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Abstra
t

In this paper we introdu
e adaptive vision te
hniques used, for example, in video-


onferen
ing appli
ations. First, we present the re
ognition of identity, expression

and head pose using Radial Basis Fun
tion (RBF) networks. Se
ond, we address

gesture-based 
ommuni
ation and attentional fo
us, using 
olour/motion 
ues to

dire
t fa
e dete
tion and 
apture `attentional frames'. These fo
us the pro
essing

for Visually Mediated Intera
tion via an appearan
e-based approa
h with Gabor

�lter 
oeÆ
ients used as input to time-delay RBF networks. Third, we present

methods for the gesture re
ognition and behaviour (user-
amera) 
oordination in

an integrated system.

Key words: Visually Mediated Intera
tion; Fa
e Re
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1 Introdu
tion

Visually Mediated Intera
tion (VMI) is a pro
ess of fa
ilitating intera
tion

between people, either remotely or lo
ally, using visual 
ues whi
h are sim-

ilar to those used in everyday intera
tion with other people. The aim is to

enhan
e intera
tion, over
oming limitations due to, for example, distan
e or

disability. This involves many visual 
ompeten
es su
h as re
ognising fa
ial

expression, gaze, gesture and body posture whi
h are all used in human 
om-

muni
ation and intera
tion. Gestures are often spontaneous but 
an also be

intentional, where we 
an distinguish between verbal (sign languages) and

nonverbal (pointing, emphasis, illustration) usage. In our work here we are

mainly 
on
erned with intentional, nonverbal gestures whi
h are relevant for


ommuni
ation in VMI. Also, we use gaze whi
h 
an provide an important 
ue
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for dis
ourse/intera
tion management. In parti
ular, gaze dire
tion is often as-

so
iated with die
ti
, attention-dire
ting pointing to indi
ate obje
ts or people

of interest in the immediate 
ontext as part of the behavioural intera
tion.

We know that robust tra
king of non-rigid obje
ts su
h as human fa
es and

bodies involved in ma
hine analysis of this kind of intera
tive a
tivity is dif-

�
ult due to rapid motion, o

lusion and ambiguities in segmentation and

model sele
tion. This was partially addressed by the move to a
tive vision

and dynami
 models for robust tra
king using sophisti
ated Kalman �lters,

as exempli�ed by Blake and others [1℄. Re
ently, these have been spe
ialised

to allow the learning of 
omplex hand dynami
s [23℄. More generally, resear
h

funded by British Tele
om (BT) on Smart Rooms [38℄ and the ALIVE proje
t

[30℄ at MIT Media Lab has shown progress in the modelling and interpretation

of human body a
tivity. This used the P�nder (Person Finder) system [49℄,

whi
h 
an provide real-time human body analysis. Further analysis to model

the progression of ongoing a
tivity involves te
hniques su
h as Hidden Markov

Models (HMMs), whi
h 
an be parameterised to provide information su
h as

dire
tion of pointing [48℄. Further analysis for VMI 
an even involve 
oupled

human intera
tion analysis using learning te
hniques based on deformable

models [27℄.

Other related ongoing resear
h using 
omputationally simple view-based ap-

proa
hes to a
tion re
ognition have been introdu
ed by Bobi
k [3℄. More re-


ently, Pinhanez and Bobi
k [39℄ have developed a PNF network approa
h

using the temporal terms (past,now,fut) for human a
tion dete
tion, whi
h

allows fast performan
e 
ompared to equivalent evaluations of Allen's interval

logi
. Similar attempts at Mi
rosoft Resear
h by Turk and Cutler [8,46℄ have

also yielded useful results. In Pentland's group, mu
h progress has been made

in the detailed modelling and interpretation of human body a
tivity [50℄. We

also have the 
oupled HMMsof Brand and 
olleagues [4℄ for understanding be-

haviour intera
tions, although this approa
h requires a great deal of training

data. This is also true of parameterised HMMs [2℄, whi
h 
an also su�er from

la
k of stability in the interpretation 
ompared to deformable model tra
king

and analysis. More re
ent work by Oliver, Rosario and Pentland [36,37℄ has

developed reliable Bayesian vision systems. Two ex
iting re
ent development

are: 1) work by Galata, Johnson and Hogg using hybrid deformable and HMM

behaviour models for virtual a
tors [15℄; and 2) the a
tion rea
tion learning of

Jebara and Pentland [24,25℄, whi
h models intera
tions and exploits new ideas

from Support Ve
tor Ma
hines in 
onjun
tion with generative Bayes theory.

However, we have 
on
entrated on developing 
omputationally simple view-

based approa
hes to a
tion re
ognition under the ISCANIT proje
t, whi
h

start to address the task of intentional tra
king and behavioural modelling to

dire
tly drive visual intera
tion. In roboti
s, Brooks [5℄ emphasises the need

to have this kind of per
eptual grounding for behaviour, going dire
tly from
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per
eption to a
tion. In 
ognitive s
ien
e (review [6℄, pp. 311-374), we also �nd

that re
ognition of behaviour is possible with minimal per
eptual information.

For example, Johansson's point-light te
hnique, in whi
h we have a

ess to

pure movement 
ues, allows us to re
ognise human movement [26℄. We 
an

identify gender [29℄, emotional state [12℄, and types of a
tion [11℄. Human

observers 
an do even better with friends, whom they 
an re
ognise from their

gait [9℄. This all suggests that human visual 
ognition has dire
t methods that

are learnt for the familiar people and their behaviour. We 
an mimi
 these


hara
teristi
s in subsymboli
 approa
hes using deformable models or neural

networks, although it is 
lear that the latter is 
loser to implementations in

biologi
al systems. Using animated sequen
es of simple geometri
al shapes also

demonstrates that human subje
ts even o�er intentional des
riptions of the

observed movement patterns [45℄. Our proposal, then, is to simply asso
iate

attention seeking pragmati
 interpretation with waving gestures and zoom in

on the user. This idea generalises to dire
tional semanti
s for pointing gestures

et
. for intentional tra
king in the design of our system.

The ba
kground resear
h here is our example-based learning te
hniques for

fa
e re
ognition [21℄. The parti
ular task 
onsidered was the re
ognition, in

real-time, of a known group of people within indoor environments. It 
ould not

be assumed that there would be 
lear frontal views of fa
es at all times and so

a key 
apability was to identify fa
es over a range of head poses. An important

fa
tor in this approa
h was the 
exibility of the example-based Radial Basis

Fun
tion (RBF) network learning approa
h, whi
h allowed us to reformulate

the training in terms of the spe
i�
 
lasses of data we wished to distinguish.

For example, we 
ould extra
t identity, head pose and expression informa-

tion separately from the same fa
e training data to train a 
omputationally


heap RBF 
lassi�er for ea
h separate re
ognition task [13,19℄. Essentially,

these adaptive methods allow us to make key inferen
es within our system by

modelling the variability of the eviden
e.

In this work we again take an appearan
e-based approa
h, with ea
h phase of

a 
ommuni
ative gesture represented as a ve
tor of Gabor �lter 
oeÆ
ients.

First, in Se
tion 2, we dis
uss the RBF network s
heme. Se
ond, in Se
tion 3,

this is used as input to time-delay RBF (TDRBF) networks whi
h 
an extra
t

gesture and head pose information. Third, in Se
tion 4, this data is fed to a

further TDRBF network whi
h 
an analyse group behaviour in order to 
ontrol


amera systems in an integrated system. Fourth, in Se
tion 5, we dis
uss a

potential design for su
h an integrated system. Finally, in Se
tion 6, we draw

some 
on
lusions about our approa
h and further work.

4



2 The RBF Network S
heme

The RBF network is a two-layer, hybrid learning network [32,33℄, whi
h 
om-

bines a supervised layer from the hidden to the output units with an un-

supervised layer from the input to the hidden units. The network model is


hara
terised by individual radial Gaussian fun
tions for ea
h hidden unit,

whi
h simulate the e�e
t of overlapping and lo
ally tuned re
eptive �elds.

The RBF network is 
hara
terised by 
omputational simpli
ity, supported

by well-developed mathemati
al theory, and robust generalisation, powerful

enough for real-time real-life tasks [42,43℄. The nonlinear de
ision boundaries

of the RBF network make it better in general for fun
tion approximation than

the hyperplanes 
reated by the multi-layer per
eptron (MLP) with sigmoid

units [41℄, and they provide a guaranteed, globally optimal solution via simple,

linear optimisation. One advantage of the RBF network, 
ompared to the

MLP, is that it gives low false-positive rates in 
lassi�
ation problems as it

will not extrapolate beyond its learnt example set. This is be
ause its basis

fun
tions 
over only small lo
alised regions, unlike sigmoidal basis fun
tions

whi
h are nonzero over an arbitrarily large region of the input spa
e.

On
e training examples have been 
olle
ted as input-output pairs, with the

target 
lass atta
hed to ea
h image, tasks 
an be learnt dire
tly by the sys-

tem. This type of supervised learning 
an be seen in mathemati
al terms as

approximating a multivariate fun
tion, so that estimations of fun
tion val-

ues 
an be made for previously unseen test data where a
tual values are not

known. This pro
ess 
an be undertaken by the RBF network using a linear


ombination of basis fun
tions, one for every training example, be
ause of the

smoothness of the manifold formed by the example views of obje
ts in a spa
e

of all possible views of that obje
t [40℄. This underlies our approa
h, su

ess-

ful in previous work with RBF networks for fa
e re
ognition tasks with image

sequen
es [21℄, whi
h uses an RBF unit for ea
h training example, and single

stage pseudo-inverse 
al
ulation of weights.

2.1 The Time-Delay RBF Model

To 
onstru
t a dynami
 neural network, re
urrent 
onne
tions 
an be added

to standard multi-layer per
eptrons whi
h then form a 
ontextual memory

for predi
tion over time [14,28,35℄. These partially re
urrent neural networks


an be trained using ba
k-propagation but there may be problems with sta-

bility and very long training sequen
es when using dynami
 representations.

Instead, we use a simple Time-Delay me
hanism [47℄ in 
onjun
tion with an

RBF network, whi
h we term a TDRBF network, whi
h we have previously
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shown 
an allow fast, robust solutions to diÆ
ult real-life problems [20℄. Su
h

a network 
an be 
reated by 
ombining data from a �xed time `window' into

a single ve
tor as input. In addition, an integration layer on the TDRBF net-

work 
an be used to 
ombine results from su

essive time windows to provide

smooth gradations between serial a
tions.

2.2 Gabor Filter Input Representation

Filter-based prepro
essing of the images is an important intermediate step in

image-based te
hniques, as the input representation 
ontributes a great deal

to the learnability of the task. It is important to highlight relevant parts of the

information (leading to redu
tion in the dimensionality of input) and provide

moderate invarian
e to normal environmental illumination [10℄. We 
onstrain

the lighting to ex
lude strong, in
idental lighting, whi
h is very mu
h more dif-

�
ult [34℄. We use a sparse arrangement of Gabor �lters [18℄ to both suppress

variation that is not important for the task, su
h as illumination variabil-

ity, and highlight those variations that are useful, using expli
it orientations

and s
ales. This approa
h is used to prepro
ess ea
h frame of the sequen
es

(
olour/motion information for gestures, grey-level pixels for fa
e dete
tion):

data is sampled at three non-overlapping s
ales and three orientations with

sine and 
osine 
omponents for a total of 126 
oeÆ
ients per frame.

3 Gesture Re
ognition

To extend our resear
h to support Visually Mediated Intera
tion (VMI), we

needed to develop person-spe
i�
 and generi
 gesture models for the 
ontrol of

a
tive 
ameras. A time-delay variant of the Radial Basis Fun
tion (TDRBF)

network was used to re
ognise simple pointing and waving hand gestures in

image sequen
es [20℄. The gesture database was developed as a sour
e of suit-

able image sequen
es for these experiments. Chara
teristi
 visual eviden
e 
an

be automati
ally sele
ted during the adaptive learning phase, depending on

the task demands.

A set of intera
tion-relevant gestures were modelled and exploited for rea
tive

on-line visual 
ontrol. These 
an then be interpreted as user intentions for live


ontrol of an a
tive 
amera with adaptive view dire
tion and attentional fo
us.

As noted in the introdu
tion, pointing (for dire
tion) and waving (for atten-

tion) are important for intentional 
ontrol and the rea
tive 
amera movements

may be able to provide the ne
essary visual 
ontext for appli
ations su
h as

group video-
onferen
ing as well as automated studio dire
tion.

6



Table 1

Body movement and behaviour de�nitions for the gesture database.

Gesture Body Movement Behaviour

pntrl point right hand to left pointing left

pntrr point right hand to right pointing right

wavea wave right hand above head urgent wave

waveb wave right hand below head non-urgent wave

Previous approa
hes to re
ognising human gestures from real-time video as

a nonverbal modality for human-
omputer intera
tion have involved 
omput-

ing low-level features from motion to form temporal traje
tories that 
an be

tra
ked by Hidden Markov Models or Dynami
 Time Warping. However, for

this work we explored the potential of using simple image-based di�eren
es

from video sequen
es in 
onjun
tion with the RBF network learning paradigm

to a

ount for variability in the appearan
e of a set of prede�ned gestures. The


omputational simpli
ity and robust generalisation of our alternative RBF ap-

proa
h provided fast training and on-line performan
e, highlighting its suit-

ability as a sour
e of intera
tive responses required by appli
ations with a
tive


amera 
ontrol.

3.1 The Gesture Database

The �rst database was 
reated to provide a sour
e of single-person gesture

data [20℄. It 
on
entrated on two spe
i�
 behaviours whi
h 
ould be used

to move the 
amera or adapt its �eld of view: pointing, whi
h is interpreted

as a request to pass 
amera attention, and is implemented by zooming out

and panning in the pointing dire
tion, and waving, whi
h is interpreted as a

request for 
amera attention, and implemented by panning towards the waver

and zooming in. We have two types of ea
h behaviour, giving four gestures in

all, shown in Table 1.

Four examples of ea
h gesture from three people were 
olle
ted, 48 image

sequen
es in all. Ea
h sequen
e 
ontains 59 378�288 8-bit mono
hrome images

(
olle
ted at 12 frames/se
 for roughly 5 se
onds), a total of 2832 images.

3.2 Results

Experimental results showed that high levels of performan
e for this type of

intentional gesture re
ognition 
an be obtained using these te
hniques both for

parti
ular individuals and a
ross a set of individuals. Chara
teristi
 visual ev-
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1.0
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mid−pntrl
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pre−
mid−pntrr
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pre−
mid−wave
post−

Point Left Wave Point Right

Fig. 1. Output for the multi-phase TDRBF gesture network with a test sequen
e

with di�erent ba
kground, lighting and person to that en
ountered during training.

Ea
h line represents a pre-, mid- or post-gesture 
lass, and shows the 
on�den
e

level of output when its 
lass is the maximum, and is zero at all other times.

iden
e was e�e
tively sele
ted and 
an be used, if required, even to re
ognise

individuals from their gestures [19℄. Previous TDRBF network experiments

had learnt 
ertain simple behaviours based on y-axis head rotation [18℄, dis-

tinguishing between left-to-right and right-to-left movements and stati
 head

pose. Su
h tasks are simpli�ed by 
onstant motion, so that arbitrary short

segments (2/3 frames) of the whole sequen
e 
an be used to identify the over-

all dire
tion of head turning. Due to the 
omplex motion involved in these

parti
ular gestures, 
hara
teristi
 parts of the 
omplete a
tion needed to be


ontained in the time window presented to the network in order that it 
an be

re
ognised. The initial requirement to present the entire gesture sequen
e for

re
ognition meant that event signalling 
ould only be done retrospe
tively.

Subsequent work further re�ned the training for the gesture information to

redu
e the amount of data required [22℄. Taking advantage of the tri-phasi


nature of the waving and pointing gestures, ea
h gesture 
an be split into a

pre-, mid- and post-gesture sequen
e. Ea
h of these 
an be trained as its own

sub-gesture 
lass. This gives some predi
tive power from the pre-gesture and

fo
usses on the 
hara
teristi
 movement of the mid-gesture. It also gives some

temporal invarian
e by allowing the two phases of the gesture to be di�erent in

length to ea
h other (the original studies imposed a �xed relationship between

the overall gesture length and its three phases). Rapid signalling of the gesture

event 
an be obtained in this way, as the system does not need to wait for the

post-gesture phase to o

ur.
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Fig. 2. Example output from the GestureBall appli
ation, where an orange ball is


ontrolled on-s
reen via pointing and waving gestures. The system is shown at frame

48 of the test sequen
e, ie 10 frames after the start of the mid phase of the point

left gesture, 6 frames before the end, and the ball has just moved from the 
entre

to the left edge of the window.

Fig. 1 shows the output for a TDRBF gesture network trained with these phase


lasses. All mid-phase gesture events are 
learly signalled, and ea
h has a pre-

phase gesture event before them. There is very little anomalous signalling,

whi
h 
an be dealt with either by ignoring low-
on�den
e output, or by only

a

epting gestures whi
h exhibit the phases in 
orre
t order, ie a mid-phase

event must have had a mat
hing pre-phase event beforehand. Some false pre-

gesture `hypotheses' are raised by the network, but these are repla
ed by the


orre
t pre-gesture 
lassi�
ation before the mid-gesture o

urs. It might be

expe
ted that the pre-gesture 
lasses will be 
onfused, espe
ially when they

�rst start, as raising your hand to wave or point will initially both look very

similar, but the results here indi
ate that they are 
orre
tly 
lassi�ed in time

for predi
tive 
ontrol.

An alternative way of assessing the e�e
tiveness of `parsing' gesture phase

sequen
es for intera
tion based on identifying valid gesture events is demon-

strated by the GestureBall system. This integrates the tra
king and gesture

re
ognition te
hniques used here so that users of the system 
an 
ontrol a

ball on-s
reen via pointing and waving gestures, see Fig. 2. There are three

horizontal positions possible: a 
entral, starting position, whi
h 
an be re-

turned to via the wave gesture, and left and right positions, whi
h 
an be

rea
hed with the appropriate left or right point gesture. The system uses only

pre- and mid-phase gestures, and registers a full gesture event only if a high


on�den
e mid-phase of a parti
ular gesture is en
ountered after a high 
on-

�den
e pre-phase of that same gesture. Experiments using this system with


hildren between the ages 6{10 
an show that they qui
kly learn gesture-result
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mappings and that the system is an easy, `natural' method of 
ontrolling vir-

tual events that has distin
t advantages over the restri
tive mouse/keyboard

paradigm.

3.3 Summary

� Simple prepro
essing te
hniques su
h as frame di�eren
ing and thresholding


an be e�e
tive in extra
ting useful motion information and segmenting

gestures in time.

� Di�erent types of TDRBF network 
an be trained to distinguish gestures

over spe
i�
 time windows, for instan
e person-spe
i�
 gesture models (trained

and tested on one person) and generi
 gesture models (trained on one per-

son, tested on other people).

� The TDRBF network 
an distinguish between arbitrary gestures, with a

high level of performan
e.

� Some 
hara
teristi
s of an individual's expression of gestures may be suÆ-


iently distin
tive to identify that person.

� The TDRBF network 
an learn su
h data both as 
omplete gesture se-

quen
es [20℄ and as spe
i�
 gesture phases within a tri-phasi
 stru
ture

[22℄.

� Splitting multi-phasi
 gestures into separate phase 
lasses not only gives

more pre
ise timing of gesture events, but also allows the gesture re
ognition

network to provide predi
tion hypotheses by identifying pre-gesture 
lasses.

� The validated gesture phases 
an be integrated into simple visual intera
tion

interfa
es su
h as the GestureBall appli
ation.

In summary, the Time-Delay RBF networks showed themselves to perform

well in our gesture re
ognition task, 
reating both person-spe
i�
 and generi


gesture models. This is a promising result for the RBF te
hniques, 
onsider-

ing the high degree of potential variability (present even in our 
onstrained

database) arising from di�erent interpretations of our intentional gestures by

ea
h individual. Note that this is in addition to variability in position, lighting

et
. that had to be over
ome in earlier fa
e and simple behaviour re
ognition

work.

4 Interpretation of Group Behaviour

The methods dis
ussed so far have allowed the implementation of a 
om-

plete 
onne
tionist system for a single user. However, the implementation of

a multi-user integrated system involves higher-level 
ontrol by the group of

parti
ipants.
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Table 2

Example interpretations of 
amera position ve
tors for group intera
tion s
enarios

with three people.

Camera Position Ve
tor Interpretation

[0,0,0℄ frame whole s
ene

[1,0,0℄ fo
us on subje
t A

[0,1,1℄ fo
us on subje
ts B and C using a split-s
reen e�e
t

While full 
omputer understanding of dynami
 visual s
enes 
ontaining several

people may be 
urrently unattainable, we have investigated a 
omputation-

ally eÆ
ient approa
h to determine areas of interest in su
h s
enes. Spe
if-

i
ally, we have devised a method for modelling and interpretation of single-

and multi-person human behaviour in real time to 
ontrol video 
ameras [44℄.

Su
h ma
hine understanding of human motion and behaviour is 
urrently a

key resear
h area in 
omputer vision, and has many real-world appli
ations.

Visually Mediated Intera
tion (VMI) is parti
ularly important to appli
ations

in video tele
ommuni
ations. VMI requires intelligent interpretation of a dy-

nami
 visual s
ene to determine areas of interest for e�e
tive 
ommuni
ation

to remote users.

As we have seen, our general approa
h to modelling behaviour is appearan
e-

based in order to provide real-time behaviour interpretation and predi
tion [20,44℄.

In addition, we only use views from a single pan-tilt-zoom 
amera with no

spe
ial markers to be worn by the users. It should be noted that we are not

attempting to model the full working of the human body. Rather our aim

is to exploit approximate but 
omputationally eÆ
ient te
hniques. Thus, our

models are able to support partial view-invarian
e, and are suÆ
ient to re
og-

nise people's gestures in dynami
 s
enes. Su
h task-spe
i�
 representations

need to be used to avoid unne
essary 
omputational 
ost in dynami
 s
ene

interpretation [7℄.

For our purposes, human behaviour 
an be 
onsidered to be any temporal se-

quen
e of body movements or 
on�gurations, su
h as a 
hange in head pose,

walking or waving. However, the human body is a 
omplex, non-rigid arti
u-

lated system 
apable of almost in�nite spatial and dynami
 variations. When

attempting to model human behaviour, we must sele
t the set of behaviours

to be modelled for the appli
ation at hand. For VMI tasks, our system needs

to identify regions of interest in a visual s
ene for 
ommuni
ation to a re-

mote user. Examining the 
ase in whi
h the s
ene 
ontains people involved

in a video 
onferen
e, the parti
ipant(s) 
urrently involved in 
ommuni
ation

will usually 
onstitute the appropriate fo
us of attention. Therefore, visual


ues that indi
ate a swit
h in the 
hief 
ommuni
ator, or `turn-taking', are

most important. Gaze is a signi�
ant 
ue for determining this fo
us of 
om-

muni
ation, and 
an be approximated by head pose. Impli
it behaviour 
an be
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de�ned as any body movement sequen
e that is performed sub
ons
iously by

the parti
ipant, and here, it is head pose that is the primary sour
e of impli
it

behaviour.

However, head pose information may be insuÆ
ient to determine a parti
i-

pant's fo
us of attention from a single 2D view, due to loss of mu
h of the

3D information. Then, it is ne
essary to have the user 
ommuni
ate expli
itly

with our VMI system through a set of pre-de�ned behaviours. Expli
it be-

haviour 
an be de�ned as a sequen
e of body movements that are performed


ons
iously by a parti
ipant in order to highlight regions of interest in the

s
ene. We used a set of pointing and waving gestures as expli
it behaviours

for 
ontrol of the 
urrent fo
us of attention. As we have seen, su
h gestures


an be reliably dete
ted and 
lassi�ed in real-time [20℄.

Our approa
h to modelling group intera
tion involves de�ning the behaviour

ve
tor of a parti
ipant to be the 
on
atenation of measured impli
it and ex-

pli
it behaviours (head pose angles and gesture model likelihoods). From this

a group ve
tor 
an be de�ned as a 
on
atenation of the behaviour ve
tors for

all people present in the s
ene at a given time instant, and group behaviour is

just a temporal sequen
e of these group ve
tors. Given the group behaviour,

a high-level interpretation model 
an determine the 
urrent area of fo
us. In

our s
enarios, the region of interest is always a person so we tra
k the head of

ea
h individual. The output need only give an indi
ation of whi
h people are


urrently attended in the high-level system and is 
alled the 
amera position

ve
tor. This has a boolean value (0 or 1) for ea
h person in the s
ene indi
at-

ing whether that person is 
urrently attended, see Table 2. This information


an then be used to 
ontrol the movable 
amera, based on the position of the

people in the s
ene.

Given a parti
ular group behaviour, we 
onstru
ted a s
ene ve
tor, whi
h


ontains the previous 
amera position ve
tor information as feedba
k. This

allowed the 
urrent fo
us of attention to be maintained, even when no gestures

or head turning o

urred.

4.1 The Group Intera
tion Database

The se
ond database [44℄ 
ontains examples of group intera
tion in a stati


s
ene. This database 
ontains 15 sequen
es, ea
h between 240 and 536 frames

in length, a total of 5485 320�240 24-bit 
olour images. We 
onstrain the


omplexity of the data by restri
ting behaviour to 
ertain �xed s
enarios,

shown in Table 3, and by always having three parti
ipants, who remain sitting

for the 
omplete sequen
e. Ea
h s
enario is a group behaviour in whi
h the

parti
ipants perform gestures and 
hange their head pose in a �xed pre-de�ned
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Table 3

S
enario des
riptions for the Group Intera
tion Database, involving three parti
i-

pants A, B and C.

S
enario Des
ription

wave Person C waves and speaks, A waves and speaks, B waves and speaks

wave-look

Person C waves and speaks, A waves and speaks, B waves and speaks.

Ea
h time someone is speaking the other two parti
ipants look at him

question

Person C waves and speaks, A and B look at C, A interje
ts with a

question, C looks at A to answer, then looks ba
k at 
amera

point

Person C waves and speaks, A and B look at C, C points to A, C and

B look at A, A looks at 
amera and speaks

interrupt

Person C waves and speaks, A and B look at C, a person enters from

the left, A, B and C wat
h as the person leaves, C looks at the 
amera

and 
ontinues speaking, A and B look at C All parti
ipants look at

the 
amera unless stated otherwise.
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Fig. 3. Results for group intera
tion behaviour re
ognition using the wave-look

s
enario (see Table 3), individuals are labelled A, B and C from left to right: Exam-

ple frames from sequen
e (top), plots showing pose angles and gesture likelihoods

(middle), and target/output 
amera position ve
tors (bottom) (from [44℄).

order. The exa
t timing of the events varies between di�erent instan
es of the

same s
enario, but the fo
us of attention swit
hes from one region to the next

in the same order.

4.2 Results

To learn the transformation from s
ene ve
tor to 
amera position ve
tor, we

developed an e�e
tive Time-Delay RBF Network, trained on half of our se-

quen
e database and tested for generalisation on the other half [44℄.
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Fig. 4. Results for group intera
tion behaviour re
ognition using the point s
enario

(for details see Fig. 3).

Figs. 3 and 4 show examples of the system output for two example s
enar-

ios: wave-look and point. The top se
tions of ea
h �gure show temporally-

ordered frames with boxes framing the head, fa
e and hands being tra
ked.

In ea
h frame, head pose is shown above the head with an intuitive dial box.

The top se
tions of ea
h �gure show the head pose angles (top) and gesture

likelihoods (middle) for persons A, B and C (from left to right). One 
an see

the 
orresponden
e of peaks in the gesture likelihoods with gesture events in

the s
enario.

The bottom se
tion of Figs. 3 and 4 show the training signal, or target 
amera

ve
tors, tra
ed above the a
tual output 
amera ve
tors obtained during tests

with the trained RBF network. It 
an be seen that the network follows the

general interpretation of group behaviour, although the transition points from

one fo
us of attention to another do not always exa
tly 
oin
ide. However,

these transition points are highly subje
tive and very diÆ
ult to determine

with manual 
oding, so this result is not surprising and the results give swit
hes

of attention that are a

eptable at the per
eptual level.

4.3 Summary

� A framework has been devised for tra
king people and re
ognising their

group behaviours in VMI 
ontexts. This requires high-level information

about group and individual intera
tion in a `s
ene ve
tor' to learn a `
amera


ontrol ve
tor', spe
i�ed by a temporal model.

� The s
ene ve
tor provides ongoing probabilities of the dynami
 head-pose

and gesture phases for intera
ting parti
ipants and the 
amera 
ontrol ve
tor

provides rea
tive dire
tion and zoom.
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� Pre-de�ned gestures and head pose of several individuals in the s
ene 
an

be simultaneously re
ognised for interpretation of the s
ene.

� A s
ene ve
tor-to-
amera 
ontrol transformation 
an be performed via a

TDRBF network, using example-based learning.

We have been able to show how multi-person a
tivity s
enarios 
an be learned

from training examples and interpolated to obtain the same interpretation for

di�erent instan
es of the same s
enario. However, for the approa
h to s
ale

up to more general appli
ations, it must be able to 
ope with a whole range

of s
enarios. The approa
h impli
itly requires su
h a system to extrapolate to

novel situations in the same way that we do. Unfortunately, there is no reason

to believe that 
urrent 
omputer ar
hite
tures are 
apable of su
h reasoning

and our simple temporal models fall far short of full intentional semanti
s.

Therefore, a signi�
ant issue in future work will be the feasibility of learning

generalised temporal stru
tures and default behaviours from sparse data.

5 Towards an Integrated System

In this se
tion we present our work towards a 
omplete 
onne
tionist system

for understanding the visual aspe
ts of human intera
tion whi
h 
ould be used,

for example, in video-
onferen
ing appli
ations. First, we present methods for

fa
e dete
tion and 
apture of attentional frames to fo
us the pro
essing for

Visually Mediated Intera
tion. This frame 
an be used for re
ognising the

various gesture phases that 
an then be used to 
ontrol the 
amera systems

in the integrated system, as dis
ussed in previous se
tions.

5.1 Capturing the Attentional Frame

Our te
hniques here used 
olour/motion 
ues from the image sequen
e to

identify and tra
k the head. On
e we know the position and size of the head,

we 
an de�ne an attentional frame around the person. The attentional frame

is a 2-D area around the fo
al user that 
ontains all the body movement

information relevant to our appli
ation, whi
h is all movement of the head and

right arm. To allow people to move 
loser or further away from the 
amera, this

information is normalised for size (relative to head size) around an arbitrary

standard position from the 
amera.

Our main priority is to �nd real-time solutions for our appli
ation. Therefore,

we used two 
omputationally 
heap pixel-wise pro
essing te
hniques on our

image: thresholded frame di�eren
ing, giving motion information, and Gaus-

sian mixture models [31℄, giving skin 
olour information. These were 
ombined
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(a)

(b)

Fig. 5. Use of 
olour/motion information to position an attentional frame around

a person: (a) a box is 
entred around ea
h 
olour/motion `blob', the inner verti
al

lines representing the standard deviation of the pixels along the x-axis, giving a

width measure, (b) having identi�ed whi
h box 
ontains the head (the uppermost

one in (a)), an attentional frame box is drawn around the person relative to the

head position, and sized a

ording to head width. The top right image shows the

image area inside the head box, bottom right the resampled area of the image inside

the attentional frame.

to give a binary map of moving skin pixels within the image, and we used lo
al

histogram maxima to identify potential `blob' regions. A box whi
h was large

enough to 
ontain the head at all distan
es in our target range was then �tted

over the 
entroid of ea
h of these regions. Fig. 5(a) shows how ea
h box is


entred on the 
entroid of ea
h maximum, with the inner lines showing the

standard deviation of the pixels along the x-axis from that 
entroid. It 
an

also be seen that the hands are ignored in this example, as they are too low

down to be in
luded in a fa
e-size `blob'.

A robust approa
h to head tra
king using 
olour/motion blobs is what we 
all

temporal mat
hing: the tra
ker only 
onsiders blobs from the 
urrent frame

whi
h have been mat
hed to nearby blobs from previous frames. This ex
ludes

any anomalous blobs that appear for one frame only in an image sequen
e, and

promotes those that exhibit the greatest temporal 
oheren
e. Having found

the position and size of the head, we 
an extra
t the attentional frame from

around the person.

5.2 Pose-Invariant Fa
e Dete
tion

The previous se
tion des
ribed how we isolated small areas of moving skin-

tones from the overall image. This redu
es 
omputation and network size,

by allowing the fa
e dete
tor to work only within a small subset of the full

spe
trum of possible obje
ts typi
ally en
ountered in an oÆ
e environment.

Spe
i�
ally, we 
an 
onsider the restri
ted form of fa
e dete
tion where we
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(a)
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Fig. 6. (a) Two methods for segmenting 25�25 pose-varying fa
e data: (top row)

nose-
entred, (bottom row) fa
e-
entred, the former being used for experiments here,

(b) the grid system for dete
ting potential fa
es within a potential `head blob' region

of the image: ea
h area tested is represented by a 4�4 box, the thi
k line shows the


entral position (x; y = 0), normal line and dashed lines the outer positions 1 and 2

spa
es out from the 
entre. In this 
ase, a maximum output would be expe
ted at

x = �1; y = +1, whi
h indi
ates a head-pose slightly down and turned to the right.

need to distinguish a fa
e only from other moving skin-tone blobs (typi
ally

hands).

In order to perform e�e
tive fa
e re
ognition, we need to identify the position

of the 
entral fa
e area (eyes, nose, mouth), rather than the entire skin area

on the head (whi
h also in
ludes forehead, ne
k, ears, et
). Our fa
e dete
tion

task, therefore, is to distinguish 
entred fa
es from both non-
entred fa
es and

other moving skin-tone blobs. We trained RBF networks with examples of

both to provide a 
ontinuous `fa
e/non-fa
e' output, with a level of 
on�den
e

based on the di�eren
e between the two output values from the network [19℄.

This level of 
on�den
e allows dis
arding of low-
on�den
e results where data

is noisy or ambiguous.

Our training examples need to take variable head-pose into a

ount, so the


entral fa
e region of a person 
an be re
ognised at all normal physiologi-


al pose positions. Fa
ial information is only visible on a human head from

(roughly) the front �120

Æ

of x- and y-axis movement, and z-axis movement

is physiologi
ally 
onstrained to around �20

Æ

(when standing or sitting) [18℄.

The fa
e region is 
entralised on the nose, rather than the fa
e, for all pro-

�les, as this allows non-o

luded fa
e information to remain roughly in the

same position, see Fig. 6(a). This has previously been shown to more useful

for pose-varying fa
e re
ognition [19℄. We 
an then easily determine a 
oarse

estimate of head-pose, su
h as left, frontal or right, from the output grid. This
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Fig. 7. A blo
k diagram outlining the integrated system (from [22℄).

qualitative level of head-pose was found to be very useful for group intera
tion

analysis [44℄.

Therefore, the position of the nose was determined manually in order to extra
t

spe
i�
 
entred/non-
entred fa
e pat
hes from ea
h image for training. Around

this, a 3�3 grid of 25�25 fa
e images was extra
ted from ea
h frame for the

`pro-fa
e' 
lass. This 
orresponds to the regions within the the solid lines in

Fig. 6(b). The `non-fa
e' 
lass data was of two types:

� from a larger grid outside the 3�3 fa
e grid (to en
ourage fa
e dete
tion

only where the image was a

urately aligned on the fa
e), su
h as within

the dotted lines in Fig. 6(b), and

� from around the 
entroids of `distra
tor' moving skin/
olour regions, eg.

hands, within ea
h frame.

5.3 The Integrated System

The design for the 
omplete integrated system is seen in Fig. 7, where the

input from the a
tive 
amera is �rst pro
essed to dete
t heads and position

the attentional frames, then fa
e, gesture and pose 
lassi�
ation, followed by

the interpretation of group intera
tion.

A 
omplete video-
onferen
ing a
tive 
amera 
ontrol system requires high-

level interpretation of group and individual intera
tion [44℄. As we have seen,

we propose a system for behavioural 
ontrol, whereby gesture and head pose

information, 
ontained in a `s
ene ve
tor', is provided for this interpretation

to take pla
e. This allows the system to provide 
amera 
ontrol information

via a learnt mapping onto a `
amera 
ontrol ve
tor' representation.
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The s
ene ve
tor provides head-pose and gesture probabilities for the people

in the �eld of view, and the 
amera 
ontrol ve
tor determines the fo
us of

attention in terms of whi
h users are in
luded in the pro
essed s
ene. If in-

dividuated 
ontrol of the system is required, then we need to identify who

these people are (from a small known group), as shown in Fig. 7. Two extra

stages, therefore, are needed: gesture and (pose invariant) identity re
ogni-

tion. Se
tion 3 above dis
ussed pra
ti
al te
hniques for ta
kling these tasks in

real-time, using the RBF and TDRBF networks [20,21℄.

To 
omplete our integrated system, we need to pass this gesture and head-

pose information, with identity if appropriate, to a higher-level interpretation

network [44℄, as dis
ussed in Se
tion 4. In addition, we have to adapt our sys-

tem to 
ope with multiple people in the s
ene, whi
h in
reases the 
omplexity

of the low-level pro
essing stage. There will be more head blobs to �nd, but

by assigning attentional frames to ea
h person, and analysing ea
h of these

separately, it is hoped that problems due to o

lusion from other members of

the group will be kept to a minimum. This will allow a full implementation of

the multi-user system with generalised attentional swit
hing.

5.4 Summary

� We 
an use 
olour/motion 
ues to e�e
tively segment and tra
k human

heads in image sequen
es.

� An attentional frame 
an be extra
ted relative to the head position and size

to allow the real-time re
ognition of hand gestures through time.

� By extra
ting 
olour/motion regions from the overall image, the fa
e dete
-

tion task is greatly simpli�ed.

� A fa
e dete
tion network 
an be used to give a qualitative estimate of head-

pose for predi
tive 
ontrol using impli
it behaviour.

� Splitting multi-phasi
 gestures into separate phase 
lasses not only gives

more pre
ise timing of gesture events, but also allows the gesture re
ognition

network to provide predi
tion hypotheses for expli
it behaviour 
ontrol.

Although it has been possible to fully integrate real-time re
ognition, tra
king

and on-line intentional 
ontrol for single users, there are still some outstanding

problems for multiple intera
ting users. We 
an 
ontrol attentional swit
hing

for multiple users in known s
enarios eg 3 people sitting and passing 
ontrol

in an orderly fashion as in Table 3. As mentioned earlier, a major issue with

this kind of example-based learning approa
h to multi-parti
ipant behaviour

interpretation is the feasibility of 
olle
ting suÆ
ient data. The multipli
ity of

possible events in
reases exponentially with the addition of extra parti
ipants

and the 
ombinatori
s 
an only be 
aptured at the level of examples used for

training. Therefore, it is diÆ
ult to know whi
h s
enarios to 
olle
t in order to

evenly populate the spa
e of possible s
enarios with the training set. The use
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of high-level models su
h as Bayesian Belief Networks (BBNs) might provide a


ombination of hand-
oded a priori information with ma
hine learning to ease

training set requirements. This is be
ause the BBNs model the de
omposition

of the problem and it is the model parameters (
onditional probabilities) that

are learnt so that higher level inferen
es 
an be made from low level visual

eviden
e (see, for example, [7℄).

6 Con
lusions and Further Resear
h

It is 
lear that there are many potential advantages of Visually Mediated Inter-

a
tion with 
omputers over traditional keyboard/mouse interfa
es. For exam-

ple, removing system-dependant IT training and allowing the user a more in-

tuitive form of system dire
tion. However, we have also seen that there are still

many 
hallenges for integrating multi-user intera
tion analysis and 
ontrol due

to the ambiguities and 
ombinatorial explosion of possible behavioural inter-

a
tions. We have demonstrated how our 
onne
tionist te
hniques 
an support

real-time intera
tion by dete
ting fa
es and 
apturing `attentional frames' to

fo
us pro
essing. To go further we will have to build our VMI systems around

the task demands whi
h in
lude both the limitations of our te
hniques and

potentially 
on
i
ting intentions from users. Conne
tionist te
hniques are gen-

erally well suited to this kind of situation as they 
an learn adaptive mappings

and have inherent 
onstraint satisfa
tion.

Further resear
h is taking two main dire
tions: 1) the development of gesture-

based 
ontrol of animated software agents in the EU Puppet proje
t; and 2)

the development of 
ontext-based 
ontrol in more 
omplex s
enarios in the

new EU A
tipret proje
t. The �rst (e.g. the GestureBall appli
ation) extends

the use of symboli
 (a
tion sele
tion) and mimeti
 (dynami
 
ontrol) fun
tions

in gesture-based interfa
es where pointing 
an indi
ate the 
urrent avatar and

movement patterns 
an 
ontrol animation parameters. The se
ond involves

re
ognition of 
omplex behaviours and a
tivities that 
onsist of a sequen
e

of events that evolve over time [16,17℄. As yet there has been little work

that 
ombines automated learning of behaviours in di�erent 
ontexts. In other

words, it is usually only simple, generi
 models of behaviour that have been

learnt rather than learning when and how to apply more 
omplex models in

a 
ontext sensitive manner.
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