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Abstract

While full computer understanding of dynamic visual

scenes containing several people may be currently unattain-

able, we propose a computationally efficient approach to

determine areas of interest in such scenes. To this end, we

present methods for modelling and interpretation of single-

and multi-person human behaviour in real time to con-

trol video cameras for visually mediated interaction. We

demonstrate that while environments containing a single

person are relatively simple, interpretation of multi-person

scenarios is much more difficult.

1 Introduction

Machine understanding of human motion and behaviour

is currently a key research area in computer vision, and has

many real-world applications. Visually Mediated Interac-

tion (VMI) is particularly important to applications in video

telecommunications. VMI requires intelligent interpreta-

tion of a dynamic visual scene in order to determine areas

of interest for economical communication to a remote ob-

server.

Ongoing research at the MIT Media Lab has shown some

initial progress in the modelling and interpretation of human

body activity [8, 13, 14]. Computationally simple view-

based approaches to action recognition have also been pro-

posed [1] and similar attempts have been made at Microsoft

Research [12, 3]. However, these systems do not attempt in-

tentional tracking and modelling to control active cameras

for VMI. Previous work on vision-based camera control

has been based on off-line execution of pre-written scripts

of a set of defined camera actions [9]. Here we propose

to model and exploit head pose and a set of “interaction-

relevant” gestures for reactive on-line visual control. These
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will be interpreted as user intentions for live control of an

active camera with adaptive view direction and attentional

focus. In particular, pointing with head pose as supporting

evidence for direction and waving for attention are impor-

tant for deliberative camera control. The reactive camera

movements could provide the necessary visual context for

applications such as group video-conferencing as well as

automated studio direction.

Our general approach to modelling behaviour is

appearance-based in order to provide real-time behaviour

interpretation and prediction [6, 5, 11]. In addition, we only

use views from a single pan-tilt-zoom camera with no spe-

cial markers to be worn by the subjects. We are not attempt-

ing to model the full working of the human body. Rather

we will aim to exploit approximate but computationally ef-

ficient techniques. Such models should be able to support

partial view-invariance, and be sufficient to recognise peo-

ple’s gestures in dynamic scenes. Task-specific representa-

tions need to be used to avoid unnecessary computational

cost in dynamic scene interpretation [2, 10].

In this work, we define high-level models for human

behaviour and use these models to interpret behaviour for

VMI tasks involving first a single subject and then multi-

ple subjects. In Section 2, we introduce the set of VMI-

relevant behaviours that can already be robustly computed.

We show in Section 3 how tracking and behaviour detection

for a single person can be used to interpret their behaviour

for control of a movable camera and demonstrate an exist-

ing real-time system. It is pointed out, however, that with

only a single person in the field of view, such interpretation

is quite simple. In Section 4, the possibilities for interpreta-

tion of a scene containing multiple people are examined. A

framework for interpreting simultaneous behaviours of mul-

tiple people is presented and demonstrated. In Section 5 the

important issues of such an approach are discussed, and the

conclusion is given in Section 6.



2 Modelling Human Behaviour for VMI

For our purposes, human behaviour can be considered to

be any temporal sequence of body movements or configu-

rations, such as a change in head pose, walking or waving.

However, the human body is a complex, non-rigid articu-

lated system capable of almost infinite spatial and dynamic

variations. When attempting to model human behaviour,

one must select the set of behaviours to be modelled for the

application at hand. Further, the level of complexity of the

modelling should be concomitant with its purpose. For in-

stance, the behaviour model required for an automatic light

sensor is extremely simple: it need only recognise that mo-

tion has occurred. For the implementation of real-time sys-

tems, it is of paramount importance that only the minimum

amount of information is computed to adequately model hu-

man subjects for the task at hand. In this section, salient be-

haviours are defined for visually mediated interaction tasks.

Implicit Behaviour

For VMI tasks, our system needs to identify regions of

interest in a visual scene for communication to a remote

subject. Examining the case in which the scene contains hu-

man subjects involved in a video conference, the subject(s)

currently involved in communication will usually constitute

the appropriate focus of attention. Therefore visual cues

that indicate a switch in the chief communicator, or turn-

taking, are most important. Gaze is quite a significant cue

for determining the focus of communication, and is approx-

imated by head pose. Gaze and other uses of body lan-

guage that indicate turn-taking are generally performed un-

consciously by the subject. We define implicit behaviour

as a body movement sequence that is performed subcon-

sciously by the subject.

We adopt head pose as our primary source of implicit

behaviour in VMI tasks. Head pose at each time instant is

represented by a pair of angles, yaw (azimuth) � and tilt

(elevation) �. Our previous work shows that yaw and tilt

can be computed robustly in real-time from 2D images of

limited resolution [7].

Explicit Behaviour

Head pose information is insufficient to determine a sub-

ject’s focus of attention from a single 2D view, due to loss

of 3D information. Therefore it is necessary to have the user

communicate explicitly with our VMI system through a set

of pre-defined behaviours with vague semantics attached to

them. Let us define explicit behaviour as a sequence of body

movements that are performed consciously by a subject in

order to highlight regions of interest in the scene. We use

a set of pointing and waving gestures as explicit behaviours

for control of the current focus of attention. We have pre-

viously shown that these gestures can be reliably detected

and classified in real-time [6]. Specifically, a model m
i

is maintained for each of N gestures under consideration,

i = 1; : : : ; N , and at time t a likelihood p(x(t)jm
i

) is gen-

erated for each model that the given gesture has just been

completed. These N likelihood values can be thresholded

to detect a gesture, or can in themselves be considered as

model outputs for explicit behaviour.

Human Behaviour

Given that both implicit and explicit behaviours can be

measured from human subjects in a scene, these sources of

information can be combined to form a temporal model for

human behaviour. Let us define b(t), the behaviour vector

of a subject at time t to be the concatenation of measured

implicit and explicit behaviours. For our purposes, the be-

haviour vector is the concatenation of gesture model likeli-

hoods and head pose angles:

b(t) = [p(x(t)jm
1

); : : : ; p(x(t)jm
N

); �(t); �(t)℄

T (1)

3 Interpreting Individual Behaviour

We now consider the task of interpreting the defined be-

haviours of a single person in the field of view. For the

time being we ignore head pose and concentrate on ges-

tures. Consider the case in which a user is remotely com-

municating with another person via a video camera. This

scenario can be extended to cope with multiple people at

either end of the communication channel by assuming only

one person in the field of view at a time, but panning the

camera to focus on the appropriate person. In the single-

person case, there are few options for the region(s) of inter-

est and corresponding interpretation.

For instance, the user’s face is the most important area

for communication. The user may wave to the camera to

get its attention and have it zoom in for a close up. This is

demonstrated in Figure 1(a). The user in focus may wish to

prompt the camera to focus on another user in the room, but

currently out of view of the camera. In this case the user

would point to the other user, indicating that the camera

should pan around. This is shown in Figure 1(b).

This example indicates that detection of defined single-

ton behaviour seems feasible. However, given the assump-

tions about the environment, there are only a few possible

areas of interest in the scene, making interpretation trivial

and not very interesting. On the other hand, the situation

becomes much more complex and ambiguous when simul-

taneously tracking multiple people and their behaviours.

4 Interpretation of Group Activities

Although the individual interpretation of behaviours is

possible by attaching pre-defined semantics in the form of
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(a) System responding to a waving gesture by zooming in on the

subject.

(b) System responding to a pointing gesture by panning around

to another user.

Figure 1. Example of a realtime VMI system

for a single person in the field of view. Each

white square indicates the centroid of the mo
tion field for a single frame. These centroids

were among the features used to recognise

the gestures.

camera control commands, the case of multiple subjects is

not so simple due to the combinatorial explosion of possi-

bilities. These possibilities not only include variations in

which behaviours occur simultaneously, but also in their

timing and duration.

Let us now examine VMI situations which include three

people simultaneously in the visual scene, communicating

with each other and with the viewer of the camera footage.

4.1 Characteristics of Group Behaviour in VMI

To illustrate possible scenarios involving three people in

a VMI situation, we seated three subjects in front of a video

camera to have a normal conversation. In the background,

two other subjects were working at their desks. The scene

is shown in Figure 2(a). We label the three foreground sub-

jects from left to right as A, B and C.

The most common behavioural pattern is for one person

to speak, while the other two subjects look on. An exam-

ple is shown in Figure 2(b). However, some subjects may

look at the floor, or at the response of the other subjects. An

example is in Figure 2(c). The person talking can exhibit a

whole range of behaviours, such as emphatic hand gestures,

large changes in head pose, looking at the listeners for a re-

sponse, or looking at the floor while concentrating on what

he is saying. When nobody is speaking, the subjects some-

times all look at the floor, as in Figure 2(d).

(a) the scene (b) B is talking,

A and C look at B

(c) B is talking, C

looks at A

(d) nobody is

talking

(e) C shows A

and B something

on the computer

(f) another sub-

ject in the back-

ground speaks

Figure 2. Examples of human behaviour dur
ing a threeperson conversation.

At one point in the conversation, C wants to show A and

B something of interest on the Internet; a computer sits off

to the right of the view. As shown in Figure 2(e), C leans

out of view and A and B both look over at the computer

with keen interest. Another example of external influences

of interest occurs when one of the background subjects in-

terrupts the conversation, as shown in Figure 2(f). In this

case, all three foreground subjects turn to look at the in-

terrupter. In particular, C’s head pose is a major indicator

of the region of interest since he must change his pose the

most.

In addition to these possibilities, there are many other

individual behaviours that complicate the situation. For ex-

ample, coughing, scratching, gesticulating, nodding, briefly

interjecting a word or two, crossing the legs or putting the

hands behind the head all count as motion events, but may

have no real communicative significance for our target ap-

plication.

Clearly the range of possibilities and ambiguities present

a problem for any single visual cue, no matter how accu-

rately it can be computed. For example, head pose would

fail in many cases in the example presented here because

subject A is already facing B and C, and tends to shift gaze

rather than by turning his head. It is only by fusing differ-

ent visual cues that we can hope to successfully interpret the

scene.
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4.2 HighLevel Group Behaviour Interpretation

Now we describe a methodology for machine under-

standing of group behaviours. Given the complexities of the

unconstrained multi-person environment described above,

we examine a more constrained situation. We assume a

fixed number N of people who remain in the scene at all

times. Let us define the group vector to be the concatena-

tion of the N behaviour vectors of these people at time t:

g(t) = [b
1

(t)

T

; b
2

(t)

T

; : : : ; b
N

(t)

T

℄

T (2)

The group vector is an overall description of the scene

at a given time instant. Now we define a group

behaviour as a temporal sequence of group vectors,

[g(t
1

); g(t
2

); : : : ; g(T )℄. Given a group behaviour, we in-

troduce a high-level interpretation model to determine the

current area of focus. Since the region of interest is almost

always a person and we track the head of each individual,

the output need only give an indication of which of the N

people are currently attended to. Therefore we define the

output of the high-level system to be the camera position

vector:

c(t) = [f

1

; f

2

; : : : ; f

N

℄ (3)

where f

i

is a boolean value (0 or 1) indicating whether per-

son i is currently attended to. An interpretation can then be

placed upon c(t) to control the movable camera, examples

are given in Table 1. Clearly such a scheme would require

two cameras, one to frame the whole scene for tracking of

all individuals, and the other for taking close-up shots. Here

we use a “virtual camera” by cropping focal regions from

the global image. The high-level interpretation model must

transform a recent history of group vectors into a camera

vector for the current scene. However, without the feedback

to retain the previous focus of attention, the system will lack

the context to correctly interpret behaviour. For instance, if

a subject waves to gain focus of attention, the camera vector

must remain on the subject until another subject attracts at-

tention. Without feedback, the subject would lose the focus

of attention as soon as the gesture has ended. Therefore the

general form of the high-level interpretation system F () is:

c(t) = F (g(t); c(t� 1)) = F (s(t)) (4)

where s(t) is the scene vector at time t, defined as the con-

catenation of the current group vector and previous camera

vector, s(t) = [g(t); c(t� 1)℄.

Given this model, the high-level interpretation system

must perform the translation from behaviours to focus of

attention based on a fusion of external semantic definition

and statistics of behaviours and their timings. The seman-

tics may come from a set of rules, but an exhaustive spec-

ification of the system would be infeasible due to the mul-

tiplicity of possible co-occurring behaviours and their tim-

ings. We take a supervised learning approach: the system

is trained on a set of example group behaviours, with the

aim of generalising to new group behaviours. To learn the

transformation from scene vector to camera position vector,

we used a Time-Delay RBF Network [4], trained on half of

our sequence database and tested on the other half.

We constrain the complexity of the task by restricting

the group behaviours to certain fixed scenarios. Let us de-

fine a scenario to be a group behaviour in which the sub-

jects perform gestures and change their head pose in a fixed

pre-defined order. The exact timing of the events will vary

between different instances of the same scenario, but the

focus of attention should switch to the same regions at ap-

proximately the same times. Descriptions of example sce-

narios involving three subjects are given in Table 2. Several

examples of each scenario were collected, and training ex-

amples were labelled by hand with a camera position vector

for each scene vector. A high-level system consisting of a

recurrent RBF network was trained on these examples and

then tested on a different set of test instances of the same

scenarios.

Figures 3–6 show examples of the system output for two

example scenarios: wave-look and point. Figures 3 and 5

show temporally-ordered frames with boxes framing the

head, face and hands being tracked. In each frame, head

pose is shown above the head with an intuitive dial box.

Figures 4 and 6 show the head pose angles (top) and ges-

ture likelihoods (middle) for persons A, B and C (from left

to right). One can see the correspondence of peaks in the

gesture likelihoods with gesture events in the scenario.

c(t) interpretation

[0,0,0] frame whole scene

[1,0,0] focus on subject A

[0,1,1] focus on subjects B and C using a split-

screen effect

Table 1. Example of possible interpretations

of camera position vectors for three people.

The bottom sections of Figures 4 and 6 show the train-

ing signal, or target camera vectors, traced above the actual

output camera vectors obtained during tests with the trained

RBF network. It can be seen that the network follows the

general interpretation of group behaviour, though the exact

points of transition from one focus of attention to another

do not always coincide. These transition points are highly

subjective and very difficult to determine, even with manual

coding.

5 Discussion

We have shown an example of how multi-person activity

scenarios can be learned from training examples and inter-
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Figure 3. Frames from wave-look sequence. Individuals are labelled A, B and C from left to right.
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Figure 4. Results for wave-look scenario. Plots show pose angles (top) for persons A, B and C from

left to right, gesture likelihoods (middle) and target/output camera position vectors (bottom).

Figure 5. Frames from point sequence. Individuals are labelled A, B and C from left to right.

0 2 4 6 8 10 12
40

60

80

100

120

time (seconds)

a
n
g
le

 (
d
e
g
re

e
s
)

yaw 
tilt

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

time (seconds)

lik
e
lih

o
o
d

p(point)
p(wave) 

0 2 4 6 8 10 12
60

80

100

120

140

160

180

time (seconds)

a
n
g
le

 (
d
e
g
re

e
s
)

yaw 
tilt

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

time (seconds)

lik
e
lih

o
o
d

p(point)
p(wave) 

0 2 4 6 8 10 12
20

40

60

80

100

120

140

time (seconds)

a
n
g
le

 (
d
e
g
re

e
s
)

yaw 
tilt

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

time (seconds)

lik
e
lih

o
o
d

p(point)
p(wave) 

A
B
C

A
B
C

0 2 4 6 8 10 12

Target

Output

Figure 6. Results for point scenario. Plots show pose angles (top) for persons A, B and C from left to

right, gesture likelihoods (middle) and target/output camera position vectors (bottom).

5



scenario description

wave-look C waves and speaks, A waves and speaks,

B waves and speaks. Each time someone is

speaking the other two subjects look at him

point C waves and speaks, A and B look at C, C

points to A, C and B look at A, A looks at

camera and speaks

Table 2. The example scenarios described in

temporal order of their behaviours. All sub

jects are looking at the camera (forward) un
less stated otherwise.

polated to obtain the same interpretation for different in-

stances of the same scenario. However for the approach to

scale up to more general application, it must be able to cope

with a whole range of scenarios. The approach implicitly

requires such a system to extrapolate to novel situations in

the same way as a person. However, there is no reason to

believe that current computer architectures are capable of

such reasoning. Therefore a significant issue addressed in

this paper and in future work is the feasibility of learning

correlated temporal structures and default behaviours from

sparse data.

Another issue with the machine learning approach to

multi-subject behaviour interpretation is the feasibility of

collecting sufficient data. The multiplicity of possible

events increases exponentially with the addition of extra

subjects. Therefore it is difficult to know which scenarios

to collect beforehand in order to evenly populate the space

of possible scenarios with the training set. Also, the train-

ing set needs to be manually labelled which is extremely

time consuming. There are several avenues of investigation

which may yield solutions to these problems. The use of

high-level models such as Bayesian belief networks allows

a combination of hand-coded a priori information with ma-

chine learning to ease training set requirements. Cluster-

ing techniques could be used to select the most important

scenarios before hand-labelling. Adaptive training could be

adopted so that an inadequate training set is used initially,

and the system is manually “corrected” afterwards during

operation.

Since this system relies on several independent compo-

nents, the overall probability of failure of at least one com-

ponent is always quite high. This has consequences for the

high-level interpretation system. First, the system must be

able to cope with missing or noisy inputs, such as a head

tracker that has lost lock. It is likely that not all low-level

information is required to determine the focus of attention.

Second, the system outputs may be fed back to the low-level

sub-systems to guide them in their processing, ie. indicating

what to look for. Such properties would imbue the system

with some semblance of real intelligence.

6 Conclusion

The key issues have been explored and a framework pre-

sented for tracking people and recognising their correlated

group behaviours in VMI contexts. Pre-defined gestures

and head pose of several individuals in the scene can be

simultaneously recognised for interpretation of the scene.

When there is only a single person present in the view, inter-

pretation of behaviour can be quite trivial to achieve com-

putationally. In the presence of multiple people, however,

ambiguities arise and a high-level interpretation of the com-

bined behaviours of the individuals becomes essential.
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