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Abstract. This paper describes experiments in which neural network control architectures were

evolved in minimal simulation for an octopod robot. The robot is around 30cm long and has

4 infra red sensors that point ahead and to the side, various bumpers and whiskers, and ten

ambient light sensors positioned strategically around the body. Each of the robot's eight legs is

controlled by two servo motors, one for movement in the horizontal plane, and one for movement

in the vertical plane, which means that the robots motors have a total of sixteen degrees of

freedom. The aim of the experiments was to evolve neural network control architectures that

would allow the robot to wander around its environment avoiding objects using its infra-red

sensors and backing away from objects that it hits with its bumpers. This is a hard behaviour to

evolve when one considers that in order to achieve any sort of coherent movement the controller

has to control not just one or two motors in a coordinated fashion but sixteen. Moreover it is

an extremely di�cult set-up to simulate using traditional techniques since the physical outcome

of sixteen motor movements is rarely predictable in all but the simplest cases. The evolution of

this behaviour in a minimal simulation, with perfect transference to reality, therefore, provides

essential evidence that complex motor behaviours can be evolved in simulations built according

to the theory and methodology of minimal simulations.

1 Introduction

Evolutionary Robotics is not magic and as several authors have pointed out [2, 6, 12, 14], there are

many big questions that need answers if Evolutionary Robotics is to progress beyond the proof of

concept stage. One of the most urgent of these (in that if it is not answered, Evolutionary Robotics is

not going to progress very far at all) concerns how evolving controllers should best be evaluated. If they

are tested using real robots in the real world, then this has to be done in real time, and the evolution

of complex behaviours will take a prohibitively long time. If controllers are tested using simulations

then the amount of modelling necessary to ensure that evolved controllers work on the real robot may

mean that the simulation is so complex to design and so computationally expensive that all potential

speed advantages over real-world evaluation are lost. How then should controllers be evaluated when

testing in both simulation and reality seems fraught with insurmountable problems?

The author's recent thesis [9] o�ers an answer to this question. It does this by presenting new ways of

thinking about and building simulations for the evaluation of evolving robot controllers. These minimal

simulations run extremely fast and are trivially easy to build when compared to more conventional

types of real-world simulation, yet they are still capable of evolving controllers for real robots. Thus

the many advantages of using simulations are preserved while most of the major disadvantages are

avoided. The aim of this paper is to show how complex motor behaviours can be evolved in minimal
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simulation. Space limitations do not allow a full explication of the theory and methodology of minimal

simulations. However, the next section gives a broad brush sketch of the main ideas, which, together

with the details of the minimal simulation used for the experiments reported in this paper, should give

the reader a good idea of how to build and use a minimal simulation.

Fig. 1. The Octopod robot.

This paper describes experiments in which neural network control architectures were evolved for an

octopod robot. The robot, shown in �gure 1 is around 30cm long and has 4 infra red sensors that

point ahead and to the side, various bumpers and whiskers, and ten ambient light sensors positioned

strategically around the body. Each of the robot's eight legs is controlled by two servo motors, one for

movement in the horizontal plane, and one for movement in the vertical plane, which means that the

robots motors have a total of sixteen degrees of freedom.

The aim of the experiments was to evolve neural network control architectures that would allow the

robot to wander around its environment avoiding objects using its infra-red sensors and backing away

from objects that it hits with its bumpers. This is a hard behaviour to evolve when one considers

that in order to achieve any sort of coherent movement the controller has to control not just one

or two motors in a coordinated fashion but sixteen. Moreover it is an extremely di�cult set-up to

simulate using traditional techniques since the physical outcome of sixteen motor movements is rarely

predictable in all but the simplest cases. The evolution of this behaviour in a minimal simulation,

therefore, provides essential evidence that complex motor behaviours can be evolved in simulations

built according to the theory and methodology put forward in [9, 8, 7]. See [3, 4, 11] for related work

on evolving locomotion controllers for walking robots and for abstract computer models of insects.

The minimal simulation used to evolve controllers for the octopod is described in Section 3. The rest of

the evolutionary machinery, including the neural networks, the encoding scheme, the genetic algorithm

and genetic operators is described in section 4. Experimental results are put forward in section 5 and

�nally, in section 6, some comments are o�ered on the paper as a whole. But �rst, a brief description

of the idea of minimal simulations.



2 Minimal simulations

The arti�cial evolution of controllers typically involves the constant and repetitive testing of hundreds

upon thousands of individuals as to their ability to behave in a certain way or perform a certain task.

In the case of real robots this testing procedure is far from a trivial matter and (with the exception

of certain hybrid approaches [15, 14]) can be done in only one of two ways: controllers must either be

evaluated on real robots in the real world, or they must be evaluated in simulations of real robots in

the real world. Both of these approaches have their problems.

As [12] point out, the evaluation of controllers on real robots must be done in real time, and this

probably makes the entire evolutionary process prohibitively slow. But even if we are resigned to an

evolutionary process that takes years rather than days, then there are di�erent problems that must

be faced. The process must be automated, for instance. This begs many technological questions to do

with power supplies, wear and tear, automatic �tness evaluations ans so on.

As has been shown by several experimenters [10, 1, 13], it is possible to evolve controllers in simulation

for a real robot. Now that this is no longer in doubt the question becomes one of whether the technique

will scale up. In [12] (and similar points were made earlier in [6, 2, 5]), the authors argue that if

behavioural transference can only be guaranteed when a carefully constructed empirically validated

simulation is used, then as robots and the behaviours we want to evolve for them become more

complicated, so do the simulations. The level of complexity involved, they argue, would make such

simulations:

{ so computationally expensive that all speed advantages over real-world evolution are lost.

{ so hard to design that the time taken in development outweighs time saved by fast evolution.

Clearly the main challenge for the simulation approach to evolutionary robotics is to invent a general

theoretical and methodological framework that enables the easy and cheap construction of fast-running

simulators for evolving real-world robot behaviours. This is what is provided in [9, 8, 7] where the

general framework is developed and a wide range of examples are given in which evolved behaviours

successfully crossed the reality gap (the evolved controllers performed perfectly on the real robots).

The basic idea of a minimal simulation is to model only those robot-environment interactions that

are necessary to underpin a desired behaviour. Everything else is made unreliable by careful use of

randomness. In this way an evolved controller is forced to use the minimal set of interactions picked

out by the simulation designer. This set of interactions is modelled as simply (i.e. computationally

cheaply) as possible by using an envelope of noise to mask the inaccuracies of the modelling. Again,

by careful use of randomness, controllers evolve that are robust to these inaccuracies and hence will

cross the reality gap.

The whole methodology can be summarised in the following step-by-step guide to building a minimal

simulation:

1. Precisely de�ne the behaviour. Start by making a precise de�nition of the behaviour to be evolved.

This should include both a description of the task to be performed by the robot(s) and the range of

environmental conditions it is to be performed under.

2. Identify the real-world base set. Distinguish between those real-world features and processes that

are relevant to the performance of the behaviour and those that are not. Those that are relevant constitute

the base set. If possible, identify the way in which the members of the base set interact with each other

and react to motor signals during the performance of the behaviour.

3. Build a model of the way in which the members of the base set interact with each

other and react to controller output (when the robot is performing the behaviour).



Make a model of the real-world base set of features and processes. The dynamics of this model need

copy those of the real world only during the performance of successful behaviour. The dynamics when the

behaviour is not being performed may often be shaped to smooth the �tness landscape, thus facilitating

the evolution of successful controllers.

4. Build a model of (enough of) the way in which the members of the base set a�ect

controller input (when the robot is performing the behaviour). Identify and model processes

by which members of the real-world base set give rise to aspects of controller input. Just as with the model

of the base set, these modelled processes need only copy their real-world counterparts when the behaviour

is being performed. Make sure that the input aspects that these processes give rise to in the minimal

simulation are su�cient to underly successful behaviour. Note that there are often several ways in which

su�cient input processes may be identi�ed and modelled, and the exact choice a�ects the possible strategies

that evolving controllers may employ.

5. Design a suitable �tness test. Design a suitable �tness test that only awards maximum �tness

points to those controllers that reliably perform the behaviour. In particular, each evaluation must involve

a su�cient number of trials so that, with the right amount of trial to trial variation (see below), we can be

con�dent that controllers which achieve high �tness in all of them are reliably �t, base set exclusive and

base set robust.

6. Ensure that evolving controllers are base set exclusive. Make a distinction between the

implementation aspects (those features of the simulation that are there for coherence etc but which we do

not want to underpin the desired behaviour) of controllers' input signals and the base set aspects. Those

implementation aspects that are present during the performance of the behaviour must be randomly varied

from trial to trial so that evolving controllers that depend upon them are unreliable. In particular, enough

variation must be included to ensure that evolving controllers can not, in practice, be reliably �t unless

they are base set exclusive i.e. they actively ignore each implementation aspect and depend exclusively on

the base set aspects of their input to perform the behaviour.

7. Ensure that evolving controllers are base set robust. Every base set aspect of the simulation

must be randomly varied from trial to trial so that reliably �t controllers are forced to be base set robust.

The extent of this random variation must be large enough that controllers which evolve to be reliably �t

are also able to cope with the inevitable di�erences between the base set aspects of the simulation and their

real-world counterparts. Care should be taken that this variation is not so large that reliably �t controllers

fail to evolve at all.

3 The Octopod minimal simulation

According to received wisdom, simulating something as complex from an actuator point of view as an

eight-legged robot is hard. The problems arise from the fact that sixteen motors all moving at the same

time and interacting with each other in the real world rarely induce movement in the robot that is easy

to model and often produce completely unpredictable movement that is best looked at as stochastic.

What happens when two legs clash, for instance? Or when the belly of the robot is on the ground but

the legs attempt to push the robot forwards? Or when 4 of the legs attempt to push the robot forwards

and 4 of the legs attempt to push the robot backwards? Clearly any simulation that sets out to model

all of the dynamics of the system will involve vast quantities of pain-staking empirical measurement

and research into friction-coe�cients, the power of each motor, the range of possible movement of the

robot and so on. If the only simulation in which we could evolve autonomous walking behaviour for

the real robot was of this type then the simulation would be so complicated that it might indeed be

simpler to evolve controllers on the real thing.

Happily we do not need to come close to modelling all of the possible dynamics of the robot in order

to build a satisfactory minimal simulation. The key is to realise that those portions of the possible

dynamics of an octopod robot which are di�cult and complicated to model (the vast majority) are

precisely those that are not involved in successful walking behaviour. When the octopod robot walks



around its environment in an acceptable manner, its legs do not clash and its belly does not drag along

the ground and its legs do not pull in di�erent directions. The minimal simulation described below

takes full advantage of this fact. The dynamics of the simulated robot match the dynamics of the

real robot only when the controller is inducing acceptable, successful walking and obstacle-avoiding

behaviour. If a controller does anything else but acceptable, successful walking and obstacle-avoiding

behaviour then the simulation falls woefully short of modelling what would actually happen in the real

world. Since a controller that performs the behaviour will never take the robot into this region of the

dynamics, we do not need to model it. The headings for the step-by-step guide to minimal simulations

given in section 2 will be followed in describing the octopod simulation in detail.

Precisely de�ne the behaviour.

The aim of the experiments was to evolve octopod-controllers that could walk around the environment,

turning away from objects that fell within range of the IR sensors and backing away from objects that

touched the front bumpers and whiskers. At the very least, this requires that controllers are able to

perform 4 sub-behaviours, each relevant to a particular sensory scenario:

{ If an object falls within range of the left-hand IR sensors then the robot must turn on the spot to

the right.

{ If an object falls within range of the right-hand IR sensors then the robot must turn on the spot

to the left.

{ If an object hits the front bumpers or whiskers then the robot must walk backwards as fast as

possible.

{ In the absence of any objects falling within infra-red range or touching the robot's front bumpers

or whiskers, the robot must walk forwards in a straight line as fast as possible.

In a cluttered environment there are occasions in which other sensory combinations may occur e.g.

objects may fall within range of the left and right IR sensors at the same time. However, these occasions

are rare enough in simple environments to grant that controllers which are able to perform each of

these 4 simple sub-behaviours are also capable of wandering around their environment satisfactorily

without bumping into anything or becoming stuck.

One reason for making this behavioural reduction is that constructing a �tness test that speci�cally

checks for each of the 4 sub-behaviours, one after the other, is actually much easier than constructing

a �tness test that checks directly for the more complex global behaviour. We do not need to simulate,

for example, the way in which the robot's position within a complex environment gives rise to sensor

values. Instead we may test directly for each of the 4 sub-behaviours in turn by clamping the sensor

values to �t each of the 4 sensory scenarios and observing the movement of the robot in response.

The �tness function was therefore divided into 4 phases: each testing for one of the 4 behaviours

outlined above. The order in which each of the 4 phases occurred was random and evolving neural

network controllers were not reset in between. This ensured that reliably �t controllers would be able

to perform each of the 4 sub-behaviours independently.

Identify the real-world base set

Whether or not the robot satisfactorily performs each of the 4 sub-behaviours is a function of the

movement of the robot body in each of the 4 di�erent sensory scenarios. The members of the base set,

therefore, are those features of the world that make up the causal pathway from controller output to



how the body as a whole moves in response. These include the way in which controller output a�ects

how the legs move, and the way in which the movement of the legs a�ects the movement of the body

as a whole.

Build a model of the way in which the members of the base set interact with each other

and react to controller output (when the robot is performing the behaviour).

The overall movement of the robot was described by two variables: one for the speed of the left-hand

side of the robot and one for the speed of the right-hand side of the robot. Thus if both sides of the

robot moved straight ahead at the same speed then the overall movement of the robot was deemed

to be straight ahead, if they moved in di�erent directions but with equal velocity then the robot was

deemed to be turning on the spot, and if both sides moved backwards at the same speed then the

overall movement of the robot was deemed to be straight backwards.

To model the way in which the robot as a whole moved in response to controller output, therefore,

necessitated a model of the way in which each leg responded to controller output, and the way in which

the movement of each leg contributed to the overall movement of each side of the robot. However,

because of the arguments put forwards in [9], it was not necessary to accurately model the way in

which every motor signal could a�ect the movement of the robot as a whole, but only those motor

signals involved in satisfactory walking forwards, backwards and turning on the spot. The dynamics of

the model, therefore, matched those of reality only for those controllers that prevented the body from

touching the ground, moved all the legs supporting the robot on each side in the same direction (either

all forwards or all backwards depending on whether the robot was supposed to be walking forwards,

backwards or turning on the spot), and kept those legs that were not touching the ground as high in

the air as possible.

The motor signals to the servo-motors controlling the legs of the octopod robot specify absolute angular

positions (relative to the body) that the servo-motors are required to move the legs to. Thus when a

new signal is sent to the servo-motor controlling the horizontal or vertical angle of a particular leg,

it will move as fast as possible to the new location. In the absence of any new signal, the leg will

remain rigid. This process was modelled in the simulation by calculating, on every iteration, horizontal

and vertical angular displacements for each leg based on the di�erences between the angular positions

speci�ed by the motor signals and the actual angular positions of the simulated legs. The maximum

possible angular speed of each leg was measured very roughly and set in the simulation to be 2� radians

per second. Using the horizontal and vertical angles of each leg, a simple look up table provided the

approximate position, relative to the robot, that each leg projected onto the ground, and the 4 legs in

the lowest positions were assigned as the supporting legs. A simple calculation was then made to see

whether the robot's centre of gravity was contained within the polygon subtended by the oor-contact

positions of these 4 legs, in which case the robot was deemed to be stable. If it was not, then the

robot was deemed to be unstable. Also the average height of these 4 legs relative to the robot body

was calculated. If they were low enough then the robot was deemed to be standing, otherwise it was

deemed to be dragging its belly on the ground.

Figure 2 shows diagrammatically how the speeds of the left and right-hand sides of the robot, and

thus the overall movement of the robot, were calculated from the controller's motor signals. On each

iteration, the contribution each leg made to the forwards or backwards movement of its side of the

robot was worked out according to a simple calculation. The distance moved by the leg (either forwards

or backwards) was multiplied by a �gure between 0 and 1 that was inversely proportional to how high

in the air the leg was. Thus the higher in the air a leg was, the smaller the contribution its horizontal

movement made to the total movement of its side of the robot. The nearer to the ground the leg was,

the larger the contribution its horizontal movement made to the total movement of its side of the robot.

The contributions that each leg makes were then added up to arrive at a �gure for the total movement
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Fig. 2. This �gure shows diagrammatically how the speeds of the left-hand and right-hand sides of the robot

were calculated from the vertical and horizontal positions of the eight legs. For explanatory purposes the length

of each leg in the diagram is inversely proportional to its height above the ground so that the long legs are 0.8

as low as they can go and the short legs are 0.2 as low as they can go. Adding up the contributions that each

leg makes to the speed of its side we see that the speeds of both the left and the right hand side of the robot

work out at 0:1� 0:8� 0:1� 0:2 + 0:1� 0:8� 0:1� 0:2 = 0:12 forwards

(either forwards or backwards) of that side of the robot. If both the left and the right side of the robot

moved forwards then the robot was deemed to have moved forwards, if both sides moved backwards

then the robot was deemed to have moved backwards, if each side moved in di�erent directions then

the robot was deemed to be turning on the spot.

Now although this simple model seems to bear no relationship to reality (how can a leg that is in

the air contribute to the speed of its side of the robot?), a controller that made maximum use of the

dynamics of the model to move the robot around as fast as possible would keep all of the legs that

were moving in the wrong direction at any one time as high in the air as possible and all the legs

that were moving in the appropriate direction as �rmly on the ground as possible. Since penalty terms

for both instability and belly-dragging were included in the �tness function (see below), maximally �t

controllers remained stable and stood upright at all times, moving all the legs that were supporting the

robot on each side in the same direction (either all forwards or all backwards depending on whether

the robot was walking forwards, backwards or turning on the spot) and keeping those legs that were

not supporting the robot as high in the air as possible.

Build a model of (enough of) the way in which the members of the base set a�ect

controller input (when the robot is performing the behaviour).

The sensor model employed was so simple as to be almost non-existent. The sensors were divided

into three groups: the front left and back left IR sensors forming one group, the front right and back



right IR sensors forming another group, and the front whiskers and bumpers forming another. In the

phase of each �tness test in which there were no objects within sensor range, all sensors were set to

background levels for the duration of the phase: 0 for the bumpers and whiskers and 255 for the IR

sensors. In the phases during which an object fell within IR range on either the left or right-hand

side of the robot, the IR sensor on the appropriate side was set to high (200) for the duration of the

phase. In the phase during which an object hit the touch sensors, the front whiskers and bumper were

set to high (1), but only for the �rst second of the phase. This simple sensor model provided evolving

controllers with enough information about the world to perform the behaviour satisfactorily.

Design a suitable �tness Test

As explained above, each �tness evaluation was divided into 4 phases: one for each of the 4 sensory

scenarios. Each of these phases lasted �ve simulated seconds. At the end of every iteration of the

simulation, the �tness of the controller being tested was incremented by a value � derived from the

overall movement of the robot. How this value was calculated depended on the sensory scenario the

robot was in at the time:

{ If there were no objects within sensor range then � was the speed of the left-hand side of the robot

plus the speed of the right-hand side of the robot.

{ If there was an object within infra-red sensor range on the right-hand side of the robot then � was

the speed of the right-hand side of the robot minus the speed of the left-hand side of the robot.

{ If there was an object within infra-red sensor range on the left-hand side of the robot then � was

the speed of the left-hand side of the robot minus the speed of the right-hand side of the robot.

{ If an object hit the bumpers then � (for the duration of this phase of the �tness evaluation) was

minus the speed of the left-hand side of the robot minus the speed of the right-hand side of the

robot.

Also on each iteration, if the robot was deemed to be unstable then a small penalty was subtracted

from the �tness, and if the robot was deemed to be touching the ground with its belly then a small

penalty was subtracted from the �tness.

Ensure that evolving controllers are base set robust and base set exclusive

The �tness test described above was carefully designed so that controllers that evolved to be reliably

�t would use only those portions of the simulation dynamics that corresponded closely to the dynamics

of the real robot. In fact, these dynamics turned out to be close enough that there was no need to vary

the simulation at all in order to ensure that evolved controllers were base set robust. Any di�erences

between simulation and reality were easily accommodated by slop in the de�nition of satisfactory

walking and obstacle-avoiding behaviour. Thus walking behaviour on the real robot might be a little

jerkier or quicker than in the simulation, but it was still perfectly adequate walking behaviour.

Likewise, nothing extra was added to the simulation in order to ensure that evolving controllers were

base set exclusive. This was for the simple reason that the model of the way in which sensor values

arose from the base set was so simple that there was nothing else in the simulation that evolving

controllers could come to rely upon.
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Fig. 3. Each leg controller consisted of six fully connected neurons. The activity of neuron 1 and neuron 2

controlled the horizontal and vertical leg angles respectively.

4 The evolutionary machinery

In this section we describe the evolutionary machinery that, together with the minimal simulation

described above, was responsible for evolving neural network control architectures that could perform

the behaviour satisfactorily in reality.

Neural networks

While network parameters (connection weights, time constants, thresholds and so on) were under

evolutionary control in the experiments described in this section, the overall shape of the network

architecture was �xed to be the same for every member of the population. The repetitive movements

characteristic of multi-legged walking behaviours were produced by a main oscillatory network of 8

coupled sub-networks, each responsible for the direct control of a single leg. The properties of this

oscillatory network were then modulated by the output from three sensory neurons (one each for left

and right infra red and one for the bumpers) and one permanently saturated bias neuron to produce

the di�erent movement patterns for walking forwards, backwards and turning. This architecture is

very similar to, and was based upon, that used by Gallagher and Beer in [1]. The components of this

architecture will now be explained in detail.

Figure 3 shows one of the basic sub-networks responsible for the control of each leg. All eight sub-

networks were identical in that only one set of sub-network parameters (threshold constants, connection

weights and so on) was encoded on the genome and repeated eight times. These sub-networks consisted

of six fully interconnected neurons, numbered 1 to 6 in the diagram, of the same type as those used by

Gallagher and Beer in [1]. At each iteration, the input activity A

j

of each of the j = 1 to 6 neurons

in each of the 8 sub-networks was calculated according to equation 1
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Fig. 4. This diagram shows how each leg-controller sub-network was coupled to the sub-network opposite it

on the body and to the sub-network either side of it with wraparound.

each of the 8 sub-networks was calculated from the input activity A

j

according to the sigmoid function

of equation 2
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where t

j

was a threshold constant associated with the j

th

neuron. The range of possible values of each

of these genetically speci�ed constants is listed below.

The output of neuron 1 in each sub-network was responsible for the signal to the servo-motor controlling

the horizontal motion of the leg in question, and the output of neuron 2 was responsible for the signal

to the servo-motor that controlled the vertical angle of the leg (see �gure 3). For neuron 1, an output

of 0 mapped onto a signal to the horizontal servo motor to point as far backwards as it could go, and

an output of 1.0 mapped onto a signal to the the servo motor to point the leg as far forward as it could

go. For neuron 2, outputs of 1 and 0 mapped onto signals to the vertical servo motor to position the

leg in the fully up and down positions respectively.

Each sub-network was coupled to the sub-network directly opposite it and to the network on either

side of it (with wraparound) as in �gure 4. Each sub-network to sub-network coupling involved six
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Fig. 5. This diagram shows how each connection between leg-controller neurons contains a synapse `gate' that

can be turned on or o� by sensor neurons and the bias neuron. For the sake of diagrammatic simplicity only

one connection is shown, whereas in reality every connection in every leg controller sub-network (36� 8 = 288

connections in total) contains a synapse that can be modulated in this way.

symmetrical connections: from neuron 1 in one network to neuron 1 in the other, from neuron 2 to

neuron 2, neuron 3 to neuron 3 and so on. All 4 cross-body couplings were identical in the sense that

only six connection strengths were encoded on the genome and this set of six was repeated 4 times.

All 8 along-body couplings were identical in the same way.

Figure 5 shows an example of how the connections between the neurons that made up the leg-controller

sub-networks could be modulated by the sensor neurons and the bias neuron. Each connection between

leg-controller neurons can be thought of as having had a synapse half way down its length that acted as

a gate: open and the connection was una�ected, closed and the connection was switched o�, e�ectively

reducing the weight on the connection to zero. The synapse itself received input from sensor neurons

and the bias neuron by way of weighted connections. If the total input to the synapse was greater

than zero then the synapse gate was open and the connection between the leg-controller neurons was

una�ected. If the total input to the synapse was less than zero then the synapse gate was closed and

the weight on the connection between the leg-controller neurons dropped to zero.

Figure 6 shows how the three sensor neurons and the bias neuron were connected up to the synapses of

the leg-controller sub-networks. Each of the thick black arrows represents 36 connections, one for each

of the 36 synapses of a leg-controller sub-network. In total, three sets of 36 connection weights were

encoded on the genome: one set for the infra-red sensor neurons, one for the bumper sensor neuron

and one for the bias neuron. Thus each of the two infra-red sensor neurons were connected to the

synapses of the leg-controller sub-networks on the appropriate side by way of four identical sets of 36

connections (both sets of four were also identical to each other), and both the bumper sensor neuron
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Fig. 6. This diagram shows how the sensory neurons and the always-on bias neuron were connected to the

synapses of the leg controller sub-networks. Each of the thick black arrows represents 36 connections, one to each

synapse in the leg controller. The cross-body and along-body couplings between leg-controller sub-networks

have not been shown in this diagram.

and the bias neuron were connected up to all eight leg-controller sub-networks by way of eight identical

sets of connections each.

A weighted input connection was associated with each of the three sensor neurons and the bias neu-

ron. The signals from the infra-red sensors and bumper sensors that fed into these connections were

normalised to lie within the range 0 to 1. In the case of the bias neuron, the signal that fed into its

weighted input connection was permanently set at 1.

The network was updated iteratively using time-slicing techniques at a rate of 16 updates per second

(or the simulated equivalent of a second). Also, in order to reduce computational overheads, a 200

place look-up-table was provided for the sigmoid function in place of the standard C-library maths

functions.

Encoding scheme

Since the layout of the neural network architecture was �xed and prede�ned for every individual, a

simple direct encoding scheme was employed. Every parameter was encoded on the genotype by a



real number in the range 0 to 99, and this was mapped onto the relevant range during decoding. The

parameters that were encoded and the ranges onto which they were mapped are as follows:

{ 36 connection weights for the leg-controller sub-networks mapped onto the range �16.

{ 12 cross-body and along-body coupling connection weights mapped onto the range �16.

{ 36 infra-red sensor neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 36 bumper sensor neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 36 bias neuron to synapse connection weights mapped onto the range �6:5 to 25:5.

{ 9 unit threshold constants mapped onto the range �4: 6 for the leg-controller sub-network neurons,

1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the bias neuron.

{ 9 unit time constants mapped onto the range 0:5 to 5:0: 6 for the leg-controller sub-network neurons,

1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the bias neuron.

{ 3 input connection weights mapped onto the range �16: 1 for the infra-red sensor neurons, 1 for

the bumper sensor neuron and one for the bias neuron.

which makes a total of 177 parameters. Thus genotypes were strings of 177 numbers in the range 0 to

99.

Genetic algorithm and genetic operators

The genetic algorithm was an extremely simple generational model with tournament selection and

elitism. After evaluating every member of the population, o�spring genotypes were repeatedly produced

until the next generation was full. To make a new o�spring, two pairs of individuals were picked

at random from the population and the �ttest individuals from each pair (i.e. the winners of the

tournaments) were chosen to act as parents. The o�spring genotype was then formed from these

two parents through a process of crossover and mutation: single point crossover was applied with a

probability of 1, and every one of the 177 numbers that made up the o�spring had a 0.02 chance of

being mutated. A mutation involved changing the number in question by a random amount taken from

a roughly normal distribution with a standard deviation of around 18. If the new value was greater

than 99 or less that 0 then it was clipped to lie within this range.

5 Experimental results

After removing some initial bugs from the code

2

, reliably �t controllers evolved on practically every

run within around 3500 generations. This took around 14 hours to run on a Sun Ultra SPARC and

simulated over 11 weeks worth of real world evolution. When downloaded onto the real octopod,

reliably �t controllers made the robot walk around its environment in a satisfactory manner, turning

away from objects that fell within infra red range on both the right and the left hand side and backing

away from objects that it hit with its bumpers.

Unfortunately, we must make do with the bald statement of fact that evolved controllers successfully

crossed the reality gap. It is not possible to demonstrate it here due to both the nature of the octopod

robot itself and the format of the paper. If the robot was equipped with position sensors on each of

the legs then data recorded from these sensors as the robot moved around a real-world environment

could be used to provide such a demonstration. The robot, however, is not equipped with sensors of

2

One such bug, spotted by Jerome Kodjabachian, meant that the penalty due to robot instability was e�ec-

tively applied at random. Surprisingly, even with such a fundamental error in the code, controllers evolved

that were able to perform the task perfectly satisfactorily when downloaded onto the robot.



this type and data of the required type is not available. The other form such a demonstration could

take, and probably the most natural, is the evidence provided by video footage of the robot wandering

around its environment. This cannot, however, be pro�tably presented as part of a text and pictures

document; even if a sequence of stills taken at short and regular time intervals were displayed, this

would not be all that informative as to how the legs of the robot moved in the real world unless there

were an impractically large number of them.

In lieu of any method of demonstrating how the legs of the real robot moved as it wandered around

its environment, the best we can do is to provide a demonstration of how the motor signal patterns to

these legs change in response to each of the four sensory scenarios. Figure 7 o�ers such a demonstration

for a typical reliably �t controller that evolved after 3200 generations. From top to bottom, the �rst

eight traces provide a novel representation of the motor signals issued to each leg over the course of an

average �tness trial, and the bottom two traces show the resultant velocities of the left and right side

of the simulated robot respectively. The best way of explaining how to read the slightly bizarre looking

motor traces is to describe how they were generated. At each iteration of the simulation, a short line

representing the current motor signal was added to the right hand side of each motor signal trace. As

can be seen from the �gure, these lines were of various thicknesses and were always drawn from the

horizontal centre line of the trace either up and to the left or down and to the left with various di�erent

gradients. The thickness of each line represented the vertical angle of the leg relative to the ground

as speci�ed by the motor signal in question: the thicker the line, the lower the leg, and the thinner

the line the higher the leg. The gradient of the line represented the horizontal angle of the leg relative

to the body as speci�ed by the motor signal in question: the further up and to the left, the further

forwards relative to the body, and the further down and to the left, the further backwards relative to

the body. In this way, although they are perhaps harder to read than other less informative types of

trace devised to convey similar information (see [1] for example), each of the motor signal traces of

�gure 7 represents both the vertical and horizontal components of the relevant signal over the course

of a �tness test.

From the left and right velocity traces in �gure 7 it is evident that the octopod moved forwards, then

turned on the spot to the right, then backed up for a period and then rotated on the spot to the left.

This corresponds to the order in which the four sensory scenarios arose during the �tness test that

gave rise to this �gure: no sensors active, left IR sensor active, bumpers and whiskers active, right IR

active. Close inspection of the eight motor signal traces reveals:

{ In the absence of any sensory activity the robot proceeded forwards using the classic tripod gate.

Note that each leg is perfectly out of sync with the leg directly opposite it on the other side of the

body.

{ In response to activity from either of the two IR sensors, the motor signals sent to each of the legs

on the side of the robot furthest from the sensor suddenly became the exact opposite of the signals

sent to each of the corresponding legs on the side of the robot nearest the sensor. This made the

side nearest the sensor signal go forwards and the one furthest away move backwards.

{ In response to activity from the bumpers and whiskers, the robot proceeded backwards using a

backwards tripod gate. Note that just before this phase of the simulation was �nished, but well

after the short-lived inputs to bumpers and whiskers had ceased, the robot paused with all legs

down and back for a moment.

When downloaded onto the real robot, these motor patterns and walking gates were clearly and reliably

recognizable.
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Fig. 7. Each leg controller consisted of six fully connected neurons. The activity of neuron 1 and neuron 2

controlled the horizontal and vertical leg angles respectively.

6 Comments

The minimal simulation used in this paper makes full use of the arguments put forward in [9] to evolve

controllers for the octopod robot. Simply put, these arguments state that a minimal simulation need

only model the real-world dynamics involved in successful behaviour and no others. This is because

the only controllers that must cross the reality gap, if the simulation is to be a success, are precisely

those that use these dynamics (i.e. perform the behaviour) and no others. For many robotics setups

and behaviours this may not be of any use since the dynamics involved in successful behaviour may be

neither obvious ahead of time nor qualitatively di�erent to the rest of the dynamics of the system. For

the experiments reported in this article, however, the dynamics of the octopod robot during successful

walking and obstacle avoiding behaviour were both relatively easy to identify and much easier to model

than the dynamics of the octopod robot as a whole. A minimal simulation that modelled these dynamics

alone was therefore easy to construct and ran extremely fast when compared to the simulation that

would result from attempting to model all of the dynamics of the octopod robot within its environment.
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