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Abstrat

In this paper we introdue adaptive vision tehniques used, for example, in video-

onferening appliations. First, we present the reognition of identity, expression

and head pose using Radial Basis Funtion (RBF) networks. Seond, we address

gesture-based ommuniation and attentional fous, using olour/motion ues to

diret fae detetion and apture `attentional frames'. These fous the proessing

for Visually Mediated Interation via an appearane-based approah with Gabor

�lter oeÆients used as input to time-delay RBF networks. Third, we present

methods for the gesture reognition and behaviour (user-amera) oordination in

an integrated system.

Key words: Visually Mediated Interation; Fae Reognition; Gesture

Reognition; Camera Control; Time-Delay Neural Networks

1 Introdution

Visually Mediated Interation (VMI) is a proess of failitating interation

between people, either remotely or loally, using visual ues whih are sim-

ilar to those used in everyday interation with other people. The aim is to

enhane interation, overoming limitations due to, for example, distane or

disability. This involves many visual ompetenes suh as reognising faial

expression, gaze, gesture and body posture whih are all used in human om-

muniation and interation. Gestures are often spontaneous but an also be

intentional, where we an distinguish between verbal (sign languages) and

nonverbal (pointing, emphasis, illustration) usage. In our work here we are

mainly onerned with intentional, nonverbal gestures whih are relevant for

ommuniation in VMI. Also, we use gaze whih an provide an important ue
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for disourse/interation management. In partiular, gaze diretion is often as-

soiated with dieti, attention-direting pointing to indiate objets or people

of interest in the immediate ontext as part of the behavioural interation.

We know that robust traking of non-rigid objets suh as human faes and

bodies involved in mahine analysis of this kind of interative ativity is dif-

�ult due to rapid motion, olusion and ambiguities in segmentation and

model seletion. This was partially addressed by the move to ative vision

and dynami models for robust traking using sophistiated Kalman �lters,

as exempli�ed by Blake and others [1℄. Reently, these have been speialised

to allow the learning of omplex hand dynamis [23℄. More generally, researh

funded by British Teleom (BT) on Smart Rooms [38℄ and the ALIVE projet

[30℄ at MIT Media Lab has shown progress in the modelling and interpretation

of human body ativity. This used the P�nder (Person Finder) system [49℄,

whih an provide real-time human body analysis. Further analysis to model

the progression of ongoing ativity involves tehniques suh as Hidden Markov

Models (HMMs), whih an be parameterised to provide information suh as

diretion of pointing [48℄. Further analysis for VMI an even involve oupled

human interation analysis using learning tehniques based on deformable

models [27℄.

Other related ongoing researh using omputationally simple view-based ap-

proahes to ation reognition have been introdued by Bobik [3℄. More re-

ently, Pinhanez and Bobik [39℄ have developed a PNF network approah

using the temporal terms (past,now,fut) for human ation detetion, whih

allows fast performane ompared to equivalent evaluations of Allen's interval

logi. Similar attempts at Mirosoft Researh by Turk and Cutler [8,46℄ have

also yielded useful results. In Pentland's group, muh progress has been made

in the detailed modelling and interpretation of human body ativity [50℄. We

also have the oupled HMMsof Brand and olleagues [4℄ for understanding be-

haviour interations, although this approah requires a great deal of training

data. This is also true of parameterised HMMs [2℄, whih an also su�er from

lak of stability in the interpretation ompared to deformable model traking

and analysis. More reent work by Oliver, Rosario and Pentland [36,37℄ has

developed reliable Bayesian vision systems. Two exiting reent development

are: 1) work by Galata, Johnson and Hogg using hybrid deformable and HMM

behaviour models for virtual ators [15℄; and 2) the ation reation learning of

Jebara and Pentland [24,25℄, whih models interations and exploits new ideas

from Support Vetor Mahines in onjuntion with generative Bayes theory.

However, we have onentrated on developing omputationally simple view-

based approahes to ation reognition under the ISCANIT projet, whih

start to address the task of intentional traking and behavioural modelling to

diretly drive visual interation. In robotis, Brooks [5℄ emphasises the need

to have this kind of pereptual grounding for behaviour, going diretly from
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pereption to ation. In ognitive siene (review [6℄, pp. 311-374), we also �nd

that reognition of behaviour is possible with minimal pereptual information.

For example, Johansson's point-light tehnique, in whih we have aess to

pure movement ues, allows us to reognise human movement [26℄. We an

identify gender [29℄, emotional state [12℄, and types of ation [11℄. Human

observers an do even better with friends, whom they an reognise from their

gait [9℄. This all suggests that human visual ognition has diret methods that

are learnt for the familiar people and their behaviour. We an mimi these

harateristis in subsymboli approahes using deformable models or neural

networks, although it is lear that the latter is loser to implementations in

biologial systems. Using animated sequenes of simple geometrial shapes also

demonstrates that human subjets even o�er intentional desriptions of the

observed movement patterns [45℄. Our proposal, then, is to simply assoiate

attention seeking pragmati interpretation with waving gestures and zoom in

on the user. This idea generalises to diretional semantis for pointing gestures

et. for intentional traking in the design of our system.

The bakground researh here is our example-based learning tehniques for

fae reognition [21℄. The partiular task onsidered was the reognition, in

real-time, of a known group of people within indoor environments. It ould not

be assumed that there would be lear frontal views of faes at all times and so

a key apability was to identify faes over a range of head poses. An important

fator in this approah was the exibility of the example-based Radial Basis

Funtion (RBF) network learning approah, whih allowed us to reformulate

the training in terms of the spei� lasses of data we wished to distinguish.

For example, we ould extrat identity, head pose and expression informa-

tion separately from the same fae training data to train a omputationally

heap RBF lassi�er for eah separate reognition task [13,19℄. Essentially,

these adaptive methods allow us to make key inferenes within our system by

modelling the variability of the evidene.

In this work we again take an appearane-based approah, with eah phase of

a ommuniative gesture represented as a vetor of Gabor �lter oeÆients.

First, in Setion 2, we disuss the RBF network sheme. Seond, in Setion 3,

this is used as input to time-delay RBF (TDRBF) networks whih an extrat

gesture and head pose information. Third, in Setion 4, this data is fed to a

further TDRBF network whih an analyse group behaviour in order to ontrol

amera systems in an integrated system. Fourth, in Setion 5, we disuss a

potential design for suh an integrated system. Finally, in Setion 6, we draw

some onlusions about our approah and further work.

4



2 The RBF Network Sheme

The RBF network is a two-layer, hybrid learning network [32,33℄, whih om-

bines a supervised layer from the hidden to the output units with an un-

supervised layer from the input to the hidden units. The network model is

haraterised by individual radial Gaussian funtions for eah hidden unit,

whih simulate the e�et of overlapping and loally tuned reeptive �elds.

The RBF network is haraterised by omputational simpliity, supported

by well-developed mathematial theory, and robust generalisation, powerful

enough for real-time real-life tasks [42,43℄. The nonlinear deision boundaries

of the RBF network make it better in general for funtion approximation than

the hyperplanes reated by the multi-layer pereptron (MLP) with sigmoid

units [41℄, and they provide a guaranteed, globally optimal solution via simple,

linear optimisation. One advantage of the RBF network, ompared to the

MLP, is that it gives low false-positive rates in lassi�ation problems as it

will not extrapolate beyond its learnt example set. This is beause its basis

funtions over only small loalised regions, unlike sigmoidal basis funtions

whih are nonzero over an arbitrarily large region of the input spae.

One training examples have been olleted as input-output pairs, with the

target lass attahed to eah image, tasks an be learnt diretly by the sys-

tem. This type of supervised learning an be seen in mathematial terms as

approximating a multivariate funtion, so that estimations of funtion val-

ues an be made for previously unseen test data where atual values are not

known. This proess an be undertaken by the RBF network using a linear

ombination of basis funtions, one for every training example, beause of the

smoothness of the manifold formed by the example views of objets in a spae

of all possible views of that objet [40℄. This underlies our approah, suess-

ful in previous work with RBF networks for fae reognition tasks with image

sequenes [21℄, whih uses an RBF unit for eah training example, and single

stage pseudo-inverse alulation of weights.

2.1 The Time-Delay RBF Model

To onstrut a dynami neural network, reurrent onnetions an be added

to standard multi-layer pereptrons whih then form a ontextual memory

for predition over time [14,28,35℄. These partially reurrent neural networks

an be trained using bak-propagation but there may be problems with sta-

bility and very long training sequenes when using dynami representations.

Instead, we use a simple Time-Delay mehanism [47℄ in onjuntion with an

RBF network, whih we term a TDRBF network, whih we have previously
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shown an allow fast, robust solutions to diÆult real-life problems [20℄. Suh

a network an be reated by ombining data from a �xed time `window' into

a single vetor as input. In addition, an integration layer on the TDRBF net-

work an be used to ombine results from suessive time windows to provide

smooth gradations between serial ations.

2.2 Gabor Filter Input Representation

Filter-based preproessing of the images is an important intermediate step in

image-based tehniques, as the input representation ontributes a great deal

to the learnability of the task. It is important to highlight relevant parts of the

information (leading to redution in the dimensionality of input) and provide

moderate invariane to normal environmental illumination [10℄. We onstrain

the lighting to exlude strong, inidental lighting, whih is very muh more dif-

�ult [34℄. We use a sparse arrangement of Gabor �lters [18℄ to both suppress

variation that is not important for the task, suh as illumination variabil-

ity, and highlight those variations that are useful, using expliit orientations

and sales. This approah is used to preproess eah frame of the sequenes

(olour/motion information for gestures, grey-level pixels for fae detetion):

data is sampled at three non-overlapping sales and three orientations with

sine and osine omponents for a total of 126 oeÆients per frame.

3 Gesture Reognition

To extend our researh to support Visually Mediated Interation (VMI), we

needed to develop person-spei� and generi gesture models for the ontrol of

ative ameras. A time-delay variant of the Radial Basis Funtion (TDRBF)

network was used to reognise simple pointing and waving hand gestures in

image sequenes [20℄. The gesture database was developed as a soure of suit-

able image sequenes for these experiments. Charateristi visual evidene an

be automatially seleted during the adaptive learning phase, depending on

the task demands.

A set of interation-relevant gestures were modelled and exploited for reative

on-line visual ontrol. These an then be interpreted as user intentions for live

ontrol of an ative amera with adaptive view diretion and attentional fous.

As noted in the introdution, pointing (for diretion) and waving (for atten-

tion) are important for intentional ontrol and the reative amera movements

may be able to provide the neessary visual ontext for appliations suh as

group video-onferening as well as automated studio diretion.
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Table 1

Body movement and behaviour de�nitions for the gesture database.

Gesture Body Movement Behaviour

pntrl point right hand to left pointing left

pntrr point right hand to right pointing right

wavea wave right hand above head urgent wave

waveb wave right hand below head non-urgent wave

Previous approahes to reognising human gestures from real-time video as

a nonverbal modality for human-omputer interation have involved omput-

ing low-level features from motion to form temporal trajetories that an be

traked by Hidden Markov Models or Dynami Time Warping. However, for

this work we explored the potential of using simple image-based di�erenes

from video sequenes in onjuntion with the RBF network learning paradigm

to aount for variability in the appearane of a set of prede�ned gestures. The

omputational simpliity and robust generalisation of our alternative RBF ap-

proah provided fast training and on-line performane, highlighting its suit-

ability as a soure of interative responses required by appliations with ative

amera ontrol.

3.1 The Gesture Database

The �rst database was reated to provide a soure of single-person gesture

data [20℄. It onentrated on two spei� behaviours whih ould be used

to move the amera or adapt its �eld of view: pointing, whih is interpreted

as a request to pass amera attention, and is implemented by zooming out

and panning in the pointing diretion, and waving, whih is interpreted as a

request for amera attention, and implemented by panning towards the waver

and zooming in. We have two types of eah behaviour, giving four gestures in

all, shown in Table 1.

Four examples of eah gesture from three people were olleted, 48 image

sequenes in all. Eah sequene ontains 59 378�288 8-bit monohrome images

(olleted at 12 frames/se for roughly 5 seonds), a total of 2832 images.

3.2 Results

Experimental results showed that high levels of performane for this type of

intentional gesture reognition an be obtained using these tehniques both for

partiular individuals and aross a set of individuals. Charateristi visual ev-
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Fig. 1. Output for the multi-phase TDRBF gesture network with a test sequene

with di�erent bakground, lighting and person to that enountered during training.

Eah line represents a pre-, mid- or post-gesture lass, and shows the on�dene

level of output when its lass is the maximum, and is zero at all other times.

idene was e�etively seleted and an be used, if required, even to reognise

individuals from their gestures [19℄. Previous TDRBF network experiments

had learnt ertain simple behaviours based on y-axis head rotation [18℄, dis-

tinguishing between left-to-right and right-to-left movements and stati head

pose. Suh tasks are simpli�ed by onstant motion, so that arbitrary short

segments (2/3 frames) of the whole sequene an be used to identify the over-

all diretion of head turning. Due to the omplex motion involved in these

partiular gestures, harateristi parts of the omplete ation needed to be

ontained in the time window presented to the network in order that it an be

reognised. The initial requirement to present the entire gesture sequene for

reognition meant that event signalling ould only be done retrospetively.

Subsequent work further re�ned the training for the gesture information to

redue the amount of data required [22℄. Taking advantage of the tri-phasi

nature of the waving and pointing gestures, eah gesture an be split into a

pre-, mid- and post-gesture sequene. Eah of these an be trained as its own

sub-gesture lass. This gives some preditive power from the pre-gesture and

fousses on the harateristi movement of the mid-gesture. It also gives some

temporal invariane by allowing the two phases of the gesture to be di�erent in

length to eah other (the original studies imposed a �xed relationship between

the overall gesture length and its three phases). Rapid signalling of the gesture

event an be obtained in this way, as the system does not need to wait for the

post-gesture phase to our.
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Fig. 2. Example output from the GestureBall appliation, where an orange ball is

ontrolled on-sreen via pointing and waving gestures. The system is shown at frame

48 of the test sequene, ie 10 frames after the start of the mid phase of the point

left gesture, 6 frames before the end, and the ball has just moved from the entre

to the left edge of the window.

Fig. 1 shows the output for a TDRBF gesture network trained with these phase

lasses. All mid-phase gesture events are learly signalled, and eah has a pre-

phase gesture event before them. There is very little anomalous signalling,

whih an be dealt with either by ignoring low-on�dene output, or by only

aepting gestures whih exhibit the phases in orret order, ie a mid-phase

event must have had a mathing pre-phase event beforehand. Some false pre-

gesture `hypotheses' are raised by the network, but these are replaed by the

orret pre-gesture lassi�ation before the mid-gesture ours. It might be

expeted that the pre-gesture lasses will be onfused, espeially when they

�rst start, as raising your hand to wave or point will initially both look very

similar, but the results here indiate that they are orretly lassi�ed in time

for preditive ontrol.

An alternative way of assessing the e�etiveness of `parsing' gesture phase

sequenes for interation based on identifying valid gesture events is demon-

strated by the GestureBall system. This integrates the traking and gesture

reognition tehniques used here so that users of the system an ontrol a

ball on-sreen via pointing and waving gestures, see Fig. 2. There are three

horizontal positions possible: a entral, starting position, whih an be re-

turned to via the wave gesture, and left and right positions, whih an be

reahed with the appropriate left or right point gesture. The system uses only

pre- and mid-phase gestures, and registers a full gesture event only if a high

on�dene mid-phase of a partiular gesture is enountered after a high on-

�dene pre-phase of that same gesture. Experiments using this system with

hildren between the ages 6{10 an show that they quikly learn gesture-result
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mappings and that the system is an easy, `natural' method of ontrolling vir-

tual events that has distint advantages over the restritive mouse/keyboard

paradigm.

3.3 Summary

� Simple preproessing tehniques suh as frame di�erening and thresholding

an be e�etive in extrating useful motion information and segmenting

gestures in time.

� Di�erent types of TDRBF network an be trained to distinguish gestures

over spei� time windows, for instane person-spei� gesture models (trained

and tested on one person) and generi gesture models (trained on one per-

son, tested on other people).

� The TDRBF network an distinguish between arbitrary gestures, with a

high level of performane.

� Some harateristis of an individual's expression of gestures may be suÆ-

iently distintive to identify that person.

� The TDRBF network an learn suh data both as omplete gesture se-

quenes [20℄ and as spei� gesture phases within a tri-phasi struture

[22℄.

� Splitting multi-phasi gestures into separate phase lasses not only gives

more preise timing of gesture events, but also allows the gesture reognition

network to provide predition hypotheses by identifying pre-gesture lasses.

� The validated gesture phases an be integrated into simple visual interation

interfaes suh as the GestureBall appliation.

In summary, the Time-Delay RBF networks showed themselves to perform

well in our gesture reognition task, reating both person-spei� and generi

gesture models. This is a promising result for the RBF tehniques, onsider-

ing the high degree of potential variability (present even in our onstrained

database) arising from di�erent interpretations of our intentional gestures by

eah individual. Note that this is in addition to variability in position, lighting

et. that had to be overome in earlier fae and simple behaviour reognition

work.

4 Interpretation of Group Behaviour

The methods disussed so far have allowed the implementation of a om-

plete onnetionist system for a single user. However, the implementation of

a multi-user integrated system involves higher-level ontrol by the group of

partiipants.
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Table 2

Example interpretations of amera position vetors for group interation senarios

with three people.

Camera Position Vetor Interpretation

[0,0,0℄ frame whole sene

[1,0,0℄ fous on subjet A

[0,1,1℄ fous on subjets B and C using a split-sreen e�et

While full omputer understanding of dynami visual senes ontaining several

people may be urrently unattainable, we have investigated a omputation-

ally eÆient approah to determine areas of interest in suh senes. Speif-

ially, we have devised a method for modelling and interpretation of single-

and multi-person human behaviour in real time to ontrol video ameras [44℄.

Suh mahine understanding of human motion and behaviour is urrently a

key researh area in omputer vision, and has many real-world appliations.

Visually Mediated Interation (VMI) is partiularly important to appliations

in video teleommuniations. VMI requires intelligent interpretation of a dy-

nami visual sene to determine areas of interest for e�etive ommuniation

to remote users.

As we have seen, our general approah to modelling behaviour is appearane-

based in order to provide real-time behaviour interpretation and predition [20,44℄.

In addition, we only use views from a single pan-tilt-zoom amera with no

speial markers to be worn by the users. It should be noted that we are not

attempting to model the full working of the human body. Rather our aim

is to exploit approximate but omputationally eÆient tehniques. Thus, our

models are able to support partial view-invariane, and are suÆient to reog-

nise people's gestures in dynami senes. Suh task-spei� representations

need to be used to avoid unneessary omputational ost in dynami sene

interpretation [7℄.

For our purposes, human behaviour an be onsidered to be any temporal se-

quene of body movements or on�gurations, suh as a hange in head pose,

walking or waving. However, the human body is a omplex, non-rigid artiu-

lated system apable of almost in�nite spatial and dynami variations. When

attempting to model human behaviour, we must selet the set of behaviours

to be modelled for the appliation at hand. For VMI tasks, our system needs

to identify regions of interest in a visual sene for ommuniation to a re-

mote user. Examining the ase in whih the sene ontains people involved

in a video onferene, the partiipant(s) urrently involved in ommuniation

will usually onstitute the appropriate fous of attention. Therefore, visual

ues that indiate a swith in the hief ommuniator, or `turn-taking', are

most important. Gaze is a signi�ant ue for determining this fous of om-

muniation, and an be approximated by head pose. Impliit behaviour an be
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de�ned as any body movement sequene that is performed subonsiously by

the partiipant, and here, it is head pose that is the primary soure of impliit

behaviour.

However, head pose information may be insuÆient to determine a partii-

pant's fous of attention from a single 2D view, due to loss of muh of the

3D information. Then, it is neessary to have the user ommuniate expliitly

with our VMI system through a set of pre-de�ned behaviours. Expliit be-

haviour an be de�ned as a sequene of body movements that are performed

onsiously by a partiipant in order to highlight regions of interest in the

sene. We used a set of pointing and waving gestures as expliit behaviours

for ontrol of the urrent fous of attention. As we have seen, suh gestures

an be reliably deteted and lassi�ed in real-time [20℄.

Our approah to modelling group interation involves de�ning the behaviour

vetor of a partiipant to be the onatenation of measured impliit and ex-

pliit behaviours (head pose angles and gesture model likelihoods). From this

a group vetor an be de�ned as a onatenation of the behaviour vetors for

all people present in the sene at a given time instant, and group behaviour is

just a temporal sequene of these group vetors. Given the group behaviour,

a high-level interpretation model an determine the urrent area of fous. In

our senarios, the region of interest is always a person so we trak the head of

eah individual. The output need only give an indiation of whih people are

urrently attended in the high-level system and is alled the amera position

vetor. This has a boolean value (0 or 1) for eah person in the sene indiat-

ing whether that person is urrently attended, see Table 2. This information

an then be used to ontrol the movable amera, based on the position of the

people in the sene.

Given a partiular group behaviour, we onstruted a sene vetor, whih

ontains the previous amera position vetor information as feedbak. This

allowed the urrent fous of attention to be maintained, even when no gestures

or head turning ourred.

4.1 The Group Interation Database

The seond database [44℄ ontains examples of group interation in a stati

sene. This database ontains 15 sequenes, eah between 240 and 536 frames

in length, a total of 5485 320�240 24-bit olour images. We onstrain the

omplexity of the data by restriting behaviour to ertain �xed senarios,

shown in Table 3, and by always having three partiipants, who remain sitting

for the omplete sequene. Eah senario is a group behaviour in whih the

partiipants perform gestures and hange their head pose in a �xed pre-de�ned
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Table 3

Senario desriptions for the Group Interation Database, involving three partii-

pants A, B and C.

Senario Desription

wave Person C waves and speaks, A waves and speaks, B waves and speaks

wave-look

Person C waves and speaks, A waves and speaks, B waves and speaks.

Eah time someone is speaking the other two partiipants look at him

question

Person C waves and speaks, A and B look at C, A interjets with a

question, C looks at A to answer, then looks bak at amera

point

Person C waves and speaks, A and B look at C, C points to A, C and

B look at A, A looks at amera and speaks

interrupt

Person C waves and speaks, A and B look at C, a person enters from

the left, A, B and C wath as the person leaves, C looks at the amera

and ontinues speaking, A and B look at C All partiipants look at

the amera unless stated otherwise.
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Fig. 3. Results for group interation behaviour reognition using the wave-look

senario (see Table 3), individuals are labelled A, B and C from left to right: Exam-

ple frames from sequene (top), plots showing pose angles and gesture likelihoods

(middle), and target/output amera position vetors (bottom) (from [44℄).

order. The exat timing of the events varies between di�erent instanes of the

same senario, but the fous of attention swithes from one region to the next

in the same order.

4.2 Results

To learn the transformation from sene vetor to amera position vetor, we

developed an e�etive Time-Delay RBF Network, trained on half of our se-

quene database and tested for generalisation on the other half [44℄.
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Fig. 4. Results for group interation behaviour reognition using the point senario

(for details see Fig. 3).

Figs. 3 and 4 show examples of the system output for two example senar-

ios: wave-look and point. The top setions of eah �gure show temporally-

ordered frames with boxes framing the head, fae and hands being traked.

In eah frame, head pose is shown above the head with an intuitive dial box.

The top setions of eah �gure show the head pose angles (top) and gesture

likelihoods (middle) for persons A, B and C (from left to right). One an see

the orrespondene of peaks in the gesture likelihoods with gesture events in

the senario.

The bottom setion of Figs. 3 and 4 show the training signal, or target amera

vetors, traed above the atual output amera vetors obtained during tests

with the trained RBF network. It an be seen that the network follows the

general interpretation of group behaviour, although the transition points from

one fous of attention to another do not always exatly oinide. However,

these transition points are highly subjetive and very diÆult to determine

with manual oding, so this result is not surprising and the results give swithes

of attention that are aeptable at the pereptual level.

4.3 Summary

� A framework has been devised for traking people and reognising their

group behaviours in VMI ontexts. This requires high-level information

about group and individual interation in a `sene vetor' to learn a `amera

ontrol vetor', spei�ed by a temporal model.

� The sene vetor provides ongoing probabilities of the dynami head-pose

and gesture phases for interating partiipants and the amera ontrol vetor

provides reative diretion and zoom.
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� Pre-de�ned gestures and head pose of several individuals in the sene an

be simultaneously reognised for interpretation of the sene.

� A sene vetor-to-amera ontrol transformation an be performed via a

TDRBF network, using example-based learning.

We have been able to show how multi-person ativity senarios an be learned

from training examples and interpolated to obtain the same interpretation for

di�erent instanes of the same senario. However, for the approah to sale

up to more general appliations, it must be able to ope with a whole range

of senarios. The approah impliitly requires suh a system to extrapolate to

novel situations in the same way that we do. Unfortunately, there is no reason

to believe that urrent omputer arhitetures are apable of suh reasoning

and our simple temporal models fall far short of full intentional semantis.

Therefore, a signi�ant issue in future work will be the feasibility of learning

generalised temporal strutures and default behaviours from sparse data.

5 Towards an Integrated System

In this setion we present our work towards a omplete onnetionist system

for understanding the visual aspets of human interation whih ould be used,

for example, in video-onferening appliations. First, we present methods for

fae detetion and apture of attentional frames to fous the proessing for

Visually Mediated Interation. This frame an be used for reognising the

various gesture phases that an then be used to ontrol the amera systems

in the integrated system, as disussed in previous setions.

5.1 Capturing the Attentional Frame

Our tehniques here used olour/motion ues from the image sequene to

identify and trak the head. One we know the position and size of the head,

we an de�ne an attentional frame around the person. The attentional frame

is a 2-D area around the foal user that ontains all the body movement

information relevant to our appliation, whih is all movement of the head and

right arm. To allow people to move loser or further away from the amera, this

information is normalised for size (relative to head size) around an arbitrary

standard position from the amera.

Our main priority is to �nd real-time solutions for our appliation. Therefore,

we used two omputationally heap pixel-wise proessing tehniques on our

image: thresholded frame di�erening, giving motion information, and Gaus-

sian mixture models [31℄, giving skin olour information. These were ombined
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(a)

(b)

Fig. 5. Use of olour/motion information to position an attentional frame around

a person: (a) a box is entred around eah olour/motion `blob', the inner vertial

lines representing the standard deviation of the pixels along the x-axis, giving a

width measure, (b) having identi�ed whih box ontains the head (the uppermost

one in (a)), an attentional frame box is drawn around the person relative to the

head position, and sized aording to head width. The top right image shows the

image area inside the head box, bottom right the resampled area of the image inside

the attentional frame.

to give a binary map of moving skin pixels within the image, and we used loal

histogram maxima to identify potential `blob' regions. A box whih was large

enough to ontain the head at all distanes in our target range was then �tted

over the entroid of eah of these regions. Fig. 5(a) shows how eah box is

entred on the entroid of eah maximum, with the inner lines showing the

standard deviation of the pixels along the x-axis from that entroid. It an

also be seen that the hands are ignored in this example, as they are too low

down to be inluded in a fae-size `blob'.

A robust approah to head traking using olour/motion blobs is what we all

temporal mathing: the traker only onsiders blobs from the urrent frame

whih have been mathed to nearby blobs from previous frames. This exludes

any anomalous blobs that appear for one frame only in an image sequene, and

promotes those that exhibit the greatest temporal oherene. Having found

the position and size of the head, we an extrat the attentional frame from

around the person.

5.2 Pose-Invariant Fae Detetion

The previous setion desribed how we isolated small areas of moving skin-

tones from the overall image. This redues omputation and network size,

by allowing the fae detetor to work only within a small subset of the full

spetrum of possible objets typially enountered in an oÆe environment.

Spei�ally, we an onsider the restrited form of fae detetion where we

16



(a)

y

-2 -1 +1 +2 x

+1

+2

-1

-2

(b)

Fig. 6. (a) Two methods for segmenting 25�25 pose-varying fae data: (top row)

nose-entred, (bottom row) fae-entred, the former being used for experiments here,

(b) the grid system for deteting potential faes within a potential `head blob' region

of the image: eah area tested is represented by a 4�4 box, the thik line shows the

entral position (x; y = 0), normal line and dashed lines the outer positions 1 and 2

spaes out from the entre. In this ase, a maximum output would be expeted at

x = �1; y = +1, whih indiates a head-pose slightly down and turned to the right.

need to distinguish a fae only from other moving skin-tone blobs (typially

hands).

In order to perform e�etive fae reognition, we need to identify the position

of the entral fae area (eyes, nose, mouth), rather than the entire skin area

on the head (whih also inludes forehead, nek, ears, et). Our fae detetion

task, therefore, is to distinguish entred faes from both non-entred faes and

other moving skin-tone blobs. We trained RBF networks with examples of

both to provide a ontinuous `fae/non-fae' output, with a level of on�dene

based on the di�erene between the two output values from the network [19℄.

This level of on�dene allows disarding of low-on�dene results where data

is noisy or ambiguous.

Our training examples need to take variable head-pose into aount, so the

entral fae region of a person an be reognised at all normal physiologi-

al pose positions. Faial information is only visible on a human head from

(roughly) the front �120

Æ

of x- and y-axis movement, and z-axis movement

is physiologially onstrained to around �20

Æ

(when standing or sitting) [18℄.

The fae region is entralised on the nose, rather than the fae, for all pro-

�les, as this allows non-oluded fae information to remain roughly in the

same position, see Fig. 6(a). This has previously been shown to more useful

for pose-varying fae reognition [19℄. We an then easily determine a oarse

estimate of head-pose, suh as left, frontal or right, from the output grid. This
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Fig. 7. A blok diagram outlining the integrated system (from [22℄).

qualitative level of head-pose was found to be very useful for group interation

analysis [44℄.

Therefore, the position of the nose was determined manually in order to extrat

spei� entred/non-entred fae pathes from eah image for training. Around

this, a 3�3 grid of 25�25 fae images was extrated from eah frame for the

`pro-fae' lass. This orresponds to the regions within the the solid lines in

Fig. 6(b). The `non-fae' lass data was of two types:

� from a larger grid outside the 3�3 fae grid (to enourage fae detetion

only where the image was aurately aligned on the fae), suh as within

the dotted lines in Fig. 6(b), and

� from around the entroids of `distrator' moving skin/olour regions, eg.

hands, within eah frame.

5.3 The Integrated System

The design for the omplete integrated system is seen in Fig. 7, where the

input from the ative amera is �rst proessed to detet heads and position

the attentional frames, then fae, gesture and pose lassi�ation, followed by

the interpretation of group interation.

A omplete video-onferening ative amera ontrol system requires high-

level interpretation of group and individual interation [44℄. As we have seen,

we propose a system for behavioural ontrol, whereby gesture and head pose

information, ontained in a `sene vetor', is provided for this interpretation

to take plae. This allows the system to provide amera ontrol information

via a learnt mapping onto a `amera ontrol vetor' representation.
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The sene vetor provides head-pose and gesture probabilities for the people

in the �eld of view, and the amera ontrol vetor determines the fous of

attention in terms of whih users are inluded in the proessed sene. If in-

dividuated ontrol of the system is required, then we need to identify who

these people are (from a small known group), as shown in Fig. 7. Two extra

stages, therefore, are needed: gesture and (pose invariant) identity reogni-

tion. Setion 3 above disussed pratial tehniques for takling these tasks in

real-time, using the RBF and TDRBF networks [20,21℄.

To omplete our integrated system, we need to pass this gesture and head-

pose information, with identity if appropriate, to a higher-level interpretation

network [44℄, as disussed in Setion 4. In addition, we have to adapt our sys-

tem to ope with multiple people in the sene, whih inreases the omplexity

of the low-level proessing stage. There will be more head blobs to �nd, but

by assigning attentional frames to eah person, and analysing eah of these

separately, it is hoped that problems due to olusion from other members of

the group will be kept to a minimum. This will allow a full implementation of

the multi-user system with generalised attentional swithing.

5.4 Summary

� We an use olour/motion ues to e�etively segment and trak human

heads in image sequenes.

� An attentional frame an be extrated relative to the head position and size

to allow the real-time reognition of hand gestures through time.

� By extrating olour/motion regions from the overall image, the fae dete-

tion task is greatly simpli�ed.

� A fae detetion network an be used to give a qualitative estimate of head-

pose for preditive ontrol using impliit behaviour.

� Splitting multi-phasi gestures into separate phase lasses not only gives

more preise timing of gesture events, but also allows the gesture reognition

network to provide predition hypotheses for expliit behaviour ontrol.

Although it has been possible to fully integrate real-time reognition, traking

and on-line intentional ontrol for single users, there are still some outstanding

problems for multiple interating users. We an ontrol attentional swithing

for multiple users in known senarios eg 3 people sitting and passing ontrol

in an orderly fashion as in Table 3. As mentioned earlier, a major issue with

this kind of example-based learning approah to multi-partiipant behaviour

interpretation is the feasibility of olleting suÆient data. The multipliity of

possible events inreases exponentially with the addition of extra partiipants

and the ombinatoris an only be aptured at the level of examples used for

training. Therefore, it is diÆult to know whih senarios to ollet in order to

evenly populate the spae of possible senarios with the training set. The use
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of high-level models suh as Bayesian Belief Networks (BBNs) might provide a

ombination of hand-oded a priori information with mahine learning to ease

training set requirements. This is beause the BBNs model the deomposition

of the problem and it is the model parameters (onditional probabilities) that

are learnt so that higher level inferenes an be made from low level visual

evidene (see, for example, [7℄).

6 Conlusions and Further Researh

It is lear that there are many potential advantages of Visually Mediated Inter-

ation with omputers over traditional keyboard/mouse interfaes. For exam-

ple, removing system-dependant IT training and allowing the user a more in-

tuitive form of system diretion. However, we have also seen that there are still

many hallenges for integrating multi-user interation analysis and ontrol due

to the ambiguities and ombinatorial explosion of possible behavioural inter-

ations. We have demonstrated how our onnetionist tehniques an support

real-time interation by deteting faes and apturing `attentional frames' to

fous proessing. To go further we will have to build our VMI systems around

the task demands whih inlude both the limitations of our tehniques and

potentially oniting intentions from users. Connetionist tehniques are gen-

erally well suited to this kind of situation as they an learn adaptive mappings

and have inherent onstraint satisfation.

Further researh is taking two main diretions: 1) the development of gesture-

based ontrol of animated software agents in the EU Puppet projet; and 2)

the development of ontext-based ontrol in more omplex senarios in the

new EU Atipret projet. The �rst (e.g. the GestureBall appliation) extends

the use of symboli (ation seletion) and mimeti (dynami ontrol) funtions

in gesture-based interfaes where pointing an indiate the urrent avatar and

movement patterns an ontrol animation parameters. The seond involves

reognition of omplex behaviours and ativities that onsist of a sequene

of events that evolve over time [16,17℄. As yet there has been little work

that ombines automated learning of behaviours in di�erent ontexts. In other

words, it is usually only simple, generi models of behaviour that have been

learnt rather than learning when and how to apply more omplex models in

a ontext sensitive manner.
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