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Abstract

In this paper we introduce adaptive vision techniques used, for example, in video-
conferencing applications. First, we present the recognition of identity, expression
and head pose using Radial Basis Function (RBF) networks. Second, we address
gesture-based communication and attentional focus, using colour/motion cues to
direct face detection and capture ‘attentional frames’. These focus the processing
for Visually Mediated Interaction via an appearance-based approach with Gabor
filter coefficients used as input to time-delay RBF networks. Third, we present
methods for the gesture recognition and behaviour (user-camera) coordination in
an integrated system.

Key words: Visually Mediated Interaction; Face Recognition; Gesture
Recognition; Camera Control; Time-Delay Neural Networks

1 Introduction

Visually Mediated Interaction (VMI) is a process of facilitating interaction
between people, either remotely or locally, using visual cues which are sim-
ilar to those used in everyday interaction with other people. The aim is to
enhance interaction, overcoming limitations due to, for example, distance or
disability. This involves many visual competences such as recognising facial
expression, gaze, gesture and body posture which are all used in human com-
munication and interaction. Gestures are often spontaneous but can also be
intentional, where we can distinguish between verbal (sign languages) and
nonverbal (pointing, emphasis, illustration) usage. In our work here we are
mainly concerned with intentional, nonverbal gestures which are relevant for
communication in VMI. Also, we use gaze which can provide an important cue



for discourse/interaction management. In particular, gaze direction is often as-
sociated with diectic, attention-directing pointing to indicate objects or people
of interest in the immediate context as part of the behavioural interaction.

We know that robust tracking of non-rigid objects such as human faces and
bodies involved in machine analysis of this kind of interactive activity is dif-
ficult due to rapid motion, occlusion and ambiguities in segmentation and
model selection. This was partially addressed by the move to active vision
and dynamic models for robust tracking using sophisticated Kalman filters,
as exemplified by Blake and others [1]. Recently, these have been specialised
to allow the learning of complex hand dynamics [23]. More generally, research
funded by British Telecom (BT) on Smart Rooms [38] and the ALIVE project
[30] at MIT Media Lab has shown progress in the modelling and interpretation
of human body activity. This used the Pfinder (Person Finder) system [49],
which can provide real-time human body analysis. Further analysis to model
the progression of ongoing activity involves techniques such as Hidden Markov
Models (HMMs), which can be parameterised to provide information such as
direction of pointing [48]. Further analysis for VMI can even involve coupled
human interaction analysis using learning techniques based on deformable
models [27].

Other related ongoing research using computationally simple view-based ap-
proaches to action recognition have been introduced by Bobick [3]. More re-
cently, Pinhanez and Bobick [39] have developed a PNF network approach
using the temporal terms (past,now,fut) for human action detection, which
allows fast performance compared to equivalent evaluations of Allen’s interval
logic. Similar attempts at Microsoft Research by Turk and Cutler [8,46] have
also yielded useful results. In Pentland’s group, much progress has been made
in the detailed modelling and interpretation of human body activity [50]. We
also have the coupled HMMsof Brand and colleagues [4] for understanding be-
haviour interactions, although this approach requires a great deal of training
data. This is also true of parameterised HMMs [2], which can also suffer from
lack of stability in the interpretation compared to deformable model tracking
and analysis. More recent work by Oliver, Rosario and Pentland [36,37] has
developed reliable Bayesian vision systems. Two exciting recent development
are: 1) work by Galata, Johnson and Hogg using hybrid deformable and HMM
behaviour models for virtual actors [15]; and 2) the action reaction learning of
Jebara and Pentland [24,25], which models interactions and exploits new ideas
from Support Vector Machines in conjunction with generative Bayes theory.

However, we have concentrated on developing computationally simple view-
based approaches to action recognition under the ISCANIT project, which
start to address the task of intentional tracking and behavioural modelling to
directly drive visual interaction. In robotics, Brooks [5] emphasises the need
to have this kind of perceptual grounding for behaviour, going directly from



perception to action. In cognitive science (review [6], pp. 311-374), we also find
that recognition of behaviour is possible with minimal perceptual information.
For example, Johansson’s point-light technique, in which we have access to
pure movement cues, allows us to recognise human movement [26]. We can
identify gender [29], emotional state [12], and types of action [11]. Human
observers can do even better with friends, whom they can recognise from their
gait [9]. This all suggests that human visual cognition has direct methods that
are learnt for the familiar people and their behaviour. We can mimic these
characteristics in subsymbolic approaches using deformable models or neural
networks, although it is clear that the latter is closer to implementations in
biological systems. Using animated sequences of simple geometrical shapes also
demonstrates that human subjects even offer intentional descriptions of the
observed movement patterns [45]. Our proposal, then, is to simply associate
attention seeking pragmatic interpretation with waving gestures and zoom in
on the user. This idea generalises to directional semantics for pointing gestures
etc. for intentional tracking in the design of our system.

The background research here is our example-based learning techniques for
face recognition [21]. The particular task considered was the recognition, in
real-time, of a known group of people within indoor environments. It could not
be assumed that there would be clear frontal views of faces at all times and so
a key capability was to identify faces over a range of head poses. An important
factor in this approach was the flexibility of the example-based Radial Basis
Function (RBF) network learning approach, which allowed us to reformulate
the training in terms of the specific classes of data we wished to distinguish.
For example, we could extract identity, head pose and expression informa-
tion separately from the same face training data to train a computationally
cheap RBF classifier for each separate recognition task [13,19]. Essentially,
these adaptive methods allow us to make key inferences within our system by
modelling the variability of the evidence.

In this work we again take an appearance-based approach, with each phase of
a communicative gesture represented as a vector of Gabor filter coefficients.
First, in Section 2, we discuss the RBF network scheme. Second, in Section 3,
this is used as input to time-delay RBF (TDRBF) networks which can extract
gesture and head pose information. Third, in Section 4, this data is fed to a
further TDRBF network which can analyse group behaviour in order to control
camera systems in an integrated system. Fourth, in Section 5, we discuss a
potential design for such an integrated system. Finally, in Section 6, we draw
some conclusions about our approach and further work.



2 The RBF Network Scheme

The RBF network is a two-layer, hybrid learning network [32,33], which com-
bines a supervised layer from the hidden to the output units with an un-
supervised layer from the input to the hidden units. The network model is
characterised by individual radial Gaussian functions for each hidden unit,
which simulate the effect of overlapping and locally tuned receptive fields.

The RBF network is characterised by computational simplicity, supported
by well-developed mathematical theory, and robust generalisation, powerful
enough for real-time real-life tasks [42,43]. The nonlinear decision boundaries
of the RBF network make it better in general for function approximation than
the hyperplanes created by the multi-layer perceptron (MLP) with sigmoid
units [41], and they provide a guaranteed, globally optimal solution via simple,
linear optimisation. One advantage of the RBF network, compared to the
MLP, is that it gives low false-positive rates in classification problems as it
will not extrapolate beyond its learnt example set. This is because its basis
functions cover only small localised regions, unlike sigmoidal basis functions
which are nonzero over an arbitrarily large region of the input space.

Once training examples have been collected as input-output pairs, with the
target class attached to each image, tasks can be learnt directly by the sys-
tem. This type of supervised learning can be seen in mathematical terms as
approximating a multivariate function, so that estimations of function val-
ues can be made for previously unseen test data where actual values are not
known. This process can be undertaken by the RBF network using a linear
combination of basis functions, one for every training example, because of the
smoothness of the manifold formed by the example views of objects in a space
of all possible views of that object [40]. This underlies our approach, success-
ful in previous work with RBF networks for face recognition tasks with image
sequences [21], which uses an RBF unit for each training example, and single
stage pseudo-inverse calculation of weights.

2.1 The Time-Delay RBF Model

To construct a dynamic neural network, recurrent connections can be added
to standard multi-layer perceptrons which then form a contextual memory
for prediction over time [14,28,35]. These partially recurrent neural networks
can be trained using back-propagation but there may be problems with sta-
bility and very long training sequences when using dynamic representations.
Instead, we use a simple Time-Delay mechanism [47] in conjunction with an
RBF network, which we term a TDRBF network, which we have previously



shown can allow fast, robust solutions to difficult real-life problems [20]. Such
a network can be created by combining data from a fixed time ‘window’ into
a single vector as input. In addition, an integration layer on the TDRBF net-
work can be used to combine results from successive time windows to provide
smooth gradations between serial actions.

2.2 Gabor Filter Input Representation

Filter-based preprocessing of the images is an important intermediate step in
image-based techniques, as the input representation contributes a great deal
to the learnability of the task. It is important to highlight relevant parts of the
information (leading to reduction in the dimensionality of input) and provide
moderate invariance to normal environmental illumination [10]. We constrain
the lighting to exclude strong, incidental lighting, which is very much more dif-
ficult [34]. We use a sparse arrangement of Gabor filters [18] to both suppress
variation that is not important for the task, such as illumination variabil-
ity, and highlight those variations that are useful, using explicit orientations
and scales. This approach is used to preprocess each frame of the sequences
(colour/motion information for gestures, grey-level pixels for face detection):
data is sampled at three non-overlapping scales and three orientations with
sine and cosine components for a total of 126 coefficients per frame.

3 Gesture Recognition

To extend our research to support Visually Mediated Interaction (VMI), we
needed to develop person-specific and generic gesture models for the control of
active cameras. A time-delay variant of the Radial Basis Function (TDRBF)
network was used to recognise simple pointing and waving hand gestures in
image sequences [20]. The gesture database was developed as a source of suit-
able image sequences for these experiments. Characteristic visual evidence can
be automatically selected during the adaptive learning phase, depending on
the task demands.

A set of interaction-relevant gestures were modelled and exploited for reactive
on-line visual control. These can then be interpreted as user intentions for live
control of an active camera with adaptive view direction and attentional focus.
As noted in the introduction, pointing (for direction) and waving (for atten-
tion) are important for intentional control and the reactive camera movements
may be able to provide the necessary visual context for applications such as
group video-conferencing as well as automated studio direction.



Table 1
Body movement and behaviour definitions for the gesture database.

Gesture Body Movement Behaviour
pntrl point right hand to left pointing left
pntrr point right hand to right pointing right
wavea wave right hand above head urgent wave

waveb  wave right hand below head non-urgent wave

Previous approaches to recognising human gestures from real-time video as
a nonverbal modality for human-computer interaction have involved comput-
ing low-level features from motion to form temporal trajectories that can be
tracked by Hidden Markov Models or Dynamic Time Warping. However, for
this work we explored the potential of using simple image-based differences
from video sequences in conjunction with the RBF network learning paradigm
to account for variability in the appearance of a set of predefined gestures. The
computational simplicity and robust generalisation of our alternative RBF ap-
proach provided fast training and on-line performance, highlighting its suit-
ability as a source of interactive responses required by applications with active
camera control.

3.1 The Gesture Database

The first database was created to provide a source of single-person gesture
data [20]. It concentrated on two specific behaviours which could be used
to move the camera or adapt its field of view: pointing, which is interpreted
as a request to pass camera attention, and is implemented by zooming out
and panning in the pointing direction, and waving, which is interpreted as a
request, for camera attention, and implemented by panning towards the waver
and zooming in. We have two types of each behaviour, giving four gestures in
all, shown in Table 1.

Four examples of each gesture from three people were collected, 48 image
sequences in all. Each sequence contains 59 378 x288 8-bit monochrome images
(collected at 12 frames/sec for roughly 5 seconds), a total of 2832 images.

3.2 Results

Experimental results showed that high levels of performance for this type of
intentional gesture recognition can be obtained using these techniques both for
particular individuals and across a set of individuals. Characteristic visual ev-



Point Left Wave Point Right

Fig. 1. Output for the multi-phase TDRBF gesture network with a test sequence
with different background, lighting and person to that encountered during training.
Each line represents a pre-, mid- or post-gesture class, and shows the confidence
level of output when its class is the maximum, and is zero at all other times.

idence was effectively selected and can be used, if required, even to recognise
individuals from their gestures [19]. Previous TDRBF network experiments
had learnt certain simple behaviours based on y-axis head rotation [18], dis-
tinguishing between left-to-right and right-to-left movements and static head
pose. Such tasks are simplified by constant motion, so that arbitrary short
segments (2/3 frames) of the whole sequence can be used to identify the over-
all direction of head turning. Due to the complex motion involved in these
particular gestures, characteristic parts of the complete action needed to be
contained in the time window presented to the network in order that it can be
recognised. The initial requirement to present the entire gesture sequence for
recognition meant that event signalling could only be done retrospectively.

Subsequent work further refined the training for the gesture information to
reduce the amount of data required [22]. Taking advantage of the tri-phasic
nature of the waving and pointing gestures, each gesture can be split into a
pre-, mid- and post-gesture sequence. Each of these can be trained as its own
sub-gesture class. This gives some predictive power from the pre-gesture and
focusses on the characteristic movement of the mid-gesture. It also gives some
temporal invariance by allowing the two phases of the gesture to be different in
length to each other (the original studies imposed a fixed relationship between
the overall gesture length and its three phases). Rapid signalling of the gesture
event can be obtained in this way, as the system does not need to wait for the
post-gesture phase to occur.



Fig. 2. Example output from the GestureBall application, where an orange ball is
controlled on-screen via pointing and waving gestures. The system is shown at frame
48 of the test sequence, ie 10 frames after the start of the mid phase of the point
left gesture, 6 frames before the end, and the ball has just moved from the centre
to the left edge of the window.

Fig. 1 shows the output for a TDRBF gesture network trained with these phase
classes. All mid-phase gesture events are clearly signalled, and each has a pre-
phase gesture event before them. There is very little anomalous signalling,
which can be dealt with either by ignoring low-confidence output, or by only
accepting gestures which exhibit the phases in correct order, ie a mid-phase
event must have had a matching pre-phase event beforehand. Some false pre-
gesture ‘hypotheses’ are raised by the network, but these are replaced by the
correct pre-gesture classification before the mid-gesture occurs. It might be
expected that the pre-gesture classes will be confused, especially when they
first start, as raising your hand to wave or point will initially both look very
similar, but the results here indicate that they are correctly classified in time
for predictive control.

An alternative way of assessing the effectiveness of ‘parsing’ gesture phase
sequences for interaction based on identifying valid gesture events is demon-
strated by the GestureBall system. This integrates the tracking and gesture
recognition techniques used here so that users of the system can control a
ball on-screen via pointing and waving gestures, see Fig. 2. There are three
horizontal positions possible: a central, starting position, which can be re-
turned to via the wave gesture, and left and right positions, which can be
reached with the appropriate left or right point gesture. The system uses only
pre- and mid-phase gestures, and registers a full gesture event only if a high
confidence mid-phase of a particular gesture is encountered after a high con-
fidence pre-phase of that same gesture. Experiments using this system with
children between the ages 6-10 can show that they quickly learn gesture-result



mappings and that the system is an easy, ‘natural’ method of controlling vir-
tual events that has distinct advantages over the restrictive mouse/keyboard
paradigm.

3.3 Summary

e Simple preprocessing techniques such as frame differencing and thresholding
can be effective in extracting useful motion information and segmenting
gestures in time.

e Different types of TDRBF network can be trained to distinguish gestures
over specific time windows, for instance person-specific gesture models (trained
and tested on one person) and generic gesture models (trained on one per-
son, tested on other people).

e The TDRBF network can distinguish between arbitrary gestures, with a
high level of performance.

e Some characteristics of an individual’s expression of gestures may be suffi-
ciently distinctive to identify that person.

e The TDRBF network can learn such data both as complete gesture se-
quences [20] and as specific gesture phases within a tri-phasic structure
[22].

e Splitting multi-phasic gestures into separate phase classes not only gives
more precise timing of gesture events, but also allows the gesture recognition
network to provide prediction hypotheses by identifying pre-gesture classes.

e The validated gesture phases can be integrated into simple visual interaction
interfaces such as the GestureBall application.

In summary, the Time-Delay RBF networks showed themselves to perform
well in our gesture recognition task, creating both person-specific and generic
gesture models. This is a promising result for the RBF techniques, consider-
ing the high degree of potential variability (present even in our constrained
database) arising from different interpretations of our intentional gestures by
each individual. Note that this is in addition to variability in position, lighting
etc. that had to be overcome in earlier face and simple behaviour recognition
work.

4 Interpretation of Group Behaviour

The methods discussed so far have allowed the implementation of a com-
plete connectionist system for a single user. However, the implementation of
a multi-user integrated system involves higher-level control by the group of
participants.
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Table 2
Example interpretations of camera position vectors for group interaction scenarios
with three people.

Camera Position Vector Interpretation
[0,0,0] frame whole scene
[1,0,0] focus on subject A
[0,1,1] focus on subjects B and C using a split-screen effect

While full computer understanding of dynamic visual scenes containing several
people may be currently unattainable, we have investigated a computation-
ally efficient approach to determine areas of interest in such scenes. Specif-
ically, we have devised a method for modelling and interpretation of single-
and multi-person human behaviour in real time to control video cameras [44].
Such machine understanding of human motion and behaviour is currently a
key research area in computer vision, and has many real-world applications.
Visually Mediated Interaction (VMI) is particularly important to applications
in video telecommunications. VMI requires intelligent interpretation of a dy-
namic visual scene to determine areas of interest for effective communication
to remote users.

As we have seen, our general approach to modelling behaviour is appearance-
based in order to provide real-time behaviour interpretation and prediction [20,44].
In addition, we only use views from a single pan-tilt-zoom camera with no
special markers to be worn by the users. It should be noted that we are not
attempting to model the full working of the human body. Rather our aim

is to exploit approximate but computationally efficient techniques. Thus, our
models are able to support partial view-invariance, and are sufficient to recog-
nise people’s gestures in dynamic scenes. Such task-specific representations
need to be used to avoid unnecessary computational cost in dynamic scene
interpretation [7].

For our purposes, human behaviour can be considered to be any temporal se-
quence of body movements or configurations, such as a change in head pose,
walking or waving. However, the human body is a complex, non-rigid articu-
lated system capable of almost infinite spatial and dynamic variations. When
attempting to model human behaviour, we must select the set of behaviours
to be modelled for the application at hand. For VMI tasks, our system needs
to identify regions of interest in a visual scene for communication to a re-
mote user. Examining the case in which the scene contains people involved
in a video conference, the participant(s) currently involved in communication
will usually constitute the appropriate focus of attention. Therefore, visual
cues that indicate a switch in the chief communicator, or ‘turn-taking’, are
most important. Gaze is a significant cue for determining this focus of com-
munication, and can be approximated by head pose. Implicit behaviour can be

11



defined as any body movement sequence that is performed subconsciously by
the participant, and here, it is head pose that is the primary source of implicit
behaviour.

However, head pose information may be insufficient to determine a partici-
pant’s focus of attention from a single 2D view, due to loss of much of the
3D information. Then, it is necessary to have the user communicate explicitly
with our VMI system through a set of pre-defined behaviours. Ezplicit be-
haviour can be defined as a sequence of body movements that are performed
consciously by a participant in order to highlight regions of interest in the
scene. We used a set of pointing and waving gestures as explicit behaviours
for control of the current focus of attention. As we have seen, such gestures
can be reliably detected and classified in real-time [20].

Our approach to modelling group interaction involves defining the behaviour
vector of a participant to be the concatenation of measured implicit and ex-
plicit behaviours (head pose angles and gesture model likelihoods). From this
a group vector can be defined as a concatenation of the behaviour vectors for
all people present in the scene at a given time instant, and group behaviour is
just a temporal sequence of these group vectors. Given the group behaviour,
a high-level interpretation model can determine the current area of focus. In
our scenarios, the region of interest is always a person so we track the head of
each individual. The output need only give an indication of which people are
currently attended in the high-level system and is called the camera position
vector. This has a boolean value (0 or 1) for each person in the scene indicat-
ing whether that person is currently attended, see Table 2. This information
can then be used to control the movable camera, based on the position of the
people in the scene.

Given a particular group behaviour, we constructed a scene wvector, which
contains the previous camera position vector information as feedback. This
allowed the current focus of attention to be maintained, even when no gestures
or head turning occurred.

4.1 The Group Interaction Database

The second database [44] contains examples of group interaction in a static
scene. This database contains 15 sequences, each between 240 and 536 frames
in length, a total of 5485 320x240 24-bit colour images. We constrain the
complexity of the data by restricting behaviour to certain fixed scenarios,
shown in Table 3, and by always having three participants, who remain sitting
for the complete sequence. Each scenario is a group behaviour in which the
participants perform gestures and change their head pose in a fixed pre-defined
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Table 3
Scenario descriptions for the Group Interaction Database, involving three partici-
pants A, B and C.

Scenario Description
wave Person C waves and speaks, A waves and speaks, B waves and speaks
Person C waves and speaks, A waves and speaks, B waves and speaks.
wave-look . . . .. .
Each time someone is speaking the other two participants look at him
testion Person C waves and speaks, A and B look at C, A interjects with a
d question, C looks at A to answer, then looks back at camera
oint Person C waves and speaks, A and B look at C, C points to A, C and
p B look at A, A looks at camera and speaks
Person C waves and speaks, A and B look at C, a person enters from
. the left, A, B and C watch as the person leaves, C looks at the camera
interrupt

and continues speaking, A and B look at C All participants look at
the camera unless stated otherwise.

Target

cw> om>

Output

Fig. 3. Results for group interaction behaviour recognition using the wave-look
scenario (see Table 3), individuals are labelled A, B and C from left to right: Exam-
ple frames from sequence (top), plots showing pose angles and gesture likelihoods
(middle), and target/output camera position vectors (bottom) (from [44]).

order. The exact timing of the events varies between different instances of the
same scenario, but the focus of attention switches from one region to the next
in the same order.

4.2 Results

To learn the transformation from scene vector to camera position vector, we
developed an effective Time-Delay RBF Network, trained on half of our se-
quence database and tested for generalisation on the other half [44].

13
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Fig. 4. Results for group interaction behaviour recognition using the point scenario
(for details see Fig. 3).

Figs. 3 and 4 show examples of the system output for two example scenar-
ios: wave-look and point. The top sections of each figure show temporally-
ordered frames with boxes framing the head, face and hands being tracked.
In each frame, head pose is shown above the head with an intuitive dial box.
The top sections of each figure show the head pose angles (top) and gesture
likelihoods (middle) for persons A, B and C (from left to right). One can see
the correspondence of peaks in the gesture likelihoods with gesture events in
the scenario.

The bottom section of Figs. 3 and 4 show the training signal, or target camera
vectors, traced above the actual output camera vectors obtained during tests
with the trained RBF network. It can be seen that the network follows the
general interpretation of group behaviour, although the transition points from
one focus of attention to another do not always exactly coincide. However,
these transition points are highly subjective and very difficult to determine
with manual coding, so this result is not surprising and the results give switches
of attention that are acceptable at the perceptual level.

4.3 Summary

e A framework has been devised for tracking people and recognising their
group behaviours in VMI contexts. This requires high-level information
about group and individual interaction in a ‘scene vector’ to learn a ‘camera
control vector’, specified by a temporal model.

e The scene vector provides ongoing probabilities of the dynamic head-pose
and gesture phases for interacting participants and the camera control vector
provides reactive direction and zoom.

14



e Pre-defined gestures and head pose of several individuals in the scene can
be simultaneously recognised for interpretation of the scene.

e A scene vector-to-camera control transformation can be performed via a
TDRBF network, using example-based learning.

We have been able to show how multi-person activity scenarios can be learned
from training examples and interpolated to obtain the same interpretation for
different instances of the same scenario. However, for the approach to scale
up to more general applications, it must be able to cope with a whole range
of scenarios. The approach implicitly requires such a system to extrapolate to
novel situations in the same way that we do. Unfortunately, there is no reason
to believe that current computer architectures are capable of such reasoning
and our simple temporal models fall far short of full intentional semantics.
Therefore, a significant issue in future work will be the feasibility of learning
generalised temporal structures and default behaviours from sparse data.

5 Towards an Integrated System

In this section we present our work towards a complete connectionist system
for understanding the visual aspects of human interaction which could be used,
for example, in video-conferencing applications. First, we present methods for
face detection and capture of attentional frames to focus the processing for
Visually Mediated Interaction. This frame can be used for recognising the
various gesture phases that can then be used to control the camera systems
in the integrated system, as discussed in previous sections.

5.1 Capturing the Attentional Frame

Our techniques here used colour/motion cues from the image sequence to
identify and track the head. Once we know the position and size of the head,
we can define an attentional frame around the person. The attentional frame
is a 2-D area around the focal user that contains all the body movement
information relevant to our application, which is all movement of the head and
right arm. To allow people to move closer or further away from the camera, this
information is normalised for size (relative to head size) around an arbitrary
standard position from the camera.

Our main priority is to find real-time solutions for our application. Therefore,
we used two computationally cheap pixel-wise processing techniques on our
image: thresholded frame differencing, giving motion information, and Gaus-
sian mixture models [31], giving skin colour information. These were combined

15



Fig. 5. Use of colour/motion information to position an attentional frame around
a person: (a) a box is centred around each colour/motion ‘blob’, the inner vertical
lines representing the standard deviation of the pixels along the z-axis, giving a
width measure, (b) having identified which box contains the head (the uppermost
one in (a)), an attentional frame box is drawn around the person relative to the
head position, and sized according to head width. The top right image shows the
image area inside the head box, bottom right the resampled area of the image inside
the attentional frame.

to give a binary map of moving skin pixels within the image, and we used local
histogram maxima to identify potential ‘blob’ regions. A box which was large
enough to contain the head at all distances in our target range was then fitted
over the centroid of each of these regions. Fig. 5(a) shows how each box is
centred on the centroid of each maximum, with the inner lines showing the
standard deviation of the pixels along the z-axis from that centroid. It can
also be seen that the hands are ignored in this example, as they are too low
down to be included in a face-size ‘blob’.

A robust approach to head tracking using colour/motion blobs is what we call
temporal matching: the tracker only considers blobs from the current frame
which have been matched to nearby blobs from previous frames. This excludes
any anomalous blobs that appear for one frame only in an image sequence, and
promotes those that exhibit the greatest temporal coherence. Having found
the position and size of the head, we can extract the attentional frame from
around the person.

5.2 Pose-Invariant Face Detection

The previous section described how we isolated small areas of moving skin-
tones from the overall image. This reduces computation and network size,
by allowing the face detector to work only within a small subset of the full
spectrum of possible objects typically encountered in an office environment.
Specifically, we can consider the restricted form of face detection where we
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(b)

Fig. 6. (a) Two methods for segmenting 25x25 pose-varying face data: (top row)
nose-centred, (bottom row) face-centred, the former being used for experiments here,
(b) the grid system for detecting potential faces within a potential ‘head blob’ region
of the image: each area tested is represented by a 4x4 box, the thick line shows the
central position (z,y = 0), normal line and dashed lines the outer positions 1 and 2
spaces out from the centre. In this case, a maximum output would be expected at
z = —1,y = +1, which indicates a head-pose slightly down and turned to the right.

need to distinguish a face only from other moving skin-tone blobs (typically
hands).

In order to perform effective face recognition, we need to identify the position
of the central face area (eyes, nose, mouth), rather than the entire skin area
on the head (which also includes forehead, neck, ears, etc). Our face detection
task, therefore, is to distinguish centred faces from both non-centred faces and
other moving skin-tone blobs. We trained RBF networks with examples of
both to provide a continuous ‘face/non-face’ output, with a level of confidence
based on the difference between the two output values from the network [19].
This level of confidence allows discarding of low-confidence results where data
is noisy or ambiguous.

Our training examples need to take variable head-pose into account, so the
central face region of a person can be recognised at all normal physiologi-
cal pose positions. Facial information is only visible on a human head from
(roughly) the front £120° of z- and y-axis movement, and z-axis movement
is physiologically constrained to around +20° (when standing or sitting) [18].
The face region is centralised on the nose, rather than the face, for all pro-
files, as this allows non-occluded face information to remain roughly in the
same position, see Fig. 6(a). This has previously been shown to more useful
for pose-varying face recognition [19]. We can then easily determine a coarse
estimate of head-pose, such as left, frontal or right, from the output grid. This
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Fig. 7. A block diagram outlining the integrated system (from [22]).

qualitative level of head-pose was found to be very useful for group interaction
analysis [44].

Therefore, the position of the nose was determined manually in order to extract
specific centred /non-centred face patches from each image for training. Around
this, a 3x3 grid of 25x25 face images was extracted from each frame for the
‘pro-face’ class. This corresponds to the regions within the the solid lines in
Fig. 6(b). The ‘non-face’ class data was of two types:

e from a larger grid outside the 3x3 face grid (to encourage face detection
only where the image was accurately aligned on the face), such as within
the dotted lines in Fig. 6(b), and

e from around the centroids of ‘distractor’ moving skin/colour regions, eg.
hands, within each frame.

5.8 The Integrated System

The design for the complete integrated system is seen in Fig. 7, where the
input from the active camera is first processed to detect heads and position
the attentional frames, then face, gesture and pose classification, followed by
the interpretation of group interaction.

A complete video-conferencing active camera control system requires high-
level interpretation of group and individual interaction [44]. As we have seen,
we propose a system for behavioural control, whereby gesture and head pose
information, contained in a ‘scene vector’, is provided for this interpretation
to take place. This allows the system to provide camera control information
via a learnt mapping onto a ‘camera control vector’ representation.
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The scene vector provides head-pose and gesture probabilities for the people
in the field of view, and the camera control vector determines the focus of
attention in terms of which users are included in the processed scene. If in-
dividuated control of the system is required, then we need to identify who
these people are (from a small known group), as shown in Fig. 7. Two extra
stages, therefore, are needed: gesture and (pose invariant) identity recogni-
tion. Section 3 above discussed practical techniques for tackling these tasks in
real-time, using the RBF and TDRBF networks [20,21].

To complete our integrated system, we need to pass this gesture and head-
pose information, with identity if appropriate, to a higher-level interpretation
network [44], as discussed in Section 4. In addition, we have to adapt our sys-
tem to cope with multiple people in the scene, which increases the complexity
of the low-level processing stage. There will be more head blobs to find, but
by assigning attentional frames to each person, and analysing each of these
separately, it is hoped that problems due to occlusion from other members of
the group will be kept to a minimum. This will allow a full implementation of
the multi-user system with generalised attentional switching.

5.4  Summary

e We can use colour/motion cues to effectively segment and track human
heads in image sequences.

e An attentional frame can be extracted relative to the head position and size
to allow the real-time recognition of hand gestures through time.

e By extracting colour/motion regions from the overall image, the face detec-
tion task is greatly simplified.

e A face detection network can be used to give a qualitative estimate of head-
pose for predictive control using implicit behaviour.

e Splitting multi-phasic gestures into separate phase classes not only gives
more precise timing of gesture events, but also allows the gesture recognition
network to provide prediction hypotheses for explicit behaviour control.

Although it has been possible to fully integrate real-time recognition, tracking
and on-line intentional control for single users, there are still some outstanding
problems for multiple interacting users. We can control attentional switching
for multiple users in known scenarios eg 3 people sitting and passing control
in an orderly fashion as in Table 3. As mentioned earlier, a major issue with
this kind of example-based learning approach to multi-participant behaviour
interpretation is the feasibility of collecting sufficient data. The multiplicity of
possible events increases exponentially with the addition of extra participants
and the combinatorics can only be captured at the level of examples used for
training. Therefore, it is difficult to know which scenarios to collect in order to
evenly populate the space of possible scenarios with the training set. The use
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of high-level models such as Bayesian Belief Networks (BBNs) might provide a
combination of hand-coded a priori information with machine learning to ease
training set requirements. This is because the BBNs model the decomposition
of the problem and it is the model parameters (conditional probabilities) that
are learnt so that higher level inferences can be made from low level visual
evidence (see, for example, [7]).

6 Conclusions and Further Research

It is clear that there are many potential advantages of Visually Mediated Inter-
action with computers over traditional keyboard/mouse interfaces. For exam-
ple, removing system-dependant I'T training and allowing the user a more in-
tuitive form of system direction. However, we have also seen that there are still
many challenges for integrating multi-user interaction analysis and control due
to the ambiguities and combinatorial explosion of possible behavioural inter-
actions. We have demonstrated how our connectionist techniques can support
real-time interaction by detecting faces and capturing ‘attentional frames’ to
focus processing. To go further we will have to build our VMI systems around
the task demands which include both the limitations of our techniques and
potentially conflicting intentions from users. Connectionist techniques are gen-
erally well suited to this kind of situation as they can learn adaptive mappings
and have inherent constraint satisfaction.

Further research is taking two main directions: 1) the development of gesture-
based control of animated software agents in the EU Puppet project; and 2)
the development of context-based control in more complex scenarios in the
new EU Actipret project. The first (e.g. the GestureBall application) extends
the use of symbolic (action selection) and mimetic (dynamic control) functions
in gesture-based interfaces where pointing can indicate the current avatar and
movement patterns can control animation parameters. The second involves
recognition of complex behaviours and activities that consist of a sequence
of events that evolve over time [16,17]. As yet there has been little work
that combines automated learning of behaviours in different contexts. In other
words, it is usually only simple, generic models of behaviour that have been
learnt rather than learning when and how to apply more complex models in
a context sensitive manner.
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