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Abstract

In visual perception, learning is a pervasive phenomenon, which, when properly studied, may

o�er valuable insights into the inner workings of the brain. We outline a theoretical framework

for the computational study of perceptual learning, aiming to make the relationships among the

existing models more readily apparent, and to identify promising directions for future research.

1 Introduction

A generation ago, mathematical psychology, which at the time was the discipline in charge of

modeling behavior, appeared to be in poor shape. William Estes, one of the main dramatis personae

in that �eld, described it like this: \Look at our present theories... or at the probabilistic models

that are multiplying like overexcited paramecia. Although already too complicated for the average

psychologist to handle, these theories are not yet adequate to account for the behavior of a rodent on

a runway" (Estes, 1957). During the following decades, when the mainstream psychology underwent

a major paradigm shift, the modeling of perceptual learning fared better than what one might have

expected from the view expressed by Estes. A new theoretical outlook, which encouraged thinking

now termed representational or computational, took over the �eld. At the same time, the models

became, if anything, more complex compared to those of 1957.

Encouragingly, the models are now also more successful in explaining behavior (rather than

merely predicting the probability of a certain response to a given stimulus), while giving no undue

troubles to the psychologists.
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Insofar as there is progress, it seems to stem mainly from (1)

the improvement in the experimental techniques that subserve data collection in behavioral and

physiological psychology, and (2) the revision of the theoretical basis from which models are drawn.

The \rodent on a runway" example mentioned above serves well to illustrate both these points.

On the theoretical or conceptual side, the current explanation takes the route presaged by Tolman

and based on the concept of cognitive maps (O'Keefe and Nadel, 1978). On the experimental side,

the existence of cognitive maps in the rat brain could not have been demonstrated without modern

multi-electrode recording methods and the information-processing tools that accompany them.

2

1

For an interesting historical perspective on these issues, see (Hintzman, 1994).

2

Cognitive maps in the rat brain are thought to reside in the hippocampus, a cortical structure implicated in

perceptual (spatial) and other kinds of learning. Information about the spatial location of the animal turns out to

be represented in the �ring patterns of hippocampal \place" cells, whose ensemble activity constitutes an internal

cognitive map of the rat's environment (Wilson and McNaughton, 1993). Another class of cells in the hippocampus are

the \head direction" cells, which serve as an internal compass to orient the cognitive map. The functional properties

of place and head direction cells emerge from a complex and as yet poorly understood interaction between internally
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In this report, we chose to concentrate on approaches to the modeling of perceptual learning,

rather than on its phenomenology or on speci�c models | the standard fare of the reviews one �nds

in the literature (Gibson, 1969; LaBerge, 1976; Walk, 1978; Barto, 1989; Gallistel, 1990; Gluck and

Granger, 1993; Berry, 1994; Gilbert, 1994; Sagi and Tanne, 1994; Ahissar and Hochstein, 1998). In

perceptual learning, of course, periodic reviews are as important as in any other discipline blessed

with a steady stream of empirical �ndings. In such reviews, however, the stress is frequently on

comparing the relative merits of learning mechanisms, at the expense of the attention devoted to its

computational theory (Marr and Poggio, 1977). This preoccupation with mechanisms reects the

classical methodological stance, codi�ed by (Popper, 1992), according to which empirical studies

should begin with a discussion of the models about to be tested, and should end by refuting some

of the models.

It is indeed easier to refute a speci�c model, mechanism or wiring diagram than to gain support

for a general theory. Nevertheless, a �eld of study stands to gain more from the latter endeavor:

a good theory provides an explanation for the observed phenomena, potentially subsuming an

entire range of models of the underlying mechanisms within the same formal framework (Deutsch,

1997). Following this line of reasoning, an understanding of perceptual learning would involve, �rst

and foremost, addressing basic questions such as: what does it mean, from a general information-

processing standpoint, for a system to learn something? Note that the answer \to learn a perceptual

task means to acquire a low-dimensional internal representation of the stimulus set" would be

proper in this case (even if it eventually proves to be factually wrong), because it is coached in

general information-processing (in the terminology of (Marr and Poggio, 1977), computational)

terms. In comparison, the identi�cation of learning with growing some extra dendrites would

constitute a category mistake (as would the seemingly more abstract statement that learning is the

recruitment of extra memory, unless the need for this memory is explained in functional, algorithm-

and implementation-neutral terms).

In the remainder of this paper, we attempt to follow the explanation route, by surveying com-

putational theories of learning, with the aim to identify the dimensions along which varieties of

learning can be classi�ed. Accordingly, the following four sections discuss (1) the goals of learning,

(2) the mechanisms that can support learning, (3) the cues that a learning system can rely upon

in attempting to improve its performance, and (4) the paradigms or metaphors used to describe

learning computationally. Our hope is that the brief review of the computational underpinnings of

learning presented here will have made both the relationships among the existing models and the

current trends more readily apparent.

2 Goals of learning

The main task-level distinction that is conceptually prior to any discussion of the mechanisms of

learning is the one between merely exercising memory and acquiring the ability to process new

stimuli and solve new problems on the basis of the experience with familiar ones.

2.1 Memorization

Early quantitative studies in the psychology of the acquisition of declarative information employed

as stimuli lists of items that had to be committed to memory. For example, the subjects could

be asked to memorize lists of nonsense syllables, whose recall was subsequently tested by the

generated, self-motion cues (e.g., vestibular information) and external sensory input (e.g., visual landmarks) (Knierim

et al., 1995).

2



experimenter. In this setting, popularized by (Ebbinghaus, 1885), rehearsal of the stimulus is

certainly a sensible strategy, repetition being the mother of learning.

3

Likewise, in learning that can

be described as procedural (i.e., learning to perform a perceptual discrimination or a motor task),

repetition was found early on to bring about an improvement of performance; cf. the discussion of

Volkman's 1858 study of cutaneous spatial acuity in (Gibson, 1969).

In the century and more that elapsed since the pioneering work of Volkman and Ebbinghaus,

repetition was shown to lead to improved performance virtually in every perceptual and motor do-

main tested. At the same time, the scope of memorization as a paradigm for learning was gradually

revealed to be limited. Speci�cally, it became clear that performance gain stemming from repeti-

tion is transferred only partially to novel situations (Gibson, 1941; Ellis, 1965). The extent and the

nature of the transfer depends on the relationship between the sets of perceptual stimuli (or the

repertoire of movements in motor learning), and between the tasks de�ned over these stimuli, in

the original and novel situations (Osgood, 1949). To cite some relatively recent examples, limited

transfer was reported by (Fiorentini and Berardi, 1981), who found that practicing discrimination

between spatial contrast gratings at one orientation does not improve the performance at an or-

thogonal orientation. An analogous situation prevails in motor learning; for example, an acquired

ability to perform precise elbow exions transferred only partially from one set of joint angles to

another (Gottlieb et al., 1988).

The distinction between memorization and transfer is of crucial importance to any theory of

learning. A theory that fails to make this distinction succumbs to the same confusion that surrounds

the much-publicized inability of an early neural-network model of learning, the perceptron (Minsky

and Papert, 1969), to solve the exclusive-OR (XOR) problem (see Figure 1). This problem is

special, because every nearest neighbor of each input belongs to the opposite class, and, therefore,

no cluster structure exists here (that is, no similarity structure, where nearby points belong to the

same class).

The prospects of perceptrons (and of any models of perceptual learning that share their limi-

tations) would be indeed bleak if real-life scenarios tended to resemble the XOR setup, in which

generalization is ill-de�ned (Bishop, 1995). However, as we shall argue next, such learning scenar-

ios, which focus on memorization | i.e., those which test subjects (1) in a �xed task, and (2) with

the same stimuli encountered during the learning phase | cover only a part of the great variety of

daily-life situations in which learning is known to occur.

2.2 Generalization

The behavioral importance of transfer of learning, or generalization, to novel conditions (as con-

trasted with memorization), has been pointed out and discussed by philosophers, psychologists and

neurobiologists. In philosophy, the \naturalistic" approach to epistemology (Kornblith, 1985) in-

volves the concept of natural kinds | categories of objects which share su�ciently many features to

support associative recall, inference (prediction) of unobserved properties, and valid generalization

from one stimulus to another (Quine, 1969; Dretske, 1995).

In psychology, empirical data on stimulus generalization gathered in the 1940's and 50's prompted

Guttman (1963) to pose the explanation of generalization as a central theoretical challenge. Shep-

ard attempted to meet this challenge by incorporating a hypothesis about generalization gradients

into the foundations of a \universal law" that describes quantitatively the relationship between

the likelihood of two stimuli receiving the same response, and their perceived similarity (Shepard,

1987). More precisely, Shepard showed, on the basis of data from a wide range of perceptual ex-

periments, that stimuli in each experiment can be arranged in a low-dimensional metric feature

3

As in the old Latin saying, repetitio est mater studiorum.
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Figure 1: Left: the truth table de�nition of a 2-variable exclusive-OR (XOR) problem. In the lower

panel, note how the points belonging to the two classes are interspersed among each other. The

common characteristic of this kind of problem, which impedes generalization, is that the probability

of two neighboring points belonging to the same class is at chance. Right: the vernier discrimination

problem. The points in the lower panel are representations of 200 vernier stimuli in the space of

the outputs of the two Gaussian receptive �elds whose size and position is outlined in the upper

panel (cf. Poggio et al., 1992). The simulation that produced this plot used a 64� 64 image, and

two randomly positioned Gaussian �lters with � = 30. The two symbols, � and �, correspond to

the two senses of vernier displacement, making this a class-conditional probability density plot of

a sort. The crucial characteristic here is the clustering of points that belong to the same class;

the clusters, moreover, are simply connected and unimodal (human observers �nd learning more

di�cult when the class-conditional distributions are disjunctive or multimodal (Flannagan et al.,

1986)). It seems safe to conjecture that in general the class-conditional densities arising from

perceptual tasks can be relatively easily made to look like this, facilitating decision-making (unlike

the case of the XOR example). In this report, we argue that learning can be construed as the

formation of a representation space in which the problem at hand is well-behaved in this sense.
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space in such a manner that the probability of generalization between any two stimuli is mono-

tonic in their proximity (i.e., similarity). Shepard's treatment of this issue included a derivation of

the monotonic dependence law from some basic assumptions on the probability measure used to

quantify generalization.

In theoretical neurobiology, the notion of generalization underlies the \Fundamental Hypothe-

sis" stated in Marr's theory of the cerebral neocortex (Marr, 1970): \Where instances of a particular

collection of intrinsic properties (i.e., properties already diagnosed from sensory information) tend

to be grouped such that if some are present, most are, then other useful properties are likely to exist

which generalize over such instances. Further, properties often are grouped in this way" (pp. 150-

151). Although this hypothesis seems at present every bit as convincing as it must have appeared to

Marr, it remains, unfortunately, empirically unsubstantiated; its vindication (or refutation) is likely

to a�ect the explanatory power of statistical theories of brain function, such as those of (Uttley,

1959) and (Marr, 1970), and of their recent successors | neural network theories (more on this

below).

The foundational status of generalization in visual perception and cognition can be easily il-

lustrated in intuitive terms, on an everyday task. Consider, for example, learning to recognize a

face from several snapshots. The observer's ability to recognize the face in this case most probably

extends to new images (obtained, e.g., under various combinations of viewpoint and illumination).

Moreover, the observer is expected to be able to solve a range of perceptual problems involving that

face (e.g., to estimate its direction of gaze, to categorize its various expressions, etc.). These latter

abilities e�ectively require that learning be transferred from one set of stimuli (i.e., images of the

many faces previously processed by the subject) to another (i.e., images of the new face). Thus,

any theory of perceptual learning must include a component that would account for generalization

across stimuli and across tasks, over and above rote memory (see Figure 2). The central role of

generalization in learning underscores the importance of experiments such as those of Fiorentini

and Berardi, which de�ne the limits of generalization of the human perceptual system, and thereby

make a crucial contribution to the discovery of the principles and the mechanisms that support it.

3 Mechanisms of learning

The characteristics of learning that we discussed so far had to do with the nature of the task, where

the main distinction is between memorization and generalization. We next raise the issue of the

mechanisms employed by models of learning to explain the improvement of the performance with

practice. At the highest level of abstraction, a common (albeit, as we shall argue, not entirely

warranted) distinction is between symbolic mechanisms and neuromorphic ones. Whereas in sym-

bolic learning the building blocks of models are propositions and rules (Carbonell et al., 1983), the

components of neural models of learning are activation states of simple computing elements, and

their interconnection patterns (Selfridge, 1959; Hinton, 1989; Rumelhart and Todd, 1993).

It is now widely realized that the principles of operation of neural learning models apply also

to more traditional computational paradigms and data structures (Omohundro, 1987). Even more

importantly, neural networks turn out to be amenable to mathematical analysis that invokes well-

established statistical tools dealing with inference and decision-making (Bishop, 1995). For exam-

ple, Widrow's Adaline (adaptive linear element) networks can be identi�ed with linear discriminant

functions, and multi-layer perceptrons | with multivariate multiple nonlinear regression. Further

parallels between the neural network terminology and that of statistics can be found in (Sarle,

1994).

Inferential statistics thus constitutes a useful foundation for the understanding of the computa-
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Figure 2: Top: A schematic illustration of three varieties of data- and task-related situations in

learning. A (left): When the inputs and the required outputs are the same in both training and

testing phases, learning amounts to a memorization of the input-output association. A simple

example here is learning to associate a name with a face. The arrow leading from the train to

the test box represents the parameters acquired by the adaptive mechanism during the learning

process. B (middle): If new data are to be mapped into the same output space, the system must

generalize the previously learned association. Examples: naming a familiar face seen under novel

conditions (such as peculiar illumination); categorization of a novel instance of a class of stimuli. C

(right): The problem turns into that of transfer of learning to a new task, if both the input and the

output spaces change between training and testing. Example: matching two views of an unfamiliar

face, on the basis of prior experience with other face stimuli. Bottom: The dependence of transfer

on the relationship between the characteristics of two tasks, adapted from (Osgood, 1949). The

degree of transfer grows with the similarity between the stimuli in the two tasks, and, for highly

similar stimuli, is reduced if the required responses are di�erent.
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tional capabilities of neural networks. If this foundation is be useful in the development of speci�c

models of learning in the nervous system, statistical samples of stimuli must be shown to contain in-

formation necessary for learning. Having been downplayed for decades by the work of Chomsky and

his school, the notion that statistical inference can support learning even in markedly \symbolic"

domains such as language acquisition is now making a comeback. On the one hand, this process

is aided by the growing evidence that humans (both adults and infants) are sensitive to statistical

cues present in linguistic stimuli. For example, subjects can extract from such cues, implicitly,

information about boundaries between the underlying morphological units (Sa�ran et al., 1996),

word meaning (Markson and Bloom, 1997), and even grammar-like rules (Berns et al., 1997). These

�ndings raise doubts concerning the exclusive applicability of symbol-manipulating computational

models to learning problems hitherto coached in purely symbolic terms. Consequently, models built

around symbolic abstraction (rule inference) now have to compete routinely with models that posit

similarity-based processing (Berry, 1994; Goldstone and Barsalou, 1998).

4

In visual perception, 3D object recognition is one domain where the hegemony of symbolic/structural

models is increasingly challenged by statistical/connectionist learning approaches. Visual recogni-

tion gives rise to a variety of learning-related tasks, similar to those encountered in the context of

face processing (mentioned briey above). In these tasks, the lure of symbolic/structural models

stems from the observation that for many object classes the main challenge inherent in learning

recognition | achieving invariance over transformations or deformations of the stimulus | dis-

appears if the objects are represented structurally (Biederman, 1987). This observation leads to

the postulate that learning to recognize an object entails the identi�cation of its parts and the

determination of their spatial relationships. Under this assumption, the possession of a library of

generic parts that can be assembled in various ways would also endow the system with the ability

to represent and process novel objects | the ultimate kind of generalization.

Recently, a di�erent route to invariance and to the ability to process novel shapes has been pro-

posed and implemented in a series of models (Poggio and Edelman, 1990; Edelman and Duvdevani-

Bar, 1997; Riesenhuber and Poggio, 1998; Edelman, 1998a). The computational underpinnings of

this alternative approach are discussed elsewhere (section 5.2; see also (Sinha and Poggio, 1996)).

For now, we shall take the encroachment of alternative learning models into territory hitherto re-

served for structural methods as a license to focus our review on neural, rather than symbolic,

computation.

4 Cues for learning

A central question to be addressed in the modeling of a perceptual learning task is that of su-

pervision: what are the sources and what is the form of the information that guides the learning

process? The usual distinction found in the literature is between supervised models, which require

each training stimulus to be accompanied by the desired output, and unsupervised ones, which are

able to extract some statistical information from the data, without guidance.

Classifying an experimental setup on the basis of supervision available to the learning model

is, however, not always as straightforward as it may seem. Even when the learning process is fully

and explicitly controlled by the experimenter, the subject has access to, and is likely to make use

of, information that transcends the experimental design. For example, when the subject is required

to learn the names of some unfamiliar faces, the ensuing confusion rate will be higher among some

4

At a certain level of abstraction, the distinction between symbolic and \connectionist" computational paradigms

ceases to make sense, as attested by the progress in implementing rules and variables in neural networks; see, e.g.,

(Ajjanagadde and Shastri, 1991).
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faces compared to other.

The reasons for the advantage of some stimuli over others are simple, and may have nothing

to do with the labels (i.e., names) provided explicitly by the experimenter. Rather, they stem

from the choice of faces selected for the experiment, and from the computational make-up of the

subject's visual system. The necessary commitment on the part of any system to the use of some

features at the expense of others gives rise to representational idiosyncrasies. These, in turn, cause

some faces to be mapped into more crowded regions of the internal \face space" (Valentine, 1991;

Edelman, 1998b) than others, and to be subsequently more easily confused. Analogous phenomena

are observed in situations that require the subject to generalize, say, from one view to another.

This generalization is easier to learn for typical than for atypical faces (Nosofsky, 1988; Newell

et al., 1999), typicality being de�ned as proximity to the center of the cluster corresponding to the

set of stimuli in the face space.

4.1 Unsupervised learning

The human visual system is clearly able to group stimuli by similarity that is intrinsic to a given

test set and is inuenced by the context, but does not require that class membership be dictated

or revealed by an external supervisor. The information processing task in this case is known

as (unsupervised) clustering (Duda and Hart, 1973); it constitutes one of the most challenging

problems in computational learning.

Both \hard" and \soft" or fuzzy versions exist for many clustering algorithms. In hard cluster-

ing, each point can only belong to one cluster, while fuzzy algorithms allow a graded membership

index. The latter approach is probably better suited to the modeling of perceptual categorization

decisions: the boundary between classes in forced-choice tasks is never clear-cut. The dependence

of the probability of membership in a given category on the location of the stimulus that falls \in

between" clusters is typically sigmoidal. The slope of the sigmoid in the transition zone may be

quite steep, a phenomenon that is manifested both in discrimination and in identi�cation tasks,

and is known as categorical perception (Harnad, 1987).

In general, clustering algorithms decide whether or not to attribute points from a given data

set fx

i

g | in the present context, descriptions of stimuli in some feature-space | to the same

category on the basis of interpoint distances.

5

A typical algorithm employs standard combinatorial

optimization techniques to minimize some function of V

w

=V

b

, where V

w

=

P

k

E [x

k

�
�
x

k

]

2

is the

total within-cluster variance (x

k

2 C

k

, the latter being the k'th cluster), and V

b

{ the between-

clusters variance, for the given data set fx

i

g.

In some situations, prior knowledge about the nature of the problem provides hints that make

unsupervised clustering easier to tackle. Consider, for example, the problem of learning to recognize

several faces from their snapshots. The formation of the initial representation here is equivalent to

clustering the snapshots (in whatever feature space the system uses as its front end). This clustering

will be facilitated if the snapshots appear in a natural order, corresponding to the succession of views

seen by the subjects as the head to which the face belongs revolves in front of them. Such facilitation

can be supported by a Hebbian learning mechanism, whereby association between successive views

is made stronger in proportion to their temporal proximity (Hinton, 1989; Stone, 1996).

5

The distance d (x

i

;x

j

) between two points in the feature space can be assumed to vary monotonically with the

inverse of the perceived dissimilarity between the corresponding stimuli. For a discussion of this issue, and of the

choice of metric to be used in the computation of distance, see (Shepard, 1987).
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4.2 Supervised learning

Whereas unsupervised algorithms have only the feature-space distances between the stimuli to go

by, in the supervised scenario the training data is a set of input-output pairs: T = f(x

i

;y

i

)g. The

model in this case is required to learn a mapping f : X ! Y such that 8i;y

i

= f (x

i

).

For the purpose of memorization, the functional requirement imposed on the learning algorithm

in the fully supervised case is ful�lled by a lookup table, or, equivalently, by an associative network

(Willshaw et al., 1969); cf. Marr's work on simple memory (Marr, 1971). If generalization is

required (i.e., if the model needs to estimate
^
y = f(x) for some x =2 T ), the problem becomes that

of interpolation (or, as it were, extrapolation, depending on the location of the new x relative to

fx

i

g) of the function f .

An e�cient distributed implementation of function interpolation exists in the form of regular-

ization networks (Poggio and Girosi, 1990; Girosi et al., 1995). Of these, radial basis function

networks (RBFs) constitute a special case, which has certain biological appeal (Poggio, 1990). The

simplest Gaussian RBF model approximates the input-output mapping f as a superposition of

basis function values: y = f (x) =

P

i

c

i

e

kx�x

i

k

2

=�

2

i

; extensions to vector-valued output, other basis

functions, and other input-space metrics exist.

4.3 Self-supervised learning

An interesting twist on the supervised learning scenario is found in the idea of auto-association:

setting the output of a learning system to be identical to its input, while forcing the input-output

mapping to go via an intermediate representation stage. This idea can be implemented conveniently

by a three-layer perceptron in which the number of units in the middle (\hidden") layer is smaller

than in the input/output (Cottrell et al., 1987). If such a \bottleneck" network is trained success-

fully on a set of data, the activities of its hidden units form a reduced-dimensionality representation

of the data. In traditional theories of perception, this coding or feature extraction operation is held

to be a central characteristic of learning (LaBerge, 1976).

Intuitively, having access to the right features is expected to facilitate greatly the performance

of the system (Gibson, 1969). More formally, the e�ectiveness (and, indeed, the very feasibility)

of learning from examples depends critically on the availability of a low-dimensional description of

the problem. Such a description facilitates learning because it avoids the curse of dimensionality

| the exponential dependence of the number of examples needed for valid generalization on the

number of dimensions of the representation space (Bellman, 1961; Stone, 1982; Huber, 1985).

5 Paradigms of learning

Psychologists had been aware of the central role of feature discovery in learning for a long time

before any systematic attempts to cast this idea into computational terms were made.

6

To cite

a prominent example, Eleanor Gibson (1969) concluded in her review of perceptual learning that

the skilled perceiver is able to gain extra information from the stimulus, by detecting features and

\higher-order structure" to which the naive viewer is not sensitive. In this section, we shall o�er

a straightforward (by the present standards) computational formulation of this insight, using the

notion of the formation of new representations. Two distinct kinds of representation will then

be considered, the �rst suitable for regression problems, and the second | for problems involving

classi�cation (the former are stated in terms of continuous variables, while in the latter the variables

6

In fact, one of the most inuential �gures in the �eld, James J. Gibson, consistently resisted any attempts to

invoke computation as an explanatory tool in perceptual psychology.
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are usually discrete; see Figure 3). Finally, a common framework that subsumes both these kinds

of tasks will be examined.
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Figure 3: Left: a regression problem. When expressed in terms of probabilities, the performance

goal of the learning system in this case can be stated as the estimation of the posterior probability

p(yjx). Right: a classi�cation problem. Here, the performance goal can be formulated as the

estimation of P (C

k

jx), where C

k

signi�es membership in class k, and x = (x

1

; x

2

)

T

. In either

case, the posterior probabilities can be learned directly (as in some neural network models), or

computed from class-conditional probabilities estimated during a prior learning stage using the

Bayes theorem: P (C

k

jx) = p(xjC

k

)P (C

k

)=p(x). See (Bishop, 1995) for an accessible exposition of

these approaches.

5.1 Learning as formation of new representations

The power of forming new representations, or, more speci�cally, of adjusting the representation to

the problem at hand, stems largely from the singular computational advantage conferred by the

possibility of a linear solution. In regression tasks, such a solution is possible when a high linear

correlation exists between the variables; in classi�cation | when the classes are linearly separable.

Thus, a representation is good if it allows a linear solution.

Consider the example illustrated in Figure 4, where the task is to discriminate between the

interior and the exterior of a circle. Solving this problem using a linear mechanism (left panel)

is di�cult, because of the need to create many instances of such a mechanism to approximate

the curved decision boundary. Thus, a system that tries to solve this problem in the original

representation space will use more resources and is likely to take longer than a system that is

confronted with the same problem stated in polar coordinates (Figure 4, right), which can be solved

using a linear mechanism. This distinction has implementational parallels: the representation on

the left is suitable for interpolation by \bump" functions (e.g., radial basis functions or RBFs),

while the representation on the right is suitable for \ridge" functions, such as those implemented

by the inner-product unit in a perceptron (or the hidden units in a multilayer perceptron, or MLP).

If a linear solution is ruled out in the original space, and if the system is biased towards using

linear mechanisms, it may attempt to learn a new, better representation, that is, to remap the data

into another representation space, in which linear regression or separability is possible. It should be

quite obvious that a universal mechanism capable of such a remapping would go a long way towards

solving just about any problem posed to it (because of the relative ease of solving the linear version

of the problem in the new representation space). Some recently developed linearization methods do

claim such universal applicability. For example, the support vector machines for classi�cation and

10
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Figure 4: A nonlinear discrimination problem (left) is translated to a linear one via a coordinate

transformation (right). The mapping (x

1

; x

2

)$ (r; �) is itself nonlinear (x

1

= r cos �; x

2

= r sin �).

regression remap the original problem into an extremely high-dimensional space where it becomes

linear; the curse of dimensionality is avoided by making the solution dependent on a small number

of examples (the \support vectors") that lie close to the regression surface or to the class boundary

(Vapnik, 1995).

7

If the human visual system uses anything like the support vector algorithm, it

should learn faster when given the more informative (and more di�cult) examples �rst. We could

not �nd evidence to this e�ect in the perceptual learning literature: human vision seems to be

rather more limited than a support vector machine in this respect.

Interestingly, the attempts on the part of a learning system to improve its performance under

the limitations imposed by its architecture are precisely what may pass as the manifestation of the

process of learning to an external observer. For example, a system constrained to use RBFs may

start by \tiling" the inside and the outside of the circle in Figure 4, using up many basis function

units. It may then shift to the more economical representation in which the inside of the circle (and,

therefore, its outside) is represented by a single basis | an event that would look like the kind of

feature discovery mentioned by E. Gibson. In other words, learning can be de�ned computationally

as the art of creating the most suitable representation of the data, given the constraints of the model

at hand.

8

5.2 Learning visual manifold geometry (regression)

For a resource-constrained system, attempting to solve the learning problem in the original feature

space may prove too complicated, as illustrated by the application of RBFs to the circle example.

At the same time, attempting to remap the original problem into a new representation space where

it would become linear may be equally hard, rendering the problem intractable. Fortunately, it

appears that many perceptual problems possess an inherent structure that makes them amenable

to learning methods that rely neither on the exhaustive tiling of a high-dimensional space (an

intractable undertaking, because of the curse of dimensionality), nor on a sophisticated remapping

(which may be beyond the visual system's capabilities). The structure in question is that of a

smooth low-dimensional manifold, and it arises because (1) problem spaces in a typical perceptual

7

Conceptually, the reliance on a small number of support vectors that exemplify the distinction that the system

must learn is close to Winston's use of \near miss" examples in his system that learned concepts from symbolic

descriptions (Winston, 1975).

8

Note that this formulation mixes two \levels of understanding" | the abstract and the implementational |

which would have been kept separate according to the methodology propounded by (Marr and Poggio, 1977).
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task are parameterized by only a few variables (Edelman and Intrator, 1997), and (2) the \front

end" of a typical visual system | its measurement space

9

| largely preserves the local geometry

of the distal problem space (Edelman, 1999).

The �rst of the two observations that we just stated can be illustrated by a series of examples

taken from all areas of perception. Consider, for example, the vernier discrimination task, in which

the observer is to judge the sense of the relative displacement of two abutting line segments (see

Figure 1, right). The solution in this case is parameterized by a single variable, which controls

the displacement of the segments perpendicular to their extent. Stepping this variable by small

increments through a range of values between, say, �15

00

and +15

00

would cause the measurement-

space representation of the resulting stimulus to ascribe a 1-dimensional manifold.

10

All that a

visual system would have to do to learn vernier discrimination would be to interpolate this manifold

from a set of examples (i.e., input-output pairs), as described in section 4.2.

As another illustration, we may consider the problem of learning to recognize an object from

examples (i.e., a few of its stored views, each view being construed as a snapshot of the multidimen-

sional measurement space). For a rigid object which is allowed two rotational degrees of freedom,

corresponding to the two axes of rotation in depth, the manifold spanned in the measurement space

will be 2-dimensional, and will be amenable to learning from examples, as shown in (Poggio and

Edelman, 1990) An entire range of other learning tasks having to do with object recognition can be

solved on the basis of related principles, as shown in (Edelman, 1999; Duvdevani-Bar et al., 1998).

In psychology, the well-behavedness of the internal representation space of various visual quali-

ties has been remarked upon repeatedly, beginning with the shift towards representational theories

of vision in the 1960's. The concept of an internally represented stimulus space was mentioned by

(Guttman, 1963), who pointed out, in a discussion of generalization in animal learning, that the

pigeon \knows the spectrum, in an important sense of the word `know'" | it exhibits the kind

of orderly generalization between colors that psychologists routinely observe, and must, therefore,

possess an internal \color-space." More than two decades later, Shepard (1987) formulated his law

of generalization in terms of proximities in an internal psychological space, observing that structure

inherent in various distal \quality spaces" (Clark, 1993), such as the color continuum discussed by

Guttman, is faithfully represented internally.

It is interesting to compare the observations concerning the low dimensionality and the smooth-

ness of the internally represented quality spaces to similar observations made by statisticians and

neural network researchers. In nonparametric statistics, for example, the surprisingly good perfor-

mance of nearest-neighbor methods, which rely on raw feature-space distances, has been explained

intuitively in terms of the fact that the relevant points in these spaces | that is, the examples

| tend to be con�ned to smooth low-dimensional subspaces (Friedman, 1994). In neural network

research, an analogous observation can be found in (Bregler and Omohundro, 1995).

Realizing that the problems at hand typically possess such a convenient structure is, however,

only the �rst step towards their solution. The reduction of dimensionality of the space in which

the stimuli are originally encoded is a nontrivial operation; as we pointed out above, in human

visual perception the original dimensionality of any stimulus is, nominally, on the order of 10

6

,

which is the number of �bers in each optic nerve. The illustration in Figure 3, left, in which

the manifold is embedded in 2-dimensional space, is, therefore, highly simpli�ed. Many of the

computational approaches devised for the extraction of low-dimensional manifolds do not scale well

9

This can be de�ned through the notion of the vector of measurements performed by the visual system on the

world, and is well-exempli�ed by the million-dimensional space of all possible activities of the retinal ganglion cells,

whose axons constitute the optic nerve.

10

In Figure 1, right, both the displacement of the vernier and its location in the visual �eld were varied, which is

why the clouds of points belonging to each of the two classes are not exactly 1-dimensional manifolds.
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with the dimensionality of the embedding space. This includes the Self-Organizing Map algorithm

(Kohonen, 1982), and the di�erent varieties of auto-encoders, or bottleneck networks (Cottrell

et al., 1987; Leen and Kambhatla, 1994).

The performance of such unsupervised or self-supervised manifold-extracting algorithms can

be improved if additional knowledge is brought to bear on the problem. Typically, this is done

by making the learning mechanism observe certain invariances known to apply to the problem

(Foldiak, 1991; Wiskott, 1998). A particularly simple way to do that is by providing the label of

the category to which each stimulus belongs.

11

To see how this information helps the algorithm to

isolate the relevant manifold, note that directions orthogonal to it can be e�ectively speci�ed by

forcing stimuli that di�er along those directions to be mapped to the same category (Intrator and

Edelman, 1997).

5.3 Learning visual category structure (classi�cation)

From the perspective of the task, the main di�erence between regression and classi�cation is that

in the latter, the location of the point within the low-dimensional structure does not matter, while

in the former it does. For example, the location of the point representing a face in a face space

(the manifold corresponding to the di�erent possible views of the same face) would encode its

orientation | a piece of information that should not be discarded. In comparison, in the vernier

task, where the problem is that of classi�cation, only the membership in one of the two clusters in

the representation space matters to the system.

Despite this di�erence, the basic considerations identi�ed before in the discussion of regression

apply also to classi�cation. In particular, the curse of dimensionality still has to be taken into

account. Huber (1985) illustrates this point quantitatively, by showing how di�cult it is to �nd

a 3-dimensional Gaussian bump (which could, in terms of Figure 3, right, correspond to one of

the class-conditional clusters), when it is embedded in a 10-dimensional space. Although neurally

inspired models of learning that are tailored speci�cally for categorization and mixture estimation

do exist (Carpenter and Grossberg, 1990; Carpenter et al., 1992; Williamson, 1997), they are not

expected to deal better with realistically high-dimensional cases than the knowledge-based models

mentioned earlier (which were designed for manifold extraction, yet should be equally capable of

clustering).

5.4 Learning joint input-output probability density

When learning is treated as a problem in statistical inference, the observations we made in the

last few paragraphs can be rephrased using the concept of the underlying generator of the data |

the entity that causes whatever regularities are present in the data set. In visual perception, this

entity is the distal stimulus, which gives rise to the observed values of features through a complex

process (reection and scatter of light, propagation in the medium, refraction by the optics of the

eye, phototransduction, etc.). In regression-like tasks, the distal stimulus space is continuous by

nature, e.g., the continuum of views of an object that undergoes rotation in front of the observer (in

Figure 3, left, it is the smooth curve underlying the sausage-like cloud of points). In classi�cation,

the distal stimulus space is discrete, e.g., the set of categories to which the viewed object may

belong (in Figure 3, right, this space consists of the centroids of the two clusters of data points).

Thus, both regression and classi�cation can be subsumed under a common framework, which

calls for estimating the joint probability density of all the variables included in the data set. It is

11

This technique can be compared to the \stimulus predi�erentiation" method, shown in the past to boost the

generalization rate in learning (Ellis, 1965), p.58.
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well-known that this information reveals everything that there is to know about stochastic data,

such as the measurements performed by a perceptual system upon the world. The underlying

generator of the data (and, therefore, quantities needed for regression or classi�cation) can then

be estimated optimally from the density function. However, the �rst step in this process | the

inference of an unconstrained density function from data | is prone to the curse of dimensionality,

as shown in the seminal work of Stone (1980; 1982).

In view of this problem, researchers typically take two approaches, which are not mutually

exclusive. The �rst is to make some assumptions about the density function. For example, one

may assume that the density function is smooth, then estimate it using splines (Wahba, 1979) or

radial basis functions (Poggio and Girosi, 1990). Alternatively, one may assume something about

the structure of the density. For example, it may be postulated to belong to an additive model,

making it expressible as a sum of functions of some low-dimensional projections of the data (Stone,

1985; Stone, 1986). One may also assume that the density is factorial, namely, a product of marginal

densities of one variable (Dayan et al., 1995). The latter two methods do not attempt to reduce

the dimensionality of the density function, yet they do make the estimation process more e�cient

and less prone to the curse of dimensionality.

The second general approach bypasses the problem of density estimation, rather than attempting

to solve it. It is based on the observation that for many practical problems only a certain function

of the density is required. The hope is that such a function can be easily computed directly from

the data, without the need to go via the full density estimation. This happens, e.g., when the

desired function is de�ned over a low-dimensional manifold embedded in the original space, or,

more generally, when the desired function has a simpler structure compared to the full density. In

such cases, the learning system may attempt to extract the low-dimensional representation of the

problem from the data, using an unsupervised approach such as principal component analysis and

its generalizations, or using a supervised approach tailored to the desired target function, as it is

done in many feed-forward network models.

In all these cases, a model would do well if it applies the methods listed in the preceding sections,

which dealt with learning manifold extraction (regression) and clustering (classi�cation). Reverting

to those methods means, e�ectively, that their subsumption under the aegis of density estimation

is not practical, unless the estimation algorithm (1) aims for learning a certain target function

of the density, which is usually problem-speci�c, and (2) relies on some prior assumptions about

the properties of the desired representation, such as low dimensionality and smoothness (Intrator,

1993).

6 Discussion

The theoretical stance adopted so far in this paper equates learning with the acquisition of e�cient

representations, a computational procedure that can be regarded as a kind of statistical inference.

It may seem that exploring the implications of this stance have lead us away from the gritty details

which must be dealt with by any model that aims to simulate human learning behavior. We

believe, however, that a good model starts at the top, with a clear notion of what is being modeled,

and why. In this concluding section, we recapitulate the links between computational theory and

mechanism-level practice in the modeling of perceptual learning, and speculate about the possible

future developments in the modeling of perceptual learning.
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6.1 On the levels of explanation of learning

The overarching concern in the modeling of a perceptual phenomenon is, of course, getting the

performance right. Beyond that, however, there is a considerable variation in what is deemed

acceptable: while some comprehensive models treat both the computational (theoretical) and the

implementational aspects of the problem, others tend to concentrate on the issues of implementation

and mechanism. Models built around neural networks are particularly likely to belong to the second

category, going straight from the phenomenology to a hypothesis about the underlying mechanism,

perhaps also attempting to emulate along the way the real biological neural network.

We illustrate this observation with an example that involves one of the most striking mani-

festations of perceptual learning, found in the task of detecting a small low-contrast Gabor patch

projected onto a certain retinotopically de�ned location. The detection threshold in this task de-

pends on whether or not the target patch is anked at a distance by patches of similar orientation

and spatial frequency (Polat and Sagi, 1993). Shortly after the e�ect of the anking patches has

been demonstrated, it turned out to be amenable to learning: the spatial range of the e�ect (i.e.,

the maximum e�ective distance between the target and the anking patches) grows with practice

(see Sagi and Zenger, this volume). Signi�cantly, learning is only possible if the original, untrained

range is extended gradually, by exposing the subject to con�gurations of progressively larger and

larger extent (Polat and Sagi, 1994).

A phenomenon such as this seems positively to demand a mechanism-level explanation in terms

of receptive �elds of retinotopic \units," linked laterally and exerting facilitatory inuence on each

other; (Polat and Sagi, 1994) o�ered precisely this explanation for their psychophysical �ndings.

However, as we claimed in the introduction, models formulated primarily in the language of units

and connections achieve less than what a model can and should achieve, because they concentrate

on the wiring details at the expense of leaving the master plan | the computational goal of the

system | out of the picture. To support this argument, let us re-consider the \lateral learning"

scenario, keeping in mind the taxonomy of learning paradigms discussed earlier.

Assume for the moment that the goal of the system is to detect the faintest possible line element

(a real-life counterpart to a Gabor patch) in a given retinal location. Merely lowering the decision

threshold for that location will likely just increase the false-alarm rate there; additional information

must be brought to bear on the decision, if it is to be reliable. The presence of other line elements

in the vicinity would count as the necessary additional support, if they are compatible with the

original hypothesis (i.e., if their orientation is consistent with that of the element whose fate they

are about to seal). Thus, the task at hand can be reformulated as that of (literal) interpolation

between the anking lines (or extrapolation, if the continuation of an \end-stopped" segment is

sought).

The value of this formulation lies in that it brings about the possibility of a uniform treatment

for a range of perceptual learning tasks. Indeed, on an abstract level, learning to detect a Gabor

patch anked by similar patterns is now seen to be the same as learning to recognize an object from

a novel viewpoint, which is \sandwiched" between two familiar views. The analogy drawn between

these two tasks hinges on a parallel between the view space of the object on the one hand, and the

\space" space | that is, the retinal location space | of the Gabor patch on the other hand. Once

this analogy is realized, cross-fertilization may occur in both directions. On the one hand, models

of object recognition may bene�t from postulating a mechanism that carries out interpolation by

growing lateral links between neighboring units in a view representation space. On the other hand,

models of line detection may bene�t from exploring the possibilities originally developed in the

context of object recognition (e.g., interpolation with feedforward basis functions).

An edifying perspective on the issue of levels of modeling is provided by recalling some of
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the \old-fashioned" models of brain function (and learning) produced by neurobiologists. Two

such models that were prominent in their own time, one dealing with \universals" or the problem

of invariance (Pitts and McCulloch, 1965) and the other with probabilistic generalization (Marr,

1970), actually did link theory and mechanism. Marr's (1970) model of the neocortex, for example,

spans the entire possible range of levels. It starts with a general, yet succinctly phrased hypothe-

sis concerning the probabilistic structure of the world (the \Fundamental Hypothesis," which we

mentioned in section 2.2), and ends with a detailed explanation of the possible ways in which neu-

roanatomy and neurophysiology of the cortex may be tuned to put the observed probabilities to

work. This style of modeling, which integrates di�erent levels of explanation, requires a combination

of encyclopaedic knowledge with considerable ingenuity on the part of the modeler. Unfortunately,

it is now quite rare, having been replaced by a methodology that allows the levels | computational,

algorithmic, and implementational | to be kept separate.

6.2 Prognosis

In visual perception, learning is a pervasive phenomenon, which, when properly studied, o�ers the

researcher a unique searchlight with which the inner workings of the system can be illuminated. It

would be rash to try and anticipate what a judicious use of this searchlight will reveal in the future

| which is why the following remarks express, mostly, desiderata, not predictions.

Here are, then, a few issues that we would like to see addressed in the context of the modeling

of perceptual learning.

� Integrate past achievements. Attempts to develop mathematical models of learning date back

more than half a century. Much of the work carried out before mid-1960's has now been

branded \behaviorist" and e�ectively buried in the libraries. It has been pointed out that a

re-examination of that work may lead to interesting insights into the nature of the present-day

models (Hintzman, 1994).

� Look at learning di�erently. A diametrically opposite trend is that of complete rejection of

both the old and the contemporary models of learning, in favor of theories that (to most

psychologists) seem rather esoteric, involving concepts such as catastrophes, self-organized

criticality, or merely phase transitions in dynamical systems. The drive in that direction

stems from bona �de challenges, such as the need to explain abrupt learning and related

phenomena (see Nakayama, Rubin and Shapley, this volume). Developing ways of coping

with these challenges, short of rejecting all current approaches, is quite a challenge in itself.

� Explain as much as possible. The \dynamical" models attempt to explain the behavior of the

perceptual system by appealing to an isomorphism between its physics (i.e., the di�erential

equations that describe it) and the physics of other systems that exhibit a similar behav-

ior. In that, they resemble the behaviorist models, which skirt the issues of representation,

and deal with disembodied equations aimed at mimicking the phenomenology of the target

system. Surprisingly, purely representational models too end up dealing only with the phe-

nomenology; a good example is Shepard's law of generalization (mentioned in section 2.2),

which does not make any claims as to the reality of the \psychological similarity space" that it

postulates. (Shepard, 1987). In contrast to all these, explanations o�ered by the more daring

connectionist models (those that bite the bullet and hope for the best) include parallels both

on the level of behavior, and on the level of architecture.

� Go after the big question. We have been told repeatedly now what ingredients should go

into a comprehensive explanation of an information-processing phenomenon: computation,
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representation and algorithm, implementation. In the context of understanding the brain,

however, a really comprehensive explanation would start from a premise that is concrete,

yet spans all the levels of the \hierarchy" just mentioned: a postulate as to what is it that

the brain does. Several such postulates are on the o�er, e.g., Marr's (probabilistic inference;

1970), Barlow's (redundancy reduction; 1990), Poggio's (function approximation; 1990). A

more intense competition in this arena is likely to lead to some exciting developments in the

modeling of learning.

We conclude this review by concurring with Dr. Faust: if o�ered the choice of treasure, go for

broke. The ability to learn, at all levels and under all circumstances, is the most striking attribute

of human cognition; what, then, would it take to really understand it? Gounod's Faust requested

of Mephistopheles youth | the treasure that contains all others. So | we wish for a model of the

brain, which, if successful, will make the modeling of perceptual learning as such a matter of the

past.
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