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Abstract

Foveal or spatially-variant image representations are important

components of active vision systems. Log-polar sampling is a

particularly powerful example as a result of the simplicity with

which expansion and rotation can be handled. These properties

are exploited here for the detection of general straight lines, line

segments, and circles through the foveation point. An efficient

and practical method based on convolution is described, and in-

vestigated in the context of a simple foveation strategy.

1 Introduction

The potential value of non-uniformly sampled or spatially variant images is

greatly increased when vision is active. Foveal sampling, where sample points

are densest in the centre, allows computational resources to be concentrated

on regions of particular interest, whilst maintaining a wide field of view, but

it requires eye or camera movements to allow such regions to be selected. Al-

though in animal eyes non-uniform sampling is the rule rather than the excep-

tion, this form of image representation has been exploited relatively little in

computer vision. This is partly because of the prevailing camera technology,

which is geared to image transmission and processing and so employs uni-
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form sampling, and partly because without effective active cameras non-uni-

form sampling sacrifices too much potential information. Now that active

vision systems are becoming more common, non-uniform sampling is likely

to increase in importance.

Despite its difficulties, non-uniform sampling, and in particular log-polar

sampling, has received a certain amount of attention. Funt [3] demonstrated

some of the fundamental advantages of an active foveated system for repre-

senting solid motion in 2-D, whilst Weiman and Chaikin [11] laid some math-

ematical groundwork. Wilson [12] emphasised the approximate log-polar

mapping of the optic array onto the visual cortex in primates. A number of re-

searchers, notably Tistarelli and Sandini [7, 8] have used the scheme in the

context of motion detection; Tunley and Young [9] investigated the advantag-

es of log-polar representations in estimating first-order optic flow. Also using

log-polar sampling, Lim, West and Venkatesh [4] have developed mecha-

nisms for precise foveation of features, Peters and Bishay [5] have described

foveation on vanishing points, and Bederson, Wallace and Schwartz [1] have

described an active vision system incorporating log-polar sampling.

The present paper builds on the theoretical work of Weiman and Chaikin

[11] to explore the representation and detection of straight lines and circles in

log-polar sampled images. An efficient new algorithm for finding these struc-

tures is described and its performance on real images investigated. The algo-

rithm is intended to be applied in the context of a system like that of

Brunnström, Eklundh and Uhlin [2], where a representation of a scene is built

up using directed foveations.

2 The log-polar sampled image

In log-polar sampling, pixels are indexed by ring number R and wedge

number W, related to ordinary x, y image coordinates by the mapping

(1)

where (r, θ) are polar coordinates, (xc, yc) is the position of the centre of the

log-polar sampling pattern, nr and nw are the numbers of rings and wedges re-

spectively, and rmin and rmax are the radii of the smallest and largest rings of

samples. We also define .

A log-polar sampled image is one whose samples are centred on points

mapping to integral R and W, , . The
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pling centre, as shown in Fig. 1a. This arrangement appears to be approximat-

ed by the ganglion cells of the primate retina and the visual cortex [6]. In this

representation, image expansions and rotations about (xc, yc) become shifts in

R and W, but image translation has a more complex effect.

In order to keep a pixel’s nearest neighbours in orthogonal directions at

approximately equal distances from it, the following constraint is needed

(2)

Log-polar sampled images are often displayed on orthogonal (R, W) axes,

as in Fig. 1b, but this is misleading since it leads them to be regarded as “dis-

torted” representations. In fact, the distortion only arises when they are dis-

played on the page or screen: as a mapping from coordinate values to position

on a plane, the log-polar representation is no more distorted than the conven-

tional one. When displayed with the correct mapping to position, as in Fig. 1c,

the significant observable feature is the loss of resolution towards the periph-

ery, as the samples become further apart.

These images should ideally be generated using special-purpose cameras,

such as those described in [8]. However, a reasonable approximation for re-

search is obtained by resampling a conventionally digitised image, and this

method is used in the present work.

3 The straight line in the log-polar image

3.1 The log-polar straight line and its Fourier transform

Any straight line, not passing through (xc, yc), can be mapped into any other

straight line by a rotation (to make the lines parallel) followed by a uniform

expansion with (xc, yc) fixed. This property can be exploited to allow easy de-

tection of lines in log-polar images. The idea was introduced by Weiman and

Chaikin [11], and an implementation briefly discussed by Young [13].

Essentially, the log-polar image of a straight line is taken as a template and

convolved with the log-polar image under analysis. Peaks in the output corre-

spond to the rotations and expansions that map the template onto matching

structures in the image, and so directly give the parameters of detected lines.

The equation of the straight line in log-polar coordinates is

and a graph of this equation is shown in Fig. 1d. If we con-

volve the reflected log-polar image of this special straight line with the image

of a general line given by then the peak of the con-

volution output will be at (ρl, θl).

Since the template is the same size as the image, it is efficient to perform

the convolution by multiplication in the Fourier domain. It is possible to find

a closed-form expression for the Fourier Transform of the straight line in log-

rmin rmaxe
2π nr 1–( )– nw⁄

=

x 1=

ρ θcoslog–=
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(a) (b)

(d)

(e) (f)

(c)

Figure 1: (a) A log-polar grid with 16 rings and 16 wedges superimposed on a 180 × 180

pixel image. Each sample in a 16 × 16 log-polar image would be derived from the grey lev-

els in one segment of this grid. (b) The same image sampled on a log-polar grid with 180

rings and 180 wedges, displayed on orthogonal axes, R horizontal and W vertical, the origin

at the bottom left and top left corners (since W wraps round). Moving up a column of (b)

corresponds to moving anticlockwise round a ring in (a), starting at 3 o’clock. (c) The log-

polar image of (b) displayed with veridical mapping onto the plane. (Bilinear interpolation

was used to display the image.) (d) The graph of (i.e. ).

(e) The sum of the real and imaginary parts of the discrete Fourier transform of a straight

line mask; origin at the centre, kρ horizontal and kθ vertical. (f) A straight line mask with

128 rings and 128 wedges, coordinate system as in (b), generated in the Fourier domain and

transformed numerically. The mask was differentiated with respect to R, and smoothed with

a circular Gaussian mask with (spatial) , both operations carried out in the frequency

domain. (g) As (e), but the mask was convolved with a difference of Gaussians with inner

 and outer  in the frequency domain.
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polar space. Although in practice it might be adequate to synthesise the

straight line in a log-polar array and apply the discrete Fourier transform,

computing its transform directly avoids noise caused by starting from a dis-

crete representation of the line. The formula for the transform also opens up

the possibility of further analysis of the properties of the process in the fre-

quency domain, though this is not exploited here.

To find the transform, we take a path integral along the line in log-polar

space; if S is the standard line with element ds in (ρ, θ) space,

the integral is

(3)

where w(ρ,θ) is a weighting factor to allow convergence. This must be smooth

and tend to zero for large ρ. A suitable choice is

, (4)

where a larger α makes the template more localised round the minimum of ρ.

In all the examples in this paper, . Since the integral

becomes

(5)

Rearranging and using standard tables, this evaluates to

(6)

where Γ is the complex gamma function. The line is at an arbitrary po-

sition in the log-polar grid; to make a useful mask we choose as the template

. The discrete Fourier transform of this is obtained by evaluating

F(kρ,kθ) at unit intervals of kR and kW from 0 to and respective-

ly, with  and .

3.2 Implementation of straight line detection

Transformed straight line templates were generated using Eq. 6. Because of

symmetry, the sum of the real and imaginary parts is sufficient; an example

of a computed template in the frequency domain is shown in Fig. 1e. Tem-

plates were multiplied by the frequency domain representations of a variety
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of other operators, allowing Gaussian smoothing, differentiation with respect

to R or W, and difference of Gaussians convolution to be combined with line

detection in a single step. This allows matching to various kinds of bounda-

ries. Examples of the masks generated are shown in Figs 1f and 1g.

Any linear operation can be thus combined with line detection, but the im-

ages used in this study were first subjected to a non-linear process to reduce

sensitivity to the grey-level range. This involved subtracting a local average

of the grey level, obtained by Gaussian smoothing, from each pixel in the

original conventional images, and then applying the logistic function

 to each pixel of the result.

This compression was carried out on the conventional image input prior to

resampling in order to speed up the tests, but it could easily and effectively be

done on the log-polar images. Figs 2a and 2b show the effect of this preproc-

essing. For the results described here, σ for the smoothing was 10, the initial

maximum grey level was 255 and K was 10/255.

Preprocessed images were resampled to a log-polar grid on the basis of

Eq. 1. Bilinear interpolation was used in the inner region where the log-polar

pixels are closer together than the original pixels, and simple averaging over

a disc was used in the outer region where the log-polar pixels are bigger than

the originals. Although this approach is quite crude, it is adequate for this in-

vestigation, and it is fast.

The log-polar image was transformed using the Fast Fourier Transform

(FFT). The results were multiplied point-by-point with the template transform

and the (complex) product transformed back to the spatial domain, to give the

(real) convolution output, C(R,W). Defining a peak as a pixel whose value ex-

ceeds some threshold and is not less than any of its eight nearest neighbours,

peaks in C and in -C were found and ranked by absolute value. Peak positions

were refined by taking the centre of gravity of a 3×3 region in the convolution

output centred on the peak pixel. The strongest peaks were taken as represent-

ing the most salient straight lines in the sampled region. An example is shown

in Fig. 2c.

3.3 Line segment detection

Line detection only provides the parameters of infinite lines, not the end

points of line segments. To find end points it is necessary to reinspect the orig-

inal image, tracing the line to see which parts of it contributed significantly to

the convolution output. This must take account of the operations such as

smoothing and differentiation that were incorporated into the convolution.

A straightforward way to do this is to multiply the image pixel by pixel

with the spatial form of the convolution mask, having first reflected and trans-

lated the latter to make it line up with the detected line. The resulting array

contains the values that would have been summed to produce the convolution

1 1 exp+ Kx–( )( )⁄
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peak, if the convolution had been carried out in the spatial domain. The size

of these values indicates how much each pixel of the image contributed to the

peak.

We then simply project this array onto the W axis, by summing over all R

from 0 to for each W. Starting from the maximum in the resulting one-

dimensional array, we search outwards in each direction, wrapping round if

necessary, to find a value less than some constant times the peak value. This

gives the limits in θ of the line segment which contributed most to the detected

line. For a line with parameters ρl and θl, these limits can be converted to con-

ventional coordinates using

(7)

This simple and fast procedure assumes that the line does not pass exactly

through the sampling centre (xc, yc). In fact, this case is rare because the high

density of samples close to (xc, yc) means that a small offset between the line

and the centre is represented by a significant distance in R.

Truncating the lines shown in Fig. 2c results in those shown in Fig. 2d.

(a) (b)

(c)

Figure 2: (a) The original 903×577 pixel image. (b) The image after non-linear preproc-

essing. (c) The straight lines found using log-polar sampling with rmax=250, nr=128,

nw=256, rmin≈11, the mask smoothed with σ=1 and differentiated with respect to R. The

threshold for peak detection was 5 times the standard deviation of the convolution output.

(d) The lines truncated to regions of high evidence. The 1-D evidence array was smoothed

with σ=2 and truncation occurred where the evidence fell to 0.5 times its peak value.

(d)

nr 1–

x e
ρl θcos θ θl–( )cos⁄ xc+ ,= y e

ρl θsin θ θl–( )cos⁄ yc+=
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4 The circle in the log-polar image

4.1 The log-polar circle and its Fourier transform

It is reasonable to ask whether the simplicity of straight line detection in log-

polar images can be extended to other curves. Since a circle through the sam-

pling centre can be mapped onto any other such circle by a rotation and an ex-

pansion, such circles can also be detected by a convolution in log-polar space.

Circles passing through the origin are, of course, unlikely to occur by chance.

However, if the sampling centre is deliberately placed on a smooth boundary,

possibly using the output of log-polar straight line detection, then the circle

detected should approximate the osculating circle and the orientation and cur-

vature of the boundary can be estimated.

In fact, the relationship to the straight line method goes deeper than this,

and circles through (xc, yc) can be found for almost no additional computa-

tional effort alongside straight lines. As Weiman and Chaikin [11] pointed

out, circles through (xc, yc) are mirrored straight lines in log-polar coordi-

nates: the equation of the circle centred on , is

. Thus the templates shown in Figs 1f and 1g will match circles

if they are simply left-right reflected. A peak in the convolution output at

(ρc,θc) gives the point on the circle diametrically opposite to the sampling

centre, and hence the circle’s centre and radius. Figs 3a and 3b demonstrate

this.

It follows from the symmetry that the Fourier transform of the circle mask

is just the complex conjugate of that of the straight line mask. It is possible to

obtain the convolution results for straight lines and circles with a single trans-

form. If LR and LI are the real and imaginary parts of the discrete transform of

the log-polar image L(kR,kW), and FR and FI are the real and imaginary parts

of the straight line template transform F(kR,kW), then

(8)

where (and is real). We therefore form the expression on the

left in the Fourier domain, and on transforming this back to the spatial do-

main, the real part of the result is the convolution with the line mask F and the

imaginary part is the convolution with the circle mask F*. This combined

technique is only useful if the same preprocessing is suitable for both line and

circle detection.

x xc 1 2⁄+= y yc=

ρ θcoslog=

M LR LI–( ) iM LR LI+( )+ FL iF∗L+=

M FR F I+=



9

4.2 Implementation of circle detection

The implementation of circle detection is almost identical to the line detection

method described above. One addition to the repertory of preprocessing op-

tions turns out to be desirable: modulation of the mask by (which is also

carried out in the frequency domain). This is helpful because, for a curve pass-

ing through the centre, differentiation with respect to R is less useful than dif-

ferentiation with respect to W, but the sign of the gradient with respect to W

will change on passing through the centre. Modulation of the template by an-

gle overcomes this difficulty.

Unfortunately, circle detection in resampled log-polar images is impeded

by the poor representation in the inner rings, where the log-polar pixels are

smaller than the pixels of the original image. This means that boundaries close

to the centre are affected by the pixel structure of the original image, and

hence are hard to match well. Whilst not generally a problem for straight line

detection, this does affect circle detection, where the template is aimed at

picking up evidence close to the centre in order to find boundary orientation

and curvature.

This difficulty can be overcome to some extent by reducing the number of

rings in the log-polar image to avoid oversampling the centre, and an example

of circle detection in a real image is shown in Fig. 3c. However, the real so-

lution would be to use log-polar hardware that could sample the physical im-

age everywhere at the appropriate resolution.

(a) (b) (c)

Figure 3: (a) A log-polar image displayed as in Fig. 1b with (xc, yc) on the upper edge of the

car’s rear wheel. The sampling parameters are as for Fig 2. The car’s shadow and the wheel

show the reflection symmetry between lines and circles. (b) The result of convolving the im-

age of (a) with the circle mask. The mask was smoothed with σ=1, differentiated with respect

to W and multiplied by . (c) The circle corresponding to the maximum of (b) (in white),

along with four other circles (black) generated the same way at different (xc, yc) (black dots),

each chosen to be close to a curved boundary. Wheel arches are found even though they are

not exact or complete circles.

θsin

θsin
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5 ‘Eye movements’: a resampling strategy

To get some sense of the potential value of log-polar line detection, it is im-

portant to simulate the way it might be exploited in an active vision system.

To this end, a simple recentring strategy was used to move the log-polar pat-

tern around in conventional images, in rough simulation of saccadic eye

movements in the optic array. The strategy adopted is designed to demon-

strate the possibilities of the approach rather than to be optimum in any re-

spect.

By analogy with eye movements, a foveation is taken to mean extraction

of information for a single sampling centre (xc, yc), and a saccade to mean a

movement of the sampling centre. Various kinds of saccade were pro-

grammed, including:

(i) a small random step from a Gaussian distribution round the current

centre;

(ii) a random movement to anywhere in the original image with a proba-

bility depending on the density of previous sampling;

(iii) a step to the nearest point on a recently detected line;

(iv) a step to the intersection of two recently detected lines.

After each foveation the most prominent lines were recorded and one of

the steps above was chosen, using a set of fixed probabilities. (This is similar

to the Iterated Function System method of generating a fractal set, in which

one of a set of affine transformations is chosen at each step using fixed prob-

abilities.)

A first step in building up a description of image structure from the lines

picked up by the system is to combine segments from different foveations

where these are collinear and overlapping. In the present system, line seg-

ments were combined when they were collinear to within the quantisation er-

ror of the log-polar representation, and when projected onto a line with the

average parameters, they overlapped. This simple approach, sufficient for

graphical demonstrations, needs to be developed further and put on a sound

statistical basis.

Two examples are shown: in Fig 4a small saccades towards line intersec-

tions build up detailed local structure, whilst in Fig 4b large saccades away

from areas already covered give a wide coverage of the input image.

6 Discussion

The work reported here has put some flesh on the bones of Weiman and

Chaikin’s theoretical ideas [11]. Efficient detection of straight lines and cir-

cles in log-polar images has been implemented. In the resampled images used
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here, straight line detection is demonstrably effective, but circle detection is

hampered by the inaccuracy of the representation. A significant advantage of

the approach is that no edge or feature detection precedes the line detection;

the main computational cost is an FFT of complexity for

each foveation, and this could be carried out in suitable hardware.

Processes on log-polar images are not easy to compare with processes on

conventional images, since they are designed to be embedded in a system with

foveal sampling and an active camera at the hardware level. In particular, the

results of log-polar line and circle detection are not comparable with those of,

(a)

(c)

(b)

Figure 4: Examples of straight lines accumulated using an eye movement strategy. In all

cases rmax = 50, nr = 64, nw = 128, rmin ≈ 2.3, and the mask is differentiated with respect to

R and smoothed with σ=1. Up to 5 lines from each foveation are drawn, provided their peaks

exceed 3 times the s.d. of the convolution output. (a) Input image is Fig 2a. Combined line

segments from 100 foveations, saccades of type (i) and (iv) with P(type i) = 0.25. (b) As (a)

but all saccades of type (ii). (c) Input image for (d), segments from 500 foveations with all 4

types of saccades equally probable. (e), (f) As for (c) and (d) with a different input image.

(d)

(e) (f)

nrnw nr nw+( )log
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say, edge detectors or the Hough transform operating on conventional images.

Weiman [10] has described Hough transform detection of straight lines in log-

polar space, but results on real images are not reported.

A full evaluation of the system described here requires further work. Tests

on synthetic images show that the method can readily locate the boundaries

of polygons where the standard deviation of the noise exceeds the grey-level

difference between the interior and exterior, but this is not surprising given

the incorporation of smoothing and the integration of evidence from a sub-

stantial area of the image. More to the point, Figs 4d and 4f give some indica-

tion of the extent to which a combination of log-polar line detection and

camera movements might work together to build up a structural representa-

tion. An appropriate benchmark would involve a higher-level task which de-

manded that image structure be extracted.

These processes could play a valuable role if integrated into an active vi-

sion system, with spatially variant sampling at the hardware level. However,

the most significant challenges are not at the level of feature detection, but lie

in developing a strategy for foveation and saccade so as to integrate informa-

tion effectively. This will require a more task-directed, purposive approach.
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