, as, by design, no

single miro-omponent an take a large share in the

ontrol of the overall system { the faster miro-timesale

would not allow this { and so the system must make

use of long range synergies that tend to be highly

robust. Similar phenomena have been demonstrated in

di�erent ontexts, (Di Paolo, 2001, Thompson, 1996)

but apparently has not been applied in robotis so far.

Whether suh robustness ould also happen in robots

is one of the main angles of investigation of this work.

For this purpose, a task that is not intrinsially rhyth-

mi has been hosen deliberately. Phototati behaviour

in a wheeled robot an easily be ahieved by reative,

non-osillatory ontrollers exhibiting the same internal

and behavioural timesale. Thus phototaxis provides an

ideal initial testbed for the exploring homeostati osilla-

tory neurons as building bloks not only beause of ease

of analysis but also beause of the maximum ontrast in

omparison with reative ontrollers.

Tied to the issue of robustness is the issue of sta-

bility. Previous investigations have addressed the im-

portane and bene�ts of balaning stability and hange

when trying to design plasti robot ontrollers. Based

on Ashby's idea of ultrastability (Ashby, 1960), adapta-

tion to radial sensorimotor perturbation has been ob-

tained when single neural elements in the ontroller are

evolved with the further requirement of long term home-

ostati behaviour (Di Paolo, 2000). These biologially-

inspired neural ontrollers (Turrigiano, 1999) have been

evolved in order to maintain their elements within al-

lowed ranges of ativation while the robot performs its

task. Loal plastiity is indued by unstable elements

until a new stable state is reahed. This proess an

lead to sensorimotor adaptation to perturbations in sen-

sor and motor gains and inversion of the visual �eld. The

whole proess operates at a slow timesale (of the order

of 10 to 100 times the timesale of a behavioural event).

Of the many questions that derived from this piee of

work, one is the issue of what sort of behaviour would

be obtained from evolving neural elements that were in-

trinsially homeostati. Although in the present ontext

ontrollers will not be plasti, the relation between long-

term homeostasis of omponents relates similarly to the

potential robustness of the whole system as the use of

fast timesales. Neurons that always ompensate for in-

put urrents will not be able to keep long-term reords

of any kind, and so this fores the evolution of strategies

based on global patterns of ativation, and so, hopefully,

robustness and stability of performane.

3. Methods

3.1 Homeostati relaxation osillators

A simple modi�ation is made to the equations governing

the ativation of ontinuous-time reurrent neural net-

works (CTRNN) (Beer, 1990) to transform eah neuron

into a relaxation osillator whih maintains a onstant

average ativation over long periods. The equations de-

sribing traditional CTRNNs are:
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where G

i

ranges from 1 to T and is genetially set. The

response variable always has a longer time onstant than

the membrane potential. The onsequene of adding this

equation is that the bias term is no longer onstant but

adapts so as to maintain a long term average �ring rate of

0.5, regardless of all the other parameters and input pat-

tern. This modi�ation transform eah node in a speial

ase of a entre-rossing dynamial neuron (Mathayom-

han and Beer, submitted).

3.2 Experimental setup

Simulated robots are evolved to perform phototati be-

haviour on a series of light soures. Robots are modelled

as solid irular bodies of radius R

0

= 4 with two dia-

metrially opposed motors and two light sensors. The



angle between sensors is always of 120 degrees (60 de-

grees eah to the body entral midline).

Motors an drive the robot bakwards and forwards in

a 2-D unlimited arena. Robots have a very small mass,

so that the motor output is the tangential veloity at the

point of the body where the motor is loated. The trans-

lational movement of the whole robot is alulated using

the veloity of its enter of mass (the vetorial average

of the motor veloities), and the rotational movement by

alulating the angular speed (the di�erene of the tan-

gential veloities divided by the body diameter). There

is no inertial resistane to either form of movement.

Light from point soures impinges on sensors with a

loal intensity proportional to the soure intensity and

the inverse square of the distane from sensor to soure.

The model inludes shadows on sensors produed when

light is oluded by the body (i.e., a sensor angle of a-

eptane of 180 degrees). Input urrent from eah sensor

are fed to a orresponding neuron.

Eah motor is ontrolled by the �ring rate of a single

motor neuron (mapped so as to produe both positive

and negative values). Alternatively, eah motor an be

ontrolled antagonistially by two neurons whose �ring

rates are summed with opposite signs. Results were the

same in both ases and will be presented only for the

former. All neurons are fully onneted. Tests were run

with 4, 6, 8, 10 and 20 neurons in the network with

similar results.

Motor and sensor signals are multiplied by a geneti-

ally set gain whih is left-right symmetrial and taken

from the range [0.1,10℄. Uniform noise with range 0.1 is

applied to both input and output signal priors to gain

saling.

Eah time step the network is updated using an Euler

integration method with a time step of 0.2.

A population of 30 robots is evolved using a genera-

tional geneti algorithm with trunation seletion. The

population is ranked aording to �tness, the top third is

opied to the next generation and used as parents for in-

dividuals that replae the bottom two thirds of the pop-

ulation. All parameters are enoded in a real-valued ve-

tor, eah omponent enoding a single parameter in the

neural network. These omponents belong to the range

[0,1℄ and are linearly saled to the range orresponding

to the parameter enoded (with the exeption of gain

values whih are exponentially saled). A global muta-

tion operator is used (Beer, 1996) whih adds a small

random vetor to the whole genotype eah time a muta-

tion ours. The mutation rate is of 2% per lous and

the standard deviation of vetor displaement is of 0.25.

Reombination was not used.

Eah individual robot is run for 4 independent eval-

uations. Fitness is alulated by averaging the �tness

obtained in eah evaluation minus one standard devia-

tion to favour low variability. Eah evaluation onsists
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Figure 1: Average relative robustness (measured as propor-

tion of unperturbed performane) for left-right inversion of

sensors and di�erent values of T .

of the sequential presentation of 6 distant light soures

whih the robot must approah in turn and remain lose

to. Only one soure is presented at a time for a rela-

tively long period T

S

hosen randomly for eah soure

from the interval [300,500℄. After T

S

the soure is extin-

guished and another one appears at a random distane

and angle. The initial distane between robot and soure

is uniformly hosen from the interval [60,80℄, the angle

from [0,2�) and the intensity of eah soure from the

interval [500,1500℄, so that, on average, the intensity of

light at the initial stages is of the same order of magni-

tude as the noise on the sensors.

Fitness is alulated aording to:

F =

1

T

S

Z

fdt; f = 1�

d

D

i

if the urrent distane to the soure d is less than the

initial distane D

i

, otherwise f = 0.

The parameter T indiating the range of allowed val-

ues for �

b

i

was set for di�erent series of runs at 2, 5,

and 10 in order to study the e�et of inreasingly longer

timesales of osillation.

4. Results

4.1 Robustness

In all ases the geneti algorithm was run for 2000 gen-

erations; �tness values stabilizing at around 1000 gen-

erations. Control runs were performed using standard

CTRNNs with genetially set but �xed bias terms from

the range [-3,3℄. The following results orrespond to 6-

node neural ontrollers. Eah data point is taken by av-

eraging the performane over 10 trials of 5 independently

evolved robots over a series of 50 light soures. Robots

are evolved that approah light soures equally well {



0

0.2

0.4

0.6

0.8

1

1.2

P
ro

po
rt

io
n 

to
p 

fit
ne

ss

Left sensor centre

control T = 10 T = 5 T = 2

Figure 2: Average relative robustness (measured as propor-

tion of unperturbed performane) for removal of right sensor.

0

0.2

0.4

0.6

0.8

1

1.2

P
ro

po
rt

io
n 

to
p 

fit
ne

ss

Right sensor centre

control T = 10 T = 5 T = 2

Figure 3: Average relative robustness (measured as propor-

tion of unperturbed performane) for removal of left sensor.

the range of �nal distanes to the soure was the same

in all ases (between 3 and 10 units). However, beause

the �tness bene�ts fast trajetories absolute performane

was signi�antly better for the ontrol runs (0:56�0:06)

than for the osillatory ontrollers (0:35�0:04 for T = 2,

0:42� 0:03 for T = 5 and 0:35� 0:08 for T = 10) whih

take a longer time to reah the soure.

Figures 1, 2 and 3 show the proportional deay in

performane for a series of radial sensor perturbations.

Inversion onsists in swapping the sensor positions left

and right. Sensor removal onsists in making the or-

responding inoming urrent equal to 0 and plaing the

other sensor at an equal angle between the motors (en-

tral midline). Error bars indiate standard deviation.

In all ases the leftmost bar orresponds to ontrol runs.

For all three sensor perturbations osillating neural on-

trollers show high robustness whih inreases as T is
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Figure 4: Absolute performane vs. angular sensor displae-

ment for a ontrol individual.
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Figure 5: Absolute performane vs. angular sensor displae-

ment for individual evolved using fast homeostati osillators.

made smaller, i.e., when the range of allowed osilla-

tions is onstrained to higher frequenies. Observed be-

haviour is unhanged by these radial perturbations for

T = 2. On appliation of the sensor distortion, the robot

ontinues moving along its trajetory as if the perturba-

tion had not been applied. This justi�es the desription

in terms of robustness rather than adaptation sine no

maladapted period has ever been observed in any of the

trials.

Robustness against sensor perturbation an also be

appreiated by studying the dependene of absolute per-

formane on angular sensor displaement along the ir-

ular body of the robot. In these tests, the position of

both sensors is shifted by a same angle between -180

and 180 degrees. Figures 4 and 5 show this relation

for the unperturbed robot and for the three sensor per-

turbations desribed above for the ontrol ase and an
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Figure 6: Compensatory behaviour of sensor neurons to step

hanges in left sensor urrent. Similar behaviour for steps in

right sensor urrent.

osillator-ontrolled robot evolved with T = 2 respe-

tively. The ontrol robot shows a heavy reliane on a

single sensor. Displaement of this sensor results in very

di�erent angular ranges for high �tness, and removal of

the same results in negligible performane. In ontrast,

the osillator-ontrolled robot shows pratially the same

angular distribution for all 4 ases, indiating that the

strategy used by this robot will work as long as there

is at least one sensor (any sensor) faing in the forward

diretion of the robot.

4.2 Analysis

Analysis of the evolved strategy has been performed for a

4-neuron network. The strategy itself and the behaviour

of single neurons do not di�er signi�antly from 6-neuron

ontrollers.

All neurons behave as osillators entrained to a om-

mon frequeny of 0.11 yles per unit of time. If all but

self-onnetions are removed, neurons osillate at their

proper frequenies (0.094 for left motor neuron, 0.119

for right motor neuron, 0.211 for left sensor neuron and

0.237 for right sensor neuron). Homeostati ompensa-

tion to step hanges in input urrent is shown in �gure

6. At the start of an step, sensor neurons hange their

osillation pattern but for no longer than one yle. The

perturbation is ompensated for and an opposite e�et

obtains when an opposite step is applied. The e�ets on

the other neurons is similar in duration and smaller in

sale. Robot trajetories are a�eted only temporarily

by suh step funtions and the way they are modi�ed

depend on preise timing of the onset of the step.

In all the ases tested the strategy used by the robot is

a variation of the strategy shown in �gures 7 and 8. Fig-

ure 7 orresponds to the robot behaving in the absene

of light soures. The top right plot shows the two mo-

tor neurons. These osillate with a same frequeny and

maintaining a roughly onstant phase di�erene whih

means that for ertain periods they will be both at their

top range or both at their bottom range, while the rest of

the time they will be at alternate high and low values of

ativations. These top and bottom values orrespond to

the motors moving forwards and bakwards respetively.

The trajetory shown at the top and bottom left in �gure

7 an then be desribed as alternated segments where the

robot moves forwards, rotates on the spot about three

quarters of a full turn, moves bakwards (but keeping in

roughly the same general diretion), rotates on the spot,

moves forwards, and so on. Rotation points are marked

in the �gure. Beause of the imposed limitations on

the neural ontroller, the robot must use an ative san-

ning strategy for phototaxis, as sensor neurons will lose

any instantaneous information they might aquire from

the input urrents. Sensor neurons also osillate in anti-

phase (bottom left).

Large-angle on-the-spot rotation provides the basis for

the ative strategy. Figure 8 reveals more detail of be-

haviour in the presene of a light soure. As ation-

relevant information annot be maintained in levels of

single neuron ativation (neither in the short or long

term) the neural ontroller resorts to using input ur-

rents to modulate intrinsi osillations and make the net-

work swith between osillating regimes. This beomes

lear by observing the behaviour of the sensor neurons

(�gure 8 bottom right) whih show a hange of regime

from low amplitude osillations to rapid \ip-op" be-

haviour overing the whole range of ativation when the

robot is near the soure of light (distane to the soure is

shown in the bottom left plot). The osillations of sensor

neurons turn out to be unstable in the presene of the

intermittent pattern of input urrents aused by rotating

near the light soure. The new regime in turn modulates

the relative phase of the motor neurons. The same tran-

sitions an be observed by estimating the relative phase

of the sensor neurons and plotting it in relation to pe-

riods when the robot is far away from a soure of light

or near it. Figure 9 shows preisely this; the line indi-

ates when the robot is further (top) or loser (bottom)

than 20 distane units. The phase relation hanges from

a very noisy anti-phase to a highly ordered state where

only a few disrete values are taken when the robot is

near the soure.

As mentioned earlier, the e�et of step-wise inre-

ments or derements in input urrents is onentrated

in the transients after the onset of eah step and their

e�et on the robot trajetory depends on their preise

timing (whih depends obviously on the robot's urrent

vetor). The omplex relation that maintains the robot

lose to the light soure has yet to be fully eluidated.

Closer analysis of the transition stage between the near
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Figure 7: Robot behaviour and neural ativation in the ab-

sene of light soures.

and far regimes throws some light into the approah-

ing strategy and the origins of robust behaviour. Even

though very low input urrents do not alter the osilla-

tion mode of the neurons, they do modulate the phase of

osillation. The e�et of this phase modulation seems to

orrelate with whether, during rotations, the robot faes

the general diretion of the light soure or the opposite

diretion. In the �rst ase, the angle of the rotation is

made smaller as a onsequene of the inrease in input

urrent. In the seond ase, the angle is not a�eted, re-

sulting in a deviation of the trajetory towards the soure

of light. Interestingly, for suh a strategy the preise lo-

ation of the sensors is not a very sensitive parameter,

as long as they are plaed towards the front of the body.

4.3 Fast osillations are not enough

The above results show that when single neurons are pre-

vented from storing long-term information in their ati-

vation values, good solutions an nevertheless evolve that

make use of the relative oordination between neural os-

illators to solve the desired task. Additionally, these

solutions tend to be extremely robust to sensory pertur-

bation. Two essential omponents seem to be needed for

this: the timesale of osillation must be faster than the

timesale of performane (otherwise transient informa-

tion in the ativation ould be used) and the long-term

average ativation of eah neuron must onserve an un-

di�erentiated average value independently of the history

of inputs.

Figures 1, 2 and 3 show that when the timesale of

osillation is allowed to approah that of behaviour,

robustness dereases, thus demonstrating that robust-

ness relies on fast osillations. The neessity of long-
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Figure 8: Robot behaviour, neural ativation and distane to

light soure during phototaxis.

term homeostati and uniform ativation remains to be

shown. In order to do this, two series of experiments us-

ing non-homeostati fast relaxation osillators was ar-

ried out.

In the �rst series, the modi�ed CTRNN equations

were slightly altered. The seond equation now reads:

�

b

i

db

i

dt

= �(b

i

+K

i

y

i

);

with K

i

a genetially determined onstant within [0,1℄

that spei�es for eah neuron the proportion of reovery

for b

i

. When K

i

is near 1 the neuron will maintain an

average ativation in the middle range. At the other

extreme (K

i

= 0), b

i

will approah zero and remain there

in the long term. Neurons an di�erentiate in terms of

the mean value of their osillations in this ase.

In the seond series the experimental set-up was main-

tained with the exeption of the neural ativation whih

is now governed by a set of FitzHugh-Nagumo equations

suitable oupled (Kanamaru and Okabe, 2000)

�
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i

dt

= �v

i

+ u

i

� u

3
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=3 +

X

j

w

ji

u

j

+ I

i

;

dv

i

dt

= u

i

� �

i

v

i

+ 

i

;

where u

i

is the fast variable representing the ativation

of the neuron and v

i

is the response variable. �

i

and



i

are genetially set with values taken from the range

[0.8,1.2℄, the range for weight values is [-1,1℄ and for �

i

[0.4,4.0℄.

In all of these ases (5 runs in eah series) high �tness

sores were rapidly evolved (e.g., 0:4� 0:04 for the F-N
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Figure 9: Relative phase of osillation between the two sensor

neurons during phototaxis. The solid line indiates when the

distane to the soure is more (up) or less (down) than 20

units. Highly ordered modes are observed when the robot is

near the soure.

network), but in none of them robustness against sensor

perturbation was obtained (e.g., proportion of original

�tness under inversion: 0:008 � 0:004 for the F-N net-

work). This result on�rm that fast osillations are not

suÆient for robustness and gives support to the hy-

pothesis that undi�erentiated homeostati behaviour is

neessary. Obviously further analysis and tests will be

required for understanding why this seems to be the ase.

5. Conlusions: A hypothesis

By onstraining the lass of neural ontrollers that evo-

lution an make use of, the solution spae is, in prin-

iple, similarly onstrained. Suh a move would ap-

pear as ontrary to the objetive of enhaning evolv-

ability that is embraed by a good part of researh

in evolutionary robotis. Yet the quality of solutions

so onstrained is signi�antly di�erent and interesting

to deserve more exploration. This work is part of a

more general trend towards using syntheti tehniques

not just to arrive at more interesting robot behaviour,

but to understand what are the global e�ets of biolog-

ially inspired miro-mehanisms when these are imple-

mented in ontrollers for well understood tasks. Exam-

ples of this trend inlude visual shape disrimination us-

ing di�usible neuromodulators (Husbands et al., 1998),

navigation and obstale avoidane using spiking

neurons (Floreano and Mattiussi, 2001), and photo-

taxis using homeostati regulation of loal plastiity

(Di Paolo, 2000). The design and study of novel inte-

grated systems of this sort may well be one way for evo-

lutionary robotis to ontribute useful information bak

to biology in the proximate future.

The above results show that signi�ant and onsistent

robustness is obtained by introduing ertain hanges in

neural ontrollers. These hanges, at �rst sight, appear

unintuitive and yet they �nd their motivation in bio-

logial data both on neural mehanisms and the role of

entral patterns of nervous ativity. The ombination

of osillatory and ompensatory dynamis at the level of

the individual neuron means that a ontroller will not be

able to rely on `informational traes' at this level, and

so, muh less on omputation as a design strategy. In

ontrast, a dynamial perspetive ome into fous as the

natural operational and explanatory option for suh sys-

tems. The impossibility of funtional spei�ity at the

neuronal level seems the most likely soure of robustness

at the performane level. When funtional spei�ity is

allowed, either by slowing down the permitted periods of

osillations, or allowing di�erenes in long-term average

ativation, robustness disappears, as is also absent in the

non-osillatory non-homeostati ontrol runs.

The impliations of these results are not just onep-

tual. On the pratial side of things, it is of extreme

interest to understand the origins of adaptivity, robust-

ness, and stability in robot ontrollers and other om-

plex systems. The results presented here suggest that

when dealing with multi-omponent systems, the less

the ausal and explanatory burden is onentrated at

the miro-level, the more the whole system is fored into

globalised and de-entralised solutions. Suh solutions,

by de�nition, an be expeted to be more robust than

solutions that depend on ausal spei�ity at the level of

single omponents. Removing the apability of arti�ial

neurons to assume spei� funtional roles aording to

their state is one way of doing this. Evolution is on-

strained to �nd solutions that integrate entral patterns

with sensorimotor ouplings in ways that the desired be-

haviour is ahieved. This should not be taken as imply-

ing that real nervous systems ahieve robustness in the

same way.

In view of this onlusion it is possible to advane the

following hypothesis: In omplex multi-omponent sys-

tems, robustness will be likely to be obtained if funtional

spei�ation at the level of individual omponents is min-

imized. The only ourse left for suh systems is to ahieve

the desired performane by means of large-sale oordi-

nation between omponents. Funtionality is obtained

at a level whih is di�erent from that of the lower meh-

anisms. Suh systems are diÆult to design. Constraints

on performane and robustness do not translate leanly

into obvious mesosopi synergies. The most promising

design strategy for suh systems remains, therefore, a

syntheti approah suh as evolutionary robotis.

It is important to emphasize that this hypothesis

presents a one way link. Robust performane may

well result from di�erent design priniples. Further

investigation into similarly onstrained arhitetures is



needed to test the usefulness and limitations of this idea

and explore its relation to other not-so-distant issues

suh as plastiity and adaptivity.
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