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Abstract

Genetic Algorithms (GAs) are increasingly used for such purposes as

deriving programs [Koza, 1992] and producing designs for robots [Cli� et

al. 1993]. According to the building-block hypothesis and schema anal-

ysis of Holland [1975] the GA is an e�cient search method. However,

empirical work has shown that in some cases the method is outperformed

by simpler processes such as random-permutation hill climbing [Forrest

and Mitchell, 1996] and [Lang, 1995]. The present paper reexamines Hol-

land's framework (as formulated by Goldberg [1989]) and �nds that such

in-practice failures are predictable given the implications of the schema

analysis. The high e�ciency of the GA method is commonly attributed

to its `implicit parallelism', i.e., its ability to develop candidate solutions

in parallel, without focussing on any particular solution at any one time.

However, this e�ciency is hard to realise because there is a deep contra-

diction between the building-block hypothesis and the schema theorem.

1 Introduction: natural and simulated evolu-

tion

In natural evolution, populations of individuals compete to survive and repro-

duce. Relatively �t individuals survive longer and thus reproduce more. Over

time, the �tter examples of random variations accumulate and average �tness
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tends to increase. According to the Darwinian theory, this process of nat-

ural selection is responsible for the development of all life forms on earth.

Researchers hope to harness its power for computational purposes by imple-

menting simulations of the process. In such simulations, the individuals are

candidate solutions to some problem and �tness is a measure of solution qual-

ity. The aim is thus to `evolve' high-quality solutions through simulated natural

selection.

A common way of pursuing this approach involves use of the crossover-

based genetic algorithm or C-GA [Goldberg, 1989]. In this approach, can-

didate solutions are represented as strings of characters or genotypes. Repro-

duction involves the production of a new individual through the splicing together

of genotypes from two `parents'. In the usual approach, parent genotypes are

split at a certain point, forming a left part and a right part. The right part from

one parent is then joined to left part from other, and vice versa. This produces

two o�spring genotypes which then replace relatively un�t individuals from the

population.

2 Schema analysis

At �rst sight, the C-GA appears to be a way of randomly exploring the space

of possible genotypes. However, Holland's schema analysis [Holland, 1975]

provides an alternative picture. In this analysis we assume that the GA is

a way of processing genotype features rather then genotypes themselves | a

feature being simply a set of values in speci�c positions. A particular feature is

de�ned in terms of a schema. This is a genotype-like string with speci�c values

in some positions and `don't care' values (asterisks) in others. An example is

*10**0****

This schema has ten characters in all, including seven `don't care' values. It

will match any 10-character genotype with a 1 in the second position, a 0 in the

third position and a 0 in the sixth position. The genotypes which match the

schema are referred to as its instances.

Note that we can construct a schema which will match some speci�c genotype

by replacing any one of its characters with asterisks. There are thus 2

l

schemas

matching to any genotype of length l. There are potentially n � 2

l

schemas for

a population of n genotypes of length l, although in practice there will usually

be fewer due to duplication. (There are always at least 2

l

.) The de�ning

length of a schema is the number of positions between its �rst and last speci�c

position. Its order is the number of speci�ed bits. Thus the de�ning length of

`*10**0****' is 5 and its order is 3.
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3 Schema growth under pure reproduction

The schema concept allows us to adopt a new perspective on the GA. Rather

than thinking of it as a simulation of an evolutionary process we can think of it

as carrying out `schema processing'. We view every schema as having a �tness

value which is de�ned as the average �tness of its instances. In Figure 1 we see

�ve genotypes (column 1) each of which has a certain �tness value (column 2).

The table also shows �ve example schemata (column 3), each of which has zero

or more instances (column 4) among the listed genotypes. The mean �tness of

each schema (column 5) is just the average of the �tnesses of its instances.

We view the goal of the GA as the multiplication of highly-�t schemas in

the population.

1

Genotype Fitness Schemata Instances Mean �tness

01100 (1) 103 *1*0** 1,2 63.5

01001 (2) 24 0**0** 1,2,4 83

10000 (3) 87 *****1 2,4 72

00011 (4) 122 11**** none 0

01010 (5) 90 **01** 4,5 106

Table 1: Relationship between genotypes, schemas and �tness.

As Holland has shown, this goal is achieved by ordinary reproduction (i.e.,

genotype-copying) without the need for crossover. Under this scenario, the

evolutionary process involves repeatedly selecting an individual and making a

copy of it. Provided that genotypes are selected with a probability proportional

to their �tness, high-�tness schemas are bound to become more prevalent in the

population.

Highly �t schemas will obviously tend to have many, highly �t instances.

Each of these has a high chance of being selected for reproduction. Thus, highly

�t schemas will tend to multiply. In fact under pure reproduction, schemas can

be expected to grow `as the ratio of average �tness of the schema to the average

�tness of the population' [Goldberg, 1989]. Un�t schemas gradually get squeezed

out of the population because their instances tend not to be reproduced.

The growth formula for schemas in a pure-reproduction scenario is as follows

[Goldberg, 1989].

m(H; t+ 1) � m(H; t) �

f(H)

�

f

HereH is a schema,m(H; t) is the number of instances ofH in the population

at time t. f(H) is the �tness of H and

�

f is the average �tness.

1

It is of course the instances rather than the schemas which are `in' the population.
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4 Schema growth under reproduction with crossover

In an evolutionary process involving pure reproduction (i.e., copying), the pop-

ulation is always made up from copies of members of the original population.

(In fact, if the process continues long enough we expect the population to be

made up entirely of copies of the �ttest genotype from the original population.)

If the original population does not contain a good solution then the method

obviously cannot succeed in �nding it. Some source of novelty is required. To

address this requirement the reproduction regime is typically modi�ed to use

crossover rather than copying. This ensures that novel genotypes can be gener-

ated. Unfortunately, the crossover method involves cutting parental genotypes

into two parts and thus runs the risk of slicing up and destroying useful schemas.

We therefore need to determine the extent to which the destructive properties

of the crossover operator undermine schema-processing.

In the schema analysis, this is dealt with by introducing a schema conser-

vation probability to the growth formula. In the original growth formula, the

multiplication of a schema in each round is determined solely by the ratio of its

�tness advantage (the di�erence between �tness under consideration and mean

�tness) to the mean �tness. The probability of schema destruction depends on

the de�ning length of the schema: longer schemas have a higher probability of

being destroyed under crossover. The probability of destruction is thus the ratio

of de�ning length to genotype length.

2

and the probability of conservation is

the complement of this. The amended formula thus becomes

m(H; t+ 1) � m(H; t) �

f(H)

�

f

�

1�

�(H)

l

�

Here �(H) is the de�ning length of H and l is the total genotype length.

3

The destructive properties of the crossover operation are assumed to be

negligible with schemas of short de�ning length since, in this case, the brack-

eted part of the growth formula evaluates to a value close to 1. This leads

directly to the so-called schema theorem which states that `short, low-order,

above-average schemata receive exponentially increasing trials in subsequent

generations.' [Goldberg, 1989]

5 The shortness and low-epistasis assumptions

According to the schema theorem, schemas will only be correctly preserved if

they are of `short' de�ning length. In fact a schema will only be preserved cor-

rectly if its �tness advantage (the excess of its �tness over the average �tness) is

2

In Goldberg's [1989] book, it is the ratio of de�ning length to genotype length - 1.

3

Accounting for the destructive e�ects of a mutation operation required a further change

to the formula, see [Goldberg, 1989, p. 33].
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greater than its `vulnerability' | the ratio of its de�ning length to the genotype

length. How easily is this `shortness' requirement satis�ed?

If �tness values range between 80 and 120 with the average value being 100,

the maximum �tness ratio is 120/100 and the maximum �tness advantage is

20/100. Any schema for which the ratio of de�ning length to genotype length

exceeds this will not be preserved correctly. If the schema is of above average �t-

ness, it will receive decreasing rather than increasing trials in future populations

(and vice versa). With a genotype length of 100 bits, the de�ning length of a

schema must thus be less than 20 bits. The number of schemas with a de�ning

length of less than 20 bits form less than 10

�22

percent of the total number

of schemas in this scenario.

4

In this scenario then the shortness assumption is

e�ectively violated and the C-GA processes a negligable fraction of the total

number of schemas. Since the original �tness values used are not atypical, we

have to infer that the shortness assumption is easily violated.

The schema theorem also covertly introduces an assumption concerning

schema �tness. It explicitly refers to `above-average schemata' and is thus im-

plicitly assuming that schemas have an independent �tness value. The �tness

of a schema is de�ned as the average �tness of its instances. In the pure re-

production scenario, this quantity cannot change much since instances remain

the same from generation to generation. However, in the crossover scenario,

instances do change from generation to generation. Thus the �tness value of a

particular schema may vary.

A schema which turns out to have a constant �tness value under crossover has

an independent impact on �tness since, clearly, its �tness value is not a�ected

by its genetic context. Conversely, a schema �tness value which does change

under crossover is a�ected by context. The technical term for the situation

where schema �tness is a�ected by context is epistasis. The schema theorem

assumes that schema �tness is not a�ected by context. It thus introduces the

assumption of low epistasis. How easily is this assumption satis�ed?

We can imagine scenarios in which the assumption is quite reasonable. We

might, for example, be using the C-GA to evolve agents whose �tness depends

in some way on their colour. We might use a part of the genotype to encode

a colour value. Provided that colour impacts �tness independently of other

factors | as we might expect | all those schemas which e�ectively identify the

high-�tness colour value clearly do have an independent impact on �tness.

However, where genotypes encode for any sort of mechanism or system of

components, the assumption of schema-�tness is likely to be violated. In such

a scenario, parts of the genotype will typically encode for parts of the mecha-

nism. But the �tness of the whole is then related with the interactions of the

parts. Thus, in principle, no one part makes an independent contribution to

4

This estimate is arrived at by taking the number of 20-bit schemas (2

20

) as a propor-

tion of the number of genotypes (2

100

), and multiplying by 100. The value obtained is

0:0000000000000000000000827181.
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�tness. Where GAs are used to evolve genotypes which encode for systems or

mechanisms, the low-epistasis assumption will thus typically be violated.

The scenario in which �tness is a�ected by `epistatic interactions' between

parts of the genotype has, of course, been intensively investigated by the GA

community. In fact, the construction of the so-called `GA-deceptive' problem

is typically a matter of deliberately nurturing epistasis (`nonlinearity') in an

encoding [cf. Goldberg, 1989, ch. 2]. However, the observation that the schema

theorem e�ectively assumes low epistasis, may help to explain the problems

that some researchers have encountered in the use of C-GAs in genetic pro-

gramming [Koza, 1992], cf. [Lang, 1995] and [O'Reilly, Forthcoming]. In this

application, high-�tness genotypes are programs for a given task and the geno-

type is thus literally an encoding of a mechanism. Fitness is not independently

attributable to individual parts of the genotype, but only to their interactions.

6 The building block hypothesis

The credibility of the C-GA does not rest solely on the schema theorem. It

also rests on the so-called building-block hypothesis. This states that the

crossover GA works well when short, low-order, highly �t schemas recombine

to form even more highly �t, higher-order schemas. In fact, as Forrest and

Mitchell [1996] note, `the ability to produce �tter and �tter partial solutions

by combining blocks is believed to be the primary source of the GA's search

power.' Unfortunately, when we come to examine the assumptions introduced

by the building-block hypothesis, we �nd that they contradict those introduced

by the schema theorem.

The building-block hypothesis assumes that the �tness of any one block is

typically a�ected by the other blocks on the genotype. If this were not the

case it would be meaningless to talk about a `building-block process' operating

over and above the usual evolutionary process. Thus the building-block hy-

pothesis implicitly assumes only a positive e�ect of epistasis on �tness and thus

contradicts the low-epistasis assumption introduced by the schema theorem.'

When we come to consider the length implications of the building-block hy-

pothesis we uncover a further contradiction. During the building-block process,

the schemas that require processing at any given stage are actually the blocks

that have been put together by the prior building-block process. Except at

the initial stage, the de�ning length of these schemas is related to the de�ning

lengths of the components of the blocks. Consider a block made up of just two

schemas. One schema may be nested inside the other. In this case the de�ning

length of the block is simply the de�ning length of the longer of the two schemas.

At the other extreme the two schemas might be situated at opposite ends of the

genotype. In this case the de�ning length of the new block will be close to the

genotype length l.

If we make the conservative assumption that, on average, the de�ning lengths
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of blocks will be at least the sum of the de�ning lengths of the components, then

we see that real schema length will increase at least exponentially during the

building-block process. Assume all original schemas have de�ning length 1 and

that all blocks have two components. Then a �rst-level block has de�ning length

2. A second level block has de�ning length 4. A third level block has de�ning

length 8, and so on.

The schemas that must be processed at any given stage are the blocks that

have been created by previous processing. Thus, strictly speaking, the schema

growth formula | which de�nes growth in terms of a particular schema |

cannot be meaningfully applied to a C-GA in a building-block scenario. If it

is to be applied, we should at least use a time-�xed schema identi�er and a

de�nition of de�ning length which explicitly captures the time-related growth.

For example, we might let H

t

denote a schema processed at time t, and de�ne

the schema length as

�(H

t

) = x

t

with x being the de�ning length of an original schema.

Once, the implicit growth in schema lengths is made explicit, we see that

the building-block hypothesis (which depends on negligible schema length) is

very likely to be violated in all but the initial stage of processing. It demands

increasing schema length and thus violates the shortness assumption introduced

by the schema theorem.

Thus we �nd that both of the assumptions introduced by building-block

hypothesis directly contradict assumptions introduced by the schema theorem.

The situation is illustrated schematically in Figure 1. Given the importance of

Schema Theorem
Assumptions

(1) Schema shortness

(2) Low epistasis

(1) Increasing schema length

(2) High epistasis

Building-Block 
Hypothesis

Assumptions

contradicts

contradicts

Figure 1: Inherent contradictions in the schema/building-block framework.

the building-block hypothesis within the GA paradigm this clash of assumptions

occurring at the most fundamental level of the analysis is of particular interest.
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As Forrest and Mitchell [1996] have commented there is a `need for a deeper

theory of how low-order building blocks are discovered and combined into higher-

order schemas.'

7 Summary

As Forrest and Mitchell have noted, con�dence in the e�cacy of the GA is still

largely based on the building-block hypothesis and the schema theorem. The

schema theorem shows that schemas with high �tness are given exponentially

increasing numbers of trials through reproduction but only if we assume that

their �tness contributions are context-free and their de�ning lengths are su�-

ciently short. In reality, as we have seen, neither of these assumptions is easily

satis�ed.

When we come to consider the assumptions implicitly introduced by the

building-block hypothesis we �nd that they implicitly contradict the assump-

tions underpinning the schema theorem. Thus, if we assume that the viability of

the GA process is established by the schema theorem but that its `power' is ac-

counted for by the building-block hypothesis, we have to conclude that the GA

only works well in the situation in which it is guaranteed not to work e�ectively.

The practical failures of the method, such as those reported by Forrest and

Mitchell [1996] for the standard C-GA, and by Lang [1995] and O'Reilly [Forth-

coming] for the GP variant, might thus be viewed as a predictable consequence

of the contradictory assumptions upon which the method is based.
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