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Abstract

The majority of measures developed to predict the difficulty of finding good solutions to a given
problem through search focus on epistasis, while other features which affect problem difficulty such
as landscape neutrality, may be ignored completely. In this paper we develop a set of measures
based on evolvability statistics of the fitness landscape surrounding sampled solutions. Averaging the
measures over a sample of equal fitness solutions allows us to build up a fitness portrait of the fitness
landscape, which we show can be used to predict the difficulty of finding good solutions in a set of
tunably rugged and tunably neutral landscapes.
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1 Introduction

The majority of measures developed to predict the difficulty of finding good solutions to a given problem
through search focus on epistasis, while other features which affect problem difficulty such as landscape
neutrality, may be ignored completely. In this paper we present a novel technique based on local charac-
teristics of the fitness landscape surrounding a solution, averaged over samples of equal fitness solutions.
We show that such a technique predicts the difficulty of searching in both tunably rugged and tunably
neutral fitness landscapes.

A second feature of most problem-hardness measures is that a single global metric is used to predict the
difficulty of searching over the entire fitness landscape. The technique presented in this paper develop a
set of continuous metrics that vary with solution fitness. This approach allows the identification of fitness
levels at which direct search optimisation techniques are likely to have difficulty finding fitter solutions.

Many problems to which stochastic search techniques such as evolutionary computation are typically
applied, present such highly skewed distributions of solution fitnesses that random sampling (even when
some imposed distribution is applied to the sample) are vanishingly unlikely to represent fitnesses above
a given level, even when such fitnesses are easily found through direct search optimisation. If we are
to predict the difficulty of searching in such spaces, we must develop problem difficulty measures that
work with online sampling (in this paper, we will use the term online sample to refer to samples collected
during some search process, as opposed to samples collected through random sampling). In this paper, we
show that the problem difficulty metrics presented work with samples of solutions collected both through
random sampling techniques, and through online sampling of the best solution so far found during simple
hill-climbing optimisation.
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The paper proceeds as follows: Section 2 outlines the concepts of fitness landscapes and neutrality,
and goes on to describe the notion of problem difficulty as determined by the structure of the fitness
landscape. Section 3 introduces the notion of solution evolvability as defined by local characteristics of
the fitness landscape surrounding the solution, and derives and applies the problem difficulty metrics
used in the remainder of the paper. Section 4 describes the tunably rugged and tunably neutral terraced
NK landscapes used as test problems in this work. Sections 5 and 6 apply the metrics derived in section
3 to the test landscapes, and show that they predict the difficulty of searching in the tunably rugged and
tunably neutral landscapes. Finally, section 7 shows that the metrics are robust when applied to online
samples collected during simple hill-climbing, and the paper closes with discussion.

2 Fitness landscapes and neutrality

This section introduces two of the main concepts used in the paper. The fitness landscape (section 2.1),
first introduced by Wright (1932), describes the search space as a multi-dimensional landscape defined
by the genotype-to-fitness mapping through which evolution moves. The classical idea of searching this
landscape for good genotypes focuses on the difficulty of climbing up to the globally optimal fitness
solution, and avoiding locally optimal solutions. Here we argue that in difficult search problems, much of
the time spent optimising may be spent in non-adaptive neutral evolution (section 2.2). Thus measures
aimed at predicting the difficulty of search, must take account of the nature of neutrality in the space.
Section 2.3 describes how the difficulty of finding good solutions is determined by the structure of the
fitness landscape, and section 2.4 outlines different methods for sampling the fitness landscape structure.

2.1 Fitness landscapes

Wright (1932) introduced the fitness landscape as a non-mathematical aid to visualise the action during
evolution of selection and variation (in this paper we will use the term evolution to refer to both nat-
ural biological evolution, and the artificial evolution class of stochastic search processes which operate
through some form of “generate-and-test” algorithm, e.g. genetic algorithms (Holland, 1992), genetic
programming (Koza, 1992), evolutionary strategies (Rechenberg, 1973) and evolutionary programming
(Fogel et al., 1966)). The description views the space in which evolution takes place as a landscape, with
one dimension per genotype loci and an extra dimension, or height, representing the phenotype, or fitness,
of that particular genotype1. The search space defined by a two-loci representation can thus be viewed as
a three-dimensional fitness landscape (figure 1), with each point corresponding to a single genotype and
fitness. Applying a mutation operator to a particular genotype A typically produces a cluster of offspring
genotypes lying close to A in the landscape, while recombination of two different genotypes A,B typically
produces offspring genotypes lying somewhere between A and B in the landscape. Evolution can thus
be viewed as the movement of the population, represented by a set of points (genotypes), towards higher
(fitter) areas of the landscape.

This view of the search space leads naturally to the identification of the major problems with which
evolution will have to cope; ruggedness and modality (Kauffman, 1993; Naudts and Kallel, 2000). Highly
epistatic problems where fitness is dependent on multiple inter-gene interactions will produce a rugged
landscape, in which the direction to good solutions is obscured by local noise. Similarly, a high degree of
modality, i.e. large numbers of local optima, will be seen as large numbers of hill-tops in the landscape with
no neighbours of higher fitness. The majority of measures derived to predict the difficulty of searching
in a given space are based around these features of ruggedness and modality (see e.g. Weinberger, 1990;
Hordijk, 1996; Jones and Forrest, 1995; Naudts and Kallel, 2000).

1Wright defined two forms of fitness landscapes. The first version, used in this work, defines each point on the landscape
as representing a single genotype with height corresponding to genotype fitness. The second version has each landscape
point representing an entire population, with the values along each dimension representing the allele frequency over the
population, and the height corresponding to the mean population fitness. The two approaches may show markedly different
properties (Coyne et al., 1997).
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Figure 1: A two-dimensional model fitness land-
scape, with one globally-optimal and one locally-
optimal peak. From a starting point, typically cho-
sen at random, the search process tries to find good
solutions. The process typically creates a new set of
solutions through the application of genetic opera-
tors to the current solution(s), evaluating whether
the new set is better than the current solutions.
Evolving populations will tend to get stuck at the
locally-optimal peak due to its large basin of at-
traction, and from there will only find the global
optimum with difficulty.

A more exact picture, especially when dealing with solutions represented by discrete-valued genotypes,
is the connected graph (Stadler, 1996). Solution vertices, or nodes, are connected directly through the
action of the genetic operators. The graph may show the space in a very different way to the fitness
landscape: mutation operators acting on more than one loci, and other operators such as recombination,
may not ‘see’ fitness landscape hill-tops as local optima at all. However, local optima can clearly exist in
the graph, occurring as graph nodes from which all connected nodes are of lower fitness. This definition
may produce local optima with respect to genetic operators other than simply mutation, for example
some solutions may be local optima with respect to recombination operators.

The graph definition of the search space highlights the dangers in the simple visualisable picture afforded
to us by the fitness landscape description: our intuitive view may not apply in higher dimensional spaces.
Fisher, for example, argued that local optima may not exist in a large class of high-dimensional spaces;
the probability that a solution is optimal in every single dimension simultaneously is negligible (quoted
in Provine, 1986, p. 274). However, it should be stressed that many problems clearly do show local
optimality, e.g. the travelling salesman problem (Lawler et al., 1985). The next section introduces the
idea of search space neutrality, one possible way in which some high-dimension spaces may differ radically
from our intuitive viewpoint.

2.2 Fitness landscape neutrality

In the neutral theory, it is argued that evolving populations may spend relatively large periods of time
undergoing non-adaptive neutral mutation (Kimura, 1983), staying at a constant height in the fitness
landscape. The evolutionary timescale may be dominated by long periods of neutral epochs (van Nimwe-
gen et al., 1999), interspersed with short periods of rapid fitness increase, i.e. punctuated equilibrium

(Eldredge and Gould, 1972; Gould and Eldredge, 1977; Elena et al., 1996). During these neutral epochs,
the population will move in the space through random drift (note that this is a separate process to
Wright’s idea of genetic drift due to finite population size). Despite the undirected nature of the pop-
ulation movement, neutrality can be of use in escaping from (nearly) locally optimal solutions: figure 2
shows three model landscapes illustrating the possible advantages of neutrality.

Neutral mutation in a fitness landscape will occur as random drift between solutions of equal fitness
connected by mutation; such neutral evolution cannot be distinguished from a population stuck in a local
optimum by looking at fitness. Instead, the underlying dynamics of the population must be investigated.
Two key features have been predicted that distinguish the behaviour of the population during these
periods of neutral drift from the behaviour of a population stuck in a local optimum. The first key
feature is that of movement, i.e. is the population moving significantly in genotype space. The second
key feature is that of constant innovation, i.e. the number of previously unencountered phenotypes seen
over time is constant. Thus any phenotype should be accessible from a large enough neutral network;
neutral drift can eventually find a higher fitness genotype and jump up to a higher neutral network.

These key features have been analysed in many theoretical landscapes. Landscapes produced by RNA
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(a) Unconnected peaks (b) Single neutral pathway (c) Broad neutral plateau

Figure 2: Three two-dimensional model fitness landscapes showing the possible advantage of neutrality in a
simple landscape with one globally-optimal and one (nearly) locally-optimal peak. (a) shows the two peaks as
unconnected; populations evolving to the locally optimal peak will have difficulty moving to the global optimum.
(b) shows the two peaks connected by a single neutral pathway; a population on the sub-optimal peak will
eventually find the pathway. (c) shows the two peaks connected by a broad plateau; the population will move
easily from the sub-optimal peak to the global optimum.

secondary structure folding algorithms show that neutral walks (a neutral variant on the random walk,
where successive genotypes are generated by application of the mutation operator) have the property of
constant innovation (Huynen et al., 1996; Huynen, 1996). Exhaustive analysis of some RNA landscapes
has even mapped out the extent of the neutral networks, and calculated the transition probabilities be-
tween the different networks (Forst et al., 1995; Grüner et al., 1996). Barnett (1998) introduces the NKp
landscape, a tunably neutral variant on Kauffman’s NK systems (Kauffman, 1993), and through calcu-
lation of population diffusion coefficients shows highly neutral landscapes produce much more population
movement during periods of no fitness change when compared with such periods in landscapes of zero
neutrality. An important result from the NKp landscape work is that changing the amount of neutrality
in the landscape has no effect on the ruggedness correlation function; correlation lengths do not predict
the change in evolutionary dynamics seen for landscapes of different neutrality (Barnett, 1998). New-
man and Engelhardt (1998) investigate a similar tunably neutral variant of the NK system, finding that
increased neutrality allows high fitness solutions to be found more easily through search. This is backed
up by Shackleton et al. (2000) who find that adding neutrality through redundancy can help improve the
level of fitness found through artificial evolution.

Neutrality has also been shown in real-world problem landscapes: In experiments on evolving tone recog-
nition circuits, populations were seen to move in genotype space during periods where fitness did not
increase (Harvey and Thompson, 1996). Experiments on evolution of digital circuits under two condi-
tions - allowing neutral mutations and not allowing such changes - have also shown the importance of
neutrality to the search process. Experiments where neutral changes were allowed consistently produced
two-bit multiplier solutions of higher fitness than experiments without neutral mutation (Vassilev and
Miller, 2000). Also, Thompson (2001) reports on the presence of neutral plateaus in evolving speech
recognition circuits, and shows through exhaustive mutation of genotypes at the start of the plateau that
no transitions exist to a higher fitness level; the neutral evolution phase is necessary.

The degree of neutrality in a system is clearly a factor in the population dynamics during evolution.
However, many measures aimed at predicting the difficulty of search in a particular space do not account
for this factor, e.g. the work on NKp landscapes showing that the autocorrelation function does not
change with the level of neutrality (Barnett, 1998). In the next section, we describe typical approaches to
identifying problem difficulty with fitness landscape structure, outlining the advantages of the evolvability
metrics developed in this paper.
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2.3 Fitness landscape structure and problem difficulty

The difficulty of searching in a given problem search space is clearly related to the structure of the fit-
ness landscape. Early work proposed that the correlation structure of the landscape was a key feature
corresponding to problem epistasis, or landscape ruggedness (Kauffman, 1993; Weinberger, 1990; Man-
derick et al., 1991; Lipsitch, 1991; Hordijk, 1996). Typically, the correlation structure of the landscape
is derived in terms of parent-offspring fitness correlation, or the fitness-distance autocorrelation function
along a random non-adaptive walk. Similarly, fitness-distance correlation uses the correlation of genotype
fitnesses with the fitness and distance of known optima as a metric (Jones and Forrest, 1995).

Related work defines the landscape in terms of the information required to describe the landscape. Fourier
analysis decomposes the landscape into its Fourier components; the ruggedness of the system is measured
by the number of Fourier components, especially those of high-frequency, required for the decomposition
(Stadler and Wagner, 1998). Epistasis variance calculates the level of variance in the system with respect
to a set of first order approximations to the system (Davidor, 1991). Similarly, information content
analysis relates the ruggedness of the system to the fitness entropy encountered along a random walk
(Vassilev, 1997; Vassilev et al., 2000)

However, the majority of such techniques assume that the difficulty of searching in a given space is solely
a function of the search space ruggedness, measured through such correlation or information analysis
as described above. No account is taken of the neutrality in the space; as described in section 2.2 the
correlation functions do not change when the degree of neutrality is varied. In the remainder of this
paper, we introduce a set of measures based on the characteristics of the fitness landscape surrounding
sample solutions, and show that such measures can predict the difficulty of searching in both tunably
rugged and tunably neutral landscapes.

2.4 Sampling the fitness landscape

In many hard problems, the distribution of solution fitnesses may be markedly non-normal, with fitnesses
additionally distributed heterogenously throughout the search space. In such problems, the set of solutions
collected through random sampling methods will not accurately represent the set of solutions seen during
optimisation. All measures of problem difficulty based on random sampling will thus not accurately reflect
the difficulty of reaching different fitness levels in the space. One extreme example is investigated by Smith
et al. (2001a), where analysis of an evolutionary robotics search space shows that fewer than 0.0001% of
solutions in a random sample have fitness above 50% of the maximum in a neural network robot control
problem, despite this fitness being relatively easy to reach using optimisation techniques. Two spaces
that differ only in high fitness regions may show markedly different times to find good solutions through
optimisation, but problem difficulty metrics based on random sampling will not show these differences
(Smith et al., 2001a)

One potential approach is to bias the random sample procedure, keeping only some set percentage of
solutions at each fitness. Even this method may fail to collect solutions above some fitness level in
reasonable time, and it may be necessary to perform some kind of directed search process to collect the
sample. Clearly there is some point at which the time taken to collect such a sample may well approach
a significant fraction of the time taken to solve the problem. For instance, if the sample required to
characterise the problem involves collecting solutions at or near the optimum, we will have effectively
solved the problem merely in the act of description. A useful analogy could be drawn with Marr’s type II
systems; the system may not be reducible to a simpler level of description than the system itself (Marr,
1976). By contrast, type I systems can be reduced to a simpler description, e.g. a fitness landscape which
can usefully be reduced to a single correlation length description.

In section 7 we collect samples though simple hill-climbing, and show that the problem difficulty metrics
based on the biased sample set make the same predictions as those based on unbiased random samples.
Although the landscapes used in this paper have normal fitness distributions, verifying that the metrics
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are robust to sample bias is important if we are to go on to use them on other problems with highly
skewed fitness distributions (Smith et al., 2001b).

In the next section, we introduce the notion of evolvability as the capacity of a solution to evolve, closely
tied to the fitness landscape neighbouring that solution. We then derive a set of solution and population
evolvability metrics, and use them to predict the difficulty of searching in a given fitness landscape.

3 Evolvability and the transmission function

Evolvability is loosely defined as the capacity to evolve, alternatively the ability of an individual or
population to generate fit variants (Altenberg, 1994; Marrow, 1999; Wagner and Altenberg, 1996). Thus
evolvability is more closely allied with the potential for fitness than with fitness itself; two equal fitness
individuals or populations can have very different evolvabilities (Turney, 1999). Typically, researchers use
some definition of evolvability based on the offspring of current individuals or populations: in this paper
we follow Cavalli-Sforza and Feldman (1976) and Altenberg (1994) in using the transmission function of
all possible offspring from a parent to define a set of metrics of evolvability, see section 3.1 for further
details.

It is often argued that there may be long-term trends for evolvability to increase during evolution (see
e.g. Wilke, 2001; Turney, 1999). However, as evolvability is more directly related to fitness potential
than fitness itself, long-term change cannot be due to straight fitness selection. Thus any trend towards
change in evolvability can only be understood through some second order selection mechanism, by which
evolution tends to select solutions that have a more evolvable genetic system (Dawkins, 1989; Kirschner
and Gerhart, 1998).

Researchers in both biology and evolutionary computation typically link evolvability with the local struc-
ture of the search space. For example, Burch and Chao (2000) shows that RNA virus evolvability can
be understood in terms of the mutational neighbourhood, while many evolutionary computation re-
searchers (see e.g. Ebner et al., 2001; Marrow, 1999) argue that changing the properties of the search
space (through such mechanisms as adding neutrality) can affect evolvability as evidenced by the speed
of evolution. The interest in evolvability for evolutionary computation practitioners is thus tied closely
to work on the ruggedness and modality of the search space, argued to primarily influence the ease of
finding good solutions in the space (Weinberger, 1990; Hordijk, 1996; Jones and Forrest, 1995; Naudts
and Kallel, 2000).

Recent work has emphasised that in addition to landscape ruggedness and modality, search space neu-
trality may have impact on the population dynamics of evolution (section 2.2). This factor may not
be predicted by standard measures based on the landscape ruggedness and local modality, but may be
measurable through change in evolvability. For example, recent artificial evolution research has shown
that evolvability can change during neutral epochs; populations tend to move to “flatter” areas of the
fitness landscape where fewer mutations are deleterious (Wilke et al., 2001; Wilke, 2001). This can clearly
have an impact on the speed of search, but may not be picked up by the standard landscape ruggedness
and modality measures.

Other biological research in evolvability is also of relevance to evolutionary computation, e.g. the work on
adaptation to change in environment through such mechanisms as alleles providing increased mutation
rates (Taddei et al., 1997; Sniegowski et al., 1997). However, in this paper we focus on evolvability
in terms of the properties of the solutions’ local search space. The next section outlines the offspring
transmission function, and defines a simple set of evolvability metrics.
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3.1 The transmission function

In this paper, we follow the definition of evolvability as the ability of individuals and populations to
produce fit variants, specifically the ability to both produce fitter variants, and to not produce less fit
variants. This definition is intimately tied in with research on the transmission function T (Altenberg,
1994; Cavalli-Sforza and Feldman, 1976), and the population offspring probability distribution function
φ from all possible applications of the genetic operators to the parent(s):

φ(g, f) =

∫ ∫ ∫ ∫

ψ(h, k, h′, k′)T (g, f : h, k, h′, k′) dh dk dh′ dk′ (1)

or the probability φ (with parental selection function ψ) of obtaining offspring genotype g and phenotype
f , over all parents of genotypes h, h′ and phenotypes k, k′. The transmission function T is the probability
density function of obtaining g, f given h, k, h′, k′ (Cavalli-Sforza and Feldman, 1976).

In the absence of recombination, only a single parent h, k is required to produce offspring through muta-
tion:

φ(g, f) =

∫

∞

−∞

ψ(h, k)T (g, f : h, k) dh dk (2)

or the probability of obtaining offspring g, f over all parents h, k with selection ψ. In this paper, we
focus on the offspring of a set of single genotypes (saved during the course of evolutionary runs), so do
not integrate over the set of all possible parents. Similarly, the selection function can be omitted as we
pre-select the parent. Since we are interested only in the offspring phenotypes f , and not the offspring
genotypes g, we can refer to the transmission function T (f : h, k) as short-hand for the probability density
function of offspring fitnesses from a single parent h, k.

The transmission function thus encompasses both the operators and the representation; instead of refer-
ring to good and bad genetic operators or good and bad representations, we can talk about the effective-
ness of the transmission function. Thus the evolvability of an individual or population, i.e. their ability
to generate fit variants, is simply a property of the individual or population transmission function. The
next section derives measures for the evolvability of an individual solution in terms of this transmission
function for continuous variables.

3.2 Evolvability metrics: Continuous variables

The evolvability of a solution genotype h and fitness k is directly tied to the probability of that solution
not producing offspring of lower fitness. Thus we derive our first metric of evolvability Ea:

Ea =

∫

∞

k
T (f : h, k) df

∫

∞

−∞
T (f : h, k) df

(3)

or the probability that the offspring fitness f is greater or equal to the current fitness k, i.e. the mutation
is non-deleterious. Since the transmission function T (f : h, k) is a probability density function, the
infinite integral sums to unity, so we have:

Ea =

∫

∞

k

T (f : h, k) df (4)

Low fitness solutions may have a larger Ea than high fitness solutions, simply due to the increased number
of better mutations. The second evolvability metric Eb uses only the offspring fitnesses:
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Eb =

∫

∞

−∞

f T (f : h, k) df (5)

or the expected offspring fitness from genotype h. Note, this value is fitness dependent, so should not
be compared across genotypes without reference to their original fitness. A further problem with both
Ea and Eb is their dependence on the entire set of offspring fitnesses; the fraction of offspring that are
significantly fitter than the parent may be extremely small. The third measure reflects this dimension of
evolvability, looking only at the top C’th percentile of the offspring fitnesses:

Ec =
100

C

∫

∞

Fc

f T (f : h, k) df (6)

where Fc defined by

∫

∞

Fc

T (f : h, k) df =
C

100
(7)

or the expected fitness of only the top C’th percentile of fitnesses. A similar measure Ed (not shown)
calculates the expected fitness of the bottom C’th percentile of offspring.

The next section extends the continuous analysis presented above to the discrete set.

3.3 Evolvability metrics: The discrete set

Consider the fitness landscape as a directed graph (V,E), with vertices V (genotypes) connected by edges
E (defined by the genetic operators). The set G of offspring from a parent genotype h, k is thus defined
by the vertices connected to the parent vertex:

G(h, k) = {g ∈ V : E(h, k) = g} (8)

The fitness function F maps each vertex on to a single fitness, so similarly we define the set of offspring
with fitness F (g) greater than some fitness c:

G+
c (h, k) = {g ∈ V : E(h, k) = g, F (g) ≥ c} (9)

The probability of the offspring fitness being higher or equal to the parent fitness, or Ea, is simply the
fraction of the set with F (g) ≥ k:

Ea =
|G+

k (h, k)|
|G(h, k)| (10)

As in the previous section, the mean fitness of the offspring solutions, or Eb, is simply the mean fitness
of all members of the set:

Eb =

∑

g∈G(h,k) F (g)

|G(h, k)| (11)

The mean fitness of the set of offspring with fitness in the top C’th percentile is similarly defined:

Ec =

∑

g∈G
+

Fc
(h,k) F (g)

|G+
Fc

(h, k)|
(12)
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where Fc defined by |G+
Fc

(h, k)| =
C |G(h, k)|

100
(13)

The mean fitness of the set of offspring with fitness in the bottom percentile can be defined through the
set G−

Fd
(h, k) of offspring with fitness below some fitness Fd.

The next section applies the metrics to a set of simple cases, where the parent genotypes lie at different
points in a hypothetical landscape.

3.4 Simple evolvability examples

The metrics derived in the previous two sections are here applied to a set of simple cases, showing their
ability to discriminate between solutions lying at different points in a hypothetical landscape, including
flat plateaus, local optima, and hill-sides. Figure 3 shows three such sample cases.

(a) F (x) = 0 (b) F (x) = kx (c) F (x) = kx2

Figure 3: Three 1-dimensional landscapes F (x), with the parent genotype x0 shown by the solid circle lying at
x = 0 (in all cases, F (0) = 0). The mutation operator µ(x, x0) is a probability distribution function, producing
offspring x1 lying in a uniform distribution around x with range d, shown by the thick bar below each landscape,
centred on x0. See text for the derived evolvability in each landscape.

Through applying the continuous evolvability metrics (equations 4-7) to the continuous landscapes defined
by the functions F (x), with the mutation operator probability distribution around the parent solution
µ(x, x0), we obtain the following results for the evolvability of parent solutions x0 (and offspring solutions
x1):

Ea ≡ P (F (x1) ≥ F (x0)) =

∫

∞

−∞

µ(x, x0)G+(x, x0) dx (14)

where G+(a, b) =

{

1 F (a) ≥ F (b)
0 else

(15)

Eb ≡ < F (x1) > =

∫

∞

−∞

F (x)µ(x, x0) dx (16)

Ec =
100

C

∫

∞

−∞

F (x)µ(x, x0)G+(x, Fc) dx (17)

where

∫

∞

−∞

µ(x, x0)G+(x, Fc) dx =
C

100
(18)

Similarly, the mean fitness over the bottom percentile Ed, can be defined using the step function G−(a, b).
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Table 1 gives the results for the four evolvability metrics derived on the three landscapes shown in
figure 3, for the uniformly distributed mutation operator µ(x) = U(x0−d, x0 +d), and a parent genotype
x0 = 0. No single metric gives enough information to correctly identify the nature of the fitness landscape
surrounding the genotype x0, but the combination of the four metrics allows us to do so. The evolvability
data for the first landscape tells us that no mutations are deleterious, that the expected offspring fitness
is equal to the current fitness, and that both the top and bottom quartile of offspring fitness are equal to
the current fitness: we conclude the landscape neighbouring the current solution must be a flat plateau.
We can similarly identify the hill-side and local optima landscapes from the relevant data. The approach
can also be used on problems with higher dimensional landscapes, although the offspring distributions
may need to be approximated through sampled applications of the mutation operator(s).

Metric Plateau F (x) = 0 Hill-side F (x) = kx Optima F (x) = kx2

Ea 1 0.5 1
Eb 0 0 kd2/3
Ec=25 0 3kd/4 37kd2/48
Ed=25 0 −3kd/4 kd2/48

Table 1: Derived values for the evolvability of the three sample landscapes shown in figure 3. See text for details.

In the next section, we show how the evolvability can be calculated over a population of solutions with the
same fitness, to give plots predicting the difficulty of reaching certain fitness levels in a given landscape.

3.5 Population evolvability and fitness

The previous section described how the evolvability metrics could be calculated over the fitness neighbour-
hood for a single solution genotype. We define the same evolvability metrics over a sampled population
of solutions, by simply defining the metrics as calculated over the sum of population transmission func-
tions, i.e. we take the distribution of offspring fitnesses from all members of the sample and calculate the
evolvability metrics. For the discrete case this translates to taking the population set of offspring defined
over the combined sets of offspring from all members of the population.

Two important ideas emerge from this definition of population evolvability. First, we can compare entire
populations simply by comparing their metrics of evolvability. This is not explored further in this paper,
but has been used by Smith et al. (2001d,c) to investigate the behaviour of populations during neutral
epochs, in particular whether the populations are moving to more evolvable areas of space during such
neutral epochs. Second, we can take samples of equal fitness (in practice, we take samples of nearly equal
fitness, lying in some range) to build up a portrait of the landscape at different fitnesses. For each equal
fitness sample of solutions we can calculate evolvability, and plot the evolvability metric against solution
fitness.

Figure 5 shows the probability of a neighbouring solution being of equal or higher fitness for all three
landscapes shown in figure 4. The key feature is the behaviour at a fitness of just under 0.5, the height
of the local deceptive peak. When the two peaks are unconnected, the probability of finding a fitter
neighbour at this fitness drops sharply to nearly 40%, the lowest value seen until we reach fitnesses of
nearly 100%. However, when the peaks are connected by a single neutral pathway, this value rises sharply
to a value of over 60%, and when the peaks are connected by a broad plateau, the corresponding value is
over 90%. Thus we see the strength of the population evolvability approach; a single problem difficulty
value defined over the entire space, e.g. correlation length, would be unlikely to highlight such features.
However, plotting some value over different fitnesses shows up the differences clearly.

It should be noted that the idea of plotting some difficulty metric over fitness was used by Rosé et al. (1996)
in their density of states approach. However in this paper we are focusing on the potential for reaching
higher fitnesses, i.e. their accessibility, rather than simply the number of solutions of given fitnesses. In
many spaces it may well be that there are very small numbers of solutions of a certain fitness, but that
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(a) Unconnected peaks (b) Single neutral pathway (c) Broad neutral plateau

Figure 4: Three two-dimensional model fitness landscapes showing the possible advantage of neutrality in a
simple landscape with one globally-optimal and one (nearly) locally-optimal deceptive peak.
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Figure 5: The probability of finding a non-
deleterious mutation, Ea, over the three landscapes
shown in figure 4. Over most of the fitness range,
the graphs are identical. However, the increase at
a fitness of 0.5, the height of the locally optimal
peak, are highlighted for the neutral pathway (fig-
ure 4(b)) and neutral plateau (figure 4(b)) land-
scapes when compared to the unconnected peaks
landscape (figure 4(a)).

those solutions are easy to reach through optimisation. Or vice-versa, there may be large numbers of
solutions of a certain fitness, all of which are extremely difficult to reach through optimisation. Thus
it may be more useful to look at the accessibility of solutions at certain fitness levels, rather than the
number of such fitness solutions.

The next section goes on to outline the NK and terraced NK landscapes.

4 The NK and terraced NK landscapes

4.1 Kauffman’s tunably rugged NK landscapes

Consider a genotype consisting of N > 0 loci, with each locus having some state drawn from an alphabet
of size A. In addition, each locus epistatically interacts with 0 ≤ K < N linked loci. The genotype fitness
is defined as the mean fitness over the N loci, with each locus fitness uniquely determined by both its
own state, and the state of the K loci it is epistatically linked to. Thus each locus has a total number
of AK+1 assigned fitnesses (one fitness for each of the possible states for the locus and K linked loci),
typically drawn from a uniform distribution over [0, 1], and the entire landscape is defined by the table
of NAK+1 fitnesses. In the remainder of this paper, we take a binary alphabet A = 2.

This NK landscape is a generalised version of the spin-glass model found in statistical physics (see, e.g.
Binder and Young, 1986). As K increases from the unimodal K = 0 landscape, the ruggedness of the
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landscape increases, up to the maximally rugged random K = N − 1 landscape, corresponding to the
random energy spin-glass model (Derrida, 1981). Early work by Weinberger (1990, 1991) has shown
that increasing ruggedness of the system is well predicted by the decrease in correlation length for the
system, and that the number of locally optimal peaks increases dramatically with K; this has long been
the benchmark result arguing that landscape ruggedness is the key feature for problem difficulty. Figure
6 shows the correlation lengths derived from random walks in the N = 25, K = [0, 1, 2, 6, 12, 18, 24]
landscapes; increasing K clearly produces more rugged landscapes with shorter correlation lengths.
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Figure 6: Correlation lengths calculated over ran-
dom walks on Kauffman’s NK landscapes (mean
and standard deviation over 1000 walks shown).
Shown for N = 25, K = [0, 1, 2, 6, 12, 18, 24].
The correlation lengths decrease with increasing K,
showing the increasing ruggedness in the system.

The next section goes on to describe tunably neutral extensions to Kauffman’s NK systems, developed
by Barnett (1998) and Newman and Engelhardt (1998).

4.2 Tunably neutral NK landscapes

It has been argued by many researchers that other features of problem difficulty are not adequately
represented by measures of landscape ruggedness. One such feature is landscape neutrality (section 2.2),
and two different methods have been proposed to incorporate a tunable level of neutrality into the NK
landscapes.

Barnett (1998) has argued that in real systems, many loci will not contribute to fitness, thus some fraction
0 ≤ p ≤ 1 of the NAK+1 locus fitnesses are taken to equal zero. The neutrality of the system is thus
represented by p, which can be tuned from zero (the standard NK landscape) to 1.0 (all genotypes
have fitness zero). The resulting NKp landscapes are thus both tunably rugged and tunably neutral.
Similarly, Reidys and Stadler (2001) derive the more general additive fitness landscape class, of which
the NKp landscapes are a special case. Barnett goes on to show that changing the level of neutrality on
the system has large impact on the population dynamics of evolutionary search, but produces no change
in the correlation length (Barnett, 1997, 1998).

A second approach taken is to discretise the possible locus fitnesses, through only allowing each locus to
take one of F fitnesses, or terraces (Newman and Engelhardt, 1998). Varying this terrace parameter F
from an infinite value (corresponding to the standard NK landscape), down to the minimal value of 2
(where each locus has a fitness of 0 or 1) thus decreases the number of possible fitnesses, so increasing the
fraction of equal fitness neutral solutions (the actual number of distinct solution fitnesses will be equal
to 1 + (N − 1)(F − 1)). Newman and Engelhardt (1998) go on to show that increasing the neutrality in
the system reduces the evolutionary time required to find higher fitness solutions. In figure 8, we show
that this speed difference is not predicted by the change in correlation length; the correlation length for
given K is constant for all levels of neutrality.

In the remainder of this paper, we investigate the evolvability of the terraced NK landscapes, with
varying degrees of ruggedness and neutrality.
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Figure 7: Correlation lengths calculated over ran-
dom walks on the neutrally terraced NK land-
scapes (mean and standard deviation over 1000
walks shown). Shown for N = 25, K =
[0, 1, 2, 6, 12, 18, 24], F = 4. The correlation lengths
are identical to the corresponding lengths shown in
figure 6 (calculated on the non-neutral NK land-
scape), and decrease with increasing K, showing
the increasing ruggedness in the system. Thus the
correlation length measures still predict increasing
search difficulty, even in the presence of significant
levels of neutrality in the system.
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(a) Terraced NK landscape, K = 0
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(b) Terraced NK landscape, K = 12

Figure 8: Correlation lengths calculated over random walks on the neutrally terraced NK landscapes (mean
and standard deviation over 1000 walks shown). Shown for N = 25, K = [0, 12], F = [∞, 11, 6, 5, 4, 3, 2]. The
correlation lengths are equal for a given K, despite the varying amount of neutrality in the system (shown by the
varying number of neutral terraces F ). Thus correlation lengths do not predict the difference in time required to
find high fitness solutions.

5 Evolvability of a tunably rugged landscape

For a given genotype length N , the overall distribution of genotype fitnesses will be identical for all K,
equal to the normal distribution N(MN , σ2

N ) obtained from the mean of N loci fitnesses sampled from
a uniform [0, 1] distribution (MN and σ2

N are the mean and variance respectively). As N increases, the
mean of this genotype fitness distribution MN will stay constant at MN = 0.5, but the standard deviation
will decrease with the number of samples: σN = σ/

√
N . Thus, as our genotypes increase in length, the

fraction of extremely fit and unfit genotypes will decrease, as the variance of the population decreases
(note that some NK models address this issue through scaling the genotype fitnesses by

√
N (see e.g.

Sibani and Pederson, 1999)).

Although the overall distribution of genotype fitnesses is equal for all K over a given genotype length
N , the distribution of these fitnesses over the search space is decidedly not equal for all K. For the
unimodal K = 0 landscape, all high fitness genotypes are grouped in a small volume of the search space,
while for the maximally multi-modal K = N − 1 landscape, the fitness distribution over the search space
is random. In general, the distribution of fitnesses neighbouring a solution of given fitness is normal
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with mean and deviation dependent on N,K and the current solution fitness (see e.g. Weinberger, 1990;
Stadler and Schnabl, 1992). From this it is possible to derive the expected fitnesses (and the time taken
on both adaptive and random walks) at which local optima are reached for various N and K (again, see
e.g. Weinberger, 1990; Stadler and Schnabl, 1992). In the next section we derive analytic and empirical
results for the evolvability measures when applied to the NK landscapes.

5.1 Analytically derived evolvability for NK landscapes

In this section, we focus on the probability that an offspring derived from a single bit mutation of the
parent has a higher (or equal) fitness than the parent, i.e. the first evolvability metric Ea (section 3.1),
as a function of the parental fitness. The other evolvability metrics derived in section 3 can be similarly
treated. Consider a parent genotype of fitness F0, the mean of the N locus fitnesses fi drawn from a
uniform distribution over [0, 1]:

F0 =
1

N

N
∑

i=1

fi where fi ∈ U [0, 1] (19)

Now, the probability that the offspring fitness F1 is not lower than the parent fitness, is simply the
probability that the K + 1 loci affected by a single bit mutation do not, on average, decrease in fitness:

Ea ≡ P (F1 ≥ F0) = P

((

1

K + 1

K+1
∑

i=1

fi

)

≥ F0

)

where fi ∈ U [0, 1] (20)

the probability that the mean of K + 1 uniformly distributed samples is not smaller than the current
fitness. For the unimodal K = 0 we can solve trivially:

P (F1 ≥ F0) = P (f ≥ F0) = 1 − F0 where fi ∈ U [0, 1] (21)

For K ≫ 0, the mean of affected loci fitnesses tends to a normal distribution with mean MK+1 = 0.5,
and deviation σK+1 = σ/

√
K + 1 (where σ is the deviation of loci fitnesses as K → ∞, assumed to be

non-zero and finite). For a normal distribution N(M,σ2), the probability density function n is given by:

n =
1

σ
φ

(

x − M

σ

)

(22)

where φ(z) =
1√
2π

exp (−0.5z2) (23)

The probability that a random variable from this distribution is greater than some value F0 is given by
the integral of the probability density function over the relevant limits (with mean M = 0.5 and deviation
σK+1 = σ/

√
K + 1):

P (F1 ≥ F0) =

√
K + 1

σ

∫

∞

F0

φ

(
√

K + 1(x − 0.5)

σ

)

dx (24)

=

√

K + 1

2πσ2

∫

∞

F0

exp

(−(K + 1)

2σ2
(x − 0.5)2

)

dx (25)

Which is simply the complementary error function erfc(x):
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erfc(x) ≡ 2√
π

∫

∞

x

exp (−z2) dz (26)

and P (F1 ≥ F0) = 0.5 erfc

(

√

K + 1

2σ2
(F0 − 0.5)

)

(27)
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Figure 9: Analytically and empirically derived probabilities of a non-deleterious mutation, Ea. Calculated on
the NK landscape with N = 25, K = [0, 6, 12, 24], for a random sample set of solutions. All random sample sets
used in this paper consist of 1000 individuals sampled from each of 100 generated landscapes; a total of 100, 000
sampled solutions. Note that for each set of N, K, there is an infinite number of fitness lookup tables that can be
generated, thus an infinite number of possible landscapes. For this reason, we sample both a set of individuals
and a set of landscapes for each value of N, K.

Note that an equivalent result to equation 27 is derived by Stadler and Schnabl (1992) in order to calculate
the probability of solutions of given fitness being local optima.

5.2 Empirically derived evolvability for NK landscapes

Figure 9 shows data generated from equation 27 compared against data derived from empirical sampling
of simulated NK landscapes (N = 25, K = [0, 1, 2, 6, 12, 24]), showing good agreement between the
analytically and empirically derived data. Both sets of data predict that as K increases, the probability
of finding a fitter mutant increases for parent fitnesses below the population mean of 0.5. Only for parent
fitnesses above this mean value of 0.5 does the probability of reaching a fitter mutant favour the lower K
landscapes. This can be understood by considering that a single bit flip mutation can affect the fitness F0

by a fraction of order O(K+1
N

). Low K landscapes are thus highly correlated2, and offspring fitnesses are
close to parent fitnesses. For high K landscapes, the offspring-parent fitnesses are less correlated, thus
offspring fitnesses on average are close to the population mean of 0.5, and the distribution of genotype
fitnesses is essentially random in space.

The other evolvability measures can be derived in similar fashion, and give good agreement with the
data derived from empirical simulation of the NK landscapes. Figure 10 shows empirical data for the
evolvability metrics Ea, Eb, Ec, Ed. We see that the expected fitness is higher for the K = 0 landscape
only with parent solution fitnesses above 0.5, strengthening the probability metric results derived above.

2The offspring-parent correlation is simply ρ = 1 −
K+1

N
(Weinberger, 1990), with the correlation length τ = −1/ ln(ρ).
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Figure 10: The metrics of evolvability derived in section 3.1 applied to the NK landscapes with N = 25,
K = [0, 6, 12, 24]. The evolvability metrics were calculated from a random sample set of solutions.

Similarly, the top and bottom quartile expected fitnesses are higher for K = 0 only for high fitness parent
solutions. Thus the evolved metrics derived in section 3.1 do indeed predict the difficulty of searching
in the NK landscapes, and in fact give more information than the correlation lengths alone. From the
metrics shown in figure 10, we predict that fitnesses below 0.5 will be found more easily through search
in highly-rugged NK landscapes (although of course these fitnesses will also be easily found through
random search). We further predict that reaching solutions of fitness above 0.5 will be significantly easier
in the K = 0 landscape.

The next section applies the evolvability analysis to the tunably neutral terraced NK landscapes.

6 Evolvability of a tunably neutral landscape

In the previous section, we have seen how we can discriminate between landscapes of varying ruggedness
using the metrics of evolvability derived in section 3.1. In this section, we apply the metrics to the
tunably neutral terraced NK landscape (section 4), in order to discriminate between landscapes of
varying ruggedness in the presence of neutrality, and landscapes of varying neutrality.

Figure 11 shows the four metrics applied to the terraced NK landscape, with the number of possible loci
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Figure 11: The metrics of evolvability derived in section 3.1 applied to the terraced NK landscapes with N = 25,
K = [0, 6, 12, 24], F = 4. The evolvability metrics were calculated from a random sample set of solutions.

fitness terraces fixed at F = 4 (N = 25 and K = [0, 6, 12, 24]). We see that the presence of a large degree
of neutrality in the system does not affect the ability of the evolvability metrics to distinguish between
differing levels of ruggedness in the system, as seen with correlation lengths (figure 7).

Figure 12 shows the metrics applied to the terraced NK landscapes with varying neutrality and fixed
ruggedness (the probability of obtaining a non-deleterious mutation, and the expected fitness of all
mutations, for N = 25, K = [0, 12], F = [2, 3, 6,∞]). We see that the expected mutation fitness (figures
12(b) and 12(d)) does not change with differing levels of neutrality in the system, but that the probability
of obtaining a non-deleterious mutation (figures 12(a) and 12(c)) does show such change. As F → 2,
neutrality increases and the probability of obtaining a non-deleterious mutation increases. For K = 0,
even at high fitnesses there are still on average 1/F neutral mutations. For high K, this probability tends
to zero at high fitnesses as all K +1 loci fitness affected by the mutation need to show a neutral mutation.
However, this decrease in the probability of finding non-deleterious mutations is slower for landscapes
with more neutrality. The difference is significant: at a fitness of 0.6, roughly 37% of mutations in the
F = 2 landscape are non-deleterious compared with roughly 13% such mutations for the non-neutral
F = ∞ landscape. At a fitness of 0.7, the corresponding percentages are roughly 18% and 0%. Thus,
in the highly neutral F = 2 landscape, the probability of the search process reaching a local optimum is

17



significantly smaller than the probability of reaching a local optimum in the non-neutral F = ∞. Rather
than sticking in local optima, the search process can explore more of the space along neutral networks,
eventually reaching higher fitness solutions.
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Figure 12: The metrics of evolvability derived in section 3.1 applied to the terraced NK landscapes with N = 25,
K = [0, 12], F = [2, 3, 6,∞]. The evolvability metrics were calculated from a random sample set of solutions.

Thus the metrics of evolvability do indeed differentiate between landscapes of both varying ruggedness
(with constant neutrality) and varying neutrality (with constant ruggedness). In particular, the metrics
make three main predictions backed up by empirical evidence (Weinberger, 1990, 1991; Newman and
Engelhardt, 1998). First, they predict that for NK landscapes of different ruggedness, it will be easier
to reach fitnesses below 0.5 in highly rugged landscape. Second, fitnesses above 0.5 in such landscapes
will be easier to reach in a non-rugged landscape. Third, increasing levels of neutrality in the terraced
NK system are not seen with measures of correlation length, but are seen in the evolvability metrics, in
particular the numbers of non-deleterious mutations are significantly higher for more neutral landscapes.

In the next section, we show that the evolvability of samples collected during simple hill-climbing opti-
misation show the same features as for the random samples used in the previous two sections. This is
crucial for problems with extremely skewed solution fitness distributions, for which random sampling is
inappropriate and biased sampling techniques must be used. If difficulty measures are to be applied to
such problems, they must be robust when calculated over such biased samples.
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7 Online sampling evolvability

In the previous sections we have investigated empirically derived evolvabilities for the tunably rugged
and tunably neutral terraced NK landscapes through random sampling of the space of all solutions.
This random sampling technique works well with the NK landscapes where solution fitnesses are defined
as the linear sum of all loci fitnesses; due to the central limit theorem, the solution fitnesses will be
normally distributed. However, in many problems, such normally distributed solution fitnesses will not
be encountered, and metrics based on random sampling of the space will in general be less successful at
predicting problem difficulty (see e.g. Smith et al., 2001a).

With such skewed solution fitness distributions, it may be necessary to bias the collected sample through
only keeping a percentage of solutions found at each fitness, and define the problem difficulty metric
over this biased sample. With even more extremely skewed distributions, it may be necessary to collect
a biased sample through some direct search optimisation procedure such as a simple hill-climber. For
example, Smith et al. (2001a) find only 0.0001% of random solutions have fitness above 50% of the
maximum in a neural network robot control problem, despite this fitness being relatively easy to reach
using optimisation techniques.

In this section, we show that the evolvability metrics presented in the previous sections still predict the
difficulty of search in the terraced NK landscapes, when based on a biased sample collected using a
(1+1) evolutionary strategy hill-climber (Rechenberg, 1973). 100 runs of the hill-climber were performed
for each parameter setting (generating a new landscape for each run); from an initial random solution,
random mutations were applied (using both single bit mutation, and mutation probability per bit gives
similar results), with non-deleterious mutations accepted and deleterious mutations rejected. All new
encountered genotypes were saved for analysis, and the hill-climber stopped after 1, 000 mutations had
been tried. The following analysis uses the saved samples over each parameter setting.
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Figure 13: The metrics of evolvability derived in section 3.1 applied to the NK landscapes with N = 25,
K = [0, 6, 12, 24]. The evolvability metrics were calculated from a sample set of solutions collected during hill-
climbing.

Figure 13 shows the probability of a non-deleterious mutation, and the expected mutation fitness over
the NK landscape with N = 25, K = [0, 6, 12, 24], for the biased hill-climber sample. As seen with the
random sample analysis (section 5), the K = 0 landscape shows the highest probability of obtaining a
fitter mutation, and the highest expected fitness, only for fitnesses above 0.5. However, the differences
are not as significant as for the unbiased sample; the K = 6 landscape shows similar values to the
K = 0 landscape. We hypothesise that this is due to the hill-climber moving towards areas of the K = 6
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landscape which are more evolvable than on average across the space.
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Figure 14: The metrics of evolvability derived in section 3.1 applied to the terraced NK landscapes with N = 25,
K = [0, 12], F = [2, 3, 6,∞]. The evolvability metrics were calculated from a sample set of solutions collected
during hill-climbing.

Figure 14 shows the probability of a non-deleterious mutation for the terraced NK landscapes with
N = 25, F = [2, 3, 6,∞], K = [0, 12], for the biased hill-climber sample. Again we see the same results as
for the unbiased random sample (section 6); as expected the more neutral landscapes with lower numbers
of terraces F show greater probability of non-deleterious mutations. This holds for landscapes of both
low and high ruggedness.

The results for the biased hill-climber sample over both the tunably rugged (figure 13) and the tunably
neutral landscapes (figure 13) are equivalent to the results seen for the unbiased random sample used in
sections 5 and 6. The evolvability metrics are indeed robust over the use of biased and unbiased samples.
In the final section, we discuss the results and relevance of the research presented in this paper.

8 Discussion

In this paper we have developed a set of measures based on evolvability statistics of the fitness landscape
surrounding sampled solutions. Averaging the measures over a sample of equal fitness solutions allows
us to build up a fitness portrait of the fitness landscape, which we have shown can be used to predict the
difficulty of finding good solutions in a set of tunably rugged and tunably neutral landscapes.

The primary aim of this work is to develop a set of metrics that can be used to predict the difficulty of
finding good solutions in hard problem spaces. In previous work we have shown that standard metrics
based on random sampling of the space, such as the autocorrelation function, fail when applied to spaces
with highly skewed fitness distributions (Smith et al., 2001a). Although such techniques can be used
with biased sample sets, it is unclear to what extent their underlying assumptions are violated by the
heterogenous anisotropic nature of certain problem spaces, e.g. evolutionary robotics landscapes. It is also
unclear how such metrics might be applied to samples of unconnected solutions, i.e. not collected through
successive applications of mutation operators, when there is no clear way of defining distance between
two solutions (in the evolutionary robotics problems we are investigating, solution representations are
not of fixed length, and the same solution may be represented by several permuted genotypes). To this
end, this paper presents the development of a set of metrics that can be easily averaged over the search
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space, without having to define a distance metric.

A second aim of the work is to develop a set of metrics that can be used to identify the areas of space
which are difficult for optimisation to reach. In the sort of problem space exemplified by evolutionary
robotics and evolutionary hardware experiments, it may be very simple to reach certain fitness levels
(even if such levels of fitness are not represented by random search), but significantly harder to reach
higher levels through optimisation. Although simply looking at the distribution of fitnesses may give
us some idea of where these fitness levels are, it will say nothing about the accessibility of such fitness
levels. As shown in this paper, the use of biased samples collected through simple hill-climbing allows
us to focus directly on the accessibility of solutions, rather than simply their density over the search
space. Identification of inaccessible “bottleneck” fitness levels will certainly be of use when designing
more evolvable representations with which it proves easier to find good solutions.
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