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Abstract

According to Wolpert's no-free-lunch (NFL) theorems [Wolpert, 1996b,

Wolpert, 1996a], generalisation in the absence of domain knowledge is

necessarily a zero-sum enterprise. Good generalisation performance in

one situation is always o�set by bad performance in another. Wolpert

notes that the theorems do not demonstrate that e�ective generalisation

is a logical impossibility but merely that a learner's bias (or assumption

set) is of key importance in determining its generalisation performance.

However, in this paper it is argued that this may be an over-reading of

the results. Situations can be identi�ed in which a learner's assumptions

are e�ectively guaranteed correct. The in-practice prevalence of these sit-

uations may account for the reliably good generalisation performance of

methods such as C4.5 and Backpropagation.

Keywords: no-free-lunch, generalisation, learning complexity

1 Introduction

There has been lively controversy overWolpert's no-free-lunch theorems [Wolpert,

1996b; Wolpert, 1996a; Wolpert, 1995b; Wolpert, 1992; Wolpert, 1995a; Wolpert

and Macready, 1995] and Scha�er's closely related conservation law [Scha�er,

1994]. These results show that there is no guaranteed correct way of performing
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generalisation. They thus a�rm Hume's claim to the e�ect that the observa-

tion of `the frequent conjunction of objects' does not permit the drawing of any

particular inference concerning `any object beyond those of which we have had

experience' [Hume, 1740].

The underlying idea behind these results is easily stated. Let's say we have a

particular learning method and we would like to know how well it will generalise

on the problems from a speci�c domain. If we have no special knowledge about

the domain then all problems in the domain have to be considered uniformly

likely, i.e,. the problems in the domain have to be considered to follow a uniform

distribution. In this context, the problems in the domain may be organised

into `opposites', such that the way the unseen (test) cases are classi�ed in a

particular problem is the reverse of the way they are classi�ed in its opposite.

A particular learning algorithm generalises cases in a speci�c way. Thus, if

it performs slightly better than random guessing on a particular problem, it

must perform slightly worse than random guessing on the problem's opposite.

On a random selection of problems from the domain, a learning algorithm will

therefore tend to produce above-chance performance on some problems and

below-chance performance on other problems. Since the chances of it producing

above-chance performance are identical to the chances of it producing below-

chance performance, it will, on average, produce exactly the same performance

as random guessing.

At �rst sight, the NFL result appears to demonstrate that e�ective (i.e.,

above-chance) generalisation is impossible in principle. But this is not the case.

In the NFL scenario, we have the rather severe constraint that nothing is known

about the domain. All problems have then to be considered equally likely and

the process of applying a particular learner to some random selection of prob-

lems necessarily produces chance-level performance (on average). The explicit

consequence of the NFL result is thus that in the situation where no domain

assumptions can be made, chance-level performance is the inevitable result.

But the subtext of the NFL work is that it is the assumptions a learner makes

about its domain which are key.

1

As Michael Perrone has commented, `What

makes NFL important is that it emphasizes in a very striking way that it is

the assumptions that we make about our learning domains that make all the

di�erence.'

2

However, interpreting the NFL theorems in this way raises a new concern. As

Wolpert has noted, the biases of empirical generalisation methods are typically

not made explicit and are only rarely justi�ed in terms of the expected applica-

tion domain. He notes that `for many algorithms, no one has even tried to write

down that set of [problems] for which their algorithm works well.' [Wolpert,

1996b]. However, it is clear that generalisation methods are capable of perform-

ing well in practice across a wide variety of situations [Thrun et al. 1991]. In

1

Wolpert speci�cally mentions the requirement to prove that `the non-uniformity in [the

problem domain] is well-matched to your ... learning algorithm.' [Wolpert, 1996b, p. 19]

2

From a posting to the `connectionists' mail list.
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fact, in a recent article Holte [1993] has shown that even rather trivial methods

may perform well on a wide variety of real-world generalisation problems. In

practice, then, it seems as if generalisation methods are often able to `get away

with' not being mindful of their biases. How can we reconcile this with the

assumption that biases `make all the di�erence?'

One possibility is that these learning methods are unwittingly applying

generically appropriate biases, i.e., they are exploiting a particular form of non-

uniformity which turns out to be present in most or all application domains.

But what might this non-uniformity be? And how could we demonstrate its ex-

istence? Wolpert points out that we cannot use any form of `prior knowledge' in

order to justify any particular assumption of non-uniformity since such knowl-

edge cannot be guaranteed to be a correct guide to future outcomes. What is

required, he says, is `a proof based completely on �rst principles'. Anything less

than this has to be regarded as inductively tainted and thus itself subject to the

NFL results.

The present paper aims to respond to this challenge by producing precisely

the proof the Wolpert believes is required, i.e., a proof of generic non-uniformity

based exclusively on �rst principles. The proof will use a logical task-analysis of

the process of generalisation introduced in [Clark and Thornton, 1997, Thornton

and Clark, Forthcoming]. This analysis will be reviewed in section 2. Section 3

will investigate the caveats that have to be applied when the analysis is applied

to realistic scenarios. Section 4 of the paper will show how the analysis justi�es

certain a priori assumption regarding generic non-uniformities. Section 5 is a

summary.

2 The complexity of the learning task from �rst

principles

Learning may involve the acquisition of new behaviour or the acquisition of new

knowledge. However, for analytic purposes it is often convenient to combine the

two categories into one, treating knowledge acquisition as a type of behaviour

learning which produces novel `thought behaviour.' The advantage of this is

that it allows us to decompose any learning task along behavioural lines. In

particular, it allows us to focus attention on how learning tasks always involve

acquiring a disposition to produce certain `actions' in certain `situations.'

Let us say we want a learner agent to acquire behaviour B, which involves

producing actions A1 and A2. The salient information (i.e., data) available to

the learner may be internally stored or derived via sensors from an external

environment (or both). But for learning to be possible, this information must

indicate in some way the situations in which A1 and A2 should be produced.

Learning the task thus involves (a) identifying the nature of this indication

and (b) consolidating it in the form of new behaviour. The di�culty of the
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latter operation depends entirely on the properties of the agent and should not,

therefore, be considered a part of the generic complexity of the learning task.

This should be estimated purely in terms of the identi�cation operation.

Identifying the relevant indication involves identifying the connections that

may exist between the learner's informational data and the actions in question.

The complexity of this depends on the number of possible connections and this,

in turns, depends on the nature of the connections. If the connections are to

properties which are relational with respect to the learner's information resource

then the search space is potentially in�nitely large, simply because there are

generally an in�nite number of possible relationships that may be de�ned over

a given set of data. Conversely, if the connections are to absolutes within the

learner's information, then the search space is only �nitely large, because the

number of combinations of absolute values extracted from a �nite data source

is necessarily �nite.

What this tells us is that learning tasks may be decomposed into two distinct

complexity classes:

� �nitely complex non-relational tasks involving the identi�cation of prop-

erties which are absolute with respect to the learner's information resource,

and

� in�nitely complex relational tasks involving the identi�cation of proper-

ties which are relational with respect to the learner's information resource.

Researchers have been familiar with this distinction for many years (cf. [Di-

etterich and Michalski, 1983, Clark and Thornton, 1997]). It is, in fact, common

practice to refer to methods speci�cally intended for use on relational tasks as

relational learning methods (cf. [Muggleton, 1992, Mitchell, 1997]). Follow-

ing this practice, the present paper will make a distinction between relational

learning, meaning learning speci�cally adapted for relational tasks, and em-

pirical or non-relational learning meaning learning speci�cally adapted for

non-relational tasks.

3 The complexity of the learning task in prac-

tice

Given the complexity properties noted above it is clear that, before addressing

a speci�c learning task, a learner should ideally decide if the task is relational or

non-relational. Unfortunately, this decision often cannot be made with any con-

�dence. The distinction between relational and non-relational learning is clear

in theory. But the task of classifying problems as relational or non-relational is

fraught with di�culty.

At �rst sight, it looks as if it should be possible to classify tasks as relational

or non-relational depending on the degree of clustering in evidence. Imagine that
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the data available to the learner agent take the form of combinations of values

of variables | a very common scenario | and that each particular combination

of values is treated as an n-dimensional datapoint. If the task is relational, we

know that particular actions are contingent on relationships among the value

combinations and that actions should therefore not be correlated with absolute

values (or datapoint coordinates) in any way. Datapoints associated with the

same action should not share coordinates and therefore not cluster together.

If, on the other hand, the task is non-relational, absolute values (datapoint

coordinates) are associated with particular actions; so datapoints should tend

to share coordinates and should tend to cluster together.

In a relational task, then, we expect the data to show no clustering. And

certainly, in extreme cases, this is precisely what is found. Consider, the so-

called `parity task.' In a parity task, the action and all the data values are

represented as binary digits. The nature of the task is such that the action `1'

should be produced just in case there are an odd number of 1s among the data.

The action `0' should be produced in all other cases. A parity task involving

combinations of three data values can be written out textually as in Figure 1.

Each line here shows the association between a particular action (to the right

0 0 0 --> 0

0 0 1 --> 1

0 1 0 --> 1

0 1 1 --> 0

1 0 0 --> 1

1 0 1 --> 0

1 1 0 --> 0

1 1 1 --> 1

Figure 1: 3-value parity task.

of the arrow) and a combination of three data values (to the left of the arrow).

Note how the action is `0' in those cases when there is an even number of 1s

among the data values, and `1' otherwise.

Parity is a perfectly relational task since the action depends exclusively on

a relationship among the data. The net e�ect is that the distribution of data-

points is `perfectly unclustered.' Due to the nature of the rule underlying the

parity task, a single increment or decrement of any data variable `
ips' the as-

sociated action from 1 to 0, or vice versa. Thus, in the data space, datapoints

associated with one action always appear adjacent to datapoints with the op-

posite action. Nearest neighbours within the space are thus guaranteed to have

di�erent actions. There is no clustering whatsoever: the action labels create a

perfect checkerboard e�ect.

With respect to the parity tasks, the association between lack of clustering
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and relationality is thus quite clear. But when we turn attention to other sorts

of relational task, the association becomes more blurred. Consider, for example,

the task shown in Figure 2.

3 4 --> 0

8 2 --> 1

7 6 --> 1

8 9 --> 0

.

.

.

Figure 2: Ambiguous task.

The rule here is that the action should be 1 just in case the �rst data value is

greater than the second. This rule is characteristically relational and we might

expect that the problem | like parity | will exhibit no clustering. But if we

inspect the associated distribution of datapoints we �nd that this is not the

case. The explanation is easy to �nd. The task is less than perfectly relational.

Actions do not depend exclusively on relationships among the data. Absolute

values do have some signi�cance in the determination of output. Zero, for

example, cannot be greater-than any other non-negative integer. A zero as the

�rst value thus constitutes evidence that the produced action should be `0'. The

net e�ect is that the data for this task do show a certain degree of clustering.

Characteristically relational problems, then, may embody non-relational as-

pects which `show through' in the form of clustering. But this is not the only

source of clustering e�ects we need to consider. It is also possible for a task

to be characteristically hybrid, i.e., to exhibit di�erent associations based on

totally unrelated types of e�ect. For example, consider the problem in Figure

3.

Several of the cases with an `a' in the third variable have `f' as their action.

There thus exists a cluster of points which share `a' in the third variable and

`f' as action. A learner observing this e�ect might classify the problem as non-

relational and attempt to �nd data/action associations based solely on absolute

values. This might lead to the learner guessing that a value of `a' in the third

variable indicates that the action should be `f'. But the original classi�cation

here is dubious. In addition to the association noted, there is also an e�ect in

which cases exhibiting duplicated data values tend to have `h' as their action.

This e�ect is based on a relationship among the data. A learner focussing on

this e�ect might thus classify the problem as relational and proceed to a totally

di�erent conclusion.

We have to conclude, then, that clustering (or lack of it) is not a reliable

indicator for relationality. There are a number of possible sources of clustering
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c d a b --> f

a b d b --> h

e c d e --> h

c b a e --> f

a c d e --> f

b c a e --> f

b d d e --> h

e d a c --> f

a c d c --> h

c d a c --> h

c c a e -->

Figure 3: Hybrid learning task.

in (the data for) a characteristically relational problem, e.g.

� the task may have genuine, non-relational aspects and thus exhibit a de-

gree of meaningful clustering. The `greater-than' task is a good example.

� The task may be represented to the learner in such a way as to create

arti�cial non-relational aspects. An example of this situation is a parity

task whose representation includes an extra input variable whose value

always e�ectively records the parity status of the original inputs is an

example.

In both of these situations, the exhibited clustering is useful for the purposes

of learning, i.e., it can be used as the basis for generalisation. There are two

further situations, however, in which the clustering is of no use whatsoever.

� The clusters may be an artifact of the way in which the learner's data

have been selected or generated.

� The clusters may be the results of some sort of noise or data error.

In both of these cases, the clusters observed in the data are merely sampling

artifacts and thus of no use whatsoever within the learning process.

To summarise, in a characteristically relational task we may see clustering

e�ects arising from non-relational aspects of the task, characteristics of the task

encoding, characteristics of the data selection process or noise/error. E�ects due

to the task encoding, data selection or noise may be termed incidental, on the

grounds that their relationship with the underlying problem is not meaningful.

Within this grouping, e�ects due to characteristics of the task representation

may be termed generalising while e�ects due to the data selection or noise

may be termed non-generalising. The various possibilities are tabulated in

Figure 4.
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Incidental
Incidental
Incidental

Noise/error

Problem encoding
Non-relational aspect Generalising

Generalising
Exemplar selection

Cluster origin

Figure 4: Origins of clusters in characteristically relational problems.

3.1 Typical scenarios

Despite the di�culties noted, it remains the case that non-relationality does

produce clustering while relationality does tend to eliminate it. The existence

or lack of clustering therefore can serve as a guide for tentative classi�cation

decisions. We have seen that almost all learning tasks show a certain degree of

clustering. But the more clustering they exhibit the stronger the evidence in

favour of a non-relational classi�cation. The range of possibilities is illustrated

in Figure 5. Each task here is displayed as a 2-dimensional graph and is therefore

assumed to be de�ned in terms of two, numeric data variables and one action

variable, whose value is either `1' or `0'. The problems represent typical scenarios

from the perfectly non-relational to the perfectly relational. In the `perfect
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Perfect clustering Strong clustering Weak clustering Perfect checkerboard

Non-relational Relational

Figure 5: Clustering scenarios.

clustering' scenario, all the inputs whose output label is 1 are in the left half of

the input space. Other the inputs whose output label is 0 are in the right half
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of the space. The data are thus perfectly organised into two, cleanly separated

regions, de�nable in terms of a single, axis-aligned boundary.

Next, we have a scenario showing strong clustering. The inputs here are still

cleanly separated into uniformly instantiated regions. But the organisation is

less than perfect. The clusters would need to be de�ned in terms of, say, four

circular regions.

The next scenario shows weak clustering. Now the input points are dis-

tributed in a more complex fashion. There are some uniformly instantiated

regions but these do not have particularly regular shapes. The situation might

correspond to a characteristically relational problem which shows some non-

relational e�ects. Or it might simply correspond to a complex non-relational

problem.

Finally, we have the `perfect checkerboard' scenario. In this situation the

two types of input are perfectly mixed up. This is the extreme case of input

data disorganisation, i.e., maximum `sensation entropy.' Every point has as its

nearest neighbour a datapoint with a di�erent label. Absolute input values (i.e.,

coordinates) therefore have no signi�cance whatsoever in the determination of

output.

The perfect checkerboard scenario is the logical extreme of the relational

dimension. And as has already been noted, all parity problems produce perfect

checkerboard distributions. But do all checkerboards arise from valid parity

tasks? Recall that the parity task is de�ned in terms of binary data and action

values. Thus each dimension of the data space has only two values. If we draw

out the checkerboard for a 2-bit parity problem then it has the appearance of

Figure 6.

0

0

1

1

Figure 6: Checkerboard pattern for a parity problem.

Checkerboards whose dimensions are all 2-valued can always be viewed as

n-bit parity problems | n being the number of dimensions. Problems such as

the one shown in Figure 8-1, which have more than two values per dimension,

but only two distinct output values, obviously cannot be interpreted as parity

problems. However, they can be interpreted in terms of a modulus-addition

operation, a generalisation of the parity rule.

3

A mapping such as the one

3

Modulus addition behaves the same as ordinary additionexcept that the result is con-

strained to lie between 0 and a maximum called the modulus value. Applying modulus
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shown in Figure 8-1 can be interpreted as de�ning a modulus-addition function

using input values which range between 0 and 7 and a modulus value of 2.

In fact, any scenario which is checkerboard-like in terms of having di�erent

output labels attached to all nearest-neighbour datapoints, can be interpreted

as de�ning a modulus-addition mapping as long as the number of values in each

dimension is a multiple of the modulus value. This is a simple consequence of the

fact that, within a modulus-addition operation, incrementing or decrementing

any input value always has the e�ect of changing the output value. The net ef-

fect is that within any modulus-additionmapping, nearest-neighbour datapoints

always have di�erent outputs. Any modulus-addition problem thus necessarily

has a checkerboard-like appearance. And, by the same token, all problems with

a checkerboard-like appearance can be viewed as modulus-addition problems.

4 The existence of universal non-uniformities

The analysis of learning-task complexity presented above involves two main

steps. First we conceptualise all learning as behaviour learning, i.e, as involving

the acquisition of a disposition to produce certain `actions' in certain `situations.'

Second, we observe that this task has two distinct forms: a non-relational form,

involving a �nitely complex search and a relational form involving an in�nitely

complex search. The strength of the argument derives from the observation

that any form of learning must involve identifying connections between ele-

ments of informational data and that these connections may be rendered in

terms of relational or non-relational properties. There is no inductive element

here whatsoever. The observations are derived using simple deduction. The

argument is therefore based purely on �rst principles. But is it the argument

we want? Does it do the job Wolpert thinks needs to be done? In particular,

does it allow us to justify the assumption of generic non-uniformities?

4.1 Possible, probable and de facto non-uniformity

The analysis allows us to characterise the ways in which a generalisation prob-

lem may be solved. It thus implicitly allows us to characterise generalisation

problems which cannot be solved. In particular we can say that a a particular

generalisation task may be

� non-relationally learnable,

� hybridly learnable,

� relationally learnable,

addition to some numbers involves �nding their sum and then subtracting the modulus

valueM until the value lies between 0 andM � 1.
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� unlearnable.

A task falls into one of the three learnable categories if the relational (non-

relational) e�ects exhibited in the training data are also exhibited in the testing

data. All tasks in which there is no such carry over of e�ects fall into the

unlearnable category. What does this tell us about the NFL result?

Recall that in the NFL scenario we assume nothing is known about the ap-

plication domain. The result is that we cannot assume any non-uniformity in

the distribution of problems. With respect to a particular classi�cation system

we must therefore assume that problems are uniformly distributed between the

various categories. If we take the categories to be as speci�ed above (three

learnable and one unlearable) then we have to make the assumption that one

quarter of all problems in an arbitrary domain will be unlearnable. For an e�ec-

tive learner, all unlearnable problems will be problems on which performance is

worse than chance. Thus in this scenario the expectation must be that an aver-

age (e�ective) learner will perform better than chance on 50% of all problems

and worse than chance on just 25% of problems.

4

The establishment of a principled distinction between learnable and unlearn-

able problems thus allows us to eliminate the paradoxical NFL prediction that

e�ective learners will perform no better than random guessing. But we can take

the argument one step further. For most intents and purposes, data fed to learn-

ing algorithms is derived by careful sampling of a particular phenomenon (cf. the

problems in the UCI repository of Machine Learning Databases). Such datasets

are constructed according to certain rules, the most prominent of which con-

cerns the statistical independence of the data variables. In general, `real-world'

datasets (e.g., the `Breast Cancer' dataset) are generated in such a way as to

ensure that the data variables are maximally independent. The net e�ect of this

is to e�ectively eliminate the possibility of relational e�ects. The requirement

for statistical independence among data variables tends to guarantee that the

associated dataset will constitute a non-relational learning problem.

On a conservative estimate perhaps as many as 95% of all real-world learning

problems are represented in terms of independent or approximately independent

variables and must thus be considered non-relational by design. In practice then,

most learning problems selected from, say, the UCI repository are e�ectively

designed to be within the non-relationally-learnable category. For the machine

learning practitioner there is, then, a de facto non-uniformitywhich can be safely

assumed on the basis of the principles of dataset design. A randomly selected

problem is almost certain to be contained within the subset of problems which

are non-relationally learnable.

4

An alternative approach would be to treat the categories as just `learnable' and `unlearn-

able'. In this case the situation becomes still more favourable for the e�ective learner. Our a

priori expectation must be that it will produce better than chance performance on all prob-

lems from the domain. This is, of course, the expectation that we would have on intuitive

grounds anyway.
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4.2 Geometric seperability of frequently-used datasets

We can demonstrate the non-relationality of typical learning problems empir-

ically. We have already noted that the solving of a non-relationally-learnable

problem involves exploitation of data clustering. Thus, we expect any such prob-

lem to exhibit reasonably well clustered data. One way to measure the degree

of clustering in a particular dataset is to compute its geometric seperabil-

ity [Thornton, 1997] which is just the proportion of datapoints whose nearest

neighbours share the same output classi�cation.

geometric � seperability(f) =

P

n

i=1

f(x

i

) + f(x

0

i

) + 1 mod 2

n

Here, f is a binary target function, x is the data set, x

0

i

is the nearest

neighbour of x

i

and n is the total number of data. The nearest neighbour

function is assumed to utilise a suitable metric, e.g., a Manhalobis metric for

symbolic data or a Euclidean metric for spatial data.

Geometric seperability is a measure of the degree to which datapoints with

the same action cluster together. In some sense, it is a generalisation of the

linear-separability concept [Minsky and Papert, 1988]. Although not a boolean

measure (i.e., a predicate), geometric seperability can be viewed, like the linear-

separability concept, as di�erentiating tasks which are appropriate for a particu-

lar learning strategy.

5

The strategy in this case is non-relational (i.e., similarity-

based) learning. Only if the geometric seperability for a particular task is high

is this strategy likely to be e�ective.

The geometric seperability values for 16 of the most frequently used Machine

Learning datasets [Holte, 1993] is tabulated in Table 1. As we expect, in all

cases the values are well above zero. The average geometric seperability value

is, in fact, 0.85.

Dataset BC CH GL G2 HD HE HO HY

GS 67.31 82.82 73.6 81.6 76.24 61.94 76.9 97.76

Dataset IR LA LY MU SE SO VO V1

GS 94.0 94.74 77.03 100.0 93.19 100.0 92.87 87.47

Interestingly, the geometric seperability values may be treated as expected

generalisation levels for a 1-nearest-neighbour classi�er. The generalisation per-

formance of a 1-nearest-neighbour classi�er depends on the degree to which

data in the testing sample have nearest-neighbours in the training sample with

identical target actions.

6

The proportion of nearest neighbours in the dataset

which share the same action is identical to the expected proportion of such cases

5

A satisfying property of geometric seperability is the fact that it is zero for all parity

tasks, as per expectation.

6

We assume that the same metric is used for the nearest-neighbour classi�er as was used

in computing the GS.
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in a randomly selected testing set. Thus, on average, the 1-nearest-neighbour

classi�er will produce a level of generalisation which is identical to the GS value.

5 Summary

The NFL result seems, at �rst glance, to be `bad news' for learning and gener-

alisation, since it seems to suggest that it is impossible for a method to produce

average performance which is any better than that achieved by random guess-

ing. However, Wolpert and others have been gone to great lengths to emphasise

that the news is not quite this bad. What NFL shows, they claim, is that it

is the assumptions we make about the domain which make all the di�erence.

Provided appropriate assumptions about non-uniformities are made, arbitrarily

good performance may be obtained.

The aim of the present paper has been to suggest that even this may be an

over-reading of the implications of the NFL result. The NFL work assumes,

rather counter-intuitively, that there is no a priori di�erence between learnable

and unlearnable problems and that therefore all input/output mappings de�n-

able over a given domain have to be considered plausible learning problems.

The net e�ect of this is that there can be no a priori reason why a particular

learner should encounter problems upon which it performs well and therefore

no a priori reason why any learning method should perform above the chance

level on average.

However, once we accept that there is an a priori distinction to be made

between learnable and unlearnable problems we can eliminate a proportion of

the input/output mappings from any domain on a priori grounds. The expected

performance of an arbitrary, e�ective learner is then automatically raised above

the chance level. But establishing the existence of an a priori distinction between

learnable and unlearnable problems involves close analysis of what learning in-

volves.

The approach taken in this paper (almost certainly not the only approach

possible) involves lumping all learning tasks together under the heading of `be-

haviour learning.' We then decompose the learning (generalisation) task into

two subtasks: (1) the identi�cation of connections between informational data

and action events and (2) the implementation of mechanisms designed to consoli-

date those connections. Given that the latter task is agent-speci�c, learning-task

complexity must be measured in terms of the former subtask. And as we have

seen, the complexity of this is related to the nature of the connections which

need to be identi�ed and in particular, to whether they are instantiated in terms

of relational or absolute properties of the learner's information resource.

This analysis, aside from o�ering a detailed characterisation of what `learn-

ability' really means, has the advantage of highlighting the fact that properly

prepared learning problems tend to be non-relational by design. The net e�ect

of this is that learning methods which aim to solve problems in terms of non-

13



relational e�ects (i.e., in terms of data similarity

7

or data clustering) will tend to

perform well across the board. The almost universally good (i.e., above chance)

performance of methods such as C4.5 and Backpropagation may be explained

in these terms.
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