
Evolving Good Hierarchical Decompositions of

Complex Systems

Rudi Lutz

School of Cognitive and Computing Sciences

University of Sussex

England

Email: rudil@cogs.susx.ac.uk

Technical Report CSRP 519
May 2000

Abstract

Many application areas represent the architecture of complex systems by

means of hierarchical graphs containing basic entities with directed links be-

tween them, and showing the decomposition of systems into a hierarchical

nested “module” structure. An interesting question is then: how best should

such a complex system be decomposed into a hierarchical tree of nested

“modules”? This paper describes an interesting complexity measure (based

on an information theoretic minimum description length principle) which can

be used to compare two such hierarchical decompositions. This is then used

as the fitness function for a genetic algorithm which successfully explores

the space of possible hierarchical decompositions of a system. The paper

also describes the novel crosssover and mutation operators that are necessary

in order to do this, and gives some examples of the system in practice.

1 Introduction

Complex systems are often described by means of hierarchical graphs (along the

lines of that shown in Figure 1). Examples include the breakdown of a software

system into subsystems, submodules, sub-submodules etc. (these will all be re-

ferred to as modules and submodules in the rest of the paper), or the hierarchical

decomposition of hardware circuitry. In such diagrams the links can represent

such things as dependency relationships between the components, or control-flow

1



Figure 1: A system with nested modules and sub-modules.

or data-flow. So, for example, Figure 1 shows a system consisting of a top-level

module (A0), which consists of four basic entities (labelled 1, 5, 12, and 13) and

2 sub-modules(labelled A1, and A3). Module A3 in turn consists of four basic

entities (8, 9, 10, and 11) and contains a sub-module of its own (A4).

Two related issues that often arise when designing such systems are:

� What is the best way to hierarchically break the system up into components?

� Given an existing hierarchically decomposed system to which one is adding

structure (e.g. a new component and possibly extra links), should the new

component be added to one of the existing modules, and if so which, or

should adding the extra component lead to reorganisation of the existing

design into a new hierarchical structure?

These issues can arise either during the process of system design, or when trying

to reverse engineer the high-level design of some system. Both of these questions

can in principle be answered provided we have some method of searching through

the space of possible hierarchical decompositions of a system. This paper will

describe work which tries to do this using evolutionary techniques. Doing so first

requires the answer to a more fundamental question – what makes one hierarchical

modular decomposition (HMD) of a system better than another? For example, the

modular structure shown in Figure 2 appears to most people to be much “nicer”

(less complex) than that in Figure 1. In the work reported in this paper, a variant of

an information-theoretic metric due to Wood[15] will be used to define when we

consider one HMD to be better than another, but in principle any suitable metric

could be used. However, the one we use does seem to do quite a good job of

matching human intuitions (or at least those of the author!) about what makes

2



Figure 2: A “better” modular decomposition of the system shown in Figure 1.

a good HMD. Whichever metric is used will then play a fundamental part in the

evolutionary algorithm for exploring the space of possible designs, since it provides

the basis for defining the “fitness function” for the genetic algorithm.

The paper will begin by describing what is meant by a hierarchical modular

decomposition of a system. It will then give some informal definitions needed in

order to describe our variant of Wood’s metric enabling us to compare hierarchical

decomposition. Finally, the evolutionary algorithm will be described, followed by

some preliminary results and discussion of future directions for research.

2 Hierarchical Modular Decompositions of Systems

In what follows we will give relatively informal definitions of the main concepts

and terminology needed to understand the rest of the paper. More formal defini-

tions can be found in [7]. We will begin by describing what we mean by a system,

and by a hierarchical modular decomposition (HMD) of a system.

2.1 Systems

Following Briand et al.[1], a system will be defined to be a directed graph consist-

ing of some number of nodes (basic entities), and a collection of directed edges(links)

between them. An example is shown in Figure 3. All the systems considered here

will be of this nature; the work can easily be extended to allow directed multi-

graphs.

3



Figure 3: A system (the underlying system for the HMD of Figures 1 and 2).

2.1.1 Terminology

For convenience we define the union S1 [ S2 of 2 systems S1 and S2 to be the

directed graph whose node set is the set-theoretic union1 of the node sets of S1 and

S2, and whose edge set is the set-theoretic union of the edge sets of S1 and S2.

Given an edge from a node n1 to a node n2 in a system, we will refer to n1 as

the source of the edge, and to n2 as the destination of the edge. We will refer to the

edge as an incoming edge of n2, and as an outgoing edge of n1.

Given a node n in a system, it will also be useful to define the following:

� inDegree(n) = number of edges whose destination is n

� outDegree(n) = number of edges whose source is n

� inNodes(n) = set of nodes with an outgoing edge whose destination is n

� outNodes(n) = set of nodes with an incoming edge whose source is n

2.2 Hierarchical Modular Decompositions (HMDs)

Given a system S a HMD is S together with a module tree T . This is a tree whose

leaves are the basic nodes of S, and the “internal nodes” correspond to the modules

of S, with the root of T corresponding to the outermost “top-level” module of the

HMD, and its non-leaf sub-trees are its submodules, and so on. Figure 4 shows

a simple HMD, together with its module tree. We can therefore think of a HMD

as being a pair hT;Ei, consisting of a module tree T together with a collection of

1In the case of multi-graphs this can be generalised to union of bags.

4



Figure 4: A HMD and its module tree

links E between the basic entities (which is the only other information present in

the underlying system which is not implicit in the module tree).

2.2.1 More Terminology

The following definitions will turn out to be useful later in the paper:

� Given a HMD hT;Ei of some system, the least common ancestor of two

basic entities n1 and n2 (leaves in T ) is the deepest “module node” M in

T such that M is an ancestor of both n1 and n2. We will denote this by

lca(n1;n2). For example, in Figure 1, lca(n7;n4) = A0, and lca(n7;n10) =

A3.

� Given a HMD hT;Ei, if n is a basic entity (leaf node) in T and M is a

“module node” of T which is an ancestor of n, then we define the rela-

tive depth of n and M in T , written relDepth(n;M), to be one less than the

number of branches in T on a path from M to n. For example, in Figure 1

relDepth(n7;A3) = 1, and relDepth(n7;A4) = 0. In other words it is a mea-

sure of how many modules one must “climb up” to get from the module

containing n to M.

3 Choosing Between Hierarchical Modular Decomposi-

tions

Given two hierarchical modular decompositions of a system S, how can we choose

between them? In software engineering textbooks one often sees guidelines which

can be loosely paraphrased as:

5



� prefer designs with greater cohesion in the modules

� prefer designs with less coupling between modules

These guidelines do not however say anything at all about what to do when they

are in conflict with each other,especially in hierarchical systems. The approach

taken in this work to choosing between two hierarchical modular decompositions

is heavily based on the work of Wood[15], and makes no explicit mention of no-

tions corresponding to coupling and cohesion. Instead it takes the view that the

best HMD of a system is the simplest (in a sense to be made precise shortly). In

practice this seems to give rise to HMDs in which modules are highly connected

internally (high cohesion), and have relatively few connections which cross mod-

ule boundaries (low coupling), and thus seems to achieve a principled trade-off

between the coupling and cohesion heuristics without actually involving either.

3.1 The Minimum Description Length Principle

Kolmogorov Complexity theory[6] (sometimes called Algorithmic Information The-

ory) is a branch of mathematics that tries to answer the question “how much infor-

mation does an object contain by virtue of its structure?”. This is then answered

by essentially defining the information content of an object to be the length (mea-

sured in bits) of the shortest Universal Turing Machine program (consisting of the

description of a Turing machine, plus its data) that can generate the object. The

complexity of an object is then identified with this information content. It can be

shown that this gives rise to an essentially invariant (up to an additive constant)

quantity, independent of the choice of Universal Turing Machine (and hence, by

the Church-Turing thesis, of choice of powerful enough computational formalism).

We note that this means that the complexity of an object is given by the length of

the shortest two part code, where the first part of the code defines a Turing machine,

and the second part defines the data for that machine, such that when the Turing

machine is run on that data it generates the object of interest.

Unfortunately, in general, the true minimum description length is an uncom-

putable quantity[6]. Therefore in applications one usually picks some fixed coding

scheme for the objects of interest (equivalent to fixing the Turing machine in the

two part code) and defines the complexity to be the length (in bits) of the encoding

(plus the constant length of the description of the Turing machine). The general

idea here is that if one chooses a “reasonable” encoding scheme which seems to

us to give reasonably compact encodings of the object, and which is not too com-

plicated to decode (smallish Turing machine), then one will have a fairly good

approximation to the true complexity of the objects. An important point to note

is that it is important that the encoding be uniquely decodeable by the decoding

6



Turing machine. One can therefore think of the encoding as being a message that

is sent to some recipient (the decoder), whose task is then to decode the message.

Given that the message will consist of string of bits, it is necessary for the decoder

to be able to recognise which substrings of these bits represent which parts of the

message. Therefore all the apparatus of Information Theory[11], and in particular

the theory of optimal uniquely decodeable codes, can be brought to bear.

Given some data D, one is often faced with a choice of several competing the-

ories which can account for the data. An often used principle in making such deci-

sions is Occam’s Razor (attributed to William of Ockham, 1290–1349), which in-

formally states that one should choose the simplest of the alternatives, other things

being equal. A modern formalization of Occam’s razor is the Minimum Descrip-

tion Length Principle[9]. This aims to achieve a principled balance between the

complexity (or simplicity!) of the data as described by the theory, and the com-

plexity of the theory itself. It does this by stating2 that, given some data D, and

some set of possible theories T , choose that T 2 T which minimises

L(T )+L(DjT )

where L(T ) is the length (in bits) of the minimal description of the theory T , and

L(DjT ) is the length (in bits) of the minimum (re-)description of the data D given

the theory T .

In the case of HMDs one can think of the underlying system S as being the

data, and the space of possible “theories” as being the set of possible HMDs over

S. The minimum description length principle would then tell us that the best HMD

is the one that minimises:

L(T )+L(SjT )

Now since each HMD completely encodes the underlying system S then we have

that L(SjT ) = 0, and we are simply looking for that HMD T with the smallest

description length.

3.2 The Message Format

We follow the usual practice described above in applications of MDL by choosing

what we hope is a reasonably good encoding of the objects we are describing, and

using the length of this as the basis of our complexity measure. Later in the paper

we will give a formula for the length of a message describing a HMD, but first

we will have to go into quite a lot of detail about the exact form our messages

2Under certain assumptions this can be derived within Kolmogorov Complexity Theory. See [6]

for further details.

7



will take. Only by understanding exactly what needs to be sent, and how often

various symbols are used in such a message can one understand the complexity

formula. We will begin by describing the high-level format of the encoding of a

HMD, and then discuss encoding this as a string of bits whose length will be taken

as the complexity of the HMD. It should also be noted that we will follow the usual

practice of allowing “fractional bits”(which give the theoretical lower bounds on

the number of bits needed) as this seems to give the best results. Indeed there are

coding schemes which can very closely approximate these fractional code lengths

on average[14].

In order to communicate the structure of a HMD and its underlying system we

need to specify, for each module:

� its basic entities

� its submodules

and for each basic entity we need to communicate what it connects to. This can be

done using the message format (expressed as a pseudo-BNF style grammar) shown

in Table 1. In this grammar, “+” is a meta-symbol denoting concatenation (it does

HMD ::= moduleTree + links

moduleTree ::= entities + submoduleTrees

entities ::= junconnectedj + jentitySeqj + entitySeq

entitySeq ::= entity + entitySeq

entitySeq ::= empty

submoduleTrees ::= jmoduleSeqj + moduleSeq

moduleSeq ::= moduleId + moduleTree + moduleSeq

moduleSeq ::= empty

entity ::= entityId

links ::= entityLinkInfo + links

links ::+ empty

entityLinkInfo ::= jconnectionSeqj + connectionSeq

connectionSeq ::= connection + connectionSeq

connectionSeq ::= empty

connection ::= jmodulesUpj + idSeq

idSeq ::= entityId

idSeq ::= moduleId idSeq

Table 1: Pseudo-BNF grammar for encodings of HMDs.

8



not turn up in the messages), “empty” denotes the empty string, and jentitySeqj

denotes the length of the following entitySeq (and similarly for jmoduleSeqj and

jconnectionSeqj). junconnectedj represents the number of unconnected basic enti-

ties (i.e. with no links) in a module. The meaning of jmodulesUpjwill be explained

in the next section where we give details of how links are described. It should be

noted that we have been very careful about the ordering of information in these

messages (links are described after details of which modules there are, and names

have been specified for modules and basic entities) to enable a recipient of the

message to decode them. By the time they get to link descriptions they will already

know all names (codes) for entities and modules. It should also be noted that if

a system has some isolated entities (entities with no connections to others), then

we do not need to name these, but can simply say how many there are. This is a

consequence of the fact that we are only trying to communicate the structure of the

system, and not any other information such as the arbitrary names a designer might

have used for the various components.

3.3 Describing Links

Consider the HMD shown in Figure 1, and in particular consider the link from basic

entity n4 to basic entity n7. Now if we assume that the names of the basic entities

and modules are not necessarily unique as they have been shown in diagrams, but

are only unique within the module in which they occur, then we have to use “path

names” to describe a link. If we describe each link at the basic entity which is

the start of the link, then we need to give a “route” from the current basic entity,

up through some number of modules (jmodulesUPj), and then down again to the

destination of the link. The module one has to “climb up” to is the least common

ancestor (in the module tree of the HMD) of the two basic entities involved. So,

for the link we are considering, the destination of the link can be described by:

2 A3 A4 n7

meaning that from node 4 we go up 2 levels in the module hierarchy and then down

through A4 and A3 to node 7.

A basic entity which has several outgoing links will be described by giving

the number of outgoing links (jconnectionSeqj), followed by a sequence of such

“paths”, one for each link. It should be noted that there will be one such “en-

tityLinkinfo” entry for each connected (i.e. named) entity, and these entries will

occur in the order in which the entities were named in tyhe previous part of the

message giving the module structure and naming the modules and entities.

9



Figure 5: Another HMD and its module tree

3.4 An Example

Consider the HMD shown in Figure 5. This will be described by the message be-

low (indented, and partially commented, for clarity):

0 2 (0 unconnected entities, 2 basic entities)

n0 (name of node)

n2 (name of node)

2 (2 sub-modules)

B1 name of first sub-module)

0 4 (0 unconnected entities, 4 basic entities)

n1 (name of node)

n3 (name of node)

n8 (name of node)

n9 (name of node)

0 (0 sub-modules in B1)

B2 (name of second sub-module)

0 3 (0 unconnected entities, 3 others)

n4 (name of node)

n5 (name of node)

n10 (name of node)

0 (0 submodules in B2)

1 0 B1 n3 (entity n0 info : 1 outgoing link, to B1 n3)

1 0 B1 n1 (entity n2 info: 1 outgoing link to B1 n1)

2 1 B2 n4 0 n9 (entity n1 info: 2 outgoing links)

1 0 n8 (entity n3 info: 1 outgoing link)

2 0 n1 1 n2 (entity n8 info: 2 outgoing links)

10



2 0 n3 1 B2 n5 (entity n9 info: 2 outgoing links)

2 0 n5 1 B1 n9 (entity n4 info: 2 outgoing links)

1 0 n10 (entity n5 info: 1 outgoing link from n5)

1 0 n4 (entity n10 info: 1 outgoing link from n10)

3.5 Messages as Bitstrings

Messages in the format just described consist of two types of symbol:

1. integers

2. names for basic entities or modules

We therefore need to find good encodings (as strings of bits) for both of these. A

point to bear in mind is that these encodings need to be decodeable by a recipient of

the message, and that, as we are placing no upper bounds on the size of the systems

we are considering, a fixed length encoding for the integers cannot be used.

3.5.1 Code Lengths for Integers

For the integers this simply means that both sender and recipient have to agree on

some prefix code[6] for the integers. For our purposes, all we need to know is the

length of such a code. One possibility (for positive, non-zero integers n) has length:

l(n) = log2(n)+2log2 log2(n+1)+1

which roughly corresponds to sending the binary representation of n, preceded by

(for decoding purposes) the length of this binary representation (with extra “dou-

bled up“ bits to ensure unique decodeability). Since we need to be able to commu-

nicate zero as well, we will send the code for n+ 1 to communicate an integer n,

and hence use l(n+1) as the length of the code for integer n.

3.5.2 Code Lengths for Names

Before discussing the lengths of codes for names it should be stressed that we only

need to worry about having unique names within modules, since we are using “path

names” as described earlier to name entities external to a module from within it. In

the usual information theoretic way, we will minimise message length if we assign

short codes to frequently occurring names, and longer codes to less frequently oc-

curring ones. It should also be noted that the module and entity names occurring in

the above message format before information about the module or entity are there

to act as a “name table” to ensure decodeability of the message by a recipient who

11



does not have prior knowledge of the relative frequencies of the various symbols

occurring in the message. So how often is each name used in the message. A little

thought will show that the names of a connected basic entity n will occur in the

message once for each incoming edge of n, and once to specify the name prior to

the edge descriptions, giving a total of:

f (n) = indegree(n)+1

Similarly, the name of each module m will occur

f (m) = indegree(m)+1

times. Additionally, the first occurrence of each of these names (essentially telling

the recipient what name (code) is being used, so they can recognise it in the future,

has to be preceded by its length, so the recipient can tell when the name ends.

Information theory tells us that when transmitting a message containing sym-

bols si occurring with frequencies fi, then we need roughly

� log2

�

fi

f

�

bits (where f = ∑i fi) for the code for si, and that the message length will be min-

imised if we use codes of that length. Furthermore, information theory tells us that

such codes exist. Furthermore, because of our use of “route descriptions” to name

entities connected to a node, we need only guarantee unique names for the basic

entities and submodules within their containing module. Accordingly, we can take

the length of the code for a name to be:

� log2

�

f (n)

∑x f (x)

�

where x ranges over the named basic entities and sub-modules of the module n

is in. In other words, the code lengths for names are determined by the relative

frequencies of the names. The actual frequencies are determined globally, but the

relative frequencies are determined by using these global frequencies locally within

a module to compute the lengths of the local names.

3.6 The Complexity Formula

In the light of the above discussion the formula for the complexity ψ(X) of a HMD

X is given by:

ψ(X) = ∑
m2M

0

B

@

l(jUmj+1)+ l(jCmj+1)+ l(jMmj+1)

+∑n2Cm[Mm

h

l
�

� log
�

fn

Fm

��

� fn log
�

fn

Fm

�i

+∑n2Cm
∑n0

2outNodes(n) l(relDepth(n; lca(n;n0)))

1

C

A

12



where M is the set of all the modules in the HMD X , l represents the code lengths

for integers discussed earlier, Um is the set of unconnected basic entities in module

m, Cm is the set of connected basic entities in module m, Mm is the set of submod-

ules of module m, fn is the frequency of entity n (submodule or connected basic

entity) in module m, and Fm = ∑n2Cm[Mm
fn. This formula contains terms for the

code lengths of all the various integers that need to be sent, the contribution all

the occurrences of the various names make, and the extra length information that

needs to be sent about each name.

Applying this formula to the HMDs shown in Figures 1 and 2, the first has

a complexity value of 398.5 bits, while the second has complexity value 348.7,

agreeing with our intuition that Figure 2 is somehow “nicer” (less complex) than

Figure 1.

4 Evolutionary Search Through the Space of HMDs of a

System

Trying to find the optimal HMD for a system involves a search through a very

large space with many local optima. In [15] this was searched using essentially a

heuristically based beam search[12]. This proved to be rather slow, and sometimes

had trouble finding the best HMD. In the work described here a Genetic Algorithm

is used.

Genetic Algorithms (GAs)[3, 8, 4] are a stochastic search technique that often

work well in difficult search landscapes. Such algorithms work by maintaining a

population of individuals, each of which encode a possible solution to some prob-

lem. Inspired by ideas taken from biology and natural evolution, A GA essentially

works by repeatedly:

1. pick some individuals to reproduce, based on their “fitness”

2. produce some “children” from the chosen individuals, using processes of

“crossover” and “mutation” to mix features of the “parents” solutions, and

to introduce some random variations

3. replace one or more members of the original population by one or more of

the resulting children

Typically GAs are considered to have genomes (the encoding of the solution to the

problem) which are string-like, often consisting of a string of bits giving a binary

encoding of the solution. In the closely related field of Genetic Programming (GP)

[5] this restriction is removed allowing genomes with a tree-like or even graph-like

structure. This work draws quite strongly on some of the work in the GP tradition.

13



Another distinction often made in the GA literature is between the “classi-

cal” generational GA , and what have come to be known as distributed “steady-

state” GAs[2]. In these the population is spatially distributed (usually over a 2-

dimensional grid), and individuals only “mate” with those in some neighbourhood

of themselves. Additionally children are put back in the population immediately

they are produced, rather than waiting until an entire new population of children

has been produced. In this work we use a distributed steady state GA as described

below.

So let S be some system for which we are trying to find the best HMD. The

genome for an individual X in the GA simply consists of a HMD for S. The fitness

of X is given by:

f (X) =
1

ψ(X)

where ψ(X) is the complexity of the HMD represented by X . Maximizing this

fitness will therefore minimize the complexity of the HMD. The population of in-

dividuals is arranged on an N �N toroidal grid. The algorithm then proceeds as

follows:

repeat until decide to stop

with uniform probability pick a random individual on the grid (parent p1)

find its fittest neighbour (parent p2)

with probability Pc:

produce a child c from p1 and p2 by crossover (randomly choosing p1

or p2 to be primary parent)

otherwise with probability 1�Pc

let the child c be either p1 or p2 (randomly chosen)

with probability Pm mutate c

replace (in the population) the least fit of p1 and p2 by c

endrepeat

In all the examples given later in this paper, the crossover probability Pc was 0.5,

and the mutation probability Pm was 1.0, as these values seem to give good results.

Further work needs to be done to find the optimal values of these parameters.

In what follows we will often refer to a “generation” of this GA, meaning the

process of N2 iterations of the outer loop in the above algorithm i.e. we have put

back into the population a number of children equal to the original population size.

It should be noted that this does not imply that every member of the population

has been replaced. Indeed the replacement strategy we are using (children replace

weakest parent) implicitly implies a certain type of elitism in that the fittest individ-

14



uals in a neighbourhood can never be replaced until there is another fitter individual

in the neighbourhood.

4.1 Crossover

Defining a suitable crossover operation which produces a new HMD from two

“parent” HMDs is not entirely trivial. Given a fixed underlying system S we can

think of a HMD as simply being a tree structure over the nodes of S. We do not

need to take the links into consideration as they are the same for all HMDs over S

(of course we need to consider the links when computing the fitness of the HMD

their description lengths form the dominant part of ψ). Since each genome can

therefore be encoded by a tree structure, we have based our crossover operation on

the tree-based crossover operation used by Koza[5] in his Genetic Programming

work. However, using Koza’s original tree crossover is not guaranteed to give a

legal HMD of S, and we have to repair the result so that it is legal. This is easily

done using the concatenation operator described below.

4.1.1 Concatenating Two HMDs

Given two HMDs H1 and H2 for two underlying systems S1 and S2 one can define

a family of concatenation operators �M (one for each module M occurring in H1)

for “gluing together” the two HMDs to form a new HMD H1 �M H2 for the system

S = S1 [ S2. Although these concatenation operators were originally defined [7]

in order to prove various theoretical properties of our measure (in particular that

it satisfies a minor variant of Weyuker’s axioms [13] for a complexity measure), it

turns out that we can define our crossover operator in terms of them.

Defining the concatenation operators is not entirely trivial because the two orig-

inal HMDs may share some of their basic entities, and these may be in different

places in the module hierarchy in each of the two HMDs. When this situation

happens the question arises about where in the resulting HMD these basic entities

should go. The basic idea is to treat the first HMD as primary, and all its structure

is carried over into the new HMD, which then gets whatever is necessary from the

second HMD to complete the process. To do this we first concatenate the module

trees of the two HMDs, and then turn the resulting module tree back into a HMD by

defining its edge set to be the union of the edge sets from the original two HMDs.

4.1.2 Concatenating Two Module Trees

Let S1 and S2 be two systems, and let T1 and T2 be module trees for S1 and S2

respectively. Let M be a module of S1, corresponding to some non-leaf node M0 in

15



T1. Define S1 �M S2 (read the concatenation of S2 onto S1 at M) by the following

process:

1. Let T be a copy of T1, and T 0

2 a copy of T2.

2. Delete from T 0

2 any basic entity nodes corresponding that also occur in T .

This may leave some “module nodes” with no children.

3. while T 0

2 has module nodes with no children do

delete such nodes from T 0

2

4. Add all remaining children (immediate subtrees) of T 0

2 (basic entities and

modules) as extra children of node M in T

5. Form E = E1[E2.

6. The resulting concatenated HMD is given by hT;Ei.

For example if T1 is the tree shown in Figure 4, and T2 is the tree in figure 5, then

T 0

2 after step 3 is shown in Figure 6 (note that for this example Step 3 itself was not

really necessary).

Figure 6: T 0

2, after step 3 of concatenating the module trees in Figures 4 and 5.

Figure 7 shows the final result of concatenating the HMD shown in Figure 5

onto the HMD shown in Figure 4 at A0. Similarly, Figure 8 shows the results of

concatenating the HMD of Figure 5 onto the HMD of Figure 4 at A2.

4.1.3 The Crossover Operation

The crossover operator is most easily considered as an operation on the module

trees of the two HMDs involved. Figure 9 shows a HMD (actually the same as in

Figure 1), together with its module tree. Similarly, Figure 10 shows another HMD

and its module tree for the same underlying system.

Let the two module trees be T1 and T2. Then the crossover operator works as

follows:

16



Figure 7: Concatenation of Fig. 5 onto Fig. 4at A0

Figure 8: Concatenation at A2

1. Pick a random node (subtree) S1 in T1, and pick a random node S2 in T2.

2. Remove the subtree whose root is S1 from T1.

3. Concatenate the resulting system with the system with module tree S2, at the

ancestor of node S1.

4. Concatenate the resulting system with T1 at any node (we use the root).

The effect of performing crossover on the HMDs in Figures 9 and 10 at A3 and B3

is illustrated in Figure 11. It should be noted that, unlike most crossover operations

on string-like genomes (e.g. 1-point, 2-point, or uniform crossover), crossing a

genome with itself does not in general result in children identical to the parents.

For example, consider the HMD shown in Figure 9. The result of crossing it with

at itself at A1 and A2 is shown in Figure 12.

17



Figure 9: The HMD of Figure 1 together with its module tree

Figure 10: Another HMD for the system shown in Figure 3

4.2 The Mutation Operator

When a HMD is mutated, three different operations are applied (each with some

appropriate probability). These three operations can all be thought of as operations

on the module tree for the HMD. They are:

� moving a randomly chosen node (which can be a basic entity or a submod-

ule) from where it is in the tree into another randomly chosen module of the

tree, subject to the caveat that this must not introduce cycles into the module

tree i.e. it must remain a tree. This can be guaranteed if the second randomly

chosen module is not a daughter (in the module tree) of the first. Figure 13

shows the result of taking the HMD of Figure 9 and moving Module A2 into

A4. Similarly Figure 14 shows the effect of starting with the same HMD,

and moving node 0 into A2.

18



Figure 11: HMD and its module tree resulting from crossover at A3 and B3

� modularise the nodes of some randomly chosen module. This involves mak-

ing a new module containing just the basic entities of the chosen module,

and making the new module a sub-module of the original module. Figure 15

shows the effect of “modularising” the basic entities in A3 on the HMD of

Figure 9.

� remove a module “boundary”. This involves randomly choosing a (non-top-

level) module in the HMD, and making all its immediate daughters (sub-

modules and basic entities) daughters of its parent module. Figure 16 shows

the effect of doing this to module A2 of the HMD of Figure 9.

In all the examples described later in this paper modularising the nodes of some

module was done with probability 0.8, followed by module boundary removal with

probability 0.05, finally followed by moving a component elsewhere in the module

tree with probability 1.0.

4.3 The Initial Population

The initial population for the GA consists of N2 (the grid world is N�N) randomly

created genotypes, all based on the system for which we are trying to discover

a good HMD. Each of these individuals is created by randomly mutating some

number of times (using the mutation operators just discussed) a particular “seed”

individual3.

3In all the experiments reported here each individual in the initial population was created by

mutating the seed indidual nmut times where nmut was a randomly generated (newly generated for

each new individual) number between 1 and 3

19



Figure 12: HMD resulting from crossing the HMD of Figure 9 with itself at A1

and A2

The initial “seed” individual is constructed by “modularising” the initial sys-

tem. This is done by “wrapping” an extra module around every basic node and

module of the system. The resulting “initial individual” corresponding to the sys-

tem shown in Figure 3 is shown in Figure 17. This structure gives mutation in

particular a great deal to work with as it moves components around in the system.

Figure 13: Mutation – moving module A2 from A1 into A4

20



Figure 14: Mutation – moving node 0 from A1 into A2

Figure 15: Mutation – making a new module from nodes of A3

5 Some Examples

5.1 Example 1

We will begin by looking at the rather simple system S1, shown in Figure 18. This

system has complexity 208.37 bits. An initial population of 100 (10� 10 grid

world) random individuals created from this system as described earlier was cre-

ated, and the GA then allowed to run. The best individual after 2 “generations” is

shown in Figure 19, and has complexity 249.91 bits (all early stages in the evolu-

tion of a good HMD have higher complexity than the original due to all the extra

modules in the individuals in the initial population). This particular system is sim-

ple enough that already signs of grouping starting to occur can be seen. The best

individual after 10 “generations” is shown in Figure 20 (complexity 230.0 bits),

where the two main groupings are clearly apparent, and by 20 generations (shown

21



Figure 16: Mutation – “removing the boundary” of module A2

Figure 17: The initial “modularised individual” corresponding to the system in

Figure 3.

in Figure 21) the system has found what we believe to be the optimal HMD for this

system, with complexity 202.3 bits. Note that this is lower than the complexity of

the original system. The fact that the original flat system is rather small makes this

flat system a local optimum that is quite close in fitness to the final best HMD. This

is basically the reason why it is not until quite late in the evolutionary process that

a better HMD is found – normally this happens much sooner.

5.2 Example 2

We will now look at the slightly larger system that we have used several times in

this paper (shown in Figure 3). We will refer to this system as S2, and it has a

22



Figure 18: A rather simple system S1. Figure 19: S1 after 2 generations.

Figure 20: S1 after 10 generations. Figure 21: S1 after 20 generations.

complexity of 372.2 bits. After 50 generations we have found quite a reasonable

modular structure (shown in Figure 22 with a complexity of 350.7 bits (better than

the original flat system, confirming our intuition that this is not a bad HMD for this

system), and by 120 generations (shown in Figure 23) the system has again found

what we believe to be the optimal modularisation for this example. This final HMD

has a complexity of 342.1 bits. It should be noted here that the HMD for this system

shown in Figure 2 has a complexity of 348.7 bits, which may account for why we

tend to think it is a better hierarchical modular decomposition for this system than

that in Figure 22. Note though that module A2 in Figure 2 is not big enough for it

to be worth having as a separate module, given also that there are only two other

modules in the system, and hence Figure 23 is better.

23



Figure 22: S2 after 50 generations Figure 23: S2 after 120 generations

5.3 Example 3

The next example S3 makes it clear that the system can easily find more deeply

nested submodules if necessary. Figure 24 shows an elaboration of the earlier

example, in which we have added some extra structure to the system of Figure 3.

After 200 generations the system has found the HMD shown in Figure 25.

Figure 24: The initial system S3. Figure 25: S3 after 200 generations

5.4 A Software Design Example

All the previous examples have been rather abstract in nature, not corresponding

to any real artifact that we might actually be really interested in, although they

do show the potential power of the complexity metric together with evolutionary

24



sensors

ACAC

BD

BD

Figure 26: The traffic lights example

techniques. In this last example we will look at one (fairly small) example of a real

software design, published in [10]. The requirement is to control the flow of traffic

over a cross-roads, see Figure 26. The sensors provide information about waiting

traffic, and the lights are only changed if traffic is waiting and the current pair of

lights have been green for some pre-defined interval.

colour second

stringroad latchpresent

other_road

ac_presentbd_presentcurrent_green_pair elapsed

ac_sensorsbd_sensors

tl.second

count

checkchange

read_sensor put_line

Figure 27: The original HOOD design for the traffic lights example.

We took the original design as proposed by Robinson[10], shown in Figure 27

and input it to our system as shown in Figure 28. Since the original design has

an external “library” module (shown on the right of Figure 27) containing put line

and string we have had to artifically add this as an extra module of the system,

with an extra module reprenting the rest of the system4. Furthermore we reversed

the direction of all links in the original design. This is because our encoding of

HMDs rather arbitrarily chose to associate link information with the source node

of each link, giving the system a bias towards destination nodes contributing more

to the description length(names of sources are used once, while names for destina-

4We are currently working to remedy this defect of our current system.

25



Figure 28: The “reversed” HMD graph corresponding to the design shown in Fig-

ure 27.

tions are used once for each time the node is a destination). Whether or not this is

appropriate depends to some extent on the semantics of the links. In the original

HOOD design a link from n1 to n2 is interpreted as “n1 depends on n2”. We prefer

to reverse them and interpret them as “n2 provides services to n1”. In this way we

essentially penalise the user of services, rather than the supplier. The complexity

of this HMD is 415.18 bits. We then ran our system on the “flat”system underlying

this version of Robinson’s design (shown in Figure 29), to produce a new HMD

shown in Figure 30 with complexity 398.5 bits. Because our system as currently

implemented has no knowledge of constraints imposed on real software systems

(such as the fact that library objects such as put line and string cannot be moved

around inside the system as they are external) we then modified the resulting sys-

tem by hand to produce the HMD shown in Figure 31. This has complexity 410.27

bits, which is still lower than our version original. The new HMD is better than the

original in a variety of ways:

� The top level module contains all the entities concerned with managing time

(the datatype second, count, elapsed as well as the top-level “start” node

tl.second).

� The module named A22249 in our new HMD contains everything that was in

the original module contianing check, but has had the two variables ac present

and bd present moved into it. These are both of type present which is also

in that module (node number 16).

� The variables other road and current green pair of type road have been moved

26



Figure 29: The flat system graph corresponding to the design shown in Figure 27.

into the other module together with type road itself., and have been grouped

rather nicely with the operation change(responsible for changing the colour

of the lights) and the datatype colour which depends on the roads and on the

datatype.

Thus it would appear that the system has managed to find a more logical grouping

of the components of the design than the original.

Figure 30: The initial evolved traffic lights design.

27



Figure 31: The evolved traffic lights system after “hand adjustment”.

6 Discussion and Future Work

In this paper we have described an evolutionary system which finds good hier-

archical decompositions of complex systems. Part of this work has involved (as

is common in GA applications) developing novel domain specific mutation and

crossover operators. However, the real bulk of the work has really been in defin-

ing a suitable fitness function, and in this paper we have described a particular

information theoretic function for the complexity of a HMD based on a minimum

description length principle. We have implemented the system as a JAVA program,

and indeed all the diagrams in this paper (except for Figure 27) have been produced

by the system5.

Initially this research used the complexity measure devised by Wood[15], the-

oretically investigated further in [7]. However, on many occasions this measure did

not give as good results as were hoped, and in this paper a new improved measure

has been described. Unlike Wood’s original measure the new measure is sensitive

to the directionality of the links, giving it much greater domain of applicability.

Furthermore, it is not “reluctant” to let one form modules with more than about

five components.

Like most research, the work described here has opened up many new avenues

of research. Some of these involve things to do with the internals of the GA itself-

5The system allows one to move components around “on screen” by means of a mouse, and the

layout of many of the diagrams was therefore improved “by hand”. However (except for the case of

the HOOD design as discussed earlier) this was always done so as to leave the hierarchical module

structure intact, and only improved the appearance of the diagrams, not their fundamental structure.

28



such as finding the best values for the various parameters involved, investigating

the complexity of the algorithm, and so on. More interestingly though, future re-

search that we are undertaking will be into applications. Most of what has been

described has been in terms of abstract graphs, and hence ought to be applicable

in many domains where such graphs are used to describe systems. One area we

are starting to investigate is the applicability of our system to reverse engineering

problems (both for software systems, and for hardware systems). We are also in-

terested in seeing if the system can be applied to helping designers improve their

designs. Our early experiments with the traffic lights example described in this

paper seem very promising.

References

[1] Briand, L.C., Morasca, S., and Basili, V.R. (1996) Property-based software

engineering measurement: Refining the additivity properties. IEEE Transac-

tions on Software Engineering, 22(1):68–86.

[2] Collins, R. and Jefferson, D. (1991) Selection in massively parallel genetic

algorithms. Proceedings of the Fourth International Confernce on Genetic

Algorithms, ICGA-91 Belew, R.K. and Booker, L.B. (eds.), Morgan Kauf-

mann.

[3] Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley.

[4] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Now pub-

lished by MIT Press.

[5] Koza, J.R. (1992) Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press.

[6] Li, M. and Vitanyi, P. (1997) An Introduction to Kolmogorov Complexity The-

ory and Its Applications. Springer-Verlag.

[7] Lutz, R. and Wood, J.A.(2000) A Minimum Description Length Approach to

Measuring the Structural Complexity of Software Design Graphs. CSRP-517,

School of Cognitive and Computing Sciences, University of Sussex.

[8] Mitchell, M. (1996) An Introduction to Genetic Algorithms. MIT Press.

[9] Rissanen, J. (1978) Modelling by the shortest data description. Automatica-

J.IFAC, 14, pp.465–471.

29



[10] Robinson, P.J. (1992) HOOD: Hierarchical Object-Oriented Design.

Prentice-Hall Object-Oriented Series, Prentice Hall.

[11] Shannon, C.E. (1948) The mathematical theory of communications. Bell Sys-

tem Technical Journal 27:379–423, 623–656.

[12] Thornton, C.J. and du Boulay, B. (1992) Artificial Intelligence Through

Search. Intellect, Oxford, England.

[13] Weyuker, E.J. (1988) Evaluating software complexity measures. IEEE Trans-

actions on Software Engineering, SE-14(9), pp. 1357-65.

[14] Witten, I.H., Neal, R.M., and Clear, J.G. (1987). Arithmetic coding for data

compression. Communications of the ACM, 30(6):520–540.

[15] Wood, J.A. (1998) Improving Software Designs via the Minimum Descrip-

tion Length Principle. Ph.D. Thesis, University of Sussex.

30


