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Abstract

In this paper we discuss the development of a controllable virtual ma-

chine for use within network simulations. We describe general problems

in integrating virtual machines with simulation environments, illustrated

through our experiences in building a Java Virtual Machine.

1 Introduction

A burgeoning area of network research is in Active Networks [11]. In active

networks, packets contain both date and code, which can be executed on inter-

mediate switches. In order to evaluate the e�ectiveness of this decision, simula-

tions of network algorithms and protocols need to be able to measure the e�ect

of processing load on switches as well as on the more traditional resources of

bu�ers and bandwidth. We have thus designed a simulation environment build-

ing upon the ns network simulator [8], in which we integrate virtual machines

on which to run the packetised code.

Most Active Network research uses the Java Virtual Machine as the compu-

tational substrate. We therefore decided upon a Java Virtual Machine (JVM)

as our initial target machine.

Many JVMs already exist (see section 2.1) but we have found none that are

suitable for simulation work. This is because JVMs are written for speed, not

clarity or controllability. To use a JVM in simulation requires the ability to

\step" the JVM and keep it synchronized with \simulation time", and to allow

arbitrary instrumentation of code within the JVM. We also need to experi-

ment with various choices within the design of the JVM, such as the scheduler,

the class loader and the garbage collection system, requiring the JVM to be

amenable to accepting new implementations of these services.
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In the rest of this paper, we �rst describe our requirements in detail, and

describe how other implementations of JVMs are inadequate. We then outline

the major problems in building our JVM, and how we have overcome them,

concluding with a discussion of how the JVM is used within our simulation

environment.

2 Virtual Machine Requirements

A machine that is steppable The VM should be controllable down to the

level of individual instruction execution. We must de�ne an indivisible unit of

time (a step). Some instructions may take more than one step to execute (the

more complex instructions). The machine should be controllable at the level of

these steps.

Ability to assign arbitrary periods of simulation time to instructions

You should be able to ask the VM to run for a given period of time (for dis-

crete event simulation). The VM should then run until either the time period

expires or the VM generates an external event that needs external scheduling

or processing (such as sending a message).

Loosely coupled scheduling, garbage collection, memory management

and class loading services, which are substitutable. The design of the

VM should be very modular allowing di�erent implementationof all of the major

modules. This allows for experimentation with di�erent algorithms which a�ect

execution (such as garbage collection). Each module should have a well de�ned

interface for interacting with other modules so they can be easily re-implemented

and swapped.

Because we are not overly concerned with speed we concentrated on ease of

programming and clarity. For this purpose Java was chosen as the implemen-

tation language. This also helps in several other ways. Floating point numbers

often cause a problem because they must obey the IEEE 754 oating point

standards. By using Java as the implementation language we already had IEEE

754 compliance. Making the JVM steppable caused more problems, this will

be discussed in section 7. Testing and proving the JVM was more troublesome

than at �rst thought; this is discuss in section 14.

2.1 What already exists

There are several good free implementions of Java. Sun provide the original at

[9] and a cleanroom freeware implemention is available from KAFFE [7]. The

source code for KAFFE is included and the source code for Sun's implementation

can be downloaded from [10] after you sign Sun's usage policy document. The

Sun source release is not much help as it is many lines of C and assembly

presented as is without any supporting documentation.

There are also several commercial implementions available and the list is

changing all of the time. None of the commercial implementations provided any
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useful information so were ignored. The only exception to this was a vaguely

interesting document from Ameran detailing their testing process and will be

discuss in section 14.

Apart from these we found two implementations [2] and [12] which were

implemented as MSc projects. Neither group had a complete implementation

but provided lots of implementation notes within the project reports.

All of the implementations which we found were written in a mixture of

C and assembly language for speed. None of them were controllable in the

ways needed for simulation work but they did provide large amounts of useful

information and a good idea of the project size.

The speci�cation of the JVM has been made publically available by Sun in

both book form [3] and on their web-site [4]. We are aware of two other books.

The �rst [5] is basically an imitation version of the Sun book. These �rst two

books seem to be light on \how to" information. The Sun speci�cation regu-

larly steps round sticky issues by citing them as \implementation speci�c" and

ignoring them. The O'Reilly book has a small section of implementation notes.

The other book is by Bill Verner [13] and contains a lot of useful information

and examples.

3 Basic Architecture

The basic architecture of a JVM is well covered in [5] p51-62 and we will only

cover the salient features briey here. More detailed discussions are given where

necessary in the relevant sections.

The heart of the JVM is the execution engine. This is responsible for actually

executing the bytecode instructions. There is a large chunk of support code to

deal with more complex operations such as method calls, exception handling

etc. The execution engine interacts with a garbage collected heap and a class

data area. The class area contains class and method information. This area may

actually be part of the heap and may also be garbage collected. The class must

interact with a veri�er and sources of class information such as the network and

the local �le system. Another module is normally responsible for loading native

method code from the local system.

4 Instruction Set

The basic instruction set is well de�ned in [3] and [5]. We make comments below

on areas in which particular care must be taken.

4.1 Floating Point Numbers

All the oating point instructions in the JVM must comply with the IEEE

754 32 and 64 bit oating point standards. In most modern languages such

as Java this is not a problem. When the standards are not supported by the

implementation language care must be taken to ensure correct behaviour.
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Figure 1: The Java Virtual Machine

4.2 Layout of class �les

The class �le layout is fairly straightforward, based on a table within table

approach. However, a fair amount of work must be done by the VM for con-

struction of virtual method tables etc. If the class �le laid out this data in a

better way class loading and setup would be made much easier. See the brief

description of virtual methods in section 6 for a discussion of the missing infor-

mation.

5 Classes and Objects

The loading of classes and their structure are well-de�ned in [3] and [5]. How-

ever, since the loading of classes is a complicated operation, there are a few

unclear points speci�c to the JVM.

� The only feature that we found not clearly marked was the fact that long

and double entries take up two entries within the table (the second entry

being considered invalid).

� The system class has an undocumented feature. Instead of setting up the

variables that it needs though a static initialiser, it contains a method

called initialiseSystemClass() that must be called by the runtime en-

vironment after the class has been initialised otherwise the standard input

and output streams are not con�gured.
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6 Stacks and Locals

For faster execution the stack has been designed to always use 32 bit words. 64

bit quantities such as doubles and longs are handled as 2 32 bit quantities. The

semantic rules state that a double word cannot be split. It is normally left to

the veri�er to check rather than the actual operation. This removes redundant

runtime checks from the stack improving e�ciency. E�ciency is discuss further

in section 12.

The stack actually serves two purposes; as well as being the operand stack it

also acts as the local variable area. When a method is called its arguments are

pushed onto the stack. These arguments then form the beginning of the local

variable area for the next stack frame. Long and double variables taking two

32bit variable slots as with the normal stack. The stack must be extended to

ensure space for the whole of the locals area. (The size of the locals area is part

of the method declaration in the class �le).

Virtual method calls were slightly troublesome. The method arguments are

placed on the stack with the object on which to call as the �rst argument (It

becomes the �rst local variable as a 'this' reference). The obvious place to put

the arguments stack size was within the method declaration. This is �ne but

causes a chicken and egg problem. Without knowing the actual method you

don't know where the target object reference on the stack and without knowing

the target reference you don't know which method is being called.

We solved this by adding extra information into the constant pool method

reference. From the signature you can work out the number of stack words down

the stack the new local area will begin. We broke it into three stages:

1. From the signature declare the new local variable area and make it the

same size as the number of arguments.

2. Use the �rst local as a target object for a virtual method lookup.

3. From this information expand the local variable area to the needed size.

Stack operations are now pushed onto the stack above this area as normal.

One problem causes here is on a failed method call the stack must be undone

carefully so that no junk is left on the stack after a NoSuchMethodException or

similar is thrown.

7 Threads and Scheduling

Multi-threading is the ability for a program to have several paths (or threads

of execution) through a program executing in parallel. Threading has normally

been seen as an extension to a language (such as the threads packages available

in C). In Java multi-threading has been built into the language, with a set

of classes and synchronisation constructs built in. This is great for the Java

programmer but is a major headache for the JVM implementor. [6] is a good

source of information about threads in Java.
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Java provides a very simple mechanism for programmers to synchronize

threads. Each object in Java has an associated lock. A thread may attempt

to gain the lock on an object. If the lock is already held by another thread

the thread is forced to wait. Synchronization can occur in three places. Firstly

there are two JVM instruction MONITOR ENTER and MONITOR EXIT (generated

by synchronized blocks). Secondly synchronized methods implicitly call these

instructions when the method is entered and exited. Lastly synchronization

also occurs with class loading. If a thread begins loading an initialising a class

when another thread is already doing so it is forced to wait. The second thread

is restarted and given the requested class when the �rst thread has �nished

initialising it.

Within this JVM there is no way for a separate clock to interrupt a thread

running. Instead the JVM asks the scheduler to pass a certain amount of simu-

lation time. This translates into the number of steps that can occur in a given

period of simulation time (see 7.1). A thread will run for a given number of

steps (a certain time period) just as a normal system. The scheduler is currently

a fairly simple prioritised round-robin scheduler. Each thread is allowed to run

for a de�ned number of steps before control is handed to another thread. This

mimics reality fairly well.

The scheduler is also responsible for dealing with locks and synchronization

issues. The lock manager and scheduler interact but are designed in a modular

fashion. Each makes requests to the other as needed to add or remove threads

from the running queues.

Little is speci�ed about what the normal scheduling method is. It is declared

\implementation dependent" and ignored. This gives the implementor freedom

and exibility so that an appropriate algorithm for their needs can be used.

As stated the scheduler is currently a prioritised round robin scheduler but it

is interchangeable with any other required scheduling module. There would

be no problem changing the current implementation for a di�erent scheduling

algorithm.

7.1 Stepping

We required a large degree of exibility in step control and granularity. We

�rst considered using a �nite state machine over the instructions but the ensu-

ing complexity made this infeasible. The alternative design used interlocking

threads. To run an instruction on the JVM the control thread wakes the VM

thread and goes to sleep on a common lock. The VM thread executes a single

step de�ned by us, wakes the control thread and then goes to sleep on the com-

mon lock. The control thread now continues execution possibly reawakening

the VM thread if required.

Each simulated virtual instruction corresponds to a large number of real

instructions inicting a performance loss of several orders of magnitude. Whilst

this does not impact process size or the actual simulation it does make the JVM

simulation very processor intensive.
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8 The Heap

True simulation of the heap has been ignored in this implementation for several

reasons. Java is strongly typed which means that it is hard to use a block

of memory to represent a at memory area. The only obvious way visible to

achieve this is to use a byte or int array as a heap and do data conversions

to transfer to and from the represented types as needed. Although possible it

wipes out the little e�ciency that the implementation has with little bene�t. It

is beyond the scope of this project to explore much of these issues and so it was

ignored.

To overcome the problems the heap is modelled through a lookup table. This

creates a level of indirection. The table points to a storage object representing

the object in the runtime environment. It is possible to add memory size checks

to insure that a �xed size memory model can be achieved quite simply. The

loss here is the simulation of fragmentation and other features that memory

management is prone to. This would not pose a major problem with an indi-

rection table as data can be moved without a�ecting the running program but

still cannot be modelled within the JVM.

9 Garbage collection

GC is the process of �nding and removing any object that can no longer be

reached by the running program and then reclaiming the memory that was used

for reuse later on. Below we discuss the basics of garbage collection and look at

some of the problems. Both [14] and [1] as much fuller introduction this area.

Stop and collect garbage collection where the JVM is halted to do a garbage

collection. This normally is only done when the JVM runs out of memory.

This model is not suitable for the uses we plan to put the JVM to and so we

implemented an incremental garbage collector.
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Reference Counting For reference counting each object has a counter asso-

ciated with it. This counter represents the number of di�erent references

to the object. Whenever a reference within the running program is mod-

i�ed the counters for the a�ected objects are modi�ed. For example, if

a reference is duplicated on the stack the reference counter would be in-

cremented. When a reference is written over or destroyed the counter is

decremented. When the counter reaches zero the object can no longer be

referenced from the running program and can thus be garbage collected.

The only place that this algorithm falls over is when we have a cyclic

data structure. If we create two objects A and B which refer to each

other. When the running program can no longer reference each other the

reference count is not zero. This is because A still holds a reference to B

and vice-versa. Reference counting must be supplemented with another

algorithm to guarantee that all the garbage is collected.

Mark and Sweep The concept behind mark and sweep garbage collection is

simple. Take all of the reference on the stack and the local variable area.

We will call these the root set. From each root object we take all of the

references it contains and visit these recursively. As we travel through

each object we mark it as 'visited'. Any object that is not marked as

'visited' when we �nish is not reachable from the running program and

can thus be garbage collected.

9.1 Problems

The two main versions of simple garbage collection detailed above have some

problems. Reference counting, as described, cannot deal with circular references

and must be supplemented with some other garbage collection method. Simple

mark and sweep is �ne as long as nothing changes during the collection. This

means that the programmust stop for garbage collection to take place. In many

cases this is unacceptable.

9.2 Incremental Garbage collection

Incremental garbage collection allows collection during program execution. i.e

rather than collecting when there is no more memory, collection can be done 'on

the y'. The most common technique for this is tri-colour marking as described

below.

9.2.1 Tri-Colour Marking

Tri-colour marking works in a very similar way to a normal search. Every object

on the heap has one of three colours:

White Objects that have not yet been visited.

Grey Objects that have been visited, but whose children have not all been

visited.
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Black Objects that have been visited along with all their children.

All objects start white, as they are visited they are changed from white to

grey. When all of an objects have been visited they are coloured black. When

there are no grey objects left all of the white objects left are unreachable and

therefore may be garbage collected.

For this to work we must maintain two invariants:

1. No black object points to a white object

2. All grey objects are in a list of objects yet to be explored

The running program may still be creating and modifying objects. To keep

the invariants valid we may recolor di�erent objects so that the invariants hold.

Di�erent versions of the algorithmuse di�erent colouring mechanisms to do this.

9.3 Does no memory mean no memory?

When a garbage collecting memory management system reports that it is out

of memory, it may not be accurate. If resource became free during the current

pass the GC algorithm may not realise until the completion of its next GC

cycle. This raises some interesting issues about when, and how much time

should be spent garbage collecting. It may be better to allocate a percentage

of the processor time to garbage collection rather than waiting to run out of

memory �rst. The issues raised about when and how much garbage collection

are a complete research issue in their own right and will not be explored here.

10 Native Methods

Native method handling is quite important in the implementation of a JVM.

In the current implementation a set of native handler classes exist. Each one

registers itself for a given class and supports all of the native methods for it.

We have completed a partial implementation similar to the JNI (but a bit more

object-oriented) which supports all of our current requirements. Currently all

of the classes are loaded by the JVM at startup. This has an implication for

user native methods as detailed below.

There are quite a few native methods in the API. Anything that can be seen

as \implementation speci�c" is normally a native call to let the JVM handle

it. One of the biggest problems with this is the lack of documentations for

these methods which are normally internal to the class. Some of these are

obvious from their name such as yield0() which is the internal method for the

Thread.yield() system call. Others are marked as \helper functions" with no

supporting documentation. We have only implemented the sub-set of methods

needed to provide the facilities that for use in simulation. For example, most of

the �le handling and AWT system calls have been ignored.

We only partially support the calling of native methods by user programs..

The user native handling code must support the same interfaces as the internal
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native handlers. Dynamic loading of these classes is not supported. This means

that the JVM must be recompiled to include the handler. If a native method is

not supported an exception is thrown. Allowing handlers should be �xed soon

as it is fairly simple.

11 Structuring for research

Structuring for research and expansion is a challenge and is not totally addressed

in this implementation. We have tried to make the modules as independent as

possible. For example the native handling or class loading could be replaced

without too much e�ort. The next step is to create interfaces for each of the

modules so that the whole JVM could be made \plug-and-play". For most of the

modules this does not pose a problem and there is very little work to be done to

do this. The garbage-collector, however, poses a problem because depending on

how it is implemented it needs many and various hooks into the other modules.

Creating a complete set of hooks would be a large challenge. This issue has yet

to be fully explored.

Much work has been done to make the implemention as obvious and acces-

sible as possible. This is possible because speed is not really a major issue and

so much of the code is implemented for clarity rather than speed.

12 E�ciency

E�ciency was not a major concern with this JVM; even the simple improve-

ments shown in [3] were not done. Performance could be improved in several

ways to increase performance. Executing the JVM with a Just In Time com-

pilers made a noticeable di�erence to performance as would natively compiling

the code. Fortunately none of these will a�ect how the code actually runs (see

section 14) but will only improve speed. Many simple optimisations could have

been done but were left out for clarity and because of the amount of e�ort they

would have taken.

12.1 A faster stack

The stack is used everywhere in the JVM, nearly every instruction pushes or

pops some values from the stack. A minor improvement here will make a major

di�erence to the entire performance of the JVM. The original implementation

of the stack was very object-oriented and used helper classes to implement

its behaviour. Each call to pop an object from the stack led to at least four

function calls being performed and several object lookups. By moving the logic

into the stack class itself this number was cut in half. If the stack was non-

expandable this value could be improved even further but this was not done.

The performance of the JVM increased by approximately one third. In this

case for very little loss of clarity (some comments were added to make up the

shortfall), a major performance increase was achieved.
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13 Integration within the network Simulator

14 Conclusions

Determinism One of the nicest features of this JVM is that it is completely

deterministic. This holds event when debugging information is added to the

output. This is not true of most JVMs as they rely on thread scheduling, timers

and other features of the operating system and platform on which they run.

This tends to add a small amount of non-determinism to scheduling etc. and

the addition of debugging output etc. would cause similar timing problems.

This is excellent for simulation and debugging because two runs of the same

program with the same input will always produce exactly the same result.

Testing and Proving Proving that the JVM meets the given speci�cation

exactly is very hard. It has been shown that many of the commercial releases

are not perfect. Sun do not supply a test-suite for this which is annoying.

We have used the regression test-suite that is supplied with KAFFE [7] for

much of our testing. This provides a good set of tests to prove that the JVM

is at least passable. There are many other examples written which we have

produced scripts to test. It is very useful to be able to run the program against

Suns implemention. This gives a good idea of whether the program is working

properly although at times the Sun implementation does not always supply the

expected output.

A common problem debugging these systems is that the insertions of de-

bugging hooks alters the behaviour of the program. Our JVM did not have

this problem and we have debugging hooks set that can be switched on and o�

dealing with function calling, opcode execution and scheduling. This was not

a complete debugging environment but it certainly helped. It might also have

been useful to test parts of it while running in an IDE but this was not possible

at the time.

Accurate Execution speed Currently every instruction within the JVM is

assumed to take one \step". This is not completely accurate. Some instructions

take much longer to execute than others. Work needs to be done pro�ling other

JVMs to �nd out accurate �gures. It is quite easy to work these back into the

current JVM implementation to provide an even more accurate model. This is

not considered a problem and the JVM is considered accurate enough for our

current needs.

Integration within network simulators JVM simulation is CPU intensive.

Therefore it is di�cult to run a number of simulated JVMs on a single machine.

This severely limits the size of simulations and therefore its practicality. We

have moved towards distributing our simulation environment across multiple

machines. This is only feasible because network simulation is well suited to

distribution.
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Where Next? The implemention is a good clean implemention of a basic

JVM. We would recommend taking another implementation and converting it

to your needs, if possible, rather than starting from scratch. To truly �nish this

JVM there is much work that needs to be done but it has been taken to a point

where it meets our needs for experimentation. This project will be publically

released shortly and work will probably continue with the help of others to make

it a really complete project. We will shortly be using this JVM in simulation

work related to Active Networking which will show how useful it really is.
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