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Abstract

In multi-component, discrete systems, such as Boolean networks and cellular automata,

the updating scheme of the individual elements plays a crucial role in determining their dy-

namic properties and their suitability as models of complex phenomena. Many interesting

properties of these systems rely heavily on the use of synchronous updating of the individual

elements. Considerations of parsimony have motivated the claim that, if the natural sys-

tems being modelled lack any clear evidence of synchronously driven elements, then random

asynchronous updating should be used by default. The introduction of a random element

precludes the possibility of strictly cyclic behaviour. In principle, this poses the question of

whether asynchronously driven Boolean networks, cellular automata, etc., are inherently bad

choices at the time of modelling rhythmic phenomena. This paper focuses on this subsidiary

issue for the case of Asynchronous Random Boolean Networks (ARBNs). It de�nes measures

of pseudo-periodicity by using correlations between states and su�ciently relaxed statistical

constraints. These measures are used to guide a genetic algorithm to �nd appropriate exam-

ples. Success in this search for a number of cases, and subsequent statistical analysis lead to

the conclusion that ARBNs can indeed be used as models of coordinated rhythmic phenomena,

which may be stronger precisely because of their in-built asynchrony. The same technique is

used to �nd non-stationary attractors that show no rhythm. Evidence suggests that these

latter are more abundant than rhythmic attractors. The methodology is 
exible, and allows

for more demanding statistical conditions for de�ning pseudo-periodicity, and constraining the

evolutionary search.

Keywords: Random Boolean Networks, Random Asynchronous Updating, Modelling, Ge-

netic Algorithms, Rhythmic Phenomena.
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1 Introduction

It is generally argued that modelling techniques such as cellular automata, Boolean networks,

and other variants, are uniquely �tted to address issues of spatio-temporal complexity in areas as

diverse as morphogenesis, gene regulation, immune networks, and population dynamics. However,

much evidence has been gathered suggesting that many of the initially interesting features of these

formal classes have depended crucially on the use of a synchronous rule for updating the atomic

elements. In contrast, the implementation of asynchronous updating rules has tended to produce

trivial, rather than complex, behaviour.

The by now almost classic example is the work by Nowak and May (1992) on spatial patterns

in a population of players of the Prisoner's Dilemma. The complex spatial patterns obtained in

their model, which suggest interesting implications with respect to the polymorphic conviviality of

cooperators and defectors, depend critically on the use of a synchronous updating scheme. When

random asynchrony is introduced no spatial pattern appears, and the much gloomier picture of

global defection as the only stable strategy results, (Huberman & Glance, 1993)
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A number of other studies have arrived at similar conclusions for cellular automata (Bersini

& Detours, 1994; Ingerson & Buvel, 1984; Ruxton & Saravia, 1998; Sch�on�sch & de Roos, 1999)

random Boolean networks (Harvey & Bossomaier, 1997), and even continuous-state systems such

as coupled-map lattices (Abramson & Zanette, 1998; Bohr et al., 1999; Jiang et al., 1999; Lumer

& Nicolis, 1994; Rolf et al., 1998). The methodological lesson that can be derived from these cases

is that the choice of an updating rule plays a crucial role in the behaviour of the model, and,

unless one can advance su�cient reasons to the contrary, random asynchronous updating is `more

physical'. This is because, in the lack of better knowledge about the system being modelled, random

asynchronous updating is the most parsimonious default choice when the states of the system are

modelled as discrete. It only makes sense to model a system as discrete if the transitions between

states can be assumed to occur at a much more rapid timescale than the typical scale of observation

(and other timescales of relevance). E�ectively, transitions are considered as almost instantaneous.

In such cases it is highly unlikely that the transitions of any two elements occur simultaneously

(in e�ect the probability is 0 if we take transitions as strictly instantaneous). This means that

elements should be updated in sequence. The less biased ordering for this sequence is a random

ordering, and so random asynchronous updating, rather than parallel orchestration by an external

clock, is justi�ed as a default choice. This caveat is especially relevant to studies of local or global

synchronization of individual elements in such systems as their results would be undermined should

they depend heavily on the use of an unjusti�ed synchronous updating scheme.

This paper is concerned with a subsidiary aspect of the e�ects of random asynchrony in the long

term behaviour of multicomponent systems with discrete states such as random Boolean networks:

the possibility of �nding attractors with marked rhythms without the use of synchronous updating.

Logical or Boolean networks have been used as models of genetic regulation (Kau�man, 1969,

1974, 1993; Thie�ry & Romero, 1999; Thomas, 1973, 1978), immune responses (Kaufman et al.,

1985, 1999; Muraille et al., 1996; Thie�ry & Thomas, 1995), constraints on evolution (Volkert

& Conrad, 1998), and developmental processes, both speci�c (Mendoza & Alvarez-Buylla, 1998;

S�anchez et al., 1997) and idealised (Dellaert & Beer, 1994). Theoretical treatments of Boolean

networks often make a distinction between synchronous and asynchronous cases (Glass, 1975; Glass

& Kau�man, 1973; Thomas, 1991; Thomas et al., 1995). The distinction is inspired by the need to

use logical tools to explore complex continuous dynamics qualitatively. Transitions between states

in synchronous networks are allowed to be arbitrary in terms of the Hamming distance between two

contiguous states, but this introduces an arti�cial element of orchestrated updating not usually

found in continuous extended systems (Glass, 1975). In contrast, (non-random) asynchronous

networks incorporate knowledge about the continuous system (which may be empirically derived)

in the form of typical time delays between transitions in order to determine which element should

be updated next (the one with the shortest delay or higher �rst derivative). This causes consecutive

states in the network evolution to di�er in at most the state of one single element.
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In (May et al., 1995) the original choice of synchronous updating is defended by saying that it may be appropriate

for some biological situations. This is, no doubt, true, although they fall short of justifying that such is indeed the

case for the situation they are modelling.
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Other studies, however, concentrate not on modelling speci�c continuous systems, but on un-

derstanding the generic features of random Boolean systems for which there is no prior knowledge

about time delays (Bagley & Glass, 1996; Bastolla & Parisi, 1998a, 1998b; Kau�man, 1969, 1993).

In these cases the updating is performed synchronously. It has been argued (Harvey & Bosso-

maier, 1997) that this form of updating remains arti�cial even for this more general purpose,

unless one can justify the existence of a driving clock. As a consequence, the default alternative to

asynchronous updating using known time lags should be random asynchronous updating in which

all time lags have a same mean value, but with di�erent actual values between elements and at

di�erent time steps. As argued above, this choice �ts well with the decision of modelling the sys-

tem as having discrete states. Harvey and Bossomaier (1997) have shown that the use of random

asynchronous updating drastically changes the overall behaviour of random Boolean networks as

a class, thus casting doubts on well known interpretations made when using them as models of

genetic regulation, especially with respect to cell di�erentiation and the lengths of cell division

cycles, (Kau�man, 1969, 1993). See also (Bagley & Glass, 1996).

An important aspect of the use of random asynchronous updating is the impossibility of the

system to exhibit non-stationary cyclic behaviour due to the randomness of the updating scheme.

If random asynchronous updating should be the modeller's default choice in the absence of any

knowledge about speci�c time delays, should it be concluded that asynchronous Boolean networks

are inappropriate for modelling rhythmic phenomena?

Rhythmic behaviour can indeed be found in genetic regulatory networks if time delays are taken

into account. For instance, regulatory processes in gene expression have been shown to participate

in the generation of circadian rhythms in Drosophila, (e.g., Myers et al., 1996; Weitz, 1996; Young,

1998). Feedback loops in this case depend on delays occasioned by the build-up, reaction, and

decay of gene products outside the nucleus.

Also a large number of `non-Boolean' biological systems produce rhythms that arise from the

complex interaction of many elements, and are not due to the existence of an external clock

that orchestrates their behaviour, (see Winfree, 1980). For instance, patterns of global rhythmic

activity have been observed in ant nests, (Franks, Bryant, Gri�ths, & Hemerik, 1990; Cole, 1991b),

while the behaviour of individual ants in isolation is not rhythmic in itself (Cole, 1991a). This

phenomenon has been successfully modelled using continuous maps that interact asynchronously

with no in-built delays in the updating of elements (Sol�e et al., 1993).

Could rhythmic behaviour also be found in asynchronous systems which are Boolean and do not

include in-built time delays that specify the order of update? This question has not been addressed

explicitly so far. It seems that the limitations of randomly driven systems regarding strictly cyclic

behaviour should prompt the modeller to discard them at an early stage as good tools for studying

rhythm in biological, and other complex systems. It will be shown that this would be a hasty

conclusion, and that the long term behaviour of some randomly updated asynchronous Boolean

networks can be characterized by marked rhythms. In order to do this, a way of de�ning and

measuring pseudo-periodic behaviour will be used to guide a genetic algorithm in the search for

cases that exhibit this behaviour. At the same time, the method can be used to search for long

term behaviours that are far from being rhythmic and yet they are di�erent from purely random

systems.

2 Asynchronous random Boolean networks

A Boolean network is an array of nodes, each of which can have any one of two states (0 or 1).

Each node is connected to other nodes in the network. By computing a Boolean function of their

states, a new state for the node is determined. Random Boolean networks form a class of networks

in which the links between nodes and the Boolean functions are speci�ed at random. They are

divided into subclasses depending of the total number of nodes (N ), and the number of links that

in
uence each node (K), which is assumed here to be the same for all nodes

2
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Harvey and Bossomaier (1997) have studied asynchronous random Boolean networks (ARBNs)

by exploring the nature of their attractors using numerical experiments, and by presenting some

2

More general classes are obtained when K indicates the average number of connections to each node.

3



general arguments about what can be expected from ARBNs as a class. The word `asynchronous'

here refers to a random updating scheme (uniform average time delays), and will be used in

this sense throughout the rest of the paper. In this scheme the next node in the network to be

updated is chosen with uniform probability independently of previous updates (which means that

after N single updates some nodes may remain un-updated and others may have been updated

more than once). In contrast with their synchronous cousins, ARBNs have a signi�cant trend

to evolve towards �xed point attractors suggesting that these attractors have much larger basins

of attraction than in the synchronous case, a �nding in accordance with previous observations

by Ingerson and Buvel (1984), and Bersini and Detours (1994) for cellular automata (which in

particular cases may be thought of as a special sub-class of Boolean networks). The average number

of di�erent attractors in an ARBN tends to be small when compared with the synchronous case,

and does not depend on the size of the networks. These observations invalidate, if asynchrony

is used, Kau�man's (1969, 1993) conclusions about the signi�cance of the supposedly intrinsic

order of large, sparsely connected genetic regulatory networks. Kau�man has argued that di�erent

cell types in multicellular organisms correspond to di�erent attractors of the genetic regulatory

network, and that the number of cell types is roughly related to the size of the genome in the same

way as the number of di�erent attractors in a Boolean network is related to its size N for low K

(roughly,

p

N for K = 2), and, therefore, possibly for the same reasons. A similar comparison has

been made between the length of cell division cycles and the typical length of cyclic attractors.

These analogies, however, rely critically on the applicability of synchronous updating to the real

case which remains to be justi�ed.

Not all the attractors found in ARBNs are of the �xed point type. Harvey and Bossomaier

(1997) refer to those that are not as \loose attractors". These can be broadly de�ned as the sub-set

of states of the network with more than one element such that, if a given state belongs to this sub-

set, then the state that follows after asynchronous updating will also belong to the sub-set. Cyclic

attractors, like those found using synchronous updating, cannot be found in ARBNs. If an ARBN

had a non-stationary cyclic attractor, then two consecutive states in this attractor should di�er in

at least the state of one single node. Since a time step is de�ned as N random node updates, there

is a probability of (1 � 1=N )

N

that the node that should have changed its state remains without

being updated. Therefore, the two consecutive states would not necessarily di�er in the state of

this node as required. Notice that the proof does not work for other forms of random asynchronous

updating which guarantee that all nodes will be updated after N single node updates

3
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3 De�ning pseudo-periodicity

The observation that ARBNs cannot produce cyclic attractors is strictly true but only of relative

signi�cance for the modelling of rhythmic behaviour. The reason is mainly because the de�nition of

periodicity for deterministic systems does not conform well with the relaxation of the assumption

of an external driving clock. E�ectively, in order to say that cyclic attractors cannot be found

in ARBNs, one must take back the discarded external clock, this time not as a driving, but as a

measuring device. This is achieved by using a system-independent time scale for de�ning when a

new state of the whole network has occurred. A more general view of rhythmic behaviour should

be adopted which focuses more on the operational relationships between the states of the system

| for instance, by noticing regularities in the ordering and/or statistical properties of patterns |

and less on the externally measured individual duration of the states.

The measure of rhythmic behaviour in this case will be a measure of how patterns occurring

at di�erent instants in the history of a system relate to one another. For the case of ARBNs in

particular it is possible to devise a variety of simple measures based on correlations between states

occurring at di�erent points during the evolution.

In this paper, perhaps the simplest of these possible measures will be used because it will

correspond to the case most similar to deterministic periodic behaviour. Other measures are

3

Suppose that all nodes in the network but one �xate on a given state, and will remain unchanged independently

of how the update is performed, and suppose that the remaining node is connected to itself with a rule that speci�es

that, whatever the value of other nodes, its own value must change. Since the updating scheme guarantees that the

node will be updated, it will 
ip its value at every time step giving rise to a cycle of period 1.
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imaginable, and the methodology used to search for cases that rank high under these measures is,

in principle, equally applicable. The chosen measure indicates the degree to which a given state

in an ARBN of N nodes approximately recurs after approximately P � N single node updates.

Networks ranking high on the scale de�ned by this measure will be called pseudo-periodic

4

with

pseudo-period P . A time index j is de�ned which is incremented by one unit after N random

updates to single nodes (i.e., one time step equals N individual updates), but pseudo-periodicity

will not be de�ned as strict recurrence of states using this index. Instead, the correlation between

two states of the network will be used to that end. The state at time j is denoted by a vector

whose components s

i

(j) correspond to the state of each node i in the network. The correlation

between the states at two di�erent times j and j

0

is:

C(j; j

0

) =

1

N

N

X

i=1

s

�

i

(j)s

�

i

(j

0

);

where s

�

i

(j) is the scaling of s

i

(j) onto [�1; 1]. Highly correlated states will be taken to mean also

highly similar states from the point of view of the system's operation or their functional signi�cance.

This is an assumption that need not be true in general, as discussed in the last section. A global

measure of the behaviour of the network is given by the average correlation between states and

their k'th successors, averaging over M successive states with M � N :

AC(k) =

1

M

M

X

j=1

C(j; j + k);

with k = 0; 1; 2; :::. For su�ciently large values of M this function will give an idea of how well

correlated, on average, is any given state with a state occurring k time steps afterwards. In this

case, the function will be simply called autocorrelation. Notice that a given network may possess

di�erent autocorrelation functions depending on how many attractors it has and how much they

di�er in their statistical properties. A su�cient condition for ensuring non-stationary pseudo-

periodic behaviour with pseudo-period P will be to ask that at least one of the autocorrelation

functions have a distinct peak value for k close to P (P �M ).

4 Evolving rhythms

To search for pseudo-periodic ARBNs a target autocorrelation function is proposed, and simple

genetic algorithm is used as a search method to �nd networks approximating this target. ARBNs

are described using a binary genotype which encodes their connectivity and the Boolean functions

for each node. Any network with parameters N and K can be encoded in a genotype of length G:

G = N (K log

2

N

0

+ 2

K

);

where N

0

is the �rst power of 2 greater than or equal to N . The factor in parentheses corresponds

to the number of binary loci necessary to encode K connections plus one Boolean function of K

arguments. Other encodings are possible.

Individual networks are run for a number of time steps between 500 and 1000, and for a number

of trials (usually between 4 and 10) starting from di�erent random initial conditions. After each

trial, the autocorrelation AC(k) is estimated for k = 0; 1; :::; 2N � 1 by averaging for all the states

in the run (except the last 2N ones).

The �tness of a network is calculated for each trial as 1�D, where D is the normalized distance

between the network's autocorrelation, and a target autocorrelation. Fitness scores are averaged

over the trials, and the value of one standard deviation is deducted to bene�t low variability

between the trials. Point mutation, uniform crossover, and a rank-based selection scheme with

elitism are used, (Mitchell, 1996). The rate of mutation per locus � is chosen in accordance to

the genotype length so as to have a probability of no mutation in a given genotype, (1 � �)

G

,

4

This term should not be confusedwith `quasi-periodicity' as used to refer to toroidal attractorswith an irrational

ratio of frequencies in continuous deterministic systems.
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within the range [0.6,0.8]. The size of the population is of 90 networks. The search method mildly

bene�ts networks with rapid transients as statistics are taken from the beginning of each trial run.

However, simple modi�cations to the search algorithm could avoid this if necessary (for instance,

by estimating autocorrelation only after a certain number of time steps).

It is important to choose an adequate target autocorrelation function for the search to succeed.

This target need not correspond to any realisable network. Instead, its de�nition has been guided

by considerations of evolvability. In all the cases presented here the choice has been to de�ne a

target autocorrelation using steps between the values of 0 and 1. States will be highly correlated

around the chosen pseudo-period P and its multiples, so that a value of 1 is assigned to values

of k in [nP � e; nP + e], with n = 0; 1; 2; :::. For any other value of k the autocorrelation is

0. The width of the square peak 2e is carefully chosen so as to strike a balance between the

number of values of AC(k) equal to 0 and those equal to 1. This balance is important in order

not to bias the search process, and not because typical pseudo-periodic ARBNs can be expected

to necessarily exhibit this balance in their autocorrelation functions. In particular, the extreme

case in which all possible transitions between states are such that the Hamming distance between

them is always 1 will exhibit, for large N and P � N , both pseudo-periodicity and a relatively

constant, high autocorrelation. This means that the method will only be able to search for a subset

of pseudo-periodic ARBNs.

ARBNs have been successfully evolved for N = 16; 32; 64 andK = 2; 3; 4 using target periods of

P = N=2; N; 2N . Shorter target periods have been attempted without success so far. The number

of generations has ranged from 1000 to 5000 depending on parameter values, often obtaining

reasonably good results after about 500 generations.

Figures 1, and 2 correspond to an evolved network with N = 32, K = 2, and P = 32.

Figure 1 (a) shows the �rst 1000 steps in the evolution of the network starting from a random

initial condition. Although some nodes are frozen most of the time, the remaining ones form

distinct patterns which appear with a marked rhythm. Comparisons with the behaviour further

downstream show that the form of the pseudo-periodic attractor is stable which is a result not

directly implied in the constraints used to perform the evolutionary search, which condition only

the form of the autocorrelation.

Figure 1, and 2 here

The autocorrelation function is shown in �gure 1 (b), together with the target autocorrelation

(dashed line), the range of which goes from k = 0 to k = 63. This function has been calculated by

averaging over M = 10000 steps. It has be found to be same over 10 di�erent runs starting from

di�erent random initial conditions. It shows a clear peak of considerable width at around k = 32.

Further evidence of rhythmic behaviour in this network can be obtained by calculating the

power spectrum (using Fast Fourier Transform) for each node in the network. This is shown in

�gure 2 where the N spectra have been averaged to give an idea of the behaviour of the whole.

There is a marked peak corresponding to a frequency near 1=P = 0:03125.

The following �gures show other evolved ARBNs and their autocorrelation averaged over 10000

consecutive states. Figures 3 and 4 show two evolved networks with N = 16 and K = 4, with

periods P = 16 and P = 32 respectively, (in the latter case the range of the autocorrelation and

the target function has been doubled). Figures 5 and 6 show two evolved networks with N = 64

and K = 2, with respective periods of P = 64 and P = 32.

Figures 3, and 4 here

It is important to notice that in all the cases shown each successive peak in the autocorrelation

is a bit lower than the previous one, showing an e�ect of `memory decay'. This is mainly due to

the fact that a highly correlated state will recur after about P time steps, and therefore actual

recurrence becomes more uncertain the further upstream one moves.

Figures 5, and 6 here
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5 Non-rhythmic non-stationary attractors

How widespread are rhythmic attractors within the class of non-stationary attractors in ARBNs?

This is not an easy question to answer, but it is possible to use the preceding method �nd out

whether at least some non-stationary attractors in ARBNs are non-rhythmic. One way of doing

this is by evolving networks under the criterion that their attractors be highly de-correlated. In

other words, by asking the autocorrelation function to be as close to 0 as possible.

Results are shown in �gs. 7 and 8 that correspond to a network with N = 32, K = 2 and

null target autocorrelation. It is possible to observe a rapid, possibly exponential, decay in the

autocorrelation (calculated over 10000 time steps), and a continuous power spectrum. These

properties di�er both from the marked pseudo-periodic cases (e.g., �gs. 1 and 2), and the uniform

spectrum and instantaneous decay in autocorrelation that one would expect from pure white noise.

For other parameter values the results are qualitative the same.

It is a contentious issue whether this kind of behaviour in a noisy, discrete-state system deserves

to be called `chaotic-like' or `pseudo-chaotic', but the statistical features of the autocorrelations

and the power spectra are suggestive enough (see for instance Drazin, 1992, pp. 264-277)

Figure 7, and 8 here

Evolving de-correlated networks has been tried for most of the combinations of parameters

mentioned above. In all cases there is a striking di�erence in the speed with which the genetic

algorithm �nds good solutions, being the de-correlated cases much easier to �nd by up to two

orders of magnitude in comparison with pseudo-periodic networks (50 to 100 generations). This

suggests that the space of non-stationary attractors in ARBNs is populated largely by de-correlated

attractors and markedly pseudo-periodic attractors of the kind that can be found by the search

method are much more rare. Studies are currently underway to test for the existence of pseudo-

periodic attractors showing more than one single marked frequency.

6 Conclusions

It is not possible for ARBNs to exhibit strictly cyclic behaviour but this does not mean that

they need to be discarded a priori as possible models of rhythmic phenomena since it has been

shown that they may be able to capture many features of interest of such phenomena. No one

would hesitate to call a natural system `rhythmic', or even `periodic', if its behaviour exhibited

a power spectrum like the one shown in �gure 2. Precisely because they do not incorporate

synchrony by default, ARBNs, and similar asynchronous systems that are able to show spontaneous

rhythmic behaviour, may constitute quite stronger models when compared with models using built-

in synchrony from the start.

Pseudo-periodicity can be straightforwardly de�ned and recognized in ways that can be used

to guide an evolutionary search process. Probably a number of other search methods could have

worked equally well or better for this task, but success using a genetic algorithm is suggestive of

ways natural selection could have acted on natural systems with analogous properties, if rhythmic

or coordinated behaviour happened to be of some functional value.

The de�nition of pseudo-periodicity relies on similarity between states using a correlation mea-

sure. Such similarity need not correspond to signi�cant similarity in the context of a natural

system. It is easy to think of many (not necessarily pathological) cases in which alterations to the

strict order of single events may produce radically di�erent results from a functional perspective.

In those cases, the correlation de�nition for the whole state of the network does not work, and it

is an open question whether others would. Two speculative solutions could be of some use in such

cases. One is the utilization of weighted correlations as measures of similarity. If it is functionally

important that certain states recur pseudo-periodically more reliably than others, then they could

be assigned a larger weight in the calculation of correlations. The other possible solution is the use

of single element autocorrelation on which stricter statistical demands could be made on particular

nodes (like less variability in pseudo-period or di�erent pseudo-periods) if it were necessary. It is

not clear yet whether these solutions would work in general.
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The evolutionary search methodology has been used in an uncommon way in this work in that

selective constraints are not put on the speci�c behaviour or computational capabilities of the net-

works (see for instance Mitchell, Crutch�eld, & Hraber, 1994) but on more relaxed global statistical

constraints. The genetic algorithm also provides complementary information with respect to the

evolution of non-rhythmic ARBNs. The relative ease with which this task is achieved suggests

that rhythmic attractors are uncommon within the set of non-stationary attractors.

The choice of an adequate updating scheme and the de�nition of a time step are not independent

modelling decisions but must make sense when combined. Observations like this beg the question

of which is the most adequate method for de�ning the passage of time in a way that accords

naturally with the type of systems being modelled. In this work, a time index has been de�ned in

a intuitive manner in accordance to the size of the system so as to simulate uniform average time

delays and independent updating for all nodes. It is believed that such a choice is appropriate

since it has not been heavily relied upon to de�ne pseudo-periodicity (variability in the pseudo-

period has been allowed to be large). It remains an open issue whether other, `more physical' time

indexes, appropriate for the particular systems in question, could be de�ned.
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Figure 1: Evolved ARBN with N = 32, K = 2, and a target period P = 32. (a): evolution for

1000 time steps, (b): autocorrelation. The dashed line shows the target autocorrelation.
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Figure 2: Power spectrum for evolved network corresponding to �gure 1 averaged over variations

in the state of individual nodes for 10000 steps. The frequency corresponding to the target period

is shown with a vertical dashed line.

12



(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

A
C

(k
)

k

Autocorrelation

Target

(b)

Figure 3: Evolved ARBN with N = 16, K = 4, and a target period P = 16. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 4: Evolved ARBN with N = 16, K = 4, and a target period P = 32. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 5: Evolved ARBN with N = 64, K = 2, and a target period P = 64. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 6: Evolved ARBN with N = 64, K = 2, and a target period P = 32. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 7: Evolved ARBN with N = 32, K = 2, and a null target autocorrelation. (a): evolution

for 1000 time steps, (b): autocorrelation.
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Figure 8: Power spectrum for evolved network corresponding to �gure 7 averaged over variations

in the state of individual nodes for 10000 steps.
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