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Abstract

A network of homeostatic relaxation oscillators
is evolved to produce non-rhythmic phototactic
behaviour in a simulated robot. Neural oscilla-
tions take place at a faster timescale than that
of performance, and are designed to maintain an
average activation value which is independent of
sensory or synaptic input. In this way, neural ac-
tivation cannot correlate directly with any action-
relevant sensory information, but must be contin-
uously modulated by sensorimotor coupling. Evo-
lution finds robust controllers which work by al-
tering their central oscillation patterns. Robot
are evolved with a fixed set of body parameters,
including sensor positions. Radical sensor robust-
ness is shown by inverting the position of the sen-
sors and also by removing either of them in turn
— operations that do not alter the success of the
strategy. Fast dynamics and long-term homeosta-
sis seem to be required for robustness; slowing
down the timescale of oscillations results in less
robustness. The need for long-term homeostasis
is shown both by modifying the oscillators and
by running control experiments using a network
of FitzHugh-Nagumo neurons. In none of these
cases robustness is obtained. A general hypothe-
sis is proposed according to which removing func-
tional specificity from the lower-level mechanisms
is likely to result in robust performance at the
global level.

1. Introduction

There is an increasing interest within the context of
autonomous robot design in biologically inspired con-
trollers capable of acting over a large range of timescales
(Husbands et al., 1998) as well as in controllers that
combine medium and slow timescales (Beer, 1990,
Yamauchi and Beer, 1994, Floreano and Urzelai, 2000,
Fujii et al., 2001, Di Paolo, 2000) and medium and
fast timescales (Floreano and Mattiussi, 2001). Harvey
(1997) has emphasized the importance of robot con-
trollers implementing a wide range of timescales in the
context of dynamical accounts of adaptive behaviour.
Despite this interest the majority of work in this area

has concentrated on control architectures operating at a
single preferred timescale: the typical timescale of be-
havioural performance. The average time it takes for
an element of performance to be achieved does not dif-
fer significantly from the average time the robot con-
troller takes to change from one state to another. This
is more apparent in neural network controllers under-
going no plastic change, where the neural elements do
not have any intrinsic time constants differentially af-
fecting their dynamics. Controllers in such cases are
‘driven’ Braitenberg-vehicle style by the sensorimotor
coupling obtained while the robot is behaving. The no-
table exception to this trend is the growing body of re-
search into oscillatory controllers of limbs for legged lo-
comotion (Beer et al., 1992, Fujii et al., 2001), rhythmic
arm movement (Williamson, 1998) and multi-segmented
robot control (Tjspeert et al., 1998). There is, however,
little research on the use of controllers producing au-
tonomous and central dynamic patterns for tasks that
are not necessarily rhythmic.

Data from neuroscience indicate that not only do
many neuronal processes operate at, a range of timescales
significantly faster than that of behavioural performance,
but also real neurons tend to adapt their firing prop-
erties homeostatically as a consequence of their recent
history of activation (Turrigiano, 1999). Put together,
these properties signify that it is increasingly difficult to
think of single neuronal activation as playing the role of
a ‘record’ of a relevant action-oriented event (the legacy
of a computational view of cognition), since for many
classes of neurons firing patterns will tend to rapidly
lose any transient information at a timescale which is
faster than that of behavioural performance. In contrast,
global variables such as relative phase between neuronal
assemblies and mode of oscillation become more rele-
vant (Rodriguez et al., 2001, Varela et al., 2001). Even
though real nervous systems can get around these prob-
lems by resorting to different means (e.g. slower pro-
cesses, bistable neurons, or synergistic effects between
interacting neuronal assemblies), the question of what
sort of performance would obtain if only fast oscillatory
neurons with homeostatic average activation were used
becomes one of conceptual and practical interest for evo-
lutionary robotics.

This paper explores some of the issues that arise from



evolving neural controllers which operate under these
conditions, i.e. at timescales faster than that of perfor-
mance, and whose elements tend to compensate for long
term patterns of activation by keeping their average acti-
vation as close as possible to a middle range, thus making
it difficult for action relevant information to be stored in
such individual elements. In order to facilitate under-
standing of the results and comparative analysis (and
for other reasons explained below) a simple task of pho-
totaxis is chosen. The next section further discusses the
conceptual and practical motivations of this work. Sec-
tion 3 describes the experimental setup and the neuron
model which is a simple extension of a continuous-time
network architecture. The results are presented in sec-
tion 4 which shows that evolved controllers are highly
robust to radical sensor perturbations such as exchange
of sensor position and removal of one sensor. For ev-
ery single case studied robots were able to perform the
desired task as long as they had at least one sensor in
the frontal half of the body. Robustness decreases as the
allowed timescale of oscillation is made closer to that of
performance. An analysis of the evolved strategy is also
presented in this section. It is suggested that fast os-
cillations are not sufficient for robustness but that long-
term homeostatic behaviour of neural activation is also
necessary. This claim is supported by evolving a net-
work of fast non-homeostatic FitzHugh-Nagumo oscilla-
tors which turn out to be much less robust. The final
section discusses the implications of these results.

2. Motivations

This is an exploratory piece of work aiming at generating
hypotheses. The motivations are conceptual as well as
practical.

An animal nervous system is a complex network of
relational patterns of electrochemical activity which is
coupled with the rest of the organism and its medium
through its sensorimotor surfaces. Neural dynam-
ics present spontaneous extended patterns, character-
ized by their own measures of coherence. Such pat-
terns are constantly happening in real brains. One
of the legacies of the information processing perspec-
tive on cognition, typical of cognitivism but which can
be traced to the behaviourist movement it purported
to replace, is that such inherent brain dynamics are
driven by sensory input and drive motor output in an
almost linear causal manner. This view has had its
strong opponents in different periods: Dewey (1896)
and Merleau-Ponty (1942/1963) in their respective cri-
tiques of the concept of the reflex arc and S-R explana-
tions in psychology, proponents of central views on neu-
ral population activity (Skarda and Freeman, 1987) and,
more recently, alternative, dynamical views of cogni-
tion (Beer, 1995, Varela et al., 1991). According to such
views, dynamic patterns in the brain are autonomous

and sensory input is best understood as parametric
perturbation or modulation of the intrinsic dynamics
(Maturana and Varela, 1980). Technological improve-
ments that permit non-invasive studies of brain patterns
in behaving animals, as well as complex modelling tech-
niques have increased the appeal of this point of view,
not only in neuroscience (for instance in research into
cell assemblies and large scale synchronization, Varela
et al., 2001), but also amongst roboticists sympathetic
with the dynamical approach.

Still, the latter have not been able to shake off en-
tirely the computational legacy. This is a point that is
difficult to defend, since often a dynamical perspective
is outspokenly argued for by researchers in autonomous
robotics. But even in such cases (the present author
included) there is a tendency to think of a robot con-
troller mostly as a task-driven device rather than as
an autonomous system (as the very word “controller”
implies)!. One reason for this is that under certain
circumstances descriptions in terms of computations
(e.g., nodes in a neural network representing or keep-
ing track of action-relevant information) and dynamics
seem to fit equally well to the case at hand. Such is
the case of Brainteberg-like or behaviour-based architec-
tures (Braitenberg, 1984, Brooks, 1986) which demon-
strate just how interesting performance can be achieved
by exploiting relevant environmental couplings but are
limited to mostly reactive behaviour.

There is some justification, therefore, for the project of
trying to purposefully devise robot controllers in which
the contrast between a computational and a dynamical
approach is maximal. Such a project would help illumi-
nate the degree or kind of difference between these points
of view in very concrete terms. Of course, notable ex-
amples already exists, typically when controllers (often
neural networks) exhibit an explicit variety of spatial and
temporal scales (Husbands et al., 1998). In those cases
a dynamic interpretation of how they work is typically
easier to envision. One of the aims of this paper is to
explore such a contrast in a simple setup.

Real nervous systems operate at a large range of
timescales. The faster end of this range can roughly
be described as the 1/10, and 1 timescales. The fast
1/10 timescale include intrinsic cellular rhythms (e.g.,
in bursting interneurons) ranging from 10 to 100 mil-
liseconds. The 1 timescale corresponds to durations of
the order of a few seconds, roughly the timescale of the
formation of large-scale coherent assemblies, perceptual
integration and behavioural acts. Slower timescales are
also active for instance in activity-dependent regulation
of intrinsic neural properties and modifications to synap-
tic efficacy.

I The issue of organismic autonomy, clearly, extends beyond en-
dogenous dynamic patterns in the nervous system, not only to
other physiological processes, but also to behavioural and bodily
intentional dimensions.



A large part of current work in understanding
central pattern-generating circuits (CPGs) is fo-
cused on their role in the generation of rhyth-
mic behaviour such as locomotion and respira-
tion (Marder and Bucher, 2001).  This is also true
in  robotics  (Beer et al., 1992,  Fujii et al., 2001,
Ijspeert et al., 1998, Williamson, 1998). Rhythmic
neural activity (not necessarly associated with CPGs)
may also be involved in the generation of patterns of
behaviour or perception that are non-rhythmic and
happen at significantly longer timescales that those of
oscillations (Rodriguez et al., 2001). This aspect has
been less explored but it should be of considerable
practical interest in robotics. If a system is synthe-
sized to produce a large scale pattern with a typical
timescale which is much longer than the timescale of
its micro-components, then certain degree of robustness
of performance should be expected, as, by design, no
single micro-component can take a large share in the
control of the overall system — the faster micro-timescale
would not allow this — and so the system must make
use of long range synergies that tend to be highly
robust. Similar phenomena have been demonstrated in
different contexts, (Di Paolo, 2001, Thompson, 1996)
but apparently has not been applied in robotics so far.

Whether such robustness could also happen in robots
is one of the main angles of investigation of this work.
For this purpose, a task that is not intrinsically rhyth-
mic has been chosen deliberately. Phototactic behaviour
in a wheeled robot can easily be achieved by reactive,
non-oscillatory controllers exhibiting the same internal
and behavioural timescale. Thus phototaxis provides an
ideal initial testbed for the exploring homeostatic oscilla-
tory neurons as building blocks not only because of ease
of analysis but also because of the maximum contrast in
comparison with reactive controllers.

Tied to the issue of robustness is the issue of sta-
bility. Previous investigations have addressed the im-
portance and benefits of balancing stability and change
when trying to design plastic robot controllers. Based
on Ashby’s idea of ultrastability (Ashby, 1960), adapta-
tion to radical sensorimotor perturbation has been ob-
tained when single neural elements in the controller are
evolved with the further requirement of long term home-
ostatic behaviour (Di Paolo, 2000). These biologically-
inspired neural controllers (Turrigiano, 1999) have been
evolved in order to maintain their elements within al-
lowed ranges of activation while the robot performs its
task. Local plasticity is induced by unstable elements
until a new stable state is reached. This process can
lead to sensorimotor adaptation to perturbations in sen-
sor and motor gains and inversion of the visual field. The
whole process operates at a slow timescale (of the order
of 10 to 100 times the timescale of a behavioural event).
Of the many questions that derived from this piece of

work, one is the issue of what sort of behaviour would
be obtained from evolving neural elements that were in-
trinsically homeostatic. Although in the present context
controllers will not be plastic, the relation between long-
term homeostasis of components relates similarly to the
potential robustness of the whole system as the use of
fast timescales. Neurons that always compensate for in-
put currents will not be able to keep long-term records
of any kind, and so this forces the evolution of strategies
based on global patterns of activation, and so, hopefully,
robustness and stability of performance.

3. Methods

3.1 Homeostatic relaxation oscillators

A simple modification is made to the equations governing
the activation of continuous-time recurrent neural net-
works (CTRNN) (Beer, 1990) to transform each neuron
into a relaxation oscillator which maintains a constant
average activation over long periods. The equations de-
scribing traditional CTRNNs are:

1
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where, using terms derived from an analogy with real
neurons, y; represents the membrane potential, ; the
decay constant (range [0.4,4]), b; the bias, z; the firing
rate, w;; the strength of synaptic connection from node
i to node j (range [-8,8]), and I; the degree of sensory
perturbation on the sensory node (modelled here as an
incoming current, this term is always 0 for the other
nodes). These equations are extended by turning the
bias in each neuron into a responsive variable that “keeps
track” of the opposite value of the membrane potential
with a 72 which greater than 7;:

b
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where G; ranges from 1 to T and is genetically set. The
response variable always has a longer time constant than
the membrane potential. The consequence of adding this
equation is that the bias term is no longer constant but
adapts so as to maintain a long term average firing rate of
0.5, regardless of all the other parameters and input pat-
tern. This modification transform each node in a special
case of a centre-crossing dynamical neuron (Mathayom-
chan and Beer, submitted).

3.2 Ezrperimental setup

Simulated robots are evolved to perform phototactic be-
haviour on a series of light sources. Robots are modelled
as solid circular bodies of radius Ry = 4 with two dia-
metrically opposed motors and two light sensors. The



angle between sensors is always of 120 degrees (60 de-
grees each to the body central midline).

Motors can drive the robot backwards and forwards in
a 2-D unlimited arena. Robots have a very small mass,
so that the motor output is the tangential velocity at the
point of the body where the motor is located. The trans-
lational movement of the whole robot is calculated using
the velocity of its center of mass (the vectorial average
of the motor velocities), and the rotational movement by
calculating the angular speed (the difference of the tan-
gential velocities divided by the body diameter). There
is no inertial resistance to either form of movement.

Light from point sources impinges on sensors with a
local intensity proportional to the source intensity and
the inverse square of the distance from sensor to source.
The model includes shadows on sensors produced when
light is occluded by the body (i.e., a sensor angle of ac-
ceptance of 180 degrees). Input current from each sensor
are fed to a corresponding neuron.

Each motor is controlled by the firing rate of a single
motor neuron (mapped so as to produce both positive
and negative values). Alternatively, each motor can be
controlled antagonistically by two neurons whose firing
rates are summed with opposite signs. Results were the
same in both cases and will be presented only for the
former. All neurons are fully connected. Tests were run
with 4, 6, 8 10 and 20 neurons in the network with
similar results.

Motor and sensor signals are multiplied by a geneti-
cally set gain which is left-right symmetrical and taken
from the range [0.1,10]. Uniform noise with range 0.1 is
applied to both input and output signal priors to gain
scaling.

Each time step the network is updated using an Euler
integration method with a time step of 0.2.

A population of 30 robots is evolved using a genera-
tional genetic algorithm with truncation selection. The
population is ranked according to fitness, the top third is
copied to the next generation and used as parents for in-
dividuals that replace the bottom two thirds of the pop-
ulation. All parameters are encoded in a real-valued vec-
tor, each component encoding a single parameter in the
neural network. These components belong to the range
[0,1] and are linearly scaled to the range corresponding
to the parameter encoded (with the exception of gain
values which are exponentially scaled). A global muta-
tion operator is used (Beer, 1996) which adds a small
random vector to the whole genotype each time a muta-
tion occurs. The mutation rate is of 2% per locus and
the standard deviation of vector displacement is of 0.25.
Recombination was not used.

Each individual robot is run for 4 independent eval-
uations. Fitness is calculated by averaging the fitness
obtained in each evaluation minus one standard devia-
tion to favour low variability. Each evaluation consists
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Figure 1: Average relative robustness (measured as propor-
tion of unperturbed performance) for left-right inversion of
sensors and different values of T'.

of the sequential presentation of 6 distant light sources
which the robot must approach in turn and remain close
to. Only one source is presented at a time for a rela-
tively long period Ts chosen randomly for each source
from the interval [300,500]. After T's the source is extin-
guished and another one appears at a random distance
and angle. The initial distance between robot and source
is uniformly chosen from the interval [60,80], the angle
from [0,27) and the intensity of each source from the
interval [500,1500], so that, on average, the intensity of
light at the initial stages is of the same order of magni-
tude as the noise on the sensors.
Fitness is calculated according to:

1 d
F=—[tat; f=1-%
Ts/f  f=1-g

if the current distance to the source d is less than the
initial distance D;, otherwise f = 0.

The parameter T indicating the range of allowed val-
ues for 77 was set for different series of runs at 2, 5,
and 10 in order to study the effect of increasingly longer
timescales of oscillation.

4. Results
4.1 Robustness

In all cases the genetic algorithm was run for 2000 gen-
erations; fitness values stabilizing at around 1000 gen-
erations. Control runs were performed using standard
CTRNNs with genetically set but fixed bias terms from
the range [-3,3]. The following results correspond to 6-
node neural controllers. Each data point is taken by av-
eraging the performance over 10 trials of 5 independently
evolved robots over a series of 50 light sources. Robots
are evolved that approach light sources equally well —
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Figure 2: Average relative robustness (measured as propor-
tion of unperturbed performance) for removal of right sensor.
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tion of unperturbed performance) for removal of left sensor.

the range of final distances to the source was the same
in all cases (between 3 and 10 units). However, because
the fitness benefits fast trajectories absolute performance
was significantly better for the control runs (0.56 £+ 0.06)
than for the oscillatory controllers (0.35+0.04 for T' = 2,
0.42+0.03 for T = 5 and 0.35 £ 0.08 for T' = 10) which
take a longer time to reach the source.

Figures 1, 2 and 3 show the proportional decay in
performance for a series of radical sensor perturbations.
Inversion consists in swapping the sensor positions left
and right. Sensor removal consists in making the cor-
responding incoming current equal to 0 and placing the
other sensor at an equal angle between the motors (cen-
tral midline). Error bars indicate standard deviation.
In all cases the leftmost bar corresponds to control runs.
For all three sensor perturbations oscillating neural con-
trollers show high robustness which increases as T is
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Figure 4: Absolute performance vs. angular sensor displace-
ment for a control individual.
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Figure 5: Absolute performance vs. angular sensor displace-
ment for individual evolved using fast homeostatic oscillators.

made smaller, i.e., when the range of allowed oscilla-
tions is constrained to higher frequencies. Observed be-
haviour is unchanged by these radical perturbations for
T = 2. On application of the sensor distortion, the robot
continues moving along its trajectory as if the perturba-
tion had not been applied. This justifies the description
in terms of robustness rather than adaptation since no
maladapted period has ever been observed in any of the
trials.

Robustness against sensor perturbation can also be
appreciated by studying the dependence of absolute per-
formance on angular sensor displacement along the cir-
cular body of the robot. In these tests, the position of
both sensors is shifted by a same angle between -180
and 180 degrees. Figures 4 and 5 show this relation
for the unperturbed robot and for the three sensor per-
turbations described above for the control case and an
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Figure 6: Compensatory behaviour of sensor neurons to step
changes in left sensor current. Similar behaviour for steps in
right sensor current.

oscillator-controlled robot evolved with T = 2 respec-
tively. The control robot shows a heavy reliance on a
single sensor. Displacement of this sensor results in very
different angular ranges for high fitness, and removal of
the same results in negligible performance. In contrast,
the oscillator-controlled robot shows practically the same
angular distribution for all 4 cases, indicating that the
strategy used by this robot will work as long as there
is at least one sensor (any sensor) facing in the forward
direction of the robot.

4.2 Analysis

Analysis of the evolved strategy has been performed for a
4-neuron network. The strategy itself and the behaviour
of single neurons do not differ significantly from 6-neuron
controllers.

All neurons behave as oscillators entrained to a com-
mon frequency of 0.11 cycles per unit of time. If all but
self-connections are removed, neurons oscillate at their
proper frequencies (0.094 for left motor neuron, 0.119
for right motor neuron, 0.211 for left sensor neuron and
0.237 for right sensor neuron). Homeostatic compensa-
tion to step changes in input current is shown in figure
6. At the start of an step, sensor neurons change their
oscillation pattern but for no longer than one cycle. The
perturbation is compensated for and an opposite effect
obtains when an opposite step is applied. The effects on
the other neurons is similar in duration and smaller in
scale. Robot trajectories are affected only temporarily
by such step functions and the way they are modified
depend on precise timing of the onset of the step.

In all the cases tested the strategy used by the robot is
a variation of the strategy shown in figures 7 and 8. Fig-
ure 7 corresponds to the robot behaving in the absence

of light sources. The top right plot shows the two mo-
tor neurons. These oscillate with a same frequency and
maintaining a roughly constant phase difference which
means that for certain periods they will be both at their
top range or both at their bottom range, while the rest of
the time they will be at alternate high and low values of
activations. These top and bottom values correspond to
the motors moving forwards and backwards respectively.
The trajectory shown at the top and bottom left in figure
7 can then be described as alternated segments where the
robot moves forwards, rotates on the spot about three
quarters of a full turn, moves backwards (but keeping in
roughly the same general direction), rotates on the spot,
moves forwards, and so on. Rotation points are marked
in the figure. Because of the imposed limitations on
the neural controller, the robot must use an active scan-
ning strategy for phototaxis, as sensor neurons will lose
any instantaneous information they might acquire from
the input currents. Sensor neurons also oscillate in anti-
phase (bottom left).

Large-angle on-the-spot rotation provides the basis for
the active strategy. Figure 8 reveals more detail of be-
haviour in the presence of a light source. As action-
relevant information cannot be maintained in levels of
single neuron activation (neither in the short or long
term) the neural controller resorts to using input cur-
rents to modulate intrinsic oscillations and make the net-
work switch between oscillating regimes. This becomes
clear by observing the behaviour of the sensor neurons
(figure 8 bottom right) which show a change of regime
from low amplitude oscillations to rapid “flip-flop” be-
haviour covering the whole range of activation when the
robot is near the source of light (distance to the source is
shown in the bottom left plot). The oscillations of sensor
neurons turn out to be unstable in the presence of the
intermittent pattern of input currents caused by rotating
near the light source. The new regime in turn modulates
the relative phase of the motor neurons. The same tran-
sitions can be observed by estimating the relative phase
of the sensor neurons and plotting it in relation to pe-
riods when the robot is far away from a source of light
or near it. Figure 9 shows precisely this; the line indi-
cates when the robot is further (top) or closer (bottom)
than 20 distance units. The phase relation changes from
a very noisy anti-phase to a highly ordered state where
only a few discrete values are taken when the robot is
near the source.

As mentioned earlier, the effect of step-wise incre-
ments or decrements in input currents is concentrated
in the transients after the onset of each step and their
effect on the robot trajectory depends on their precise
timing (which depends obviously on the robot’s current
vector). The complex relation that maintains the robot
close to the light source has yet to be fully elucidated.
Closer analysis of the transition stage between the near
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Figure 7: Robot behaviour and neural activation in the ab-
sence of light sources.

and far regimes throws some light into the approach-
ing strategy and the origins of robust behaviour. Even
though very low input currents do not alter the oscilla-
tion mode of the neurons, they do modulate the phase of
oscillation. The effect of this phase modulation seems to
correlate with whether, during rotations, the robot faces
the general direction of the light source or the opposite
direction. In the first case, the angle of the rotation is
made smaller as a consequence of the increase in input
current. In the second case, the angle is not affected, re-
sulting in a deviation of the trajectory towards the source
of light. Interestingly, for such a strategy the precise lo-
cation of the sensors is not a very sensitive parameter,
as long as they are placed towards the front of the body.

4.3 Fast oscillations are not enough

The above results show that when single neurons are pre-
vented from storing long-term information in their acti-
vation values, good solutions can nevertheless evolve that
make use of the relative coordination between neural os-
cillators to solve the desired task. Additionally, these
solutions tend to be extremely robust to sensory pertur-
bation. Two essential components seem to be needed for
this: the timescale of oscillation must be faster than the
timescale of performance (otherwise transient informa-
tion in the activation could be used) and the long-term
average activation of each neuron must conserve an un-
differentiated average value independently of the history
of inputs.

Figures 1, 2 and 3 show that when the timescale of
oscillation is allowed to approach that of behaviour,
robustness decreases, thus demonstrating that robust-
ness relies on fast oscillations. The necessity of long-
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Figure 8: Robot behaviour, neural activation and distance to
light source during phototaxis.

term homeostatic and uniform activation remains to be
shown. In order to do this, two series of experiments us-
ing non-homeostatic fast relaxation oscillators was car-
ried out.

In the first series, the modified CTRNN equations
were slightly altered. The second equation now reads:

b _

b + Ku;
T = —(b; + K;y:);

with K; a genetically determined constant within [0,1]
that specifies for each neuron the proportion of recovery
for b;. When K; is near 1 the neuron will maintain an
average activation in the middle range. At the other
extreme (K; = 0), b; will approach zero and remain there
in the long term. Neurons can differentiate in terms of
the mean value of their oscillations in this case.

In the second series the experimental set-up was main-
tained with the exception of the neural activation which
is now governed by a set of FitzHugh-Nagumo equations
suitable coupled (Kanamaru and Okabe, 2000)
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where u; is the fast variable representing the activation

of the neuron and w; is the response variable. [3; and

v; are genetically set with values taken from the range

[0.8,1.2], the range for weight values is [-1,1] and for 7;
[0.4,4.0].

In all of these cases (5 runs in each series) high fitness

scores were rapidly evolved (e.g., 0.4 &+ 0.04 for the F-N

= u; — Bivi + i
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Figure 9: Relative phase of oscillation between the two sensor
neurons during phototaxis. The solid line indicates when the
distance to the source is more (up) or less (down) than 20
units. Highly ordered modes are observed when the robot is
near the source.

network), but in none of them robustness against sensor
perturbation was obtained (e.g., proportion of original
fitness under inversion: 0.008 £+ 0.004 for the F-N net-
work). This result confirm that fast oscillations are not
sufficient for robustness and gives support to the hy-
pothesis that undifferentiated homeostatic behaviour is
necessary. Obviously further analysis and tests will be
required for understanding why this seems to be the case.

5. Conclusions: A hypothesis

By constraining the class of neural controllers that evo-
lution can make use of, the solution space is, in prin-
ciple, similarly constrained. Such a move would ap-
pear as contrary to the objective of enhancing evolv-
ability that is embraced by a good part of research
in evolutionary robotics. Yet the quality of solutions
so constrained is significantly different and interesting
to deserve more exploration. This work is part of a
more general trend towards using synthetic techniques
not just to arrive at more interesting robot behaviour,
but to understand what are the global effects of biolog-
ically inspired micro-mechanisms when these are imple-
mented in controllers for well understood tasks. Exam-
ples of this trend include visual shape discrimination us-
ing diffusible neuromodulators (Husbands et al., 1998),
navigation and obstacle avoidance using spiking
neurons (Floreano and Mattiussi, 2001), and photo-
taxis using homeostatic regulation of local plasticity
(Di Paolo, 2000). The design and study of novel inte-
grated systems of this sort may well be one way for evo-
lutionary robotics to contribute useful information back
to biology in the proximate future.

The above results show that significant and consistent
robustness is obtained by introducing certain changes in
neural controllers. These changes, at first sight, appear
unintuitive and yet they find their motivation in bio-
logical data both on neural mechanisms and the role of
central patterns of nervous activity. The combination
of oscillatory and compensatory dynamics at the level of
the individual neuron means that a controller will not be
able to rely on ‘informational traces’ at this level, and
so, much less on computation as a design strategy. In
contrast, a dynamical perspective come into focus as the
natural operational and explanatory option for such sys-
tems. The impossibility of functional specificity at the
neuronal level seems the most likely source of robustness
at the performance level. When functional specificity is
allowed, either by slowing down the permitted periods of
oscillations, or allowing differences in long-term average
activation, robustness disappears, as is also absent in the
non-oscillatory non-homeostatic control runs.

The implications of these results are not just concep-
tual. On the practical side of things, it is of extreme
interest to understand the origins of adaptivity, robust-
ness, and stability in robot controllers and other com-
plex systems. The results presented here suggest that
when dealing with multi-component systems, the less
the causal and explanatory burden is concentrated at
the micro-level, the more the whole system is forced into
globalised and de-centralised solutions. Such solutions,
by definition, can be expected to be more robust than
solutions that depend on causal specificity at the level of
single components. Removing the capability of artificial
neurons to assume specific functional roles according to
their state is one way of doing this. Evolution is con-
strained to find solutions that integrate central patterns
with sensorimotor couplings in ways that the desired be-
haviour is achieved. This should not be taken as imply-
ing that real nervous systems achieve robustness in the
same way.

In view of this conclusion it is possible to advance the
following hypothesis: In complex multi-component sys-
tems, robustness will be likely to be obtained if functional
specification at the level of individual components is min-
imized. The only course left for such systems is to achieve
the desired performance by means of large-scale coordi-
nation between components. Functionality is obtained
at a level which is different from that of the lower mech-
anisms. Such systems are difficult to design. Constraints
on performance and robustness do not translate cleanly
into obvious mesoscopic synergies. The most promising
design strategy for such systems remains, therefore, a
synthetic approach such as evolutionary robotics.

It is important to emphasize that this hypothesis
presents a one way link. Robust performance may
well result from different design principles. Further
investigation into similarly constrained architectures is



needed to test the usefulness and limitations of this idea
and explore its relation to other not-so-distant issues
such as plasticity and adaptivity.
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