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Abstract

Analysis of problem search spaces is crucial if we are to use artificial evolutionary tech-
niques to produce good solutions to difficult problems. In this paper, we apply the concept
of evolvability in order to highlight the differences between two non-trivial search spaces, for
which significant differences in the time required to evolve good solutions has previously been
shown. We define a set of evolvability metrics based on the distribution of solution offspring
fitnesses, and show that the metrics do predict the difficulty of finding good solutions in a
class of tunably rugged and neutral landscapes. In applying the metrics to the search space
defined by a robotics visual shape discrimination task, we find no evidence that evolvability
changes during neutral epochs. However, the evolvability measures do show differences be-
tween the search spaces defined by two different robot control architectures. In particular
we see a decrease in the number of non-deleterious mutations for one architecture, allowing
the evolving population to contain a larger number and variety of good genotypes on which
the evolutionary process can work.

Keywords: Evolvability, Neutral Evolution, Search Space, Genetic Algorithm, Evolutionary
Robotics

1 Introduction

It is often argued that the success of biological evolution is due in large part to the discovery of
highly evolvable genetic systems (see e.g. Dawkins, 1989; Partridge and Barton, 2000; Kirschner
and Gerhart, 1998; Wagner and Altenberg, 1996). In this paper we investigate the evolvability
of two different genetic systems in an artificial evolutionary setting, in order to explain the
differences in the evolutionary time required to find good solutions. The conclusions we draw
regarding the nature of the two search spaces, in particular the importance of non-deleterious
neutral mutations, may also apply to biological evolution.

Evolving good solutions to difficult problems takes time, especially when the evaluation of in-
dividual solution fitnesses is time-consuming. Any reduction in the time required, either in the
number of solutions needed to be evaluated or in the time taken for each evaluation, is thus of
great benefit. One potential avenue for artificial evolution research is in the development and
analysis of solution representations on which evolution can work to produce good solutions in
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few evaluations. The analysis of the search space underlying such good representations is clearly
of prime importance.

In recent work, we have investigated a range of architectures, or genetic systems, to be used as
controllers in the problem domain of evolutionary robotics (Nolfi and Floreano, 2000; Husbands
and Meyer, 1998), and introduced the “GasNet” (Husbands, 1998; Husbands et al., 1998; Smith
and Philippides, 2000). Previous work has demonstrated significant reduction in the number of
evaluations required to evolve successful GasNet controllers over a range of robotics tasks, when
compared with more standard control architectures. In this paper, we investigate the complex
search spaces underlying two control architectures (“GasNet” and “NoGas”, described further
in section 4), in order to explain the speed of evolution differences observed. We must emphasise
the non-trivial nature of the genotype-to-fitness mapping: the initial genotype is translated to
an intermediate neural network phenotype, which is then evaluated as a controller for a robot
completing some sensorimotor task. It is by no means clear that conclusions drawn from work
on more theoretical landscapes will apply in such spaces.

We argue that the concept of evolvability, or the ability of an individual or population to evolve,
has advantages over more standard measures of search space properties, such as landscape
ruggedness and local modality, when considering landscapes with significant degrees of neutral-
ity (Kimura, 1983). In particular, we define a set of evolvability metrics based on the distribution
of offspring, which we show can discriminate between theoretical search spaces of differing neu-
trality. We show that the search space defined by the robotics task does indeed show significant
neutrality, and that the evolutionary process contains long neutral epochs, punctuated by short
bursts of increase in fitness. However, we find no evidence that evolvability changes during these
neutral epochs, so cannot confirm theoretical arguments that evolvability will increase during
evolution, even during neutral epochs.

Applying the evolvability metrics to the two search spaces defined by the GasNet and NoGas
control architectures does highlight differences between the two spaces, markedly in the number
of deleterious mutations. The GasNet architecture defines a search space in which fewer muta-
tions at higher fitness are deleterious; thus a wider variety of good genotypes will exist in the
population at any one time. However, it is unclear whether this effect is the only cause of the
faster evolutionary search; the analysis into the two search spaces is an ongoing project.

The paper proceeds as follows. Section 2 introduces the idea of the search space as a fitness
landscape, and describes the important concept of landscape neutrality. Section 3 relates these
notions to the idea of evolvability, introduces the offspring transmission function, and derives a
set of evolvability metrics based on the function. Section 4 outlines the evolutionary robotics
approach, introduces the complex genotype-to-phenotype mapping used in this paper, and de-
scribes previous results showing evolutionary speed differences between two robotics controller
architectures. Section 5 goes on to describe how we apply the evolvability analysis to the two
evolvability search spaces, and section 6 details the results of analysing a single evolutionary
run in detail. Section 7 applies the evolvability metrics to the two different control architecture
search spaces, and the paper concludes with discussion.
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2 Search spaces and neutrality

This section introduces two of the main concepts used in the paper. The fitness landscape
(section 2.1), first introduced by Wright (1932), describes the search space as a multi-dimensional
landscape defined by the genotype-to-fitness mapping through which evolution moves. The
classical idea of searching this landscape for good genotypes focuses on the difficulty of climbing
up to the globally optimal fitness solution, and avoiding locally optimal solutions. Here we
argue that in difficult search problems, much of the time spent optimising may be spent in non-
adaptive neutral evolution (section 2.2). Thus measures aimed at predicting the difficulty of
search, must take account of the nature of neutrality in the space. Section 3 goes on to outline
how the concept of evolvability, in particular the transmission function, can be used to develop
such a measure.

2.1 Fitness landscapes

Wright (1932) introduced the fitness landscape as a non-mathematical aid to visualise the action
during evolution of selection and variation (in this paper we will use the term evolution to refer to
both natural biological evolution, and the artificial evolution class of stochastic search processes
which operate through some form of “generate-and-test” algorithm, e.g. genetic algorithms
(Holland, 1992), genetic programming (Koza, 1992), evolutionary strategies (Rechenberg, 1973)
and evolutionary programming (Fogel et al., 1966)). The description views the space in which
evolution takes place as a landscape, with one dimension per genotype loci and an extra dimen-
sion, or height, representing the phenotype, or fitness, of that particular genotype1. The search
space defined by a two-loci representation can thus be viewed as a three-dimensional fitness
landscape (figure 1), with each point corresponding to a single genotype and fitness. Applying a
mutation operator to a particular genotype A typically produces a cluster of offspring genotypes
lying close to A in the landscape, while recombination of two different genotypes A, B typically
produces offspring genotypes lying somewhere between A and B in the landscape. Evolution can
thus be viewed as the movement of the population, represented by a set of points (genotypes),
towards higher (fitter) areas of the landscape.

This view of the search space leads naturally to the identification of the major problems with
which evolution will have to cope; ruggedness and modality (Kallel et al., 2000). Highly epistatic
problems where fitness is dependent on multiple inter-gene interactions will produce a rugged
landscape, in which the direction to good solutions is obscured by local noise. Similarly, a high
degree of modality, i.e. large numbers of local optima, will be seen as large numbers of hill-tops in
the landscape with no neighbours of higher fitness. The majority of measures derived to predict
the difficulty of searching in a given space are based around these problems of ruggedness and
modality (see e.g. Weinberger, 1990; Hordijk, 1996; Jones and Forrest, 1995; Naudts and Kallel,
2000).

A more exact picture, especially when dealing with solutions represented by discrete-valued
genotypes, is the connected graph (Stadler, 1996). Solution vertices, or nodes, are connected

1Wright defined two forms of fitness landscapes. The first version, used in this work, defines each point on the
landscape as representing a single genotype with height corresponding to genotype fitness. The second version
has each landscape point representing an entire population, with the values along each dimension representing
the allele frequency over the population, and the height corresponding to the mean population fitness. The two
approaches may show markedly different properties (Coyne et al., 1997).
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Figure 1: A two-dimensional model fitness
landscape, with one globally-optimal and one
locally-optimal peak. From a starting point,
typically chosen at random, the search process
tries to find good solutions. The process typ-
ically creates a new set of solutions through
the application of genetic operators to the cur-
rent solution(s), evaluating whether the new set
is better than the current solutions. Evolving
populations will tend to get stuck at the locally-
optimal peak due to its large basin of attrac-
tion, and from there will only find the global
optimum with difficulty.

directly through the action of the genetic operators. The graph may show the space in a very
different way to the fitness landscape: mutation operators acting on more than one loci, and
other operators such as recombination, may not ‘see’ fitness landscape hill-tops as local optima
at all. However, local optima can clearly exist in the graph, occurring as graph nodes from
which all connected nodes are of lower fitness. This definition may produce local optima with
respect to genetic operators other than simply mutation, for example some solutions may be
local optima with respect to recombination operators.

The graph definition of the search space highlights the dangers in the simple visualisable picture
afforded to us by the fitness landscape description: our intuitive view may not apply in higher
dimensional spaces. For example, local optima may not exist in a large class of high-dimensional
spaces, a view expressed by Fisher the same year that Wright developed the fitness landscape
concept (Provine, 1986, p. 274), although it should be stressed that many problems clearly
do show local optimality, e.g. the travelling salesman problem (Lawler et al., 1985). The next
section introduces the idea of search space neutrality, one possible way in which some high-
dimension spaces may differ radically from our intuitive viewpoint.

2.2 Fitness landscape neutrality

In the neutral theory, it is argued that evolving populations may spend relatively large periods of
time undergoing non-adaptive neutral mutation (Kimura, 1983), staying at a constant height in
the fitness landscape. The evolutionary timescale may be dominated by long periods of neutral
epochs (van Nimwegen et al., 1999), interspersed with short periods of rapid fitness increase,
i.e. punctuated equilibrium (Eldredge and Gould, 1972; Gould and Eldredge, 1977; Elena et al.,
1996). During these neutral epochs, the population will move in the space through random drift
(note this is a separate process to Wright’s idea of genetic drift due to finite population size).
Despite the undirected nature of the population movement, neutrality can be of use in escaping
from local optima: figure 2 shows three model landscapes illustrating the possible advantages of
neutrality.

Neutral mutation in a fitness landscape will occur as random drift between solutions of equal
fitness connected by mutation; such neutral evolution cannot be distinguished from a population
stuck in a local optimum by looking at fitness. Instead, the underlying dynamics of the popula-
tion must be investigated. Two key features have been predicted that distinguish the behaviour
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(a) Unconnected peaks (b) Single neutral network (c) Broad neutral plateau

Figure 2: Three two-dimensional model fitness landscapes showing the possible advantage of neutrality
in a simple landscape with one globally-optimal and one locally-optimal peak. (a) shows the two peaks
as unconnected; populations evolving to the locally optimal peak will have difficulty moving to the global
optimum. (b) shows the two peaks connected by a single neutral network; a population on the sub-
optimal peak will eventually find the neutral pathway. (c) shows the two peaks connected by a broad
plateau; the population will move easily from the sub-optimal peak to the global optimum.

of the population during these periods of neutral drift from the behaviour of a population stuck
in a local optimum. The first key feature is that of movement, i.e. is the population mov-
ing significantly in genotype space. The second key feature is that of constant innovation, i.e.
the number of previously unencountered phenotypes seen over time is constant. An immediate
corollary of this property is that any phenotype should be accessible from a large enough neutral
network; neutral drift can eventually find a higher fitness genotype and jump up to a higher
neutral network.

These key features have been analysed in many theoretical landscapes. Barnett (1998) introduces
the NKp landscape, a tunably neutral variant on Kauffman’s NK systems (Kauffman, 1993),
and through calculation of population diffusion coefficients shows highly neutral landscapes
produce much more population movement during periods of no fitness change when compared
with such periods in landscapes of zero neutrality. An important result from the NKp landscape
work is that changing the amount of neutrality in the landscape has no effect on the ruggedness
correlation function; correlation lengths do not predict the change in evolutionary dynamics
seen for landscapes of different neutrality (Barnett, 1998). Newman and Engelhardt (1998)
investigate a similar tunably neutral variant of the NK system, finding that increased neutrality
allowed high fitness solutions to be found more easily through search. This is backed up by
Shackleton et al. (2000) who find that adding neutrality through redundancy can help improve
the level of fitness found through artificial evolution.

Neutrality has also been shown in real-world problem landscapes: In experiments on evolving
tone recognition circuits, populations were seen to move in genotype space during periods where
fitness did not increase (Harvey and Thompson, 1996). Experiments on evolution of digital
circuits under two conditions - allowing neutral mutations and not allowing such changes -
have also shown the importance of neutrality to the search process. Experiments where neutral
changes were allowed consistently produced two-bit multiplier solutions of higher fitness than
experiments without neutral mutation (Vassilev and Miller, 2000). Also, Thompson (2001)
reports on the presence of neutral plateaus in evolving speech recognition circuits, and shows
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through exhaustive mutation of genotypes at the start of the plateau that no transitions exist
to a higher fitness level; the neutral evolution phase is necessary.

The degree of neutrality in a system is clearly a factor in the population dynamics during evolu-
tion. However, many measures aimed at predicting the difficulty of search in a particular space
do not account for this factor, e.g. the work on NKp landscapes showing that the autocorrela-
tion function does not change with the level of neutrality (Barnett, 1998). In the next section,
we describe how the concept of evolvability can be used to derive measures aimed at predicting
the difficulty of searching in a space, taking account of the level of neutrality in the space.

3 Evolvability and the transmission function

Evolvability is loosely defined as the capacity to evolve, alternatively the ability of an individual
or population to generate fit variants (Altenberg, 1994; Marrow, 1999; Wagner and Altenberg,
1996). Thus evolvability is more closely allied with the potential for fitness than with fitness
itself; two equal fitness individuals or populations can have very different evolvabilities (Turney,
1999). Typically, researchers use some definition of evolvability based on the offspring of current
individuals or populations: in this paper we follow Cavalli-Sforza and Feldman (1976) and
Altenberg (1994) in using the transmission function of all possible offspring from a parent to
define a set of metrics of evolvability, see section 3.1 for further details.

It is often argued that there may be long-term trends for evolvability to increase during evolution
(see e.g. Wilke, 2001; Turney, 1999). However, as evolvability is more directly related to fitness
potential than fitness itself, long-term change cannot be due to straight fitness selection. Thus
any trend towards change in evolvability can only be understood through some second order
selection mechanism, by which evolution tends to select solutions that have a more evolvable
genetic system (Dawkins, 1989; Kirschner and Gerhart, 1998).

Researchers in both biology and evolutionary computation typically link evolvability with the
properties of the local search space. For example, Burch and Chao (2000) shows that RNA
virus evolvability can be understood in terms of the mutational neighbourhood, while many
evolutionary computation researchers (see e.g. Ebner et al., 2001; Marrow, 1999) argue that
changing the properties of the search space (through such mechanisms as adding neutrality)
can affect evolvability as evidenced by the speed of evolution. The interest in evolvability
for evolutionary computation practitioners is thus tied closely to work on the ruggedness and
modality of the search space, argued to primarily influence the ease of finding good solutions in
the space (Weinberger, 1990; Hordijk, 1996; Jones and Forrest, 1995; Naudts and Kallel, 2000).

Recent work has emphasised that in addition to landscape ruggedness and modality, search
space neutrality may have impact on the population dynamics of evolution (section 2.2). This
factor may not be predicted by standard measures based on the landscape ruggedness and local
modality, but may be measurable through change in evolvability. For example, recent artificial
evolution research has shown that evolvability can change during neutral epochs; populations
tend to move to “flatter” areas of the fitness landscape where fewer mutations are deleterious
(Wilke et al., 2001; Wilke, 2001). This can clearly have an impact on the speed of search, but
may not be picked up by the standard landscape ruggedness and modality measures. In this
paper, we define and apply measures based on the evolvability of solutions, in order to investigate
whether we can account for the observed speed of evolution differences between two different
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robotic controller architectures. The search spaces defined by these two genetic systems show a
high degree of neutrality, and no differences are seen using standard measures of ruggedness and
modality (Smith et al., 2001a). Further details of the genotype-to-fitness mapping are given in
section 4.

Other biological research in evolvability is also of relevance to evolutionary computation, e.g.
the work on adaptation to change in environment through such mechanisms as alleles providing
increased mutation rates (Taddei et al., 1997; Sniegowski et al., 1997). However, in this paper
we focus on evolvability in terms of the properties of the solutions’ local search space. The
next section outlines the offspring transmission function, and defines a simple set of evolvability
metrics.

3.1 The transmission function

In this paper, we follow the definition of evolvability as the ability of individuals and populations
to produce fit variants, specifically the ability to both produce fitter variants, and to not produce
less fit variants. This definition is intimately tied in with research on the transmission function
T (Altenberg, 1994; Cavalli-Sforza and Feldman, 1976), and the population offspring probability
distribution function φ from all possible applications of the genetic operators to the parent(s):

φ(g, f) =

∫ ∫ ∫ ∫

ψ(h, k, h′, k′)T (g, f : h, k, h′, k′) dh dk dh′ dk′ (1)

or the probability φ (with parental selection function ψ) of obtaining offspring genotype g
and phenotype f , over all parents of genotypes h, h′ and phenotypes k, k′. The transmission
function T is the probability density function of obtaining g, f given h, k, h′, k′ (Cavalli-Sforza
and Feldman, 1976).

In the absence of recombination, only a single parent h, k is required to produce offspring through
mutation:

φ(g, f) =

∫

∞

−∞

ψ(h, k)T (g, f : h, k) dh dk (2)

or the probability of obtaining offspring g, f over all parents h, k with selection ψ. In this paper,
we focus on the offspring of a set of single genotypes (saved during the course of evolutionary
runs), so do not integrate over the set of all possible parents. Similarly, the selection function can
be omitted as we pre-select the parent. Since we are interested only in the offspring phenotypes
f , and not the offspring genotypes g, we can refer to the transmission function T (f : h, k) as
short-hand for the probability density function of offspring fitnesses from a single parent h, k.

The transmission function thus encompasses both the operators and the representation; instead
of referring to good and bad genetic operators or good and bad representations, we can talk
about the effectiveness of the transmission function. Thus the evolvability of an individual or
population, i.e. their ability to generate fit variants, is simply a property of the individual or
population transmission function. The next section derives measures for the evolvability of an
individual solution in terms of this transmission function for continuous variables.
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3.2 Evolvability metrics

The evolvability of a solution genotype h and fitness k is directly tied to the probability of that
solution not producing offspring of lower fitness. Thus we derive our first metric of evolvability
Ea:

Ea =

∫

∞

k T (f : h, k) df
∫

∞

−∞
T (f : h, k) df

(3)

or the probability that the offspring fitness f is greater or equal to the current fitness k, i.e. the
mutation is non-deleterious. Since the transmission function T (f : h, k) is a probability density
function, the infinite integral sums to unity, so we have:

Ea =

∫

∞

k
T (f : h, k) df (4)

Low fitness solutions may have a larger Ea than high fitness solutions, simply due to the increased
number of better mutations. The second evolvability metric Eb uses only the offspring fitnesses:

Eb =

∫

∞

−∞

f T (f : h, k) df (5)

or the expected offspring fitness from genotype h. Note, this value is fitness dependent, so should
not be compared across genotypes without reference to their original fitness. A further problem
with both Ea and Eb is their dependence on the entire set of offspring fitnesses; the fraction of
offspring that are significantly fitter than the parent may be extremely small. The third measure
reflects this dimension of evolvability, looking only at the top C’th percentile of the offspring
fitnesses:

Ec =
100

C

∫

∞

Fc

f T (f : h, k) df (6)

with Fc defined by

∫

∞

Fc

T (f : h, k) df =
C

100
(7)

or the expected fitness of only the top C’th percentile of fitnesses. A similar measure Ed (not
shown) calculates the expected fitness of the bottom C’th percentile of offspring.

We define the population evolvability metrics as the evolvability calculated over the sum of
the individual transmission functions (see Smith et al., 2001b, for further details). It is also
straightforward to extend the analysis to the discrete set approximation of the transmission
function T (again see Smith et al., 2001b, for details). In the next section we apply the defined
evolvability metrics to a tunably rugged and neutral variant of the NK landscapes (Kauffman,
1993; Newman and Engelhardt, 1998), as a prelude to the real focus of the paper: applying the
evolvability metrics to the robotic controller architecture search spaces described in section 4.
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3.3 Evolvability of NK landscapes

The four metrics derived above have been used to correctly predict difficulty of search in the
theoretical NK landscapes through random sampling of the space (Smith et al., 2001b), and
agree with analytically derived values for the metrics over the NK landscapes, see figure 3.
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Figure 3: The metrics of evolvability derived in section 3.1 applied to the NK landscapes (Kauffman,
1993). See text for details.

The graphs show the four evolvability metrics calculated on a set of individual genotypes
collected through randomly sampling 1000 genotypes from 100 landscapes (N = 25, K =
{0, 6, 12, 18, 24}). The graphs correctly predict the changing evolvability at different fitness
heights in the landscape: Figure 3(a) shows that the probability of finding a non-deleterious
mutation at high fitnesses (F > 0.5), is highest for the K = 0 landscape. However, for low
fitnesses (F < 0.5), the maximally rugged K = N − 1 = 24 landscape provides the great-
est probability of non-deleterious mutations. Similarly, the expected mutation fitness at high
fitnesses (F > 0.5), is highest for the K = 0 landscape, but highest for the rugged K = 24
landscape at low fitnesses (F < 0.5), see figure 3(b). Figures 3(c) and 3(d) show a similar story:
the expected fitness for the top and bottom quartiles of all mutations are highest for the K = 0
landscape only at high starting fitnesses.
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Thus the evolvability metrics provide more information than measures of correlational structure
in the landscapes, giving detail on how easy it will be to find solutions of varying fitness. In
particular, they correctly predict that the time required to find good solutions for varying K
will depend on how good a solution we need: for low fitnesses a maximally rugged landscape is
best, but as our required fitness increases, a smaller degree of epistasis results in faster search.
Note, this is of course affected by random solutions already having expected fitnesses of 0.5, but
holds if we are starting from low fitness solutions.
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Figure 4: The metrics of evolvability derived in section 3.1 applied to a tunably neutral version of the
NK landscapes (Newman and Engelhardt, 1998). See text for details.

Figure 4 shows the evolvability metrics for a set of neutral “terraced” NK landscapes (Newman
and Engelhardt, 1998), in which the fitnesses for each loci are chosen from a discrete set of values
lying in the range [0, 1], rather than the continuous range used in the standard NK landscape.
The number of discrete values, or terraces, F is thus a measure of the neutrality in the system;
low F corresponds to landscapes of high neutrality, while F = ∞ corresponds to the classical
NK landscape. The probability of obtaining a non-deleterious mutation (figure 4(a)), and the
expected mutation fitness (figure 4(b)), are plotted for F ∈ {2, 3, 11,∞}, N = 24, K = 18. The
varying level of neutrality does not affect the expected fitness of all mutations, but does affect
the probability of obtaining a non-deleterious mutation. This change in probability is non-linear
with fitness, similar to the change seen for high K in figure 3(a). At low fitnesses, the highly
neutral landscapes have smaller probability of non-deleterious mutation. However, at higher
fitnesses the neutrality in the landscape is more useful, and the more neutral landscapes show
higher probability of non-deleterious mutations; at a fitness of 0.6 the F = 2 landscape shows
nearly 30% of such mutations compared with less than 10% for the F = ∞ landscape. This is
likely to have a significant effect on the time required to find solutions of high fitness, as seen
by Newman and Engelhardt (1998). Again, the graphs show close agreement with the derived
analytical versions (Smith et al., 2001b).

In the robotics search spaces we go on to analyse in sections 5 and 7, there is a high degree
of neutrality as evidenced by the long neutral epochs during which evolution proceeds through
non-adaptive mutation. Thus being able to determine the difficulty of finding good solutions in
spaces with neutrality, as shown above, is of prime importance. The next section describes the
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applied evolutionary robotics genotype-fitness mapping used in the work presented here.

4 An evolutionary robotics search space

One of the new styles of Artificial Intelligence to have emerged recently is evolutionary robotics
(Cliff et al., 1993; Nolfi and Floreano, 2000; Floreano and Mondada, 1994; Husbands and Meyer,
1998). The evolutionary process involves evaluating, over many generations, whole populations
of robot control systems specified by artificial genotypes. These are interbred using a Darwinian
scheme in which the fittest individuals are most likely to produce offspring. Fitness is measured
in terms of how good a robot’s behaviour is according to some evaluation criterion.

In previous work, we have investigated the use of different neural network architectures, focusing
on developing control structures that produce successful solutions in fewer evaluations using
artificial evolution (Husbands et al., 1998). In experiments on a variety of robotics tasks, we have
shown that a particular style of network, the “GasNet” (section 4.2), is particularly amenable
to evolutionary search.

Our primary reason for applying the evolvability analysis developed in the earlier sections is to
explain the differences in speed of evolution for the GasNet and NoGas neural networks in terms
of their underlying search spaces. The second aim of the paper is to investigate how a search
space defined by an extremely complex genotype-to-fitness mapping differs from landscapes such
as the NK systems, which are derived primarily for theoretical analysis. In particular, it is not
at all clear whether properties of more theoretical landscapes will be observed for the mapping
used here, in which the initial genotype translates to an intermediate neural network phenotype,
with the final fitness measuring how well this network performs over time in controlling a robot
engaged in solving a visual shape discrimination task.

4.1 Evolutionary robotics control architectures

Artificial neural networks have been successfully used in a large number of evolutionary robotics
experiments (for an overview see Nolfi and Floreano, 2000). Typically, external sensory data is
used for the network input, and the network output is used to control the robot motors. Other
styles of control architectures have also been used for evolutionary robotics experiments, notably
genetic programming (Koza, 1992) and classifier systems (Holland, 1992).

4.2 The GasNet and NoGas architectures

The networks used in the experiments described later are discrete time step dynamical systems
built from units connected together by links that can be excitatory (with a weight of +1) or
inhibitory (with a weight of -1). The output, On

i , of node i at time step n is a function of the
sum of its inputs, as described by equation 8. This defines the basic “NoGas” architecture:

On
i = tanh



kn
i





∑

j∈Ci

wjiO
n−1
j + In

i



 + bi



 (8)
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In the “GasNet” control system, in addition to this underlying network in which positive and
negative ‘signals’ flow between units, an abstract process loosely analogous to the diffusion of
gaseous modulators is at play (Philippides et al., 2000). Some units can emit ‘gases’ which
diffuse and are capable of modulating the behaviour of other units by changing their transfer
functions in ways described in detail later. This form of modulation allows a kind of plasticity
in the network in which the intrinsic properties of units are changing as the network operates.
The networks function in a 2D plane; their geometric layout is a crucial element in the way in
which the ‘gases’ diffuse and affect the properties of network nodes.

Where Ci is the set of nodes with connections to node i, In
i is the external (sensory) input to

node i at time n, and bi is a genetically set bias. Each node has a genetically set default transfer
function parameter k0

i . As will seen later, the value kn
i for each node can be changed by diffusing

gases as the network runs. Thus the actual shape of the node’s transfer function is altered via
the gas modulation mechanism.

4.2.1 Gas diffusion in the networks

It is genetically determined whether or not a node will emit one of two ‘gases’ (gas 1 and gas 2),
and under what circumstances emission will occur (either when the ‘electrical’ activation of the
node exceeds a threshold, or the concentration of a (genetically determined) gas in the vicinity
of the node exceeds a threshold). The electrical threshold used in the experiments described
later was 0.5, the gas concentration threshold 0.1.

A very abstract model of gas diffusion is used. For an emitting node, the concentration of gas at
distance d from the node is given by equation 9. Here, r is the genetically determined radius of
influence of the node, so that concentration falls to zero for d > r. This is loosely analogous to
the length constant of the natural diffusion of NO, related to its rate of decay through chemical
interaction. T (t) is a linear function that models the build up and decay of concentration after
the node has started/stopped emitting (equation 10 and 11). The slope of this function is
individually genetically determined for each emitting node, C0 is a global constant.

C(d, t) =

{

C0 × e
−2d

r × T (t) d < r
0 else

(9)

T (t) =

{

H( (t−te)
s

) emitting

H(H( (ts−te)
s

) − H( (t−ts)
s

)) not emitting
(10)

H(x) =











0 x ≤ 0
x 0 < x < 1
1 else

(11)

where te is the time at which emission was last turned on, ts is the time at which emission was
last turned off, and s (controlling the slope of the function) is genetically determined for each
node.

In other words, the ‘gas’ concentration varies spatially as a Gaussian centred on the emitting
node. The height of the Gaussian at any point within the circle of influence of the node is
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linearly increased or decreased depending on whether the node is emitting or not. Note T (t)
saturates at a maximum of 1 and a minimum of 0. The total concentration at any point in the
network is found by summing the concentrations from all emitting nodes.

4.2.2 Modulation by the gases

The transfer parameter value for the ith node at time step n, kn
i (see equation 8), is changed (or

modulated) by the presence of gases at the site of the node. Gas 1 increases the value of kn
i in a

concentration dependent way, while gas 2 decreases its value. This modulation is described by
equations 12 to 14 and happens on every time step as the network runs. This provides a form
of plasticity very different from that found in most traditional artificial neural networks.

kn
i = P[indexn

i ], P = {−4.0,−2.0,−1.0,−0.5,−0.25, 0.0, 0.25, 0.5, 1.0, 2.0, 4.0} (12)

where,

indexn
i = f

(

index0
i +

Cn
1

C0 × K
(N − index0

i ) −
Cn

2

C0 × K
index0

i

)

(13)

f(x) =











0 x ≤ 0
⌊x⌋ 0 < x < N
N else

(14)

where P[i] refers to the ith element of set P, indexn
i is node i’s index into the set P of possible

discrete values kn
i can assume, N is the number of elements in P, index0

i is the genetically set
default value for indexi, Cn

1 is the concentration of gas 1 at node i on time step n, Cn
2 is the

concentration of gas 2 at node i on time step n, and C0 and K are global constants (both set
to 1 in this study). So, indexn

i increases in direct proportion to the concentration of gas 1,
and decreases linearly with respect to the concentration of gas 2. In this way the value of kn

i is
changed over time by the presence of gases at the node’s site (the concentrations are governed
by equation 9).

In a variety of robotics tasks (Husbands, 1998; Husbands et al., 1998; Smith and Philippides,
2000), GasNet controllers evolve significantly faster than networks without the gas signalling
mechanism. The next section describes the task used in the work presented here, while section
4.6 details previous results for the speed of evolution.

4.3 The robotics task

The evolutionary task at hand here is a visual shape discrimination task; starting from an arbi-
trary position and orientation in a black-walled arena, the robot must navigate under extremely
variable lighting conditions to one shape (a white triangle) while ignoring a second shape (a
white square). Both the robot control network, an arbitrarily recurrent neural network incor-
porating artificial diffusing neuromodulators, and the robot sensor input morphology, i.e. the
number and position of input pixels used in the visual array, were under evolutionary control.
Fitness over a single trial was taken as the fraction of the starting distance moved towards the
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triangle by the end of the trial period, and the evaluated fitness was returned as the weighted
sum of 16 trials of the controller from different initial conditions:

F =
1

136

i=16
∑

i=1

i
DF

i

DS
i

(15)

where DF
i is the distance to the triangle at the end of the ith trial, and DS

i the distance to the

triangle at the start of the trial, and the i trials are sorted in descending order of DF

DS . Thus good
trials, in which the controller moves some way towards the triangle, receive a smaller weighting
than bad trials, encouraging robust behaviour on all 16 trials.

Figure 5: Screen shot of the simulated arena and robot. The bottom-right view shows the robot position
in the arena with the triangle and square. Fitness is evaluated on how close the robot approaches the
triangle. The top-right view shows what the robot ‘sees’, along with the pixel positions selected by
evolution for visual input. The top-left view shows the current activity of all nodes in the neural network.
The bottom-left view shows the robot control neural network: the visual input positions in the camera
are shown on the right, with the nodes they connect to placed in the network plane on the left. The
motor output nodes RF, LF, RB and LB are shown in the four corners of the network plane, and high
gas concentrations are shown by shading, e.g. surrounding node 8. See text for further details of the task
and network controllers.

Evaluations are carried out in a minimal simulation (Jakobi, 1998), with large amounts of noise
added to sensor and motor readings, so that controllers will transfer to robots operating in the
real environment. Figure 5 shows a screen shot of a simulated evaluation. As in many problems
requiring controllers to provide sensor-to-motor mappings over time, fitnesses are extremely time
consuming to evaluate (in the work presented here, evaluating a sample of 106 fitnesses takes
around 24 hours on a Pentium II 700MHz machine) and inherently extremely noisy. Success in
the task was taken as an evaluated fitness of 1.0 over thirty successive generations of the genetic
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- Initialise population of 100 solutions on 10x10 grid.

- Evaluate each solution fitness.

- Repeat until success criterion met, or MaxGenerations reached:

- Repeat 100 times for 1 generation:

- Select solution at random.

- Create mating pool of solution plus 8 nearest grid neighbours.

- Pick parent P through rank-based roulette wheel selection on mating pool.

- Create offspring O through mutation of P, and evaluate fitness.

- Place O in 10x10 grid, replacing mating pool solution picked through

inverse rank-based roulette wheel selection.

Figure 6: The genetic algorithm pseudo-code.

algorithm.

4.4 The genetic algorithm

A distributed asynchronous updating genetic algorithm was used, with a population of 100
solutions arranged on a 10×10 grid. Fitness was awarded on the fraction of the distance moved
towards the triangle over a series of 16 runs with different initial conditions, see equation 15.
Parents were chosen through rank-based roulette-wheel selection on the mating pool consisting
of the 8 nearest neighbours to a randomly chosen grid-point. The child solution was a mutated
copy of the parent (see section 4.5 for details of the mutation operator) and placed back in the
mating pool using inverse rank-based roulette-wheel selection. One generation was specified as
100 such breeding events. Figure 6 shows the pseudo-code for the genetic algorithm.

4.5 The solution representation and mutation operator

The neural network robot controllers were encoded as variable length strings of integers, with
each integer allowed to lie in the range [0, 99]. Each node in the network was coded for by
nineteen parameters, controlling such properties as node connections, sensor input, and node
bias. For the NoGas networks, certain parameters coding for the gas diffusion details were
simply ignored (note that this does not affect the mutation rate; as described below the rate is
specified per genotype loci). In all experiments, the GA population were initially seeded with
networks containing ten neurons. For further details see Husbands et al. (1998); Smith and
Philippides (2000).

Three mutation operators were applied to solutions with probability µ during evolution (for most
experiments detailed here, µ = 4%). First, each integer in the string had a µ% probability of
mutation in a Gaussian distribution around its current value (20% of these mutations completely
randomised the integer). Second, there was a µ% chance per genotype of adding one neuron
to the network, i.e. increasing the genotype length by 19. Third, there was a µ% chance per
genotype of deleting one randomly chosen neuron from the network, i.e. decreasing the genotype
length by 19. It should be noted that the value of µ = 4% used in these experiments is a much
larger level of mutation than typically used in artificial evolution optimisation (and certainly
much larger than in biological evolution). However, lower levels of mutation produce little change
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in the mutated offspring networks when compared to the parents: table 1 gives some evidence
that even higher mutation rates are useful.

4.6 Previous results: GasNets are faster

Over a large sample of evolutionary runs with GasNet and NoGas conditions, GasNet networks
allowed to use the gaseous signalling mechanism reached success significantly faster than the
NoGas networks (remember from section 4.3 that success is defined as 100% fitness over 30
consecutive generations). This speed difference was seen in several different evolutionary robotics
scenarios (e.g. Husbands, 1998; Smith and Philippides, 2000) and over several different mutation
rates, e.g. see table 1.

Condition µ = 0.01 µ = 0.02 µ = 0.04 µ = 0.08 µ = 0.16

GasNet 7,354 3,436 675 449 671
NoGas >10,000 9,510 1,228 1,656 831

Table 1: Median number of generations required for success for the GasNet and NoGas architectures,
shown for several different mutation rates µ.
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Figure 7: Mean number of generation required for success for GasNets and NoGas networks, under two
different network connectivity schemes. Error bars show one standard deviation. Note that the mean
differences are bigger than the median differences reported in table 1, as the distribution of times taken
to reach high fitness was not normally distributed.

It should be emphasised that there is a significant difference in the times required to evolve
successful controllers for the task. Over many mutation rates, the GasNets are several times
faster than the NoGas versions. Figure 7 shows the differences in mean number of generations
required to evolve successful controllers. It is this difference in time required for the evolution of
successful controllers that we want to explain in terms of the underlying search spaces. The next
section describes the evolvability analysis used in this paper, applying the derived evolvability
metrics to the two evolutionary robotics search spaces.
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5 Evolvability analysis of a search space

In previous work (Smith et al., 2001a), we have shown that several standard analyses (correlation
structure (Weinberger, 1990), local modality (Weinberger, 1991), and information structure
(Vassilev et al., 2000)), derived to predict the difficulty of finding good solutions in a given
space, fail to predict the evolutionary speed differences described in section 4.6. There are
three primary reasons for these failures. First, the fitness distribution of the space is extremely
skewed, with the vast majority of genotypes having extremely low fitness: statistics calculated
through random sample techniques fail to explore the interesting parts of the space. Second,
the large amount of noise inherent in the fitness evaluation tends to obscure measures of the
space ruggedness and local modality. Third, most of the evolutionary runs show extremely
long periods during which fitness does not apparently increase. Barnett (1998) has shown the
unreliability of correlation structure measures when applied to spaces with neutrality; if these
periods of no apparent fitness increase are indeed neutral epochs then we might expect many
standard measures to fail when predicting search difficulty.

In spaces with a high degree of neutrality, it may well be that analysis of the evolvability of
solutions will predict the difficulty of finding successful solutions. This is backed up by the
evidence presented on the evolvability of tunably neutral NK landscapes, shown in section 3.3,
which tallies with the time required to evolve good solutions (Newman and Engelhardt, 1998).
Thus we frame the hypothesis that evolvability analysis of the two search spaces we are interested
in, namely the GasNet and NoGas conditions, may well explain the differences in time required
for evolution of good solutions.

The rest of this paper focuses on applying the evolvability metrics derived in section 3.1 to the
two evolutionary robotics spaces at hand. The three questions we address are: First, do the
periods during which fitness does not apparently increase correspond to neutral epochs, i.e. do
the spaces show a high degree of neutrality? Second, if these periods are neutral epochs, how does
evolvability change during over the evolutionary run, both during periods during which fitness
increases and during these neutral epochs? Third, do the evolvability metrics predict differences
between the GasNet and NoGas search spaces, which lead to the observed evolutionary speed
differences?

During the course of twenty evolutionary runs, ten with the gas mechanism active and ten
without, we have collected a large sample of genotype populations. The following sections apply
the evolvability metrics to the saved individuals and populations. Section 6 analyses a single
evolutionary run in detail, showing that the run can be characterised by a long neutral epoch,
with two rapid periods of fitness increase. We also investigate how evolvability changes over the
run, and see if the pattern is repeated over a large sample of runs. Finally, section 7 analyses
the evolvability of Gas and NoGas samples, to see if differences in the spaces are seen.

6 Analysis of a single evolutionary run

Figure 8 shows the population best and mean evaluated fitnesses over generations for an evo-
lutionary run chosen at random from the sample of GasNet runs. Both fitnesses climb quickly
from an initial near-zero random performance, then stay fairly constant over the next 450 gen-
erations apart from the high levels of evaluation noise. The fitness increase seen at generation
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Figure 8: Best and mean fitness of the population over generations. See text for details of the fitness
function.

477 leads extremely quickly to the best individual solutions reaching 100% fitness.

First, we show that the periods between generations 100 and 477 can be regarded as a neutral
epoch (section 6.1), and investigate the population behaviour during this epoch, showing that
the population moves significantly through the space (section 6.2). Section 6.3 applies the
evolvability metrics derived in section 3.1, and section 6.4 compares the evolvability across the
neutral epoch predicted by the metrics, with results obtained from repeating evolution with
different starting populations.

6.1 Results: A neutral epoch?

The best and mean fitnesses of the population (figure 8) between generations 50 and 477 appear
to show no significant increase; this section investigates whether this apparently neutral phase
is really a neutral epoch. We investigate the variance in evaluated fitness shown by a single
genotype, and relate this to the variance seen in the population.

Figure 9 shows the distribution of fitnesses from multiple evaluations of a single genotype, with
all fitnesses plotted (figure 9(a)), and only the best fitness every 50 evaluations plotted (figure
9(b)). Making the approximation that half the population has a similar high level of fitness
(supported by the relatively high mean fitness over the population) allows us to make the link
between the best fitness every 50 evaluations of the single genotype to the fitness of the best
individual in a single generation. Note that changing this approximation and plotting only the
best fitnesses over some other number of evaluations has little effect on the analysis, beyond
changing the lower limit of the neutral band. The fitnesses seen for a single genotype gives
us a possible range for the band of neutral fitness; figure 10 shows this range applied to the
evolution fitness graph (the grey band). Only one evaluation before the large increase in fitness
at generation 478 lies above this range (the 0.40 fitness seen at generation 46), with all others
lying in the band. This is an important result: A single genotype evaluated multiple times can
give rise to the variation in fitness seen before generation 478. If a single genotype can give rise
to such variation, we can consider the range as a neutral band of fitness; the population is in a
non-adaptive phase of evolution. However, figure 10 also shows the rolling mean over the last 30
generations of the fittest individual in the population (calculating the rolling mean over other
numbers of generations show similar results), implying that there may be more than a single

18



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

600

700

800

900

1000

N

fitness ∈  [0,1]

(a) All evaluations

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0

5

10

15

20

25

30

35

N

fitness ∈  [0,1]

(b) Best of 50 evaluations

Figure 9: The fitness distribution histogram of a single genotype evaluated 10, 000 times. (a) All
evaluations plotted, and (b) Only the best fitness every 50 evaluations plotted. Fitness ranges from
[0.23, 0.37] and was used to calculate the range of the neutral band in figure 10. Possible fitness ∈ [0, 1].

neutral network within this band; the first lower fitness band lies roughly between generations
50 and 100, the second between generations 100 and 477. No further analysis is done on possible
multiple neutral networks in the band; this would be an interesting area of further study.
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Figure 10: Best fitness of the population plotted with rolling mean over the last 30 generations, showing
at least two distinct neutral plateaus, with fitnesses roughly of 0.25 and 0.3. The neutral band (grey
block) was calculated from the range of fitnesses found over the mutations performed on a single genotype
(figure 9).

Thus we identify the main neutral phase of evolution as lying between generations 100 and 477.
The next section explores the dynamics of the evolutionary population during this period; is it
simply stuck in a local optimum; or moving in genotype space?

6.2 Results: Neutral epoch population movement

The key identifying feature for the population diffusing along a neutral network is the move-
ment of the population in genotype space. This is typically measured through the population
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diffusion coefficient, calculated through the distance moved by the population centroid each gen-
eration. However, in this scenario we have variable length genotypes (section 4.5). The approach
used here is to calculate the centroid movement separately for each genotype length present in
the population; results shown are for length 171 genotypes which are present on nearly every
generation. Results for other lengths were similar.

Figure 11 shows the distance moved by the population centroid. Figure 11(a) shows the distance
on each generation between the current 171 length genotype centroid and the centroids from
both the previous generation and 10 generations earlier, scaled by the genotype length. The
population is clearly moving from generation to generation during the neutral phase, and the ten-
generation movement shows it is not just moving back and forth. Note that the peak occurring
at generation 471 does not coincide with the increase in fitness, but occurs just before.
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Figure 11: The Euclidean distance moved by the population centroid: (a) The distance between the
current generation centroid, and centroids on both the previous generation and 10 generations earlier, and
(b) The distance between the current generation centroid, and the centroids on both the start generation
and the start of the neutral epoch. Calculated for length 171 genotypes only, and scaled by the genotype
length.

Figure 11(b) shows the distance moved by the centroid from the start of the entire run, and
from the start of the neutral plateau (taken to be generation 100 in section 6.1). The plateau
seen in the graph around a divergence of 0.025 is due to the space not being infinite in size;
as the population moves away from the initial population, it can only move a finite distance
related to the average distance between two randomly chosen unit vectors. This distance for
N -dimensional vectors is

√
N/3, so scaled by the length the distance is (3

√
N)−1, which equals

0.025 for the length 171 genotype vectors used here. Thus the population is moving significantly
during the neutral phase. Results from the other length genotypes are extremely similar. Note
that the high mutation rates described in section 4.5, and the possibility of adding and deleting
whole sections of the genotype, make this movement higher than in other studies of population
movement during artificial evolution (see e.g. Barnett, 1998).

Having established that the period from generations 100 to 477 can be regarded as a neutral
epoch during which the population moves significantly, we now apply the evolvability metrics
defined in section 3.2 to the best-of-generation individuals from each generation across the
evolutionary run. We focus on the behaviour of evolvability during the neutral epoch, and
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during the two brief periods during which fitness increases.

6.3 Results: Evolvability over the evolutionary run

For the best individual of each generation, the transmission functions were approximated through
recording fitnesses from 100, 000 applications of the mutation operator. Figure 12 shows the
highest and expected mutation fitnesses across generations (rolling means over 20 generations
have been added to aid clarity). The graphs closely follow the best individual fitness, rising
sharply during the initial period of fitness increase, then staying roughly constant once the
neutral epoch is reached around generation 100 (although there is a single high mutation fitness
found just after generation 60).

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

M
a
x
(F

m
u
t)

(a) Highest mutation fitness

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generation

<
 F

m
u

t

0
,1

0
0
 >

Mean fitness of all mutations
Current Individual           

(b) Expected fitness over all mutations, Eb

Figure 12: 100, 000 mutations were applied to each of the best-of-generation individuals, approximating
each individual transmission function distribution of offspring fitnesses. (a) Shows the highest mutation
fitness found, and (b) shows the expected mutation fitnesses (current individual fitnesses are shown for
comparison). Neither graph shows a clear trend during the neutral epoch over generations 100-477, but
both increase dramatically during the periods during which fitness increases. Rolling means over 30
generations have been added to aid clarity.

Two evolvability metrics derived in section 3.1 are shown in figure 13; the probability of obtaining
a better mutation, and the expected fitness over the top quartile of mutations. Figure 14 shows
the expected fitness over the bottom quartile of mutations.

We see that the probability of obtaining a better fitness (figure 13(a)) does not show any obvious
trends over either the neutral or fitness-increasing epochs, although the spike around generation
60 coincides with the high fitness seen in figure 12. The expected fitness value over the upper
quartile of the transmission function (figure 13(b)) does not change over the neutral epoch, but
increases during the fitness-increasing epochs. However, if anything, the expected fitness over
the bottom quartile of mutations shows a slight decrease over the neutral epoch, and decreases
dramatically during the increase in fitness around generation 477. This behaviour is discussed
further in section 8. In the next section, we confirm that the population is not moving in any
useful manner over the neutral epoch, by reseeding five populations from across the neutral
epoch back into the genetic algorithm, and recording how many generations were required to
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Figure 13: Evolvability metrics plotted over generations. (a) The probability of a fitter mutation than
the current individual, and (b) The expected value over the top quartile of transmission function fitnesses.
Rolling mean over 30 generations have been added to aid clarity.
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Figure 14: The expected fitness of the bottom quartile of mutations (Ed) plotted over generations.
Rolling means have been added to show the short- and long- term trends: (a) Rolling mean over last 20
generations shown, and (b) Rolling mean over the last 100 generations shown.

evolve successful controllers.

6.4 Does evolvability predict speed of evolution?

The evolvability results from section 6.3 predict that there is no change in potential for evolution
of high fitness during the neutral epoch between generations 100-477. In particular, the pop-
ulation shows no evidence of having moved towards areas with either increased probability of
producing better mutations, or decreased probability of producing bad mutations. The second
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experiment empirically tests this prediction, repeating the evolution from different points along
the neutral epoch. Five populations, from generations {100, 200, 300, 400, 477}, were used as the
initial populations for the genetic algorithm, and the evolutionary process repeated five times
for each population. Table 2 shows the number of generations required for 100% success on
each of the evolutionary runs, while figure 15 shows the median number of generations taken
to reach certain fitnesses. Statistical analysis shows no significant differences between the five
sets of runs, supporting the hypothesis that there is no change in the evolutionary potential, or
evolvability, of the population across the neutral epoch.

Pop 100 Pop 200 Pop 300 Pop 400 Pop 477

Mean 2,008 2,096 1,901 1,680 3,024
Median 1,522 1,464 932 1,093 1,597

Maximum 4,713 7,696 >10,000 5,707 >10,000
Minimum 353 365 107 353 290

Table 2: Statistics on the number of generations required before the GA reaches 100% success, starting
from the 5 populations saved on generations {100, 200, 300, 400, 477}. Note: Runs not reaching success in
10, 000 generations were counted as 10, 000 for averaging purposes. No significant differences were seen
between the populations (Kruskal-Wallis analysis).
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Figure 15: Median from 5 runs of the
number of generations required before the
GA reaches a given fitness level, starting
from the 5 populations saved on generations
{100, 200, 300, 400, 477}. No significant dif-
ferences were seen between the populations
(Kruskal-Wallis analysis).

6.5 Summary of evolutionary run analysis

Over a sample of twenty evolutionary runs, we see the same general trends as seen for this
single run. First, there is no evidence for change in evolvability across neutral epochs (although
it is possible that detailed mathematical time-series analysis would show some small trend),
either in the probability of obtaining fitter mutations, or in the best or expected mutation
fitness, or in the expected fitness over the top or bottom quartiles of the mutations. Thus we
see no trend towards fewer bad mutations or more good mutations. Second, evolvability does
change significantly during epochs of fitness increase, when measured in terms of the highest and
expected fitnesses of the transmission function. In general, evolvability increases during these
periods, although some evidence is seen for an increase in bad mutations during fitness-increase,
corresponding to the best individual solution reaching a fitter area of space, but with many more
deleterious mutations nearby. However, we should mention that on three of the twenty runs,
we saw possible indications of evolvability increasing over a neutral epoch, as measured through
expected fitness and probability of obtaining higher fitness. This is discussed further in section
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8. The next section goes on to investigate the evolvability of two different search spaces defined
by two neural network architectures.

7 GasNet and NoGas evolvability

In this section, we apply the evolvability analysis defined in section 3.2 to the GasNet and NoGas
neural network architectures, to try to explain the observed differences in speed of evolution, in
terms of the underlying search spaces.

A sample of twenty evolutionary runs, ten GasNet and ten NoGas, were used to provide an
online sample of the two search spaces (online in the sense that the samples were collected
during a search process, rather than collected through random sampling). The best individual
of each generation on every run was saved (roughly 80, 000 solutions in all), and the transmission
function distribution of offspring fitnesses calculated through 1, 000 applications of the mutation
operator. Figure 16 shows the four evolvability metrics calculated over the transmission functions
for the entire online sample, with evolvability calculated for the population at each sample fitness,
and plotted against the sample fitness (section 3.2 describes how the population evolvability is
defined as the evolvability over the sum of the individual transmission functions). Several points
emerge:

First, the probability of obtaining a fitter mutation (figure 16(a)) decreases from an initial value
of around 15%, eventually reaching a constant value of roughly 2% at a fitness level just above
0.4. These values will be extremely affected by the noise inherent in fitness evaluation, and the
constant value of 2% is similar to the probability that an equal fitness solution has a higher
fitness than the current evaluation (already evaluated as the best of generation). No obvious
difference is seen between the two conditions.

Second, the expected fitness over all mutations increases roughly linearly as a function of the
current fitness (figure 16(b)). Again no obvious differences are seen between the two spaces,
although there is a slight suggestion that the expected fitness in the GasNet space increases
slightly faster above fitnesses of 0.7.

Third, the expected fitness of the top 50% of mutations (figure 16(c)) increases roughly linearly
with fitness. Again no differences are seen between the two spaces.

Fourth, the expected fitness of the bottom 50% of mutations (figure 16(d)) shows a clear dif-
ference between the two spaces. In general the expected fitness increase with fitness, but the
NoGas space shows a decrease at a fitness of roughly 0.5. This difference is also seen in the
expected value over the bottom quartile of mutations, and for the middle 50% and 33% of muta-
tions. Although the fitness differences are relatively small, there is a consistent trend: at higher
fitnesses, the GasNet search space shows fewer bad mutations than the NoGas space. This fits
with previous results showing that the evolutionary speed differences only emerge at high fit-
nesses, see figure 17. It should be emphasised that the number of online samples collected and
tested (over 80, 000 solutions) make this result extremely unlikely through chance. All statistical
analyses show significant differences, as would be expected for such a large sample size.
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Figure 16: The metrics of evolvability derived in section 3.1 applied to the search spaces defined by
the GasNet and NoGas neural network architectures. Twenty evolutionary runs were used to provide an
online sample of the spaces, and the transmission distribution of 1-step mutation offspring approximated
through 1, 000 applications of the mutation operators to the collected sample. These distributions were
then summed up for all sample solutions of equal fitness (more accurately, all samples lying within
a certain fitness range), and evolvability calculated over each summed distribution. Thus each point
represents an evolvability metric calculated over a sample of solutions at that fitness in the search space.
Rolling means over the 20 neighbouring fitness ranges have been added to aid clarity. See text for further
details.

7.1 Summary of GasNet and NoGas evolvability analysis

We have applied a set of evolvability metrics to samples of solutions from the search spaces
defined by two different neural network architectures, GasNet and NoGas. Clear differences
in the evolvability of the two network representations are seen in the higher expected fitnesses
for the worst mutations, see figure 16(d). Further analysis (figure not shown) shows that this
higher expected fitness is due to a larger fraction of neutral mutations and a smaller fraction of
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Figure 17: Median generations before given fitness level reached, for GasNet and NoGas conditions.

extremely deleterious mutations from the GasNet solutions, rather than an increased number of
intermediate mutations. By contrast, the probability of mutations which increase fitness, and
the overall expected fitness of mutations were extremely similar for the two search spaces (the
differences in the expected fitness of the worst mutations has only a relatively small impact on
the overall expected fitness).

Although the differences are small, the larger number of neutral mutations in the GasNet space,
especially at higher fitnesses, will result in a larger number and variety of good solutions in
the population at any one time. The probability of a deleterious mutation being subsequently
reversed is small2, thus at any one time, evolution in the GasNet space has a greater probability
of finding the good mutations: both the increased number of good solutions, and the increased
variety will aid evolution.

8 Discussion

The promise of artificial evolution lies in producing good solutions to difficult problems. How-
ever, if we are to apply such techniques to evolving solutions for problems with time consuming
fitness evaluation, we must develop suitably evolvable solution architectures. In recent work
we have developed the “GasNet”, and shown in a series of evolutionary robotics experiments
that a significant decrease in the numbers of evaluations is required to evolve successful GasNet
controllers (Husbands, 1998; Husbands et al., 1998; Smith and Philippides, 2000). In this paper
we have applied the concept of evolvability in order to analyse the search spaces underlying two
different genetic systems, the GasNet and NoGas robot control architectures.

We have shown how a set of evolvability metrics defined in terms of the transmission function, or
the distribution of solution offspring fitnesses, can predict the difficulty of finding good solutions
in a theoretical class of tunably rugged and neutral landscapes (Kauffman, 1993; Newman and
Engelhardt, 1998). In particular, we have shown that the metrics can predict the difficulty of
finding solutions of a given fitness, not possible with single measures of landscape “difficulty”
such as the correlation length.

2We can apply Muller’s ratchet argument: the probability of a low fitness solution being selected as a parent
is small, and the probability that the resulting offspring will have high fitness is also small.
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In a set of experiments we then applied the evolvability metrics to the two search spaces defined
by the GasNet and NoGas control architectures, in order to investigate the behaviour of evolv-
ability during neutral fitness epochs (identified through analysis of the population fitness and
movement through genotype space), and periods where fitness increased. The majority of runs
showed no evidence for any general trend towards increase in evolvability across neutral epochs,
although three of the twenty runs analysed showed some such increase. By contrast, there was
certainly a general trend for increase in evolvability during periods in which fitness increased.
However, this was not the whole story: occasionally evolvability was seen to decrease during pe-
riods of fitness increase, e.g. see figure 14. Such significant decreases in evolvability during a rise
in fitness represent the discovery of a portal mutation to a neutral network of higher fitness, but
where the error threshold for deleterious mutations is more severe (Nowak and Schuster, 1989).
Using an evolutionary approach in which the elite solutions are not necessarily propagated to
the next generation might well result in losing these high fitness genotypes.

Finally, we applied the metrics of evolvability to the GasNet and NoGas search spaces in order to
highlight the differences leading to the significantly faster evolutionary search with the GasNet
architecture. Possibly surprisingly, no differences were seen for the probability of mutations
increasing fitness, or for the expected fitness over all mutations, or for the expected fitness over
the best mutations. However, significant differences were seen in the expected fitnesses over the
worst mutations: at higher fitnesses, the GasNet solutions produced less deleterious and more
neutral mutations than the NoGas solutions.

It should be emphasised that this result is not contradicted by the GasNet and NoGas evolu-
tionary runs showing the same population mean fitness for a given best fitness (as is indeed the
case), for two reasons. First, as described in section 7, the differences in the expected fitness of
the worst mutations has only a relatively small impact on the overall expected fitness, so the
population fitnesses will not be expected to be very different, and the effect may well be masked
by the inherent evaluation noise. Second, the population may be spread over larger or smaller
volumes of the search space at different times, and may be centred on more than one dominant
genotype. By contrast, the distribution of offspring investigated in this paper is by definition the
distribution of 1-step mutants from the parent, so the evolvability metrics describe a constant
volume of space defined by the genetic operators.

It is unclear whether the differences in the numbers of non-deleterious mutations between the
GasNet and NoGas search spaces provide the whole picture. The significant differences in
the search spaces are small, and may not account fully for the observed differences in the
time required for evolving good solutions. Although the increased number and variety of good
genotypes in the population will aid evolution, it may be that there is another factor affecting
evolutionary speed that remains unidentified. Further research will focus on whether the increase
in variety of good genotypes fully accounts for the speed of evolution.
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