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Abstract

An interpretation of the evolution of complexity in the Iterated

Prisoner's Dilemma (IPD) is developed, based on Ashby's \law of req-

uisite variety". It is demonstrated that the in
uence of noise on the

evolutionary dynamics of this system is critically dependent on the

locus of this noise. It is also argued that noise in such an evolving

system is not merely, (or necessarily) a source of variation that must

be adapted to, but, in certain circumstances, can facilitate the evolu-

tionary exploration of increased areas of genotype space.

This convergence between arti�cial life/game theory and cybernet-

ics holds implications for how we understand the general relationship

between environmental complexity and agent complexity, and for our

understanding of the role of noise in evolving systems.
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1 Introduction

The general principle that there is organism complexity by virtue of envi-

ronmental complexity has been well explored philosophically, [6],[13],[1],[4],

and there have been several recent contributions, within arti�cial life, to an

empirical foundation for this position, [5],[8],[9],[11],[10].

This report extends work presented in [9] demonstrating that the intro-

duction of noise into a co-evolving Iterated Prisoner's Dilemma (IPD) ecology

promoted the evolution of more complex strategies, with strategy complexity

being measured by strategy \memory".

Here, we undertake an account of the evolution of complexity in an IPD

ecology from a cybernetic, rather than game-theoretic, perspective. On the

basis of this perspective, novel predictions are proposed for how the locus

of noise in the IPD ecology may in
uence the evolutionary dynamics in the

system. Evidence is also presented to suggest that noise may facilitate the

evolutionary exploration of genotype space, independently of providing a

source of variation to be adapted to, or \coped with".

The motivation behind this research is twofold. Firstly, cybernetic the-

ory can indicate general principles for how adaptive systems should be un-

derstood; in the present case, in terms of the importance of the locus of

variability. This research aims to demonstrate the quantitative translation of

this principle to a computational context of general interest in arti�cial life.

I will argue that this bridge between arti�cial life and cybernetics supports

some implications that go beyond the IPD model itself, extending to more

general considerations of the relationship between agent-side complexity and

environmental complexity. For example, I will suggest later on that the com-

mon notion of \behaviour-based mechanism" (see, for example, [3]) may sit

uncomfortably in this light.

A second motivation derives from the fact that the in
uence of noise

within evolving systems, both in nature and in arti�cial evolution, is in-

escapable and imperfectly understood. I will argue that the two roles of

noise identi�ed here - in precipitating adaptive responses and in facilitating

genetic search - are of su�cient interest to stimulate further research directed

at assessing their generality.

We begin with a discussion of the particular aspect of cybernetic theory
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that pertains to this research; Ashby's \Law of Requisite Variety" (LRV), [1].

Then, in Section 2, the IPD model is rehearsed and its relation to the LRV is

explained. Section 3 presents results describing the various ways in which the

locus of noise does in
uence the evolutionary dynamics of the system. Section

4 presents evidence concerning the in
uence of noise on genetic mobility, and

these results are discussed, and conclusions drawn in Sections 5 and 6.

1.1 The Law of Requisite Variety

Ashby [1] provides a general reason to suppose that agent complexity may

evolve in a complex environment, in terms of his Law of Requisite Variety

(LRV). For an agent to maintain relative stability in certain (internal) es-

sential variables (for example heart-rate, body core temperature), it must

prevent the transmission of environmental variability through to these essen-

tial variables. In the same way that a good thermostat prevents the trans-

mission of environmental variations in temperature through to a particular

object (for example, the interior of a fridge should remain at a constant cool

temperature despite the 
uctuating temperature of a kitchen on a summers

day), a good agent prevents the transmission of certain environmental vari-

ables (such as prevalence of food, proximity of predator) through to such

essential variables as blood sugar or heart rate.

1

Given such a general situation, Ashby's LRV is conceptually very simple.

Consider a set of possible environmental disturbances, D, a set of possible

responses on the part of the agent, R, and a set of possible outcomes, O.

Consider also that for each D

i

, there is a distinct outcome O

i

, and a par-

ticular response R

i

. There is also the `system' S, which transforms a given

(D

i

; R

i

) into the appropriate O

i

. Stability in the essential variables requires

minimising the variation in O, and this then requires that the variety in D

is matched by the variety in R.

2

To quote:

If R

0

s move is unvarying, then the variety in the outcomes will

be as large as the variety in D

0

s moves; only variety in R

0

s moves

can force down the variety in the outcomes. ([1], p.206).

1

Of course, these variables can and do vary within strict limits, but trespass beyond

these limits is severely maladaptive.

2

The LRV is also well stated in information theoretic terms, and corresponds to a

theorem of Shannon, [12]: if noise appears in a message, the amount of noise that can

be removed by a correction channel is limited to the amount of information that can be

carried by that channel.
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Ashby also reminds us that not all environmental variability need threaten

the survival of the agent, and argues that variety comes in two fundamental

forms:

There is that which threatens the survival of the gene-pattern.

This part must be blocked at all costs. And there is that which,

while it may threaten the gene-pattern, can be transformed (or

re-coded) through the regulator R and used to block the e�ect of

the remainder. (ibid, p.212).

According to Ashby, then, environmental variability can be either poten-

tially bene�cial or downright dangerous. However, in Section 4 we see that

environmental variability can facilitate genetic mobility. This role for variety

is not necessarily either bene�cial or dangerous, and is not anticipated by

any interpretation of the LRV.

2 The IPD Model

All the experiments described in this paper employ implementations of co-

evolving IPD models. Their most immediate contribution is therefore to-

wards a deeper understanding of the IPD model itself. The results on their

own cannot, and do not, claim to represent adaptive, evolving systems in

general. However, the simple nature of the IPD model, the broad scope of

the cybernetic theory from which the hypotheses derive, and the ubiquity

of noise in evolving systems, suggest that the possibility of there being wide

application of these results should be taken seriously. We will return to this

issue of generality in Section 6.3.

2.1 Structure of the Model

The IPD is a non-zero-sum game, for two or more players, in which each

player chooses either to cooperate or defect on any given iteration. Each

player is ignorant of the present move (though not necessarily of the history

of moves) of its opponent, with payo�s being distributed according to Table 1.

IPD models are of course renowned for providing insight into how cooperation

can evolve in a population of sel�sh individuals [2], and this initial work has

provided a versatile platform for further research. In [9] it was demonstrated

that the introduction of noise into a co-evolving IPD ecology led to the
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player 2 cooperates player 2 defects

player 1 cooperates 1:R=3 2:R=3 1:S=0 2:T=5

player 1 defects 1:T=5 2:S=0 1:P=1 2:P=1

Table 1: IPD payo� matrix; note that the actual scores are unimportant as long

as T > R > P > S and 2R > T + S.

evolution of complex strategies. The ecology consisted of a population of

variable length genotypes, with each genotype coding for a particular strategy

for playing the IPD, and with the length of each genotype determining the

number of previous iterations it could take account of when delivering its next

move. This strategy \memory" can be taken to be a metric of complexity

3

.

Noise was incorporated by introducing a certain probability that the move-to-

be-made on any given iteration (as speci�ed by the genotype) was \
ipped"

before the payo�s were calculated.

Two models were developed (for details, see [9]); a compulsory model, in

which every member was forced to interact with every other member, and a

choice and refusal model (the IPD/CR), in which each member maintained

a set of expected payo� values for every other member, and could choose

and refuse who to interact with. This latter model is drawn from [14] and

is redescribed in [9]. A tournament-style genetic algorithm was employed in

both models, with equal probabilities for genotype doubling, splitting, and

point mutations (see Appendix 1 for parameter values).

2.2 The IPD and the LRV

Recalling the description of Ashby's LRV in Section 1.1, we can think of an

IPD ecology in terms of a disturbance D, response R, outcomeO, and system

S. D would be the set of all moves made over all iterations of the game, by

all the opponents (of a given agent). R would be the strategy of the agent,

S would be the IPD payo� table (Table 1), and O would be the set of scores

awarded to the agent.

In a stable, cooperating population, the overall �tness of each agent (over

many generations) will be maximised with minimum variation in O away

from repeated cooperation payo�s (since mutual cooperation, in the IPD,

maximises overall payo� in the population). Any environmental variation

3

See [9] and [10] for a justi�cation of this equivalence; also for an explanation of the

genotype encoding scheme.
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away from stable cooperation can then be expected to have a deleterious

e�ect on �tness, unless it is countered by strategy that can e�ectively cope

with such variation. For example, an occasional \accidental" defection will

throw a population of \tit-for-tat" players into continual mutual defection

but a \tit-for-two-tats" population will \absorb" such a defection, permitting

general cooperative behaviour to persist throughout the population.

In terms of Ashby's LRV, any variety in D can only be prevented from

a�ecting O if it is countered through the action of R on S; that is, if the

variety in R (given S) matches that of D. This construal of the IPD allows

us to predict that noise (variety) on D may lead to the evolution of more

complex strategies (supporting variety in R) to counter this disturbance, but

that noise on O will not. Noise on the outcome, after all, is precisely what

the strategies would be expected to prevent, and if the noise is applied di-

rectly to O, then, by de�nition, no strategy can provide an e�ective response.

We can therefore distinguish two types of noise:

� M-noise: on each iteration, and for each player, there is a certain prob-

ability, (p = 0:01 in these experiments), that the move speci�ed by the

genotype is 
ipped, and only then are the payo� scores calculated with

reference to the payo� table.

� O-noise: on each iteration, and for each player, there is a certain prob-

ability, (p = 0:01 in these experiments), that the payo� awarded is

altered. Each time this occurs, the actual payo� awarded is selected

randomly from the four possible payo� values.

We can now predict that M-noise may lead to the evolution of more

complex strategies, but O-noise will not. This hypothesis will henceforth

be referred to as the LRV hypothesis. Furthermore, we may expect that this

hypothesis will only be con�rmed in stable cooperating IPD populations, and

not in unstable populations.

3 The LRV Hypothesis

The �rst set of experiments were conducted with a compulsory IPD model,

the parameters of which are given in Appendix 1. Ten evolutionary runs,
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of 10,000 generations each, were performed in each of 3 conditions; M-noise,

O-noise, and zero noise.

4

Figure 1 shows that without any noise, complex strategies never really

evolve; the evolved memory tends to stay either at the initial level of 1,

or drop to zero. Figure 2 illustrates that with M-noise, complex strategies

do evolve; not always, and not always to the maximum, but it does hap-

pen. However, contrary to the LRV hypothesis, �gure 3 illustrates that

O-noise has the same e�ect as M-noise. Applying t-tests to the sets of

means from each condition, these observations are statistically signi�cant.

There is signi�cantly more evolved memory in the M-noise and O-noise con-

ditions than in the zero noise conditions (t = 2:52; df = 18; p < 0:05 and

t = 2:51; df = 18; p < 0:05 respectively). But there is no signi�cant di�erence

between the M-noise and the O-noise conditions (t = 0:22; df = 18; p > 0:5).

The second set of experiments were conducted with an IPD model incor-

porating choice and refusal (IPD/CR). In order to di�erentiate the conditions

in this model, a small cost on complexity was applied (in all the conditions)

by levying a �tness penalty on genotype length. Again, 10 runs were per-

formed, of 5,000 generations each, in each condition. Here we clearly see

that with either zero noise (�gure 4) or O-noise (�gure 6), complex strate-

gies do not often arise. However, with M-noise (�gure 5), the evolution

of complex strategies is considerably more noticeable. Again, t-tests re-

veal these observations to be highly signi�cant. There is signi�cantly more

evolved memory in the M-noise condition than with O-noise or zero noise

(t = 3:20; df = 18; p < 0:005 and t = 3:79; df = 18; p < 0:005 respectively).

But there is no signi�cant di�erence between the zero noise and the O-noise

conditions (t = 1:42; df = 18; p > 0:1).

The LRV hypothesis, in this model, is seen to hold true. The evolution

of complexity only responds to variety in the environment, not to variety on

the outcome.

So why is it that only the IPD/CR model produces results consistent with

the LRV hypothesis? Table 2 clearly indicates that only the IPD/CR model

4

Each run, of 10000 generations, took approximately 1 hour on a 143MHz single user

Sun UltraSparc. The 5000 generations of the IPD/CR model required 3 hours of CPU

time for each run.
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Figure 1: Compulsory IPD; evolution

of complexity with zero noise. Com-

plexity does not evolve. Results from 10

evolutionary runs are superimposed.
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Figure 2: Compulsory IPD; evolution

of complexity with M-noise. Complex-

ity does evolve. Results from 10 evolu-

tionary runs are superimposed.
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Figure 3: Compulsory IPD; evolution of complexity with O-noise. Complexity

does evolve. Results from 10 evolutionary runs are superimposed.
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Figure 4: IPD/CR; evolution of com-

plexity with zero noise. Complexity does

not evolve. Results from 10 evolution-

ary runs are superimposed.
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Figure 5: IPD/CR; evolution of com-

plexity with M-noise. Complexity does

evolve. Results from 10 evolutionary

runs are superimposed.
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Figure 6: IPD/CR; evolution of complexity with O-noise. Complexity does not

evolve. Results from 10 evolutionary runs are superimposed.
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Figure 7: Compulsory IPD; cooperation dynamics in the three noise conditions,

zero noise, M-noise, and O-noise. Cooperation is more prevalent in both M-noise

and O-noise conditions. Only one evolutionary run is shown.

IPD/CR Compulsory IPD

mean cooperation 86.36 13.95

standard deviation 0.37 10.48

Table 2: Cooperation in compulsory model and in IPD/CR, with averages taken

over all ten runs in all three conditions (M-noise, O-noise, and zero noise). Co-

operation is much more prevalent and much less variable in the IPD/CR.

delivers the stable cooperating population required for the LRV hypothesis

to apply (see also �gure 7 for typical cooperation dynamics in the compulsory

model). In the compulsory model, there is already a great deal of instability

in the outcome, and so there is no reason to expect complex strategies to

evolve to cope with environmental variability. The question therefore arises;

why do complex strategies ever evolve in the compulsory model in either

O-noise or M-noise conditions? As we will see in the following section, this

has to do with the facilitation of genetic search.

4 The Facilitation of Genetic Mobility

This section considers how O-noise and M-noise may in
uence the dynamics

of the compulsory IPD model, given the unstable nature of cooperation in
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this model. We �rst consider evidence that the evolution of complexity that

we observe with both M-noise and O-noise in the compulsory IPD model

is an example of enhanced genetic mobility rather than adaptation to \cope

with" environmental variability. Then we consider a possible mechanism in

terms of noise in
uencing the dynamics of cooperation, and evidence is pre-

sented to show that the exploration of genotype space (at least along the

dimension re
ected by strategy memory) is dependent on the presence of co-

operation, or the presence of transients between cooperation and defection,

in the population. Finally, it is argued that the locus of noise is still impor-

tant in understanding the evolutionary dynamics of the system - although,

rather than being re
ected in the di�erences with regard to the evolution of

complexity (as in the IPD/CR model), the di�erence here is re
ected in the

dynamics of cooperation.

4.1 Non-functional Evolution of Complexity

A compulsory IPD model is considered in which, although the heritable com-

plexity of the strategies could vary as before, a maximum functional memory

of 1 was imposed during every game. In this model, then, there is no possible

functional di�erence, with regard to the IPD, between a strategy of memory

1 and a strategy of memory 6. Nevertheless, as �gures 8 and 9 illustrate,

both M-noise and O-noise conditions result in the evolution of complexity as

before. This suggests that the more complex strategies are not evolving in

response to any additional environmental complexities, since they could not

possibly be employed for any such response. This is an initial hint that noise

is indeed facilitating a more general exploration of genotype space rather

than promoting a particular adaptive response.

A further set of experiments considered a compulsory IPD model in which

the memory of the strategies was genetically limited to being either 0 or 1

(the average population memory could then range continuously from 0 to 1).

5

The motivation here was to investigate di�erences between the three noise

conditions that are independent of the evolution of complex strategies. In

other words, to try and distinguish between the causes of the evolved com-

plexity, and a mixture of the causes and consequences. If complexity is given

5

Of course, this implies a corresponding functional limitation, as in the previous ex-

periment set.
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Figure 8: Compulsory IPD with func-

tional memory limit of 1; evolution of

complexity with M-noise. Complexity

does evolve. Results from 10 evolution-

ary runs are superimposed.
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Figure 9: Compulsory IPD with func-

tional memory limit of 1; evolution of

complexity with O-noise. Complexity

does evolve. Results from 10 evolution-

ary runs are superimposed.

free reign to evolve, the causes and consequences of its evolution cannot be

rigorously distinguished. The following experiments allow such a distinction

to be drawn.

Twelve evolutionary runs were performed in each of the three conditions;

zero noise, O-noise, and M-noise. Fig 10 illustrates that in both the O-noise

and M-noise conditions, the average evolved memory is near to the expected

average (0.5). But in the zero noise condition, in each case the average

evolved memory either stays near the initial level of 1, or is very close to

0. This indicates that both O-noise and M-noise are permitting evolution to

wander easily within the prescribed area of genotype space (determined by

the maximum memory limit of 1), but with zero noise, the evolving popula-

tion always becomes \stuck" on either memory 1 or memory 0. Furthermore,

the means of these average memories are not signi�cantly di�erent between

any of the conditions. The average (of the average memory) in the M-noise

condition is 3.67; in the O-noise, 4.25; and with zero noise, 5.25. Applying t-

tests to these data sets indicate that these overall means are not signi�cantly

di�erent from each other (between M and O, t = �1:33; df = 22; p > 0:1,

between M and zero noise, t = �1:25; df = 22; p > 0:1, and between O and
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Figure 10: Compulsory IPD; memory limited to 0-1 range. Both M-noise and

O-noise permit average memory to approach the expected average; without noise,

the average memory appears to be \stuck" at one extreme or the other.

zero noise t = �0:78; df = 22; p > 0:1). So neither type of noise is actu-

ally encouraging (or discouraging) the evolution of complexity per se in this

model.

4.2 In
uence of Noise on Cooperation

It was also observed that both O-noise and M-noise increase the amount of

cooperation in this memory-limited compulsory IPD model. Both M-noise

and O-noise might be expected to have such an e�ect since, given a predom-

inantly defecting population, both kinds of noise would permit a cooperative

move to occasionally score well. Fig 7 indicates that typical cooperation in

the zero-noise compulsory IPD model is very low, and indeed the average

prevalence of cooperation over all ten runs was only 4.43% (standard devia-

tion 2.43), and also seems to indicate that both M-noise and O-noise enhance

population cooperation.

This intuition was tested in the memory-limited model, and �g 11 pro-

vides summary data, collected from the 12 runs in each condition, indeed

indicating that both O-noise and M-noise signi�cantly increase the level of

population cooperation from that present with zero noise (t = 3:39; df =

22; p < 0:001; and t = 5:49; df = 22; p < 0:001 respectively), with the
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Figure 11: Compulsory IPD; memory limited to 0-1 range; O-noise enhances pop-

ulation cooperativity and M-noise enhances population L-Z complexity. Standard

deviations indicated by error-bars.

e�ect being signi�cantly more pronounced for the O-noise condition (t =

4:62; df = 22; p < 0:001). This graph also illustrates how population stability

varies across the di�erent conditions. Stability was measured by calculating

the Lempel-Ziv complexity of the cooperation for each run, (see [7]). This

calculation involved noticing that in the compulsory IPD model, the pop-

ulation, at any time, was generally either completely cooperating or com-

pletely defecting. Thus, the population cooperation over x generations can

be recast as a binary string of length x. The Lempel-Ziv (L-Z) complexity

measure delivers the size of the minimum program required to generate a

binary string, and this is minimal for a uniform string and maximal for a

completely random string. Fig 11 is therefore indicating that both M-noise

and O-noise lead to signi�cantly greater levels of population cooperation in-

stability than the zero noise condition (t = 10:16; df = 22; p < 0:001; and

t = 4:19; df = 22; p < 0:001 respectively), with the e�ect being signi�cantly

more pronounced in the M-noise condition (t = 5:60; df = 22; p < 0:001).

So both O-noise and M-noise in
uence the population stability dynam-

ics, but in di�erent ways. Both increase the overall level of cooperation, but

whereas for O-noise this e�ect is characterised by longer periods of steady

cooperation, for M-noise increased population instability is the more pro-

nounced e�ect. Note that this e�ect is also visible in the standard (non-

14



Figure 12: Compulsory IPD model; there is a high correlation between complexity

and stability (high mutation rate used).

memory-limited) compulsory IPD model (see �g 7).

4.3 Dependence of Complexity on Cooperation

We have seen that both M-noise and O-noise in
uence both the exploration of

genotype space (at least with regard to memory) and the cooperation stability

dynamics. Evidence that these two phenomena are related is provided by a

highly visible correlation between the mean population cooperation and the

evolved memory in the compulsory IPD model. Fig 12 show results with M-

noise; the model has been run with a particularly high mutation rate (0.05)

in order to increase the population instability. This �gure suggests that for

genetic mobility to be present (in terms of memory), cooperation and/or

transients between defection and cooperation need to be present.

Evidence that the correlation in �g 12 is a general phenomenon is pro-

vided by a further correlation between the L-Z measure of population co-

operation instability (re
ecting the number of transients), and the variance

in the evolved memory, over many di�erent evolutionary runs. Fig 13 plots

summary data from 16 evolutionary runs of the standard compulsory IPD

model; 8 with M-noise, and 8 with O-noise, in which the memory was allowed

to vary between the normal limits (0 to 6), and in which the overall variance
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Figure 13: Compulsory IPD with 0.01 M and O-noise; L-Z instability (complexity)

of the environment correlates with variance in the evolved memory. The correlation

co-e�cient, disregarding the two outliers, is 0.86.

in evolved memory was also measured. The correlation, whilst not perfect,

is clear.

Clearly, mobility in genotype space is linked to the structure of the �t-

ness landscape (as indicated by the prevalence and stability of population

cooperation). Both M-noise and O-noise are able to in
uence this structure,

and they do so in di�erent ways.

5 Functional Adaptation in the IPD/CR

Let us �nish by returning to the IPD/CR model, in which stable cooperation

was always observed, and in which the LRV hypothesis was observed to hold

true. In the light of the previous sections, it is important to con�rm that

the evolution of complexity observed in the IPD/CR model is functionally

signi�cant - otherwise there would be no sense in arguing that the longer

memories had evolved in response to some characteristic of the environment

dependent on the introduction of M-noise. To con�rm this, a functional

memory limit was applied to an IPD/CR model with M-noise, just as was

applied to the compulsory model in Section 4.1.

Fig 14 illustrates that the evolution of complexity is abolished when the

e�ective memory is limited (let us call this the ML condition). Applying

t-tests, there are no signi�cant di�erences between the ML condition and

either the O-noise or zero noise conditions (t = 1:21; df = 18; p > 0:1, and

t = 0:68; df = 18; p > 0:1 respectively). But the di�erence between the M-
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Figure 14: IPD/CR; evolution of complexity with M-noise; e�ective (but not her-

itable) memory limited to 0-1 range.

noise condition and the ML condition is highly signi�cant (t = 3:54; df =

18; p < 0:005). These results clearly contrast with those obtained from the

compulsory model, and strongly suggest that in the IPD/CR model, the

evolved complexity is indeed functionally signi�cant, just as predicted by the

LRV hypothesis.

6 Discussion

Two IPD models have been described; a compulsory model, where coopera-

tion is unstable, and an IPD/CR model, where cooperation is stable. Only

in the latter model would we expect the LRV hypothesis to apply, and only

in the latter model was it upheld. However, the compulsory model has pro-

vided evidence that noise can facilitate genetic mobility. We will consider

each point in turn, and then turn to some implications.

6.1 The LRV Hypothesis Revisited

In the IPD/CR model, M-noise promotes the evolution of complexity but O-

noise does not, and, furthermore, this complexity is functionally signi�cant.

The locus of noise is therefore critically important in understanding how the

evolutionary dynamics of the system unfold. However, it may still not be the

17



case that the variety of the response ismatching the variety of the M-noise, in

the strict sense implied by the LRV (Section 1.1). Indeed, �gure 2 illustrates

that the complexity response to a steady level of M-noise is generally unpre-

dictable. It is therefore not possible to say that the complex strategies are

adapting to the M-noise, and to that alone. What we can say is that the com-

plex strategies are adapting to some aspect of the environment dependent on

the introduction of M-noise, and which is almost certainly heavily in
uenced

by the co-evolutionary nature of the IPD model. The exact nature of the

variety of the environment presented by (and to) any given population will

not be predictable (thanks to co-evolutionary dynamics), and so a stable and

predictable response to the introduction of M-noise will not be observed. So,

although the LRV undoubtedly applies to this situation, these experiments

also counsel against any simple interpretation that considers noise merely as

a pernicious aspect of an environment to be coped with in a regular way.

6.2 Genetic Mobility

Evidence from the compulsory IPDmodel indicates that both M-noise and O-

noise promote genetic mobility (at least in the dimension re
ected by strategy

memory), and can in
uence population cooperation dynamics. There is also

evidence that these phenomena are linked. This is an illustration of a novel

role for noise in evolving systems, and does not follow from any interpretation

of the LRV (where, if variety is signi�cant to an agent, it is always functionally

signi�cant). However, it is still the case that M-noise and O-noise have

di�erent e�ects with respect to the dynamics of cooperation; that is, the

locus of noise is still important, as the LRV would have us believe, even

though the in
uence of the noise on the subsequent evolutionary dynamics

does not follow from the law.

6.3 The Issue of Generality

It should be emphasised once again that the experiments described through-

out this paper are based on particular implementations of the IPD. Never-

theless, in this discussion, I would like to suggest that the results obtained

do have some claim to a wider interpretation. In the �nal analysis, this claim

can only be justi�ed through further research. It is my belief that such re-

search will be successful to the extent that the following three intuitions are

sound; that there is a) some common ground between the IPD model and
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other adaptive evolving systems in use in arti�cial life research, b) a broad

scope to the principles of cybernetic theory, in particular the LRV, and c) a

distribution of noise in a broad class of evolving systems.

In other words, the models developed here serve best as a bridge between

arti�cial life and cybernetics from which some new theoretical and empirical

territory, concerning the role(s) of noise, can be surveyed. Of course, in

a more immediate sense this work also constitutes a contribution to the

understanding of the IPD model, of interest in its own right.

6.4 Conclusions and Implications

Firstly, we have seen that the locus of variability is critical for understanding

the dynamics of an evolving, adaptive system. Given the above caveat re-

garding generality, I believe that this has implications for the understanding

of systems in which there is a distribution of variability across multiple loci,

and in which agent-side complexity is considered in terms of a response to

environmental complexity (in the spirit of [6]). For example, if one were to

consider the \internal mechanism" of an agent to be constituted from various

di�erent behaviours and some arbitration mechanism (see, for example, [3]),

then the distinctions between disturbance, response, system, and outcome

are lost; after all, any given \behaviour" (such as \
eeing-from-predator")

incorporates all four of these aspects. And if these distinctions are lost, then

the LRV perspective cannot be applied, and the evolutionary in
uence of

environmental variability on the internal mechanism of an agent cannot be

properly understood.

The second lesson is that whilst noise can indeed precipitate functional,

adaptive change, it can also facilitate evolutionary mobility around genotype

space. This is a novel role for noise in evolving systems, and goes beyond the

two cybernetic interpretations of variability as either directly \threatening"

to an agent, or as a source of information that can be transformed into

an e�ective response. The role of noise in altering the structure of �tness

landscapes to facilitate evolutionary search clearly invites further inquiry.

Whether or not such a phenomenon is \useful" or not (either theoretically,

or for design purposes) is, of course, still an open question.
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Compulsory Model IPD/CR Model

Pop. Size 30 30

Iterations per game 60 100

Noise levels 1% 1%

Generations 10,000 5,000

Crossover Rate 0.95 0.95

All Mutations 0.001 0.005

Initial Memory 1 1

Cost on Complexity 0 0.003

Table 3: Parameters for the Compulsory and IPD/CR models (Appendix 1).
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