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Abstract

This paper introduces a new type of arti�cial neural network (GasNets) and shows that it is

possible to use evolutionary computing techniques to �nd robot controllers based on them. The

controllers are built from networks inspired by the modulatory e�ects of freely di�using gases,

especially nitric oxide, in real neuronal networks. Evolutionary robotics techniques were used to

develop control networks and visual morphologies to enable a robot to achieve a target discrimina-

tion task under very noisy lighting conditions. A series of evolutionary runs with and without the

gas modulation active demonstrated that networks incorporating modulation by di�using gases

evolved to produce successful controllers considerably faster than networks without this mecha-

nism. GasNets also consistently achieved evolutionary success in far fewer evaluations than were

needed when using more conventional connectionist style networks.

keywords: ANN, di�usible modulator, evolutionary robotics, GasNet.

1 Introduction

1.1 Robots

Over the past decade there has been renewed interest within AI in building simple autonomous `crea-

tures' as a way of investigating mechanisms underlying the generation of adaptive behaviour (Brooks,

1991a; Beer, 1990). The vast majority of researchers in this �eld use some form of arti�cial neural

network (ANN) as the basis of the `nervous system' of their agents. These networks can be envisaged

as simple nodes connected together by directional wires along which signals ow. As has been pointed

out by various people (e.g. Brooks, 1994), advances in neuroscience have made it clear that the prop-

agation of action potentials, and the changing of synaptic connection strengths, is only a very small

part of the story of the brain (e.g Purves, 1997). This in turn means that connectionist style networks,

and even recurrent dynamical ones (Beer, 1990), are generally very di�erent kinds of systems from

those that generate sophisticated adaptive behaviours in animals. Although our picture of biological

neuronal networks changes every few years, contemporary neuroscience can provide a rich source of
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inspiration in devising alternative styles of arti�cial neural network (Brooks, 1991b). The core of

this paper is concerned with investigating abstractions of some of the extremely important chemical

mechanisms of nervous systems and incorporating them into control networks for simple autonomous

mobile robots.

1.2 Brains

Traditionally, chemical information ow in the brain has been thought to be mediated by messenger

molecules or neurotransmitters which are released by neurons at points of close apposition known as

synapses (Katz, 1969). Because most neurotransmitters are relatively large and polar molecules (amino

acids, amines and peptides), they cannot di�use through cell membranes and do not spread far from

the release site. They are also rapidly inactivated by enzymatic hydrolysis and by active re-uptake.

Together these features con�ne the spread of neurotransmitters very close to the points of release and

ensure that the transmitter action is transient. In other words, chemical synaptic transmission of

information operates essentially two-dimensionally (one in space and one in time). This conventional

interpretation is coupled to the idea that neurotransmitters cause either an increase or a decrease in

the electrical excitability of the target neuron. According to a traditional view of neurotransmission

therefore, chemical information transfer is limited to the points of connection between neurons and

neurotransmitters can simply be regarded as either excitatory or inhibitory.

In recent years two important discoveries have required a fundamental revision of this model. Firstly,

many neurotransmitters, perhaps the majority, cannot be simply classi�ed as excitatory or inhibitory

(Hall, 1992). These messenger molecules are best regarded as `modulatory' because among other things

they regulate or modulate the actions of conventional transmitters. Modulatory neurotransmitters are

also `indirect' because they cause medium- and long-term changes in the properties of neurons by

altering the rate of synthesis of so called `second messenger' molecules. By altering the properties of

proteins and even by changing the pattern of gene expression, these second messengers cause com-

plex cascades of events resulting in fundamental changes in the properties of neurons. In this way

modulatory transmitters greatly expand the diversity and the duration of actions mediated by the

chemicals released by neurons. Secondly, the discovery that the gas nitric oxide (NO) is a modula-

tory neurotransmitter has opened entirely unexpected dimensions in our thinking about how chemical

information is transmitted by neurons (Garthwaite et al., 1988; Gally, et al., 1990; H�olscher, 1997).

Because NO is a very small and nonpolar molecule it di�uses isotropically within the brain regardless

of intervening cellular structures (Wood and Garthwaite, 1994). NO therefore violates some of the key

tenets of point-to-point chemical transmission and is the �rst known member of an entirely new class

of transmitter, the gaseous di�usable modulators.

NO is generated in the brain by specialised neurons that contain the neuronal isoform of the calcium

activated enzyme, nitric oxide synthase or nNOS (Bredt and Snyder, 1990). This enzyme catalyses the

synthesis of NO from the amino acid L-arginine and molecular oxygen. NO synthesis is triggered when

the calcium concentration in nNOS-containing neurons is elevated, either by electrical activity or by

the action of other modulatory neurotransmitters. The existence of a freely di�using modulatory trans-

mitter suggests a radically di�erent form of signalling in which the transmitter acts four-dimensionally

in space and time, a�ecting volumes of the brain containing many neurons and synapses (Bredt and

Snyder, 1992). The properties of NO that allow it to di�use freely also prevent it from being stored

prior to release in membrane bound vesicles at the synapse, as are the conventional neurotransmitters.

This means that for NO to act as a signalling molecule, its release must be coupled directly to its

synthesis. Because the synthetic enzyme nNOS can be distributed throughout the neuron and NO

release does not require the synapse, NO can be generated and released by the whole neuron. NO

is therefore best regarded as a `non-synaptic' transmitter whose actions moreover cannot be con�ned

to neighbouring neurons (Hartell, 1996; Park et al., 1998). NO cannot be classi�ed conventionally as

excitatory or inhibitory, it is a modulatory transmitter which activates the synthesis of cyclic-GMP,
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an important second messenger which regulates a wide variety of cellular processes in target neurons,

some of which underlie synaptic plasticity (H�olscher, 1997).

The discovery of di�usible gaseous modulators in the brain clearly challenges simplistic connectionist

models of neural information processing (O'Shea et al., 1998). For example, it suggests a rich diver-

sity of modulatory mechanisms with di�erent temporal and spatial dynamics a�ect the properties of

neurons. Importantly, the discovery of di�usible modulators shows that neurons can interact and alter

one another's properties even though they are not synaptically connected.

1.3 From Neuroscience to Control Systems

In this paper we have attempted to abstract some of these concepts and incorporate the elements of

gaseous transmission into a fundamentally new class of arti�cial neural network. Nodes in a spatially

distributed network can emit `gases' which di�use through the network. The `gases' can modulate in-

trinsic properties of nodes and connections in a concentration dependent fashion. This paper describes

work where we have used this style of network to build control systems for autonomous mobile robots.

One of the new styles of AI to have emerged recently is Evolutionary Robotics (Cli�, Harvey and

Husbands, 1993; Nol� et al., 1994; Floreano and Mondada, 1994; Yamauchi and Beer, 1994; Husbands

and Meyer, 1998). The evolutionary process, based on a genetic algorithm (Holland, 1975), involves

evaluating, over many generations, whole populations of control systems speci�ed by arti�cial geno-

types. These are interbred using a Darwinian scheme in which the �ttest individuals are most likely to

produce o�spring. Fitness is measured in terms of how good a robot's behaviour is according to some

evaluation criterion. This selectionist approach is particularly suited to the exploration of classes of

control networks involving many parameters and whose properties are di�cult to predict in advance.

The type of networks introduced in this paper are of that nature and have been investigated using

evolutionary robotic techniques.

A word of warning: the focus of this paper is on ANNs using computationally e�cient loose abstrac-

tions of biological phenomena; there is no modelling involved. However, for brevity and convenience,

biological terminology is used frequently { it should be taken as analogy only. Having said that, the

kind of work described in this paper can potentially have a useful relationship with more explicit mod-

elling studies (Philippides et al., 1998; Gally et al., 1990). Of course it should also be stressed that

the physical language used in this paper (gas, di�usion etc.) is again only analogy. The networks are

actually abstract discrete dynamical systems implemented as a C program. However, we feel that a

pro�table way to think of these systems are as computational simulations of physical devices. This

particularly because they are used to control physical devices engaged in activities where space and

time are highly pertinent. For instance, the coupling between the robot's visual sensors and the control

networks means that there is a direct relationship between the (modelled) spatial properties of the net-

works { crucial to the operation of the `di�usion' processes { and the (actual) spatial properties of the

sensor. It should be noted that it is quite possible that the class of networks introduced in this paper

is mathematically equivalent, in a rather tortuous way, to varieties of other styles of ANNs. However,

this issue will not be further considered here, although it is a topic worthy of future investigation.

Rather than giving a formal treatment of the properties of this class of ANN, the focus of this paper

is on exploring their evolvability when used for robotic control. Do they have advantages over other

styles of ANN? What kinds of internal dynamics will emerge?

The next section of this paper introduces a class of ANNs inspired by gaseous modulators, so called

GasNets. The next two sections after that describe the evolutionary robotics techniques and ex-

perimental setup used to evolve GasNet controllers for visually guided robots engaged in a target

discrimination task under very noisy lighting conditions. In the results section signi�cant advantages

over more standard ANNs are demonstrated, including a large reduction in the number of evaluations
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needed to develop successful controllers for visually guided behaviours. By performing many runs both

with and without the gas modulation e�ects active, the importance of these e�ects in the performance

of the networks is clearly demonstrated. The paper closes with conclusions and a brief discussion of

future work.

2 GasNets

The networks used in the experiments described later are discrete time step dynamical systems built

from units connected together by links that can be excitatory (with a weight of +1) or inhibitory (with

a weight of -1). The output, O

n

i

, of node i at time step n is a function of the sum of its inputs, as

described by equation 1. In addition to this underlying network in which positive and negative `signals'

ow between units, an abstract process loosely analogous to the di�usion of gaseous modulators is at

play. Some units can emit `gases' which di�use and are capable of modulating the behaviour of other

units by changing their transfer functions in ways described in detail later. This form of modulation

allows a kind of plasticity in the network in which the intrinsic properties of units are changing as the

network operates. The networks function in a 2D plane; their geometric layout is a crucial element

in the way in which the `gases' di�use and a�ect the properties of network nodes. This aspect of the

networks is described in more detail later.
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Where C

i

is the set of nodes with connections to node i, I

n

i

is the external (sensory) input to node i

at time n, and b

i

is a genetically set bias. Each node has a genetically set default transfer function

parameter k

0

i

. Figure 1 shows the family of curves generated for tanh(kx) when k varies over a discrete

set of values in the range [-4,4]. As can be seen, a wide range of output responses to a given input are

possible, depending on the values of the parameter k. As will seen later, the value k

n

i

for each node

can be changed by di�using gases as the network runs. Thus the actual shape of the node's transfer

function is altered via the gas modulation mechanism.
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Figure 1: Family of curves de�ned by y = tanh(kx) transfer function for a range of values of k. Each curve

shows the relationship between x (over the range [-5,5]) and y for a di�erent value of k. The following set of

k values are illustrated: f-4,-2,-1,-0.5,-0.25,-0.125,-0.0625,0,0.0625,0.125,0.25,0.5,1,2,4g.

Figure 2 shows a possible GasNet con�guration. Node 4 can emit a gas and hence modulate nodes 5

and 6.
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Figure 2: A GasNet: node 4 can emit gas and hence modulate nodes 5 and 6.

2.1 Gas Di�usion in the Networks

It is genetically determined whether or not a node will emit one of two `gases' (gas 1 and gas 2),

and under what circumstances emission will occur (either when the `electrical' activation of the node

exceeds a threshold, or the concentration of a (genetically determined) gas in the vicinity of the node

exceeds a threshold). The electrical threshold used in the experiments described later was 0.5, the gas

concentration threshold 0.1.

A very abstract model of gas di�usion is used. For an emitting node, the concentration of gas at distance

d from the node is given by equation 2. Here, r is the genetically determined radius of inuence of the

node, so that concentration falls to zero for d > r. This is loosely analogous to the length constant of

the natural di�usion of NO, related to its rate of decay through chemical interaction. T (t) is a linear

function that models the build up and decay of concentration after the node has started/stopped

emitting (equation 3 and 4). The slope of this function is individually genetically determined for each

emitting node, C

0

is a global constant.
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Where t

e

is the time at which emission was last turned on, t

s

is the time at which emission was last

turned o�, and s (controlling the slope of the function) is genetically determined for each node.
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In other words, the `gas' concentration varies spatially as a Gaussian centred on the emitting node.

The height of the Gaussian at any point within the circle of inuence of the node is linearly increased

or decreased depending on whether the node is emitting or not. Note T (t) saturates at a maximum of

1 and a minimum of 0. The total concentration at any point in the network is found by summing the

concentrations from all emitting nodes.

2.2 Modulation by the Gases

The transfer parameter value for the ith node at time step n, k

n

i

(see equation 1), is changed (or

modulated) by the presence of gases at the site of the node. Gas 1 increases the value of k

n

i

in a

concentration dependent way, while gas 2 decreases its value. This modulation is described by equations

5 to 7 and happens on every time step as the network runs. This provides a form of plasticity very

di�erent from that found in most traditional arti�cial neural networks.
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Where P[i]referstotheithelementofsetP;index

n

i

is node i's index into the set P of possible discrete

values k

n

i

can assume, N is the number of elements in P, index

0

i

is the genetically set default value

for index

i

, C

n

1

is the concentration of gas 1 at node i on time step n, C

n

2

is the concentration of gas 2

at node i on time step n, and C

0

and K are global constants (both set to 1 in this study). So, index

n

i

increases in direct proportion to the concentration of gas 1, and decreases linearly with respect to the

concentration of gas 2. In this way the value of k

n

i

is changed over time by the presence of gases at

the node's site (the concentrations are governed by equation 2).

3 Minimal Simulations

Before describing in detail evolutionary robotics experiments using GasNets, some of the experimental

methodology will be introduced. One potential problem with evolutionary approaches to exploring

classes of robotic control systems is the time taken to evaluate behaviours over many generations.

Recently, Jakobi has proposed new ways of thinking about and building fast-running easy-to-design

minimal simulations for the evaluation of robot controllers. This methodology is described in detail

elsewhere (Jakobi, 1998a, 1998b), but since the experiments reported in this paper make extensive use

of it, we o�er a brief sketch here:

1. A small base set of robot-environment interactions that are su�cient to underly the behaviour

we want to evolve must be identi�ed and modelled. Because only this base set is modelled, some

features of the simulation will have a basis in reality (the base set aspects), and some features

will derive from the simulation's implementation (the implementation aspects).
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2. Every implementation aspect of the simulationmust be randomly varied from trial to trial so that

controllers are unable to rely on them to perform the behaviour. In particular, enough variation

must be included so that the only practicable evolutionary strategy is to actively ignore each

implementation aspect entirely.

3. Every base set aspect of the simulation must be randomly varied from trial to trial. The extent

and character of this random variation must be su�cient to ensure that reliably �t controllers

are able to cope with the inevitable di�erences between the robot-environment interaction model

and reality, but not so large that they fail to evolve at all.

The power behind these ideas derives from the fact that we only have to model a su�cient number

of real-world features, and these do not even have to be modelled particularly accurately. This means

that such simulations can be easily constructed and made to run extremely fast. As long as the right

amount of variation is included according to the methodology outlined above, controllers that evolve

to be reliably �t will almost certainly transfer into reality.

In the experiments described later, all successful evolved controllers crossed the reality gap: they

generated the same behaviours on the real robot. The great advantage of using minimal simulations in

the work described here is that we were able to perform many complete evolutionary runs and hence

to derive meaningful statistics.

4 Experiments

A fairly large number of experiments have now been completed in which GasNet based robot controllers

were developed for various tasks and robots (Husbands, 1998). Here we describe just one set of

experiments on evolving GasNets to control a robot engaged in a visually guided behaviour.

This series of investigations made use of the Sussex Gantry Robot. In each case controllers were evolved

using a minimal simulation. As explained earlier (section 3), such radical simulations run much faster

than real time and have played a crucial role in allowing us to repeat the evolutionary experiments a

su�cient number of times to gather meaningful statistics. Controllers evolved in minimal simulation

work perfectly on the real robot.

The gantry-robot is shown in �gure 3. The robot body is cylindrical, some 150mm in diameter. It

is suspended from the gantry-frame with stepper motors that allow translational movement in the X

and Y directions, relative to a co-ordinate frame �xed to the gantry. Such movements, together with

appropriate rotation of the sensory apparatus, correspond to those which would be produced by left

and right wheels. The visual sensory apparatus consists of a ccd camera pointing down at a mirror

inclined at 45

o

to the vertical (see �gure 4). The mirror can be rotated about a vertical axis so that

its orientation always corresponds to the direction the `robot' is facing. The camera image is 20 pixels

in radius giving approximately 1250 pixels in total. However, as will be explained later, only a tiny

proportion of these are used by the evolved controllers. The angle of acceptance of the camera is 39

o

.

For full details see (Harvey et al., 1994; Husbands et al., 1997). The gantry is a very useful apparatus

for controlled experiments in the evolution of visually guided behaviours, but is probably best thought

of as if it were a two wheeled mobile robot with a �xed forward facing video camera mounted on top.

4.1 The Task

A task was chosen for which we already had results from various evolutionary experiments with di�er-

ent styles of networks (Jakobi et al, 1998). This would allow direct comparison of the performance of
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Figure 3: The Gantry viewed from

above. The horizontal girder moves

along the side rails, and the robot is

suspended from a platform which moves

along this girder.

Figure 4: The gantry-robot. The cam-

era inside the top box points down at the

inclined mirror, which can be turned by

the stepper-motor beneath. The lower

plastic disk is suspended from a joystick,

to detect collisions with obstacles.

the GasNets with more conventional connectionist nets. A further aim was to compare runs with and

without the gas modulation e�ects active. The main dimension of comparison was number of evalua-

tions needed until highly �t controllers emerged. Section 4.2.4 gives details of the exact investigations

undertaken.

Control networks were evolved for a target discrimination task. Two white paper targets were �xed

to one of the gantry walls; a rectangle and an isosceles triangle with the same base width and height

as the rectangle. Starting from a random position and orientation, the robot was required to move to

the triangle while ignoring the rectangle. This was to be achieved under extremely variable and noisy

lighting conditions in which the illumination intensity at any point in the gantry arena can vary by up

to 100%. This was achieved by �xing a rig of spotlights above the gantry | the lights were randomly

turned on and o� at widely varying frequencies.

The network size and topology, as well as various other properties detailed below, were under uncon-

strained evolutionary control in every experiment (i.e. arbitrarily recurrent networks were possible);

section 4.2.1 gives details of the network encoding and genetic algorithm. The robot visual morphol-

ogy, i.e. the way in which the camera image was sampled, was also under genetic control. This was

achieved by genetically specifying the number and position of single pixels from the camera image to

use as visual inputs. The grey scale intensity value of these pixels (normalised into range [0.0,1.0]) were

fed into the network, one for each genetically speci�ed visual input node in the net. This is illustrated

in �gure 5. Note this means that the evolved control systems were operating with extremely minimal

vision systems, just a few single pixel values. Given the very noisy lighting conditions and the minimal

visual input, this was a non-trivial task.
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boundary of camera

field of view

genetically specified pixels

Figure 5: Evolved visual morphology. Visual input is taken only from the genetically speci�ed single pixels.

The rest of the camera image is thrown away.

4.2 Experimental Setup

4.2.1 Network encoding: genotype to phenotype mapping

Each network was encoded on a variable sized genotype coding for a variable number of nodes. A

genotype consisted of an array of integer variables, each lying in the range [0; 100]. For continuous

variables, the phenotype value is obtained by normalising the genotype value to lie in the range [0:0; 1:0]

and multiplying by the relevant variable range. For nominal values, such as whether the node has a

visual input or not, the phenotype value = genotype value MOD N

nom

, where N

nom

is the number

of possible nominal values, and MOD is the binary modular division operator (remainder of integer

division). Each node in the network had either 19 or 21 variables associated with it, depending on which

of two possible connectivity encoding schemes were used. These are described below. All variables

were under evolutionary control. That is:

< genotype >:: (< gene >)

�

< gene >::< x >< y >< R

p

>< �

1p

>< �

2p

>< R

n

>< �

1n

>< �

2n

>< vis

in

>< vis

r

>< vis

�

>

< vis

thr

>< rec >< TE >< CE >< s >< R

e

>< index

0

>< bias >

This encoding was used to generate networks conceptualized to exist on a 2D Euclidean plane. x and y

give the position of a network node on the plane. The next six numbers de�ne two segments of circles,

centred on the node. These segments are used to determine the connectivity of the network. R

p

gives

the radius of the `positive' segment, �

1p

its angular extent and �

2p

its orientation. R

n

, �

1n

and �

2n

de�ne a `negative' segment. The radii range from zero to half the plane dimension, the angles range

from zero to 2�. The segments are illustrated in �gure 6(a). Any node that falls within a positive

segment has an excitatory (+1 weighting) link made to it from the segment's parent node. Any node

that falls within a negative segment has an inhibitory (-1 weighting) link made to it from the segment's

parent node. If the segments intersect, nodes lying in the intersection will have both excitatory and

inhibitory links made to them.

Figure 6(b) shows an alternative connectivity scheme that was also used. It is based on an encoding

described in (Jakobi, 1998b). This time x; y coordinate points are used to de�ne node connectivity.

Each node has four outgoing connections, two excitatory and two inhibitory. Two variables (x; y),

specify each link, de�ning the centre of a circle on the network plane. The nearest node to this centre

within a threshold radius (10% of the plane) has a connection made to it. If no node lies within the
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Tw1

Tw2

T1
T2

Excitatory Link

Inhibitory Link

Node

(a) Connection segments

x1, y1

x2, y2

Excitatory Link

Inhibitory Link

Node

(b) Connection points

Figure 6: Connectivity of the network is de�ned by either positive and negative segments (T=�, Tw=�

width

),

or circles centred on x; y coordinates. Networks develop and function on a 2D plane.

threshold radius, no link is made. When this connectivity scheme is used, the six variables of the

segments scheme are replaced with the eight needed to encode the four circle centres. Throughout

the rest of this paper, these two schemes will be referred to as the segments and the points schemes

respectively.

The rest of a gene is interpreted as follows. vis

in

is a binary switch that determines whether or not a

node has visual input. If it does, the following three variables encode the polar coordinates of a pixel

in the camera image the node will take input from, and a threshold below which input from that pixel

is ignored (visual input is normalised to lie in the range [0:0; 1:0], this is the range of the threshold).

The value of rec determines whether the node has an excitatory recurrent connection, an inhibitory

recurrent connection or no recurrent connection to itself. TE provides the circumstances under which

the node will emit a gas. These are: not at all, if its `electrical' activity exceeds a threshold, or if the

concentration of the referenced gas (1 or 2) at the node site exceeds a threshold. CE gives the gas the

node can emit. s is used to control the rate of gas build up/decay as described earlier by equation 3,

its value ranges from 1 to 11. R

e

is the maximum radius of gas emission, this ranges from 10%{60%

of the plane dimension. index

0

is the default value for the index used in equation 5 to determine the

transfer parameter value k

n

i

for each node. Finally, bias is the b

i

term in the node transfer function

(equation 1), restricted to the range [�1:0; 1:0].

The �rst four nodes (the genotype must code for at least �ve nodes) are the motor nodes (left/right

back and left/right forward), di�ering from other nodes in that the position on the plane is �xed

(the four corners { see e.g. �gure 10), and visual input is not permitted. Each of the four motor

neurons is considered to be `on' (+1:0) if output > 0, `o�' (0:0) otherwise. The actual wheel speeds

are proportional to the output of the relevant forward node minus the output of the relevant backward

node.
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4.2.2 The Genetic Algorithm Scheme

The work described in this paper used a distributed genetic algorithm (Collins and Je�erson, 1991;

Hillis, 1990) in which each solution is considered to occupy a unique position on a two-dimensional

10x10 toroidal solution grid. Initially, the grid is seeded with random genomes, each mapping on to

a single neural network controller. Each solution receives a �tness score based on evaluation of its

`triangle-�nding' ability (see section 4.2.3) before the main program loop is entered.

On each generation, the algorithm iterates PopulationSize times, choosing each time a random location

on the solution grid. A mating pool, consisting of the current location plus the neighbouring 8 grid-

points, is set up centred on the randomly chosen grid location. The mating pool solutions are ranked

in order of �tness, and rank-based roulette selection is used to �nd the parent solution. Mutation

(see below) of the parent solution produces an o�spring solution which is evaluated and placed back

in the mating pool at a point chosen by inverse rank-based roulette selection. Note no crossover is

used; reproduction is asexual. Early exploratory experiments with various forms of crossover did not

reveal any advantages in using any of these operators in addition to mutation, hence it was decided to

employ a mutation only evolutionary algorithm for the study described here.

Rank-Based Roulette Selection

Linear rank-based selection is used, where the probability of selecting the ith solution from a mating

pool of size N (where the solutions are ranked 0 to N �1, with N �1 being the �ttest) is proportional

to i:

P (i) =

i

P

j=N

j=1

j

=

2i

N (N + 1)

(8)

Note this gives the lowest ranked solution zero probability of being selected as a parent, and the highest

ranked solution zero probability of being replaced by the child.

Mutation

Four di�erent mutation operators are applied, with di�erent probabilities. The �rst two operate on

the entire genotype, either deleting or adding a gene chosen or initialised at random. In the scheme

used here, gene deletion is applied at a rate such that 0:8% of genotypes are altered, and gene addition

at a rate of 1:0%. The third operator acts on every variable in the genotype, randomly altering it from

its current value. The encoding scheme here uses integer variables in the range [0, 100]; the altering

mutation operator rate is 0.8�4% per variable, and alters the value by an amount in the range �10.

This operator has no e�ect on nominally valued variables (see section 4.2.1). Finally, the random

operator changes a variable to a new value chosen from a uniform random distribution over the whole

range, its rate is 0.2�4% per variable. These values were based on those found to be successful in

previous work (Harvey et al., 1994; Jakobi, 1998b).

4.2.3 Evaluation

N evaluations are carried out on an individual network, with scores f

i

calculated on the fraction of the

initial robot-triangle distance that the robot moves towards the triangle by the end of the evaluation;

a maximum score of 1:0 is obtained by getting within 10:0cm of the triangle at any time during the

evaluation. The controller only receives visual input; reliably getting to the triangle on a number of
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trials with di�erent starting conditions, can only be achieved by visual identi�cation of the triangle.

The evaluated scores are ranked, and the �tness F is the weighted sum of the N scores, with weight

proportional to the inverse ranking i (ranking is from 1 to N , with N as the lowest score):

F =

P

i=N

i=1

if

i

P

i=N

i=1

i

=

2

N (N + 1)

i=N

X

i=1

if

i

(9)

Note the higher weighting on the poorer scores provides pressure to do well on all evaluations; a

solution scoring 50% on every evaluation has �tness nearly 4 times that of one scoring 100% on half

of the evaluations and zero on the other half.

4.2.4 Experimental Investigations

Early exploratory experiments with GasNets (Husbands, 1998; Jakobi, Husbands and Smith, 1998) on

the gantry robot target discrimination task suggested that GasNets evolved considerably faster (fewer

evaluations needed) than more conventional connectionist style networks used previously (Jakobi,

1998a). In order to probe this tentative result further, the following experiments were performed:

1. Ten runs to evolve GasNet-based controllers for the gantry triangle/rectangle task using the

connection segments connectivity scheme (section 4.2.1).

2. Ten runs as in 1, but with the e�ects of the gases turned o�.

3. Ten runs as in 1, but using the connection points connectivity encoding (section 4.2.1).

4. Ten runs as in 3, but with the e�ects of the gases turned o�.

It was hoped that the results of these experiments would provide some insight into whether or not

the gases played any signi�cant role in the evolvability and functioning of the controllers, and whether

or not the details of the connectivity encodings were important. Other experimental details were as

described in the previous parts of this section.

5 Results

As mentioned earlier, the target discrimination task was chosen because a reasonable number of previ-

ous experiments had been carried out involving the evolution of more conventional connectionist style

networks (Harvey et al., 1994; Jakobi, 1998b). An initial aim of the work described in this paper

was to compare the performance of the GasNets with these other types of network. Therefore, before

dwelling on the outcome of various GasNet runs, results of previous evolutionary experiments with

this robot task are outlined.

5.1 Previous results

Jakobi had originally run the same experiment using two di�erent styles of node and connection type

networks (Jakobi 1998a, 1998b). He did a series of runs with simple binary networks consisting of

nodes connected together by weighted links. Each unit used the transfer function given in equation
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10. O

j

is the output of the jth node and T

j

is its threshold. The size and topology of the network was

under evolutionary control, as were the connection weights, node thresholds and visual morphology.

As with the GasNets, four motor units were used. Thresholds were real numbers in the range [0.0,1.0],

the weights, w

ij

, were real numbers in the range [-2.0,2.0].

O

j

=

�

0

P

i

O

j

w

ij

< T

j

1

P

i

O

j

w

ij

� T

j

:

(10)

He used a GA similar to that described in section 4.2.2 and a comparable encoding scheme to that

described in section 4.2.1 (using the connections points method). He was able to consistently evolve

robust successful controllers after about 6,000 generations. One of the best successful evolved binary

net controllers is shown in �gure 7. For a controller to count as su�ciently robust and successful, the

robot it guides must move to the triangle on many (at least 30) successive trials on the real robot

under full noisy lighting with random relative positioning of the two targets on the gantry wall as

well as random initial positioning and orienting of the robot. This is the de�nition of robust, reliable,

sucessful implicitly referred to in the rest of this paper.

left forwards

camera image

neural network

left backwards right backwards

right forwards

Figure 7: Evolved network and visual morphology for binary networks. Solid lines are excitatory, dashed are

inhibitory.

Jakobi also successfully evolved controllers for this task using veto networks, a style of network that

have been used at Sussex for various ER experiments over the past few years, including the original

gantry work (Cli�, Harvey and Husbands, 1993; Harvey, Husbands and Cli�, 1994). The nodes in

this style of network use separate channels for excitation and inhibition. Real values in the range [0,1]

propagate along excitatory links. The inhibitory (or veto) channel mechanism works as follows. If

the sum of excitatory inputs exceeds a threshold, T

v

= 0:75, the value 1.0 is propagated along any

inhibitory output links the unit may have, otherwise a value of 0.0 is propagated. Any unit that

receives a non zero inhibitory input has its excitatory output reduced to zero (i.e. is vetoed). In

the absence of inhibitory input, excitatory outputs are produced by summing all excitatory inputs,

adding a quantity of noise, and passing the resulting sum through a simple linear threshold function,

F (x), given below. Noise was added to provide further potentially interesting and useful dynamics.

The noise was uniformly distributed in the real range [-0.1,0.1]. Again each network had four motor

neurons (left/right forward/backward).
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F (x) =

8

<

:

0 x � T

1

x�T

1

T

2

�T

1

T

1

< x < T

2

1 x � T

2

(11)

Where T

1

=0.0 and T

2

=2.0.

A simple direct encoding was used for the veto networks (Cli�, Harvey and Husbands, 1993). Again,

the size and topology of the networks was under evolutionary control as was the visual morphology.

Also in this case, about 6,000 generations were required to successfully evolve reliable robust veto net

controllers (Jakobi, Husbands and Smith, 1998). An example is shown in �gure 8.

0

0

7

10

11

12

13

v1

v2

L+

L-

R+

R-

visual inputs

motor outputs

visual morphology

v1

v2

Figure 8: Evolved network and visual morphology for veto networks. Active part of network is shown. Solid

lines are excitatory, dashed are veto.

5.2 GasNet Results

Many of the early exploratory GasNet runs produced successful controllers in less than 500 genera-

tions and they rarely needed more than 1,000 generations (Jakobi, Husbands and Smith, 1998). The

successful networks were also structurally very simple in comparison to the evolved binary net and

veto net based controllers. This suggested that the space of GasNet controllers was more amenable to

evolutionary search than both the binary and veto net spaces. Table 1 summarises the results of 40

evolutionary runs designed to probe these initial tentative conclusions.

Table 1 shows the results for runs in each of the four conditions explained in section 4.2.4, and analysis

of the di�erence between conditions with and without gas is shown in table 2. In both the connection

segment and connection point schemes, signi�cant di�erence (P < 0:01)

1

is seen between the with and

without gas conditions. In both cases, the gas condition performed signi�cantly better.

Clearly the addition of another distinct mechanism (gas modulation) to the fairly standard `processing

units and wires' networks has resulted in a class of networks underlying a space of robot behaviours

1

Signi�cance is shown for the non-parametric Mann-Whitney U analysis. The parametric t-test gave similar results.
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Run Segs. w. gas Segs. w/out gas Points w. gas Points w/out gas

1 300 1000 200 900

2 300 1000 400 1000

3 350 2000 450 1500

4 500 2400 500 2000

5 600 2800 700 2000

6 1500 3200 950 6000

7 1600 3300 1000 10000

8 2000 3950 1400 10000

9 2800 6400 1800 10000

10 3100 7000 2300 10000

Mean 1305 3305 970 5340

SD 1062 2029 677 4254

Median 1050 3000 825 4000

Best 300 1000 200 900

Worst 3100 7000 2300 10000

Table 1: Number of generations before consistent success is achieved. Data is shown for runs in each condition.

NB runs not achieving consistent success by generation 10000 were terminated.

Scheme Gas mean rank (N) No gas mean rank (N) U 2-tailed P

Segs. 7.1 (10) 13.9 (10) 16.0 0.0089

Points 6.75 (10) 14.25 (10) 12.5 0.0029

Table 2: Mann-Whitney U analysis of di�erence between with/without gas conditions.

that is easier to search, using an evolutionary approach, than those of more conventional networks.

Successful GasNet-based controllers are relatively quickly found; it seems that the space is rich with

useful network dynamics o�ering many relatively short paths to �t robot nervous systems. Although

there is no restriction on the size of network used and the number of visual inputs employed, pop-

ulations were initially seeded with fairly small networks (with 14 �1 units). We observed that the

particular properties of the search space de�ned by the network encoding, the size of the network

development/operation plane, the possible network dynamics, the robot geometry, the task, the prop-

erties of the visual sensor, and the interaction of all these things, has resulted in `easy' routes to simple

controllers employing very low bandwidth vision.

It can be seen that as long as the gas modulation mechanism is present there is little di�erence between

the performances of the two network connectivity schemes. However, when the gases are turned o�, the

connection points scheme runs seem to quite often get stuck in low �tness areas of the search space (the

10,000 generation runs were terminated without �nding a successful controller). This suggests that

the connection segments scheme, which allows multiple connections to be made using a small number

of variables, results in a slightly more amenable search space, possibly with less neutrality (Huynen

et al., 1996). A more detailed investigation of this point would have to be made before anything very

concrete could be concluded.

It should be noted that even without the gases active, the resultant heterogeneous networks are quite

capable of generating successful behaviours. Indeed, on average the without-gas runs achieve success

in signi�cantly fewer generations than was necessary for the binary and veto nets discussed earlier.

Figures 9 and 10 show examples of typical evolved successful GasNet controllers. They are structurally

very simple, indeed much simpler than previously evolved binary and veto networks, examples of which
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are shown in �gures 7 and 8. Although the nets were structurally sparse, the modulatory interaction

of the spreading and decaying gases and the `electrical' networks gave rise to surprisingly sophisticated

internal dynamics.

Left Motor Forward

Left Motor BackRight Motor Forward

Neuron 7

Neuron 6

Right Motor Back

Neuron 10

Neuron 4

Neuron Grid

Visual Input Neuron Visual Input

Motor Neuron (fixed position)

Hidden Neuron Gas Diffusion radius

Visual input positions in camera

Excitatory Link (+1)

Inhibitory Link (-1)

Neuron 5

Neuron 8

Neuron 9

Neuron 9

Neuron 8

Neuron 4

Figure 9: Closed-loop `tracking' two-gas model triangle �nding network, see text for details. NB gas radii are

shown only where used.

Figure 11 shows pin traces of typical robot behaviours generated by the networks shown in �gures 9

and 10. The head of the pin indicates the centre of the robot, and the tail shows the robot's forward

orientation. Movement towards the triangular target is always very direct. Remember the lighting

conditions are extremely noisy and outrageously low bandwidth (2 or 3 pixel) vision is being employed.

5.3 Behavioural Strategies

A surprising observation is that all of the successful evolved GasNet controllers (more than 100 to date)

employ one or both of only two (closely related) behavioural strategies. Indeed, all successful evolved

binary net and veto net controllers also fell into these categories. The two strategies are illustrated

in �gure 12. The �rst strategy, illustrated in the left half of the �gure, involves moving until one of

two strategically positioned visual inputs gives a high signal while the other gives a lower signal. The

geometric layout of the sensors is such that this will only be reliably achieved when the robot is facing

towards the triangle. The other strategy involves two vertically aligned visual sensors and is illustrated

to the right of the �gure. As the robot swings round towards a target, the bottom sensor will go high

signi�cantly earlier than the top sensor in the case of a triangle, but not for a rectangle. There is not

enough space to describe the workings of the controllers in detail. However, it should be noted that

many of them used a small number of additional visual inputs and various subtle internal dynamics to

generate highly robust behaviours capable of coping with the extreme lighting conditions. In each case

the visual morphology played a vital role. In each successful controller there was a perfect balance
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Neuron Grid

Visual Input Neuron Visual Input

Neuron 5

Neuron 6

Neuron 4

Neuron 7

Motor Neuron (fixed position)

Hidden Neuron Gas Diffusion radius

Left Motor Forward

Right Motor Forward

Right Motor Back

Left Motor Back

Neuron 7

Neuron 6

Visual input positions in camera

Excitatory Link (+1)

Inhibitory Link (-1)

Figure 10: Open-loop `ballistic' two-gas model triangle �nding network, see text for details. NB gas radii are

shown only where used.

Figure 11: Four evaluations in simulation. The left-hand evaluations show the `ballistic' open-loop triangle

�nder (from �gure 10), while the right-hand evaluations show the closed-loop network (from �gure 9). NB

gantry robot and orientation are indicated by pin, and position is shown every 10 updates (roughly 1.0 seconds

intervals.
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between the sensor geometry and robot motion resulting in active visual strategies. A traditional

cognitive science perspective would think of the sensori capabilities as being passive and the sensor

morphology as almost incidental; it is the internal processing where the real work is done. This is very

clearly not the case in any of our evolved robots. The number and position of the visual inputs was

under evolutionary control; it has clearly been demonstrated that very simple extremely low bandwidth

sensors, when appropriately coupled to a dynamic controller, are su�cient for this kind of task.

camera field of view

visual inputs

Figure 12: The only two classes of successful behavioural strategy that we have observed to date.

5.4 Network Analysis

In order to gain deeper insight into the properties of GasNets and their suitability to act as robot

nervous systems, it is necessary to analyse evolved successful controllers. There is not room in this

paper to do a full network analysis ( a paper devoted to that topic will appear in due course). Instead

a summary of some of the key features arising from a detailed analysis will be given. Any analysis of

a robot control network should take into account the robot-environment interaction dynamics, in this

case partly dictated by the visual morphology, as well as the intrinsic network dynamics. Successful

evolved GasNet controllers for the target discrimination task have all been structurally simple and

have employed very low bandwidth sensing. These two factors have greatly helped in facilitating

straightforward analysis. The mathematics of discrete dynamical systems (J. Sandefur, 1990) has

proved a very useful framework for understanding the intrinsic properties of GasNets in detail, here

only a brief qualitative analysis will be given.

The following paragraphs summarise an analysis of the controller shown in �gure 10. This system

has a number of interesting properties that nicely illustrate some general points about GasNets and

evolved controllers at large.

The essential workings of the network are based on the two subnetworks in the right-hand corners

of the network plane; both are required for accurate triangle �nding behaviour, despite the lack of

explicit interaction between them. None of the three neurons not involved in the subnetworks receive

any external input; genetically set transfer function parameters and positive recurrrency ensure that

the outputs of neurons 0 and 1 (respectively the right and left forward motor neurons) stabilise at fairly

high constant positive values. Neuron 4 has no functional role. Thus both forward motor neurons are

continually on, and behaviour is governed by the two subnetworks acting on the back motor neurons.

The top right-hand corner subnetwork, built from units 2 and 5, produces a periodic output of neuron

2 (the right back motor neuron) in which the back motor neuron is generally o�, but turns on for one

time step in every eight; the motor neuron output trace is reminiscent of real neuron `spiking' traces

(Purves and Augustine, 1997), see �gure 13. The bottom right-hand corner subnetwork, built from

units 6 and 7, `switches' into a particular extremely stable state, if and only if the robot scans visually

across the triangle. Both networks rely heavily on gas di�usion e�ects (disabling di�usion results in

the failure of both networks), and both are required for the overall triangle discrimination behaviour.

The unit 5 { unit 2 subnetwork behaviour is regulated by two interacting factors - the high negative

recurrency on neuron 2, and the emission of gas by neurons 2 and 5. Neuron 2 emits gas1 when its

electrical activation exceeds 0.5, neuron 5 is stimulated to emit gas2 by the presence of gas1. Neuron

5 receives no input whatsoever; genetically set transfer function parameters mean that its output
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Figure 13: Output trace for `spiking' neuron 2 over time. The vertical dashed lines mark 10 time step

intervals, the area between the output curve and the time axis is shaded.

is always tanh (0:48) � 0:44. Taking into accounts its genetically set parameters and the negative

connection from unit 5, the neuron 2 transfer function can be written as:

y

n

2

= tanh (�k

n

2

(y

n�1

2

+ 0:44)� 0:66)

The genetically set default value for k

n

2

is 4, giving an unstable equilibrium solution at y

2

� �0:48.

The instability comes from the high negative feedback; in the absence of any modulation the output

of the unit swiftly turns into a saw-tooth oscillation between -1 and +1 with a period of 2 time steps.

However, once its output reaches +1, neuron 2 emits gas1 with fast build-up/decay and low distance

decay, a�ecting neuron 5 strongly and immediately for one time-step only. Neuron 5 in turn emits

gas2 for one time-step, stimulated by the concentration of gas1. The subsequent concentration of gas2

at neuron 2 reduces k

n

2

from 4 to 0.25. With this new value of k

n

2

the subnetwork enters a di�erent

dynamical regime where a stable attractor exists for the output of unit 2 (y

2

� �0:55). However, the

high gas concentration only lasts one time-step and k

n

2

increases back to 4. In the single time-step

with reduced k

n

2

, output is dampened to y

2

� �0:48, then the next �ve time-steps are a `refractory'

period where the motor neuron output starts from near the unstable equilibrium slowly returning to

�1 oscillation, and the cycle begins again. Thus the right back motor neuron has positive output

once every eight time-steps, causing inhibition of the right motor by periodically turning it o� (right

forward is always on). This causes an average slowing of the right wheel and hence a slow curve to the

right (if the left motor is producing positive output). This kind of oscillator circuit, where modulation

causes a change in intrinsic dynamics, was observed to evolve on several evolutionary runs, and played

a variety of functional roles. The oscillator's period depends on the spatial relationship between the

units and the genetically set parameters governing gas emission and transfer function properties.

The only neurons receiving external environmental input (6 and 7) are involved in the triangle dis-

crimination network, which regulates the left back motor neuron through electrical and gas di�usion

e�ects. Now, both neurons 6 and 7 have the same high threshold on the input below which visual input

is not accepted; only intensities above 0.84 will have any a�ect. It can be shown that when neither

visual input exceeds this threshold both units 6 and 7 stabilise with high negative output. This results

in the left back motor neuron (with its negative recurrency) stabilising at a high positive output. This

leads to the left motor being o� (left forward is also high). The net e�ect is for the robot to circle

anticlockwise (remember the role of the top righthand network is to periodically reduce a constant

positive right motor signal).

Both units 6 and 7 emit gas2 when their electrical activity exceeds 0.5. Taking into account all the

genetically set gas di�usion and transfer function parameters, it can be shown that if unit 6 receives

bright input before, or only slightly after, unit 7, unit 7 is inhibited and does not emit gas or change

the stable state of the left back motor output. However, if unit 7 receives high visual input �rst the left

back motor unit is immediately inhibited and unit 7 emits gas2. This results in an inhibition of unit 6.

Its transfer function is changed such that, no matter how high its input, unit 6's activation cannot go
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high enough to cause it to emit gas. Recurrency allows the subnetwork to stabilise with a high positive

output for unit 7 (ensuring continued gas emission). The result is a highly stable state (that cannot

be perturbed) in which the left back motor output is inhibited. Hence the overall behaviour is a slow

turn to the right (left forward motor on all the time, right forward on most of the time; periodically

turned o�). From �gure 10 we see that the visual inputs are geometrically arranged in the camera

�eld of view such that input to unit 6 is stacked vertically above input to unit 7 with a reasonable

separation between the two pixels.

Putting these pieces together we see that when both the visual inputs are less than very high (i.e.

not looking at one of the targets) the robot circles anticlockwise. When unit 6 gets high visual input

before, or at about the same time as, unit 7, the rotational movement continues unchanged. Note

this will occur if the robot scans across the rectangle. However, if unit 7 gets high visual input before

unit 6, the left motor is activated and the robot moves clockwise in a wide arc circle. Note this will

occur if the robot scans across the triangle. Once this behaviour is initiated it cannot be turned o�

{ the robot is in ballistic open-loop mode. From any starting position and orientation, the robot

rotates anticlockwise until it scans across the triangle. Momentum e�ects always means that it slightly

overshoots the triangle before the open-loop behaviour kicks in. The slight curve to the right means

that the robot always ends up very close to the triangle although it is no longer using vision.

It should be noted that most successful GasNet based controllers employed closed-loop visually based

control, always relying on an unbroken visuomotor feedback loop (e.g. the controller shown in Figure

9. However, the open-loop network described above illustrates some interesting and general internal

mechanisms, and is a reminder of the fact that evolutionary processes often �nd ways of satisfying the

�tness criteria that go against our intuitions as to how the problem should be `solved'.

5.5 Success with other Forms of GasNet

The basic network model presented in this paper is a re�nement of a slightly earlier system described

in (Husbands, 1998). The main di�erence between the earlier networks and those described in the

current paper is that the units were governed by the transfer function shown in equation 12
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) =
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)=2 else
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Where O

i

is the output of the ith node, S

i

is the normalised input to the ith node, and a and b are

parameters that are altered by 4 gases (2 for a and 2 for b) in much the same way as k is altered by 2

gases in the systems described in this paper (see section 2.2). All other details were more or less the

same as described here.

Using this form of network robot controllers were successfully evolved in a few hundred generations to

achieve the target discrimination task under very noisy lighting conditions. This is mentioned because

it strongly suggests that the increased speed of evolution is not tied to a particular type of modulation

of a particular type of network; there is nothing magic about the tanh transfer function used in this

paper.

The earlier form of network was also used to successfully evolve various memory based behaviours

on another style of mobile robot (Husbands, 1998). Again there was a considerable reduction in the

number of evaluations needed in comparison with runs where more conventional networks were used.

This, coupled with the results presented here for an essentially reactive visually guided task, suggests

that the di�using gas modulation mechanism may be fairly widely applicable.
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6 Related Work

The authors are not aware of any directly comparable work to that described in this paper. However, a

number of other pieces of research will be mentioned as having some kind of indirect relationship to the

GasNets project. Floreano and Mondada have used a genetic algorithm to develop plastic controllers

for a khepera robot (Floreano and Mondada, 1996) engaged in obstacle avoidance behaviours. The

genetic algorithm was used to develop neural structures that were continually modi�ed during the

robot's lifetime according to mechanisms that were speci�ed on the genotype. This was achieved by

allowing the type of Hebbian-style rule operating at each connection to be selected by the genetic

algorithm. They evolved learning structures with emergent fast adaptation properties. Interestingly,

some of their best robot control networks generated stable behaviour through continuously changing

synapses which were dynamically stable. There are perhaps strong similarities with the dynamic

modulated states of the GasNets described earlier.

Ziemke has used higher order recurrent network architectures for controlling a khepera robot (Ziemke,

1996). He used two networks: one coupling sensors and motors and another which dynamically adapts

the sensorimotor network. Essentially, this allows the sensorimotor control network to dynamically

adapt its own weights to its current context. This allows a richer class of adaptations than is possible

with more standard connectionist architectures.

The work of Beer and his students (e.g. Yamauchi and Beer, 1994) should be mentioned as providing

a number of examples of robot controllers whose adaptivity is a results of the intrinsic dynamics of

evolved recurrent dynamic ANNs rather than of an imposed adaptive mechanism in the network.

Of course there are a number of explicit computationalmodelling projects in which the mechanisms and

functional role of various kinds of modulation are studied, based on speci�c biological data (Fellous

and Linster, 1998). More speci�cally, there is some work on modelling the di�usion and signalling

properties of NO in real neuronal networks (Gally et al., 1990; Phillipides et al., 1998). The level

of modelling used in such research is considerably more detailed than the abstractions employed in

the GasNets work. Such modelling is computationally much more expensive than the algorithms

underlying the GasNets. The loose abstractions used in the GasNets were chosen to ensure that they

would be computationally e�cient and capable of acting as real time controllers for a mobile robot.

However, di�erent, less arbitrary, abstractions may be used in the future, guided by the results of the

detailed computational modelling.

7 Discussion and Conclusions

This paper has introduced a new class of ANNs incorporating principles abstracted from contemporary

neuroscience. A simple form of modulation by processes analogous to di�using gas, emitted by some

nodes in the networks, have been added to heterogeneous arbitrarily recurrent networks (GasNets) used

as arti�cial nervous systems for autonomous mobile robots engaged in visually guided behaviours. Evo-

lutionary robotics techniques were used to evolve control networks and visual morphologies to enable

a robot to achieve a target discrimination task under very noisy lighting conditions. A series of evo-

lutionary runs with and without the gas modulation active demonstrated that networks incorporating

modulation by di�using gases evolved to produce successful controllers considerably faster than net-

works without this mechanism. GasNets also achieved evolutionary success much faster (often by an

order of magnitude) than more conventional styles of networks previously used. The successful Gas-

Net based controllers were structurally very simple (far simpler than successful controllers based on

conventional networks) but exhibited intricate internal dynamics making full use of the modulatory

e�ects of the di�using gases.
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These preliminary investigations suggest that ANNs incorporating mechanisms analogous to those

provided by di�using gaseous neurotransmitters have interesting properties worth investigating further.

The selectionist methodology of evolutionary robotics has proved to be a useful tool in exploring this

class of networks. There are many possible future directions for this investigation. High on our

agenda are studies involving larger, possibly more structured, networks; the investigation of a wider

range of modulations { particularly longer lasting ones; the investigation of the concurrent evolution of

structures acting as di�usion barriers or sinks within the networks; the use of gases to locally modulate

hebbian style adaptive processes. Some of these studies will be more explicitly aimed at trying to better

understand biological phenomena as well as developing arti�cial nervous systems.
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