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Abstract

The paper considers the situation in which a learner's testing set con-

tains close approximations of cases which appear in the training set. Such

cases can be considered `virtual seens' since they are approximately seen

by the learner. Generalisation measures which do not take account of the

frequency of virtual seens may be misleading. The paper shows that the

1-NN algorithm can be used to derive a normalising baseline for gener-

alisation statistics. The normalisation process is demonstrated through

application to Holte's [1993] study in which the generalisation perfor-

mance of the 1R algorithm was tested against C4.5 on 16 commonly used

datasets.

1 Introduction

In some cases, the training data that we present to a learner may comprise

incomensurable objects. More frequently, the data exist within some space and

similarity or distance measures are feasible. In this situation it is possible for a

learner's testing set to contain close approximations of cases which appear in the

corresponding training set. This may make the measurement of generalisation

a delicate matter.

Consider the following vector of attribute values.

0.000 yes 3.444 left up 2 119 8.342 72 t 65.225 f
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Imagine that this forms a single case in a learner's testing set. We consider

this case to be unseen for the learner if it does not appear in the corresponding

training set. But what if the following case appears in the training set?

0.000 yes 3.444 left up 2 119 8.343 72 t 65.225 f

Although the two cases seem identical there is a small di�erence: the seventh

value is 8.343 rather than 8.342. Technically, then, we can still treat the original

case as unseen. But in doing so we may feel a little uncomfortable. An extremely

close approximation of the unseen case exists in the training set. Any learner

which sees all the cases in the training set has virtually seen the unseen case.

Where such `virtual seen' cases exist within testing data, measures of general-

isation performance may be misleading. Ideally, experimenters should eliminate

virtual seens from any testing data before usage. This may involve ensuring that

every test case has a su�cient level of dissimilarity with every training case.

Where experiments have been carried out without any prior elimination of

virtual seens, testing set error may be an unreliable guide to real generalisa-

tion performance. However, it may be possible to compensate by normalising

the generalisation measures with respect to the frequency of occurrence of vir-

tual unseens. This involves (a) determining the average frequency of virtual

unseens in relevantly sized testing sets and (b) reexpressing the generalisation

performance relative to this value.

Detecting the presence of virtual seens would appear to involve �nding dat-

apoints whose mutual distance is very small. But this begs the question what

range of distance is to count as `small.' Data-point distance vary enormously

from dataset to dataset so our de�nition cannot be stated in terms of any ab-

solute distance value but rather on a relative distance value. However, this still

does not quite meet requirements since data-point densities can also vary widely

from dataset to dataset.

A natural solution is to say that a test case should count as a virtual seen

if there is a point in the training set which (a) is closer to the test case than

to any other case and (b) has the same classi�cation. This criterion factors out

the variability in both data distances and densities. It also permits us to detect

virtual seens through application of a simple `nearest-neighbour' regime. In fact

when we apply a 1-NN algorithm [Duda and Hart, 1973] to a training/testing

set combination, the performance obtained is precisely the average frequency of

virtual seens in the testing set. If the 1-NN algorithm generalises correctly on

an unseen case, the training set must contain a case which is (a) closer to the

unseen than any other case in the training set and (b) shows the same output

(class) value as the unseen case. The unseen thus constitutes a virtual seen,

and the guess generated by the algorithm can be thought of as a `con�dent

generalisation.'

To utilise the 1-NN algorithm for this purpose we proceed as follows.

(1) Choose a size for the testing set.
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(2) Construct the testing set by randomly selecting (without replacement) the

appropriate number of cases from the dataset.

(3) Form the training set out of the remaining cases.

(4) Compute the generalisation performance of the 1-NN algorithmon the given

training/testing set combination.

By averaging the generalisation performance over a su�ciently large sample

we can obtain an estimate of the frequency with which virtual seens will be

found in testing/training sets of the given proportions. Any absolute general-

isation measure which has been derived using the same proportions can then

be converted into a relative measure simply by subtracting the 1-NN general-

isation performance. The value obtained provides a measure of generalisation

which discounts the possibilities for `lookup' of virtual seens.

2 Application of NN-normalisation to the Holte

Study

To get some insight into how useful the normalisation method might be in prac-

tice, it was applied to the results of Holte's 16-datasets study [Holte, 1993].

This focussed on commonly used datasets from the UCI repository of Machine

Learning Databases.

1

These were BC (breast-cancer), CH (chess-end-games),

GL (glass), G2 (glass with classes 1 and 3 combined and classes 4 through 7

deleted), HD (heart-disease), HE (hepatitis), HO (horse-colic), HY (hypothy-

roid), IR (iris), LA (labor-negotiations), LY (lymphography), MU (agaricus-

lepiota), SE (sick-euthyroid), SO (soybean-small), VO (house-votes-84), V1 (VO

with `physician-pay-freeze' attribute deleted). For full details of the datasets

used consult Appendix B of Holte's paper.

In Holte's study, the generalisation performance of a 1-level decision tree

learner (1R) was tested and averaged over 25 runs using training sets derived

by randomly selecting 2/3 of the cases from an original dataset. Holte showed

that the performance of this learner was almost as good as that of C4.5 [Quin-

lan, 1993] even though it was restricted to the formation of simple hypotheses

based on single attributes. He concluded that a `simplicity �rst' methodology

is appropriate in machine learning.

To apply the NN-normalisation to Holte's data it was necessary to test the

generalisation of the 1-NN algorithm on training sets derived according to his

protocol. This involved using training sets which were 2/3 the size of the original

dataset and averaging over 25 runs for each dataset. In fact averages were taken

over 50 runs for each dataset; i.e., the samples were twice as large as those used

in the original study.

1

This is accessible on the world-wide-web at URL

http://www.ics.uci.edu/AI/ML/Machine-Learning.html
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The 1-NN algorithm used for this experiment used basic `city-block' distance

measure. The distance D(A;B) between two cases A and B was de�ned to be

D(A;B) =

n

X

i=1

d(A

i

; B

i

)

where d(A

i

; B

i

) was the normalised numeric di�erence between A

i

and B

i

if both values were numeric, and the number of explicit character di�erences

expressed as a fraction of the length of the shortest string, if both values were

strings (i.e., symbolic values). In the case of one of the values being missing,

the di�erence was de�ned as 1/10 of the maximum di�erence.

The generalisation performance achieved by the 1-NN algorithm using 2/3-

sized training sets (the size Holte used) is shown in Table 1. The performance

of C4.5 is also shown.

Dataset BC CH GL G2 HD HE HO HY

1R 68.7 67.6 53.8 72.9 73.4 76.3 81.0 97.2

C4.5 72.0 99.2 63.2 74.3 73.6 81.2 83.6 99.1

1-NN 69.7 90.1 70.1 80.6 78.1 79.3 78.5 96.9

Dataset IR LA LY MU SE SO VO V1

1R 93.5 71.5 70.7 98.4 95.0 81.0 95.2 86.8

C4.5 93.8 77.2 77.5 99.9 97.7 97.5 95.6 89.4

1-NN 94.6 85.8 76.8 100.0 87.9 100.0 93.1 88.1

The performance data for 1-NN and C4.5 are shown in Figure 1 in graph

form. Interestingly, the 1-NN algorithm produced performance which was either

comparable or superior to C4.5 in seven of the 16 cases. In the remaining nine

cases the performance was on average no more than 3 percentage points worse

than that of C4.5. In all cases the performance was superior to that of Holte's

1R algorithm.

The measured performance of 1-NN algorithm in this study appears to be

broadly compatible with its performance (or the performance of a K-NN variant)

as reported in similar studies such as [Aha and Kibler, 1989] and [Henery, 1994].

However, the performance obtained in this study is in general superior to that

reported by Weiss and Kapouleas [1989]. They recorded a mean generalisation

level of 65.3 on the BC dataset whereas the �gure obtained in the present study

was 69.7. Similarly, they recorded a generalisation level of 95.3 on the HY

dataset but the present �gure is 96.9. On the other hand they recorded a higher

level of performance on IR (96.0) although in this case they were employing a

cross-validation method in addition to the basic algorithm. The performance of

the 1-NN method on LA and VO is also markedly better than that recorded by

[Bergadano, Kodrato� and Morik, 1992] and [Aha and Kibler, 1989] for K-NN

variants of the method. These di�erences may well all be due to the fact that
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Figure 1: Performance of 1-NN and C4.5 on Holte datasets.

the present study used a distance function which took character di�erences into

account in string comparisons.

To use the results of this study for nomalising the generalisation measures re-

ported for C4.5, say, on these datasets we should subtract the 1-NN performance

from the C4.5 performance. The fact that the 1-NN method outperforms C4.5

on seven of the datasets means that the relative generalisation performance

of C4.5 on these datasets should actually be viewed as null or negative. On

the remaining datasets (BC, CH, HE, HO, HY, LY, SE VO and V1) the rela-

tive generalisation is positive. On average, over all the datasets, mean relative

generalisation is 0.29%. In other words, on average the method produces gen-

eralisation that is around 1/4 of a percent more than what we would expect

using `lookup' of virtual seen cases. The implication is that with these datasets,

training sets containing 2/3 of the original cases do not pose a substantive test

of generalisation.
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This result is in agreement with Friedman's analysis [Friedman, 1994] which

explains the surprising robustness of NN methods against the so-called `curse of

dimensionality' in terms of the redundant distributional properties of common

datasets. It is also in agreement with the general implications of Holte's study.

Holte showed that very simple learning processes can produce good performance

on these problems. The present study has shown much the same thing. But of

course 1-NN and 1R are `simple' in di�erent ways. 1R attempts to construct

a rule based on observations on the minimum number of attributes. 1-NN on

the other hand uses a rule which takes into account observations on all the

available attributes. Thus the results of this study show that the Holte datasets

are simple in at least two di�erent senses.

3 The e�ect of varying the training set propor-

tion

To try to get a better idea about the reasons for the rather small di�erence be-

tween the performance of 1-NN, 1R and C4.5 on the Holte datasets, experiments

were carried out to determine the average performance of the 1-NN algorithm

on a range of training set sizes. The performance of the algorithm was in fact

sampled on training sets built by randomly choosing 0.5%, 2%, 33% (1/3) and

66% (2/3), 98% and 99.5% of the original cases. The generalisation performance

was then averaged over 50 runs at each training set size. The results of these

experiments are displayed in Figure 2.

In general, one expects the performance of the NN algorithm to increase

with the size of the training set. The performance should be very poor if the

training set is nearly empty and very good if the training set contains nearly all

the possible cases. Thus, given the training set proportions used in this survey,

we expect generalisation curves to approximate an upwards sloping diagonal.

In fact, none of the curves shown in Figure 2have this form. The curve for the

GL dataset is perhaps the best approximation. But in general the curves are

remarkably at.

The implications of this are worth some consideration. In order for a dataset

to have a high, at generalisation curve, it is essential that the 1-NN algorithm

performs well on nearly empty training sets, i.e., training sets which include

only a small proportion of the dataset. But we should only expect this to occur

if the data are highly organised, i.e., if the classes in the data are very cleanly

separated. In this situation any example taken from a class can serve as an

exemplar for the class and thus provide a 1-NN algorithm with an e�ective

representation of that class. Thus a very few examples may well su�ce to

produce excellent performance from the 1-NN algorithm.

Of course, even with clean separation of classes, a 1-NN algorithm cannot

produce good performance unless the training set contains at least one exemplar
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Figure 2: Performance of 1-NN on Holte training sets of di�erent sizes.

from each class. If the training sets of a particular size are simply too small to

contain at least one example from each class then good performance is impossi-

ble. This explains why the curves for LA, IR, LY, HE and G2 start at zero but

then slope up very rapidly: it is just the 0.5% sized training sets that are too

small to contain one example from each class. The SO dataset is an exception

to the general pattern since it is both extremely small and has a relatively large

number of target outputs (4). The generalisation curve for SO thus ramps up

more slowly. Both the 0.5% sized training sets and the 2% sized training sets

are too small to contain at least one example from each class.

One feature of the experimental data is hard to explain. The curves for

problems IR, LY, HE, GL and HD curve down at the 99.5% level. This implies

that the performance for the 99.5% sized training sets was actually worse than

that for the 98% sized training sets. It is not clear what feature of the data

might account for this. It is hoped that further work with di�erently sized

training sets may shed some light here.
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4 Summary and Conclusion

In some cases, the instances that we present to a learner may be incomensurable

and thus impossible to test for similarity. More frequently, there is an explicit or

implicit distance metric over instances. In this situation, a given testing set may

contain very close approximations of cases from the training set. The paper has

described such cases as `virtual seens' and noted that generalisation statistics

derived in the presence of virtual seens may be misleading or ambiguous.

The performance of the 1-NN algorithm can be used to derive a generalisa-

tion baseline against which true or relative generalisation can be measured. This

approach was demonstrated though an application involving Holte's compara-

tive study of the performance of 1R and C4.5 on 16 commonly used datasets

from the UCI repository. The results of this experiment revealed that most of

the datasets in the Holte selection contain data showing extremely clean separa-

tion between classes. For all the Holte benchmarks, the performance achievable

through `lookup' of virtual seen cases is extremely close to the performance level

achieved by learning methods such as C4.5. We have to conclude therefore that

these datasets do not pose a substantive tests of generalisation. If we equate

learning ability with generalization ability then we have to conclude that these

datasets do not e�ectively test anything that we can meaningfully call `learning'.

This conclusion is a little startling given the central role that the UCI

datasets have played in the evolution of Machine Learning methods. However,

the wider implications are hard to trace out. Certainly, we can dispense with

the oft-stated assumption that `real-world' problems are necessarily challenging

for learning methods. All of the Holte datasets are derived from the `real-world'

but none of them turn out to be challenging. The di�culty of a problem would

thus appear to be quite independent of the domain from which it is derived.

Real world problems may be challenging for learning methods. But there is no

guarantee that they will be.
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