
Improving Software Designs

via the

Minimum Description Length Principle

Joseph Arthur Wood

492

January 1998

ISSN 1350{3162

Cognitive Science

Research Papers

Gender

Male pronouns have been used in this thesis to refer to people of both sexes in order to smooth the

flow of the text rather than imply any sexual bias.

Nomenclature

The word Ada without qualification refers to the Ada83 programming language, defined in Ichbiah

et al. (1983).

HOOD, without qualification, is used to refer to HOOD version 3, defined in Delatte et al.

(1993). All references to HOOD 4 (HOOD HRM, 1995) are explicit.

A number of words are used in the literature (e.g., function, procedure, operation, and routine)

to refer to a similar concept. Frequently, each word has a slightly different meaning; for example,

functions are often seen as procedures without side-effects. In this thesis we do not require these

distinctions, and so all such words are equivalent. In general we shall use HOOD’s term operation.

In this thesis, the word object is used to refer to a collection of co-operating items, whereas

the word module is generally used to refer to the older concept of sub-programs, see Page-Jones

(1992). Typically, a module is just a HOOD operation.

Trademark Acknowledgments

A number of trademarks are used in this thesis and for brevity are declared once here as follows

but apply throughout the thesis:

Trademark Trademark Owner

Ada U.S. Department of Defense, Ada Joint Program Office.

ANSI American National Standards Institute.

AT&T AT&T.

HOOD HOOD User Group.

POPLOG University of Sussex.

PostScript Adobe, Inc.

SADT SofTech, Inc.

UNIX AT&T.

All other trademarks are acknowledged.

Typographic Conventions

A few type definitions are given in Chapter 7, these are presented in VDM, see for example Casey

(1994) or Dawes (1991). We have adopted the convention that type-names start with an uppercase

letter, and record field names start with a lowercase letter.

Acknowledgements

This thesis is dedicated to the memory of my father, Arthur Wood (1905–1990). I would like to

thank my mother for all the support and encouragement that she has given me.

As with all human endeavours the author owes a debt of gratitude to numerous people. In par-

ticular I should like to thank Dr. Luca Aceto, Dr. Theo Avantigis, Dr. Steve Easterbrook, Dr. Rüdi

Lutz and Dr. Des Watson for acting as my Thesis Committee, and for all their invaluable advice

and encouragement.

I wish to thank AT&T for permission to use their graph visualisation software (dotty, dot and

lefty). I also wish to thank CISI Enginerie (especially Maurice Heitz), Centre National d’Etudes

Spatiales (CNES) and the ESA for supplying a large sample of HOOD designs. My thanks also to

CRI A/S for a copy of the RAISE Method Manual before its publication in England. I also wish

to thank Rüdi Lutz and Robert Duncan for giving me access to a full version of Linux Poplog, this

was a great help.

Numerous people have helped in this endeavour (in no particular order): Amer Al-Rawas,

David Blackman, Joanna Brook, Frank Calliss, David Carlisle, Stuart Clark, Changiz Delara,

Robert Duncan, Liz Eastwood, Alan Jeffrey, Stuart & Sharon Lythgoe, Robert Milne, Andrew

Ormsby, David Perella, Peter Williams, Jeremy Withrington, Sarah Wood and Sean Young. I

gratefully acknowledge all their kind help, support and advice.

I must also extend a warm thanks to the COGS support team, (in particular John Gibson,

James Goodlet, Sharon Groves, Roger Sinnhuber and John Williams) who kept the system up and

running, and answered all my strange questions.

I also wish to thank my contacts at BT, for helpful comments during my periods of industrial

placement, especially Peter Utton, Betsy Cordingley, Jan Buknowski, Stephen Corley and Jeremy

Wilson.

My special thanks must go to my supervisor Dr. Rüdi Lutz for all his advice, support, encour-

agement, for answering numerous questions, and for keeping this project on course.

The author gratefully acknowledges the financial support of the Engineering and Physical

Sciences Research Council in association with British Telecom Laboratories.

Improving Software Designs

via the

Minimum Description Length Principle

Joseph Arthur Wood

Summary

This thesis studies the creation of good quality, modular software designs. It focuses on architec-

tural design, that is, the identification of components, their purpose, and interactions. This view of

software architecture naturally leads to representing a design’s structure as a graph.

Complexity can be viewed along several dimensions including coupling and cohesion. Cohe-

sion is the ‘togetherness’ of a software component, and coupling is the ‘separateness’ of software

components. These two concepts have been studied for some time, and various definitions have

been proposed. Indeed, both concepts have widely accepted ordinal measurement scales. How-

ever, a design must achieve a trade-off between these two concepts, and little has been written

about how to achieve this trade-off. Complexity needs to be controlled in order to create under-

standable, maintainable and cost effective solutions.

This thesis investigates design complexity at the architectural level, by applying Kolmogorov

complexity to the graph’s structure. To measure complexity, we use the Minimum Description

Length principle; such that when a proposed design’s structure is represented by a message, the

length of this message is taken as a measure of the design’s complexity. We show that this metric

satisfies all of Weyuker’s complexity properties.

We propose that this model of complexity is an improvement over using disjoint and less

precise measures of coupling and cohesion. Our metric captures information about the structure

of a software design; it says nothing about ease of construction, maintenance or even satisfying

the requirements. However, we suggest that ceteris paribus a simpler structure is preferred over a

more complex structure, because it is cheaper and more reliable.

A prototype tool, Morpheus , is described which manipulates a design’s architecture, to pro-

duce a shorter representation, we suggest that this new design is simpler than the original. We

demonstrate its use with a medium sized example in HOOD notation.

Submitted for the degree of D. Phil.

University of Sussex

January 1998

Contents

I Background 1

1 Introduction 3

1.1 Purpose of the Research . 3

1.2 Motivation . 4

1.3 Complexity: the Central Problem . 4

1.4 Synopsis of the Research . 5

1.4.1 Assumptions . 5

1.4.2 Goals . 5

1.4.3 Anticipated Benefits . 5

1.5 Thesis Structure . 6

1.6 Outline of our Solution . 6

2 Software Design 8

2.1 Design Theory . 8

2.1.1 What is Design? . 9

2.1.2 Values in Design . 9

2.1.3 Design Problems . 9

2.1.4 Design Forms . 10

2.1.5 Design Evolution . 11

2.1.6 Summary of Design Theory . 12

2.2 Psychological Aspects of Software Design . 12

2.3 Design Notations . 13

2.3.1 Natural Language . 14

2.3.2 Graphical Notations . 15

2.3.3 Formal Languages . 15

2.3.4 Choice of Language . 16

2.4 Design Methods . 16

2.4.1 Functional Decomposition . 16

2.4.2 Data Structured Design . 17

2.4.3 Object Oriented Design . 17

2.4.4 Formal Methods . 18

2.5 Complexity: The Scourge of Engineering . 19

2.6 Architectural Design . 20

2.6.1 What is an Object? . 20

2.6.2 Are these the Right Objects? . 20

2.6.3 What does Ψ Measure? . 23

2.7 Design as a Graph . 23

3 An Overview of HOOD 25

3.1 Introduction . 25

3.1.1 What is HOOD? . 25

3.1.2 Where does HOOD sit in the Software Life-cycle? 25

3.1.3 The HOOD Design Method . 26

3.2 Example: Controlling the Traffic Lights . 27

viii Contents

3.3 Objects - Architectural Components . 28

3.3.1 Traffic Lights - Graphical Notation . 28

3.4 HOOD Components . 29

3.4.1 Passive Objects . 29

3.4.2 Active Objects . 30

3.4.3 Operation Control Objects . 30

3.4.4 Environmental Objects . 30

3.4.5 Visibility . 30

3.5 HOOD Entities . 31

3.6 Textual Representation . 31

3.7 Unused HOOD Facilities . 36

3.8 Rationale for Choosing HOOD . 37

3.9 Augmented HOOD . 37

3.10 Further Reading . 37

4 Complexity Measures 38

4.1 Requirements for a Complexity Measure . 39

4.2 Existing Complexity Metrics . 39

4.2.1 Program Complexity Metrics . 39

4.2.2 Design Metrics . 40

4.2.3 Object Oriented Design Metrics . 41

4.2.4 Information Theory and Design Metrics 41

4.3 Combining Different Measures . 42

4.4 The Dual Problem: Reverse Engineering . 42

4.5 Towards a Merit function . 42

4.6 Validating Complexity Measures . 43

II Theory 45

5 Mathematical Background 47

5.1 Graph Theory . 47

5.1.1 Basic Terms . 47

5.1.2 Operations on Graphs . 49

5.1.3 Simple Design Graphs . 51

5.1.4 Hierarchical Graphs . 52

5.1.5 Full Design Graphs . 52

5.1.6 Design Graph Concatenation . 53

5.2 Information Theory . 53

5.2.1 Kolmogorov Complexity . 54

5.2.2 Minimum Description Length Principle 55

5.2.3 Prefix Encoding of Positive Integers . 55

5.2.4 Length of Code Words with Known Probabilities 57

5.2.5 Further Reading . 58

6 Describing a Graph 59

6.1 The Message Passing Metaphor . 59

6.2 Ψ: The Complexity of a Design Graph . 59

6.2.1 Describing the Edges in a Graph . 59

6.2.2 Connections in a Single Object . 62

6.2.3 Extensions for Multiple Objects . 63

6.2.4 Further Extensions for HOOD . 65

ix

6.3 A Complexity Measure? . 67

6.4 Theoretical Validation . 67

6.4.1 Weyuker’s Properties . 67

6.5 Conclusion . 72

III Morpheus 73

7 Morpheus: A Prototype System 75

7.1 Extensions to HOOD - Augmented HOOD . 75

7.2 Implementation . 76

7.2.1 Basic Structure . 76

7.2.2 Parser . 76

7.2.3 Data Analyser . 78

7.2.4 Improvement Engine . 82

7.3 Limitations . 85

7.3.1 Physical Resources . 85

7.3.2 Missing Information . 86

8 Empirical Evidence in Support of Ψ 87

8.1 Initial Experiments . 87

8.1.1 Varying Group Size . 87

8.1.2 Moving Basic Entities . 92

8.1.3 Reducing Cohesion . 92

8.1.4 Increasing Coupling . 99

8.2 A Small Example: Traffic Lights . 106

8.2.1 Discussion on the Traffic Lights Design 107

8.3 TriviCalc - A System to Design . 114

8.3.1 Improvement? . 115

8.3.2 Support for Future Changes? . 115

9 Summary and Conclusion 117

9.1 Summary of this Thesis . 117

9.2 Evaluation . 118

9.2.1 Achievements . 118

9.2.2 Industrial Application . 119

9.3 Further Work . 119

9.4 Contribution of This Thesis . 120

Bibliography 121

A Augmented HOOD 128

A.1 Changes to Existing Syntax . 128

A.1.1 Pseudo Code . 128

A.2 Pseudo Code Enhancements . 128

A.3 Semantics of Augmented HOOD . 129

B TriviCalc - An Example 130

B.1 TriviCalc Reference Manual . 130

B.2 Original TriviCalc design . 135

B.3 TriviCalc Module Structure . 169

B.3.1 Original TriviCalc design Module Structure 169

B.3.2 Final TriviCalc design Module Structure 174

x Contents

C Glossary and Abbreviations 179

D Notation Summary 183

List of Figures

1.1 Overview of Morpheus . 3

2.1 Design requirements . 10

2.2 Design forms . 11

2.3 Interaction of Coupling and Cohesion . 22

3.1 Waterfall Model of the Software Life-cycle . 26

3.2 Traffic Junction with Lights . 27

3.3 HOOD graphical notation - Traffic Lights . 29

4.1 Overview of Morpheus . 38

5.1 A graph . 48

5.2 A tree . 49

5.3 Two graphs . 50

5.4 Graph union . 50

5.5 Graph intersection . 50

5.6 Design Graph of Simple Stack . 51

5.7 A hierarchical graph . 52

5.8 Top graph of the hierarchical graph . 52

5.9 Design Graph of Stack ADT with Caller . 54

5.10 Object Structure of Stack ADT with Caller . 54

5.11 Graph of log�2 . 57

6.1 Simple graph . 60

6.2 Chain Graph . 61

6.3 Star Graph . 62

6.4 A Nested Design Graph . 63

6.5 Modular Tree Structure of Nested Design Graph 64

7.1 Architecture of Morpheus . 77

7.2 Data Analysis Phase . 79

7.3 Symbol Table . 79

7.4 Object Structure Table . 81

7.5 Entity Tree . 81

7.6 Entity Structure Table . 81

7.7 Linkage Table . 82

7.8 Secondary Information . 82

7.9 Improvement Engine Phase . 83

7.10 Morpheus’s Search Strategy . 84

7.11 Active List . 84

7.12 History List . 85

8.1 Grouping with 2 groups of 3 entities . 88

8.2 Grouping with 2 groups of 5 entities . 89

8.3 Grouping with 2 groups of 10 entities . 90

8.4 No structure with 2 groups of 5 entities . 91

xii List of Figures

8.5 Cohesion with 2 groups, one with 10 links . 93

8.6 Cohesion with 2 groups, one with 9 links . 93

8.7 Cohesion with 2 groups, one with 8 links . 94

8.8 Cohesion with 2 groups, one with 7 links . 94

8.9 Cohesion with 2 groups, one with 6 links . 95

8.10 Cohesion with 2 groups, one with 5 links . 95

8.11 Cohesion with 2 groups, one with 4 links . 96

8.12 Cohesion with 2 groups, one with 3 links . 96

8.13 Cohesion with 2 groups, one with 2 links . 97

8.14 Cohesion with 2 groups, one with 1 link . 97

8.15 Cohesion with 2 groups, one with no links . 98

8.16 Coupling with 2 groups, and no links between groups 100

8.17 Coupling with 2 groups, and 1 link between groups 100

8.18 Coupling with 2 groups, and 2 links between groups 101

8.19 Coupling with 2 groups, and 3 links between groups 101

8.20 Coupling with 2 groups, and 4 links between groups 102

8.21 Coupling with 2 groups, and 5 links between groups 102

8.22 Coupling with 2 groups, and 6 links between groups 103

8.23 Coupling with 2 groups, and 7 links between groups 103

8.24 Coupling with 2 groups, and 8 links between groups 104

8.25 Coupling with 2 groups, and 9 links between groups 104

8.26 Coupling with 2 groups, and 10 links between groups 105

8.27 Graph of original Traffic Light design . 109

8.28 Graph of flat Traffic Light design without environment 110

8.29 Graph of flat Traffic Light design with environment 111

8.30 Graph of Morpheus’s Traffic Light design without environment 112

8.31 Graph of Morpheus’s Traffic Light design with environment 113

B.1 Diagram of initial display . 131

List of Tables

6.1 Calculation of Chain Graph’s Message Length 61

6.2 Calculation of Star Graph’s Message Length . 62

8.1 Effect of Increasing Group Size . 88

8.2 Effect of Reducing Cohesion within a Group . 92

8.3 Effect of Increasing Coupling between Groups 99

8.4 Experiments with Traffic Light Design . 106

Part I

Background

1

Chapter 1

Introduction

Programming is neither science nor mathematics. Programmers are not adding to our

body of knowledge; they build products.

: : :

The majority of engineers understand very little about the science of programming

or the mathematics that one uses to analyze a program, and most computer scientists

don’t understand what it means to be an engineer. Parnas (1997)

Software design is a hard problem involving domain knowledge, creativity and software engineer-

ing skills. This thesis focuses on the application of software engineering for the creation of good

quality, modular designs. This thesis does not address domain knowledge or creativity, leaving

these instead to human experts and other research.

Software engineering has many dimensions, including: economics of software production and

ownership, management of software projects, the quality and safety of software products as well

as the more limited role of programming.

1.1 Purpose of the Research

This research aims to develop a prototype tool for improving software designs. We have called

our prototype Morpheus , as a reminder that it changes the shape of a software design. In our case

Morpheus manipulates a design’s architecture to produce a simpler and ‘better’ representation, see

Figure 1.1.

Figure 1.1: Overview of Morpheus

Clearly, the development of such a system raises many questions, most notably

� What is a software design?

4 Chapter 1. Introduction

� How is the input of a design to be expressed?

� How are alternative designs created?

� What constitutes a ‘better’ design?

It is the purpose of this thesis to try and answer these questions.

1.2 Motivation

We know from empirical studies (Boehm, 1981), that the cost of correcting defects grows signifi-

cantly the later in the development process the problem is uncovered. Therefore the more potential

errors that are found in the early stages of development reduces the economic costs of owning the

software. This potential for significantly decreasing costs means that the design phase of software

development is an area which merits further research. Moreover, software design is a sophisticated

human skill worthy of study for its insights into other intelligent behaviour.

Most Computer Aided Software Engineering (CASE) tools available today, are little better

than glorified drawing packages sometimes with associated databases. Such tools provide support

for drawing pictures, and recording information about the software being designed. The more

sophisticated systems allow information to be shared by several engineers, and detect improper

use of notation and missing elements. Although useful these facilities are limited and perform

only a shallow examination of the software being designed. What is needed are tools which

provide constructive guidance to produce better designs. Such tools would involve a much deeper

analysis of the product being designed.

1.3 Complexity: the Central Problem

Having recognised that software design needs improving, we need to identify what we mean by

‘better’? Clearly there are a range of answers to this question involving concepts such as faster,

cheaper, less complicated, easier to maintain and more reliable.

In this thesis we define ‘better’ as being structurally less complex. It seems reasonable that

ceteris paribus a less complex artefact will be preferred over more complex artefacts. Moreover,

by making the design less complex, it should be easier for the designer to spot other problems,

which should increase overall reliability as well as reducing costs.

Parnas (1972) introduced the concept of modules into software engineering; a technique well

known in other engineering disciplines. Parnas’s module was a much simpler affair than today,

broadly being a sub-program.1 However, the concept evolved through structured programming,

and abstract data types into what today would essentially be called an object.2

Early in the evolution of modules, people began to realise that some modules were ‘stronger’

than others, and less influenced by changes in other parts of the system. This was aptly named the

‘ripple-effect’, because seeming minor changes in one part of the system could cause perturbations

right across the entire system. Thus people became very interested in how to create modules

which were self-contained and had little interdependency with their neighbours. These notions

were formalised into the concepts of cohesion and coupling. Cohesion being the singleness of

purpose of a module, i.e., everything in the module should contribute to the module’s purpose and

nothing else. Coupling is the interdependency between modules, i.e., how vulnerable the module

is to changes in other modules.

This early work implicitly assumed that modules did not themselves contain further modules.

However, there is no reason why a module should not itself contain sub-modules which are, of

course, modules in their own right. By analogy with family trees it is convenient to call a module’s

1In the subroutine sense of the word.
2The encapsulation of a state together with a well-defined interface to access and change the state.

1.4. Synopsis of the Research 5

sub-modules its children, and the module containing a given sub-module its parent. Modules

which may contain sub-modules are called nestable. Modules, unlike humans, can only have

one parent. Further, if a module is contained in another (larger) module, then the whole of the

sub-module must be contained in the single parent.

When an entity has to be shared between several modules, there is potentially some tension as

to which module should ‘own’ the entity. This problem is exaggerated by nesting modules. Since,

by implication of good design, a module (at any depth) must be cohesive; however a module’s

children (if any) must have low coupling between them. As Müller et al. (1993) have observed,

humans are good at identifying building blocks, given sufficient time, but such time is often not

available.

Whilst much has been written about coupling and cohesion in isolation, little has been said

about how to make these trade-offs. Still less has been written about how to perform trade-offs

in the presence of nestable modules. We conclude therefore that an automatic tool for reduc-

ing structural complexity would have significant benefits. Such a tool would have to encompass

‘knowledge’ of how to balance coupling, cohesion and module size to achieve a better structure.

1.4 Synopsis of the Research

1.4.1 Assumptions

In the last few years, much has been written about object-oriented software. This thesis adopts

an object-based view rather than a strictly object-oriented view. The concept of an object being

an instance of a class, and indeed the entire concept of a class hierarchy is not provided in the

object-based view. In the object-based paradigm objects have well-defined interfaces which pro-

vide services to other objects. This reflects the authors’ belief that we still do not understand

coupling and cohesion in this simpler object-based paradigm. Recently, doubts have been ex-

pressed about the maintainability of large object-oriented systems, due to separation in space and

time encouraged by inheritance (e.g., Binder, 1996). Furthermore, until fairly recently textual

formalisms for capturing object-oriented architectural designs were not readily available; this sit-

uation has changed with the development of the Unified Modelling language (UML) (see Fowler

and Scott, 1997; UML, 1997).

1.4.2 Goals

We can state Morpheus’s goal succinctly, as: Given an initial closed3 design, Morpheus seeks a

structurally less complex (alternative) design. Morpheus takes the lowest level connections formed

by the designer as fixed and manipulates the design’s modular structure.

1.4.3 Anticipated Benefits

Several benefits flow directly from this research

� A structural complexity measure, which permits the complexity of alternative designs to be

compared. Such measures are currently not available.

� A method for finding alternative architectural designs.

� An automatic system for finding simpler designs (if possible) to a proposed design.

Potential benefits of this work include

� Easier to understand designs.

3A system is said to be closed, if there are no references in the system to entities not defined in that system.

6 Chapter 1. Introduction

� More defects found at design time, because the design is more coherent and easier to under-

stand.

� Lower software ownership costs.

1.5 Thesis Structure

The remainder of this chapter provides a brief sketch of our proposed solution. Chapter 2 examines

the meaning of software design, what it means for a design to be good, different ways of capturing

designs and the important notion that an architectural design can be viewed as a graph. Chapter 3

provides a brief overview of HOOD. Chapter 4 reviews previous work on measuring software

design complexity.

Chapter 5 provides the necessary mathematical background for understanding the calculation,

derivation and theoretical validation of our proposed complexity measure. Chapter 6 presents

our complexity measure, Ψ, in detail, explaining how it is calculated and why it is a complexity

measure.

Chapter 7 describes our extensions to HOOD for capturing a more detailed description of the

proposed software architecture and the implementation of our prototype system (Morpheus) for

improving designs. Chapter 8 describes the application of Morpheus to a moderately sized software

design. As our sample project we have chosen a simple spreadsheet, which the authors designed

and then processed through Morpheus . We examine Morpheus’s proposed changes and consider

whether the design has been improved.

Finally, Chapter 9 provides a summary of this thesis and a critical evaluation of what has been

achieved in this research.

1.6 Outline of our Solution

This section provides a brief overview of the proposed solution to the problem outlined above.

After reviewing several possible options for expressing designs, the HOOD notation was se-

lected. It has the advantages of both a graphical and a textual representation and is designed for

capturing architectural designs (Delatte et al., 1993; Rosen, 1997).

An architectural design can be represented as a hierarchical graph, where nodes may expand

into further graphs.

We now need a complexity measure for our hierarchical graphs. This is loosely based on

Kolmogorov complexity, using a form of the Minimum Description Length principle (Rissanen,

1978). Our measure, Ψ, is the length of a decodable message describing the structure of the design

graph.

The mathematical theory covering Kolmogorov complexity assures us that the lengths of such

messages provide an approximate measure of the absolute complexity of the underlying object,

assuming, of course, that the coding used to describe a graph’s structure is a reasonable approxi-

mation to the best possible. In reality such an assumption is unprovable. However, the approach

does give us a handle into finding a complexity measure.

Using our complexity measure, we are able to develop a few theorems (with proofs) that

suggest that our measure does not run counter to intuition. Further, we prove that all of Weyuker’s

(1988) proposed complexity properties are satisfied by our measure.

Once we model an architectural design as a hierarchical graph, finding an alternative design

just becomes a matter of manipulating the graph. This combined with our complexity measure,

allows us to decide easily if a proposed design is better than another.

1.6. Outline of our Solution 7

The beginning of wisdom is found in doubting;

by doubting we come to the question,

and by seeking we may come upon the truth.

PIERRE ABELARD (1079–1142)

French scholastic philosopher, theologian

All human knowledge thus begins with intuitions,

proceeds thence to concepts,

and ends with ideas.

EMMANUAL KANT (1724–1804)

Quoted in Hilbert’s Foundations of Geometry

Chapter 2

Software Design

Synopsis

This chapter examines the meaning of software design in more detail. We start by

asking “What is design?”, and looking at the variety of different functions that a

design has to perform. In particular we shall see that a design is not purely mechanical

but captures the value judgements of those who contribute to the design. We shall then

look at various ways for capturing designs and briefly review a broad range of design

methods. We shall then examine the established properties of a good design. We

conclude by looking at the meaning of architectural design and the idea of a design as

a graph.

2.1 Design Theory

Design1 theory is concerned with the nature of design in a largely domain independent manner.

This allows us to look at software design in a more abstract style, and illustrates why many soft-

ware design methods have failed to meet the expectations of their advocates and the software

industry.

This and following sections summarise (based on Dasgupta’s 1991 exposition) the main results

of applying design theory to software.

One of Dasgupta’s reasons for this examination of design is to address philosophical questions

relating to the role of design as a science; and the relationship between science and engineering.

We, however, are more interested in what this study has to say about the nature of design from a

pragmatic engineering (i.e., usability) perspective. It should be noted that Dasgupta argues that

the methodical distinction between science and engineering is extremely blurred, if it even exists.

We have no reason to disagree with this view.

Following Dasgupta we shall look at the following questions about design:

� What is design?

� The role of values in design.

� How is a design expressed?

� How do designs evolve over time?

1This section is heavily based on the work of Dasgupta (1991).

2.1. Design Theory 9

A variety of design methods have appeared over the years (see Section 2.4), most of which

advocate a strict approach to design, usually top-down, and occasionally bottom-up. But both

experience and studies of professional programmers suggest that an opportunistic approach is

taken to design (see Visser and Hoc, 1990), see also Section 2.2 below. Thus a design method

should not force a particular approach but rather foster the design development process. Moreover

if design is a search activity, it is unlikely to progress smoothly and it will evolve in several

directions at once.

Attempts have been made to automate the process of reverse engineering by identifying con-

cepts in programs and designs, for example Biggerstaff et al. (1994). However these are large

undertakings and are some way from demonstrating their general applicability. Traditionally the

best solution we have to identify poor design is by inspection of some kind—generally a formal

design review (e.g., Fagan (1976) and Yourdon (1986)). However, such an approach is critically

dependent on the reviewers and consumes hours of experienced labour which might be better em-

ployed elsewhere. There is a tendency for reviewers to concentrate on the surface presentation

of the document rather than its deeper (harder to perceive) message. What we would like to do

is provide some confidence that the design is ‘reasonable’2 at an early stage. This would help

the designer, management and subsequent reviewers to focus on those problems which cannot be

automated such as potential changes.

2.1.1 What is Design?

This seemingly innocent question belittles the complexity of design. At the outset we should

recognise that design is both the process of creating a design, and the final output of the design

process.3 Hence we see that no simple definition of design will suffice. The next stage is to

consider the how, what and why of designs in greater detail.

2.1.2 Values in Design

A design is only produced in response to a set of (possibly fuzzy) requirements. However, a set of

requirements is only produced because someone recognises a need to change the current situation.

The very act of perceiving such a need implies a value judgement that the current situation is

inadequate and could be improved. Moreover, the acceptability of one solution vis-a-vis another

involves further value judgements.

Recognition simply asserts that we do not believe that the current situation is the best that can

ever be achieved. Evaluation is more interesting and admits that designs are assessed based on

our (internal) beliefs. Such beliefs may involve such concepts as ‘understandability’, ‘simplicity’,

‘value for money’, ‘aesthetics’, etc. It should be borne in mind that mathematicians employ such

concepts in judging proofs, for example “Beauty is the first test; there is no permanent place in the

world for ugly mathematics ” (Hardy, 1947, p.25).

Now we see the beginnings of a problem; engineering endeavours far from being purely pos-

itivist, have become normative in nature. Such a conclusion does not bode well for creating a

purely analytical design tool. Whilst we may be able to differentiate between two competing de-

signs, this must in part be done on the basis of personal values. So another individual may prefer

an alternative solution based on their own value system. The difficulty with this is that such value

systems are generally hidden and extremely hard to make explicit.

2.1.3 Design Problems

We saw earlier that a design is produced in response to a set of requirements. The design process

is then concerned with the production of a design (what Dasgupta calls ‘form’), such that if the

2There is an implicit assumption here that a reasonable design is in some sense “correct”. The word “correct” is not

used at this stage since it implies a formal notion of correctness with respect to requirements and/or specifications.
3This dichotomy is illustrated by the grammar of the word, which is both a noun and a verb.

10 Chapter 2. Software Design

design is implemented, the resultant system will satisfy the requirements (see Figure 2.1). This

would also suggest that the success of a design cannot be isolated from its implementation.

Figure 2.1: Relationship between requirements, design form and

implementation, (Dasgupta, 1991, p.13).

Hence the design process can be seen as finding a solution to a set of constraints. Whilst the

requirements may be heterogeneous, the final form must be internally consistent, and capable of

translation into a working system.

If the produced artefact (from Dasgupta) is to be tested against the requirements, these require-

ments must be capable of observation. This does not necessitate that the requirements are purely

functional, only that the requirements are capable of repudiation, otherwise anything would satisfy

the requirements.

The phrase ‘well-structured’ was introduced by Simon (1973) to refer to problems in which

all the requirements were empirical (i.e., the fulfilment of each requirement could be empiri-

cally refuted),4 whilst design problems containing any non-empirical requirement were termed

‘ill-structured’ problems. The notion of a system being ‘user friendly’ is typical of ill-structured

requirements but an individual can decide if a system is ‘user friendly’.5 It should be clear that

most (all) non-trivial software design problems are ill-structured, because they contain at least

one non-empirical requirement. A consequence of ill-structured problems is that the distinction

between requirements and design is blurred, because the requirements must be clarified as part of

the design process, so that the conformity of the design form can be assessed against the require-

ments.

The term ‘bounded rationality’ was introduced by Simon (1976) as a description of the situ-

ation where a decision maker cannot or will not consider all the constraints or consequences of

a decision. Again it is clear that software design problems are generally resolved under condi-

tions of bounded rationality. Indeed it is probably the existence of bounded rationality that gives

rise to changes, inconsistencies and incompleteness in requirements. We will consider bounded

rationality again, when we consider the evolutionary nature of design solutions.

2.1.4 Design Forms

So far we have looked at the basic characteristics of the design problem. We must now examine

the forms a design solution must take. Recall that form is Dasgupta’s word for the output from the

design process, i.e., the design.

Potential forms must satisfy some broad criteria or they are inadequate as representations of

designs.

All design forms must be appropriate for communicating the conceptual (Dasgupta) design to

an implementer. Depending on the capabilities of the implementer, the level of detail in the form

may vary; i.e., the form may permit different ‘expressions’ (Bundy and MacQueen, 1994) of the

artefact.6 Hence, the division between the end of the design process and the implementation is

blurred. What is apparent, however, is that the design must capture the inter-relationships between

the components of the design, i.e., the macro level, whilst the micro level7 is of slightly less

4This accords strongly with Popper’s (1968) view of science.
5By limiting this comparison to an individual we have side-stepped the difficulty of defining ‘user friendliness’.
6When plays are produced, the final interpretation of the play is left to the director. Similarly the exact interpretation

of a high level language is left to the compiler; that is, although the semantic meaning may be determined by the

language specification, the final instruction stream is left to the compiler.
7A design problem in its own right.

2.1. Design Theory 11

importance (see Section 2.7). That is, the correct identification and connectivity of components is

essential to the design meeting its requirements; however, simply connecting a set of components

at random does not of itself constitute a design, the whole must be a unified system.

Dasgupta also makes the observation that a design form must serve as a user guide. At first

this may seem strange to software engineers who are used to separate user guides. Nonetheless,

we do expect this information in a design form. Given a new object, the first few questions are

likely to be “what does it do, and how do I use it?”, i.e., we want a user guide. Only when we have

received satisfactory answers to these questions, do we inquire into the connectivity of the object.8

Dasgupta’s final requirement for a design form is normally not addressed by software design

methods, and its absence is responsible for much current research in software and Computer Sup-

ported Collaborative Work (CSCW); a little reflection confirms that it is a necessary condition.

The design form must capture the justification (and history) of a design, so that it can be critically

examined and support changes. That is, the design form must encapsulate some notion of why

this is the preferred design. An immediate consequence is to change the nature of the design from

a static document to a dynamic form. This area is fraught with difficulties, firstly because of the

volume of information and secondly the designer may be reluctant to explain his reasoning due to

satisficing (see Section 2.1.5).

These differing requirements for the design form, are captured diagrammatically in Figure 2.2.

Figure 2.2: The three functions of a design form,

(Dasgupta, 1991, p.57).

2.1.5 Design Evolution

The previous section examined what form the ‘final’ design should take, this section examines in

more detail how designs are produced and evolve.

We saw earlier that for a problem to be ‘well structured’ it is necessary that all the (initial)

requirements can be stated empirically. However, this is not sufficient. The interaction of the

design components may be so complex as to be analytically intractable. Such problems are also

regarded by Simon (1973) as ill-structured. The principle causes of such difficulties are

: : : the nature, variety, and mutual interdependence of the choices available to the

[designer, and are such that] : : : the space of possible designs or design choices is, in

a practical sense unbounded. Dasgupta (1991, p.64)

Designers (equipped with only bounded rationality) and ill-structured problems respond by

satisficing.9 An individual satisfices when faced with a decision which must simultaneously satisfy

a number of constraints, he is content to find a solution rather than the optimum. This of course

saves resources (conspicuously time) that would be used in searching for an optimum solution. We

recognise that such behaviour is probably the norm in software houses and may be exacerbated

8Dasgupta calls this part of the design form, the context.
9The term satisficing is used by Dasgupta (1991) and Simon (1981), but as far as we know the term originated in

the economic literature.

12 Chapter 2. Software Design

by the presence of externalities.10 It is also clear that externalities exist in software design; for

example a software house which produces highly maintainable code will not receive a higher fee

for it.

An immediate result of satisficing is that software producers may be reluctant to report how

much of the design space has been explored; and the design will be sub-optimal.

2.1.6 Summary of Design Theory

Before looking at what we can do about software design problems it is worth recapitulating what

we have learnt from looking at design theory.

The distinction between the design process and the final form of the design is blurred. Further,

designs are not value free, but instead encapsulate the values of their creators and critics. Hence

the objective analysis of a design is not an achievable goal, since it would imply the ability to

assess values which we regard as ‘highly’ intelligent behaviour.

The form used for expressing designs must be able to serve as a blueprint (Dasgupta, 1991),

as a user guide, and capture the justification for the particular solution chosen. It is precisely this

latter requirement that most software design methods fail to meet.

A design is produced in response to initial (possibly fuzzy) requirements; these requirements

must be refined and unified into a final internally consistent system prior to implementation. How-

ever, the author of the requirement specification also possesses bounded rationality, and so is

unlikely to produce the requirement specification prior to design (and implementation) commenc-

ing. The implementer has some freedom in the precise detail of the produced artefact. All of

which implies that the distinction between requirements and design is extremely ambiguous; to

the extent that the design activity can be viewed as the successive refinement of requirements. This

attitude is also supported by the work of Galton (1992) who examines the relationship between

specification and implementation.

We have seen that most software designs are ill-structured, particularly large systems, which

in the presence of bounded rationality and limited resources means that designers will seek a

solution rather than the best solution. We must further accept that such limitations exist during the

requirement stage. Therefore changes to a system are the norm rather than the exception.

2.2 Psychological Aspects of Software Design

The principal limitations on the programs we write are often imposed by our inability

to comprehend the design - not by the physical capabilities of computers

Wulf et al. (1981, p.1)

The first computers were used only for calculations, and designing systems was not a complex

problem, but as computers became larger and the associated applications grew, so did the problems

of designing systems (Dijkstra, 1972). Structured programming started by Dijkstra (1968) was the

first attempt to reduce this complexity, and although not universally accepted (see Grogono, 1980;

Weinberg et al., 1975; Atkinsom, 1977), it became accepted as de facto practice (Dahl et al., 1972;

Wirth, 1974; Dijkstra, 1976).

In 1976 de Remer and Kron introduced the notion of programming-in-the-large, and high-

lighted the difference (in kind) between small programs and large systems. Large systems are seen

as both technical and managerial problems. A study by Nakajo and Kume (1991) identified a par-

tial taxonomy of design errors, the top-level classes being: program faults, human errors causing

interface faults and human errors causing function faults. An examination of these classes sug-

gests that the program faults correspond to small scale programs whilst the latter two correspond

10Externalities exist when there are ‘economic costs’ associated with a product/decision which are not borne by the

decision maker.

2.3. Design Notations 13

to large systems. The significant feature of these latter classes is a breakdown in communications

between people.

This explains our assertion in Section 2.1.4 that the macro level of design is more important

than the micro level. The identification of a design’s building blocks and how they interrelate

makes the design of the internals of a object much easier; because we have already identified

its requirements and its operating environment. This significantly aids the software engineer and

management. Management can be better informed how long each object will take to construct

because the problem has become smaller (c.f., divide and conquer). Also, the identification of

objects serves to identify the necessary communications channels between engineers rather than

making it a free for all. If, unfortunately, the wrong objects are identified, this will lead to greater

stress on the design as it will be unclear which object is responsible for each part of the whole.

Studies of expert designs Visser and Hoc (1990) suggest that far from using a single pass

top-down (Yourdon and Constantine, 1979), designers re-iterate several times and employ an op-

portunistic approach. Features of opportunistic development include

Starting the decomposition in the middle of the tree. Working simultaneously on two

distinct branches. Making interruptions for digressions at other than the current level,

for example, to deal with other subproblems or to define primitive operations, that

is, elements at the lowest level. Descending in the decomposition tree, but coming

back afterwards, for example to introduce a whole new solution decomposition level.

Visser and Hoc (1990, p.242)

This leads us to conclude that a design system must facilitate switching between levels. The

results reported by Nakajo and Kume (1991) indicate that breakdowns in communications between

individuals and groups (of individuals) are responsible for many of the difficulties experienced in

large projects. This would suggest that allowing all personnel access to the same design model

(and corresponding information) would help to reduce these problems. This corresponds to the

blackboard model in artificial intelligence, see for example Englemore and Morgan (1988).

2.3 Design Notations

This section examines various languages for representing designs. We shall examine the advan-

tages and disadvantages of the different language forms used for software design.

In Section 2.1 we examined the nature of design and the design process. This section looks at

how designs are typically represented and constructed in software engineering. It should be appre-

ciated we cannot entirely separate the design notation from the design method used. Section 2.4

looks at various methods used for solving the design problem.

Language is vitally important in design, and at least four potentially different languages can

be identified in the design process:

� The language used in the requirement specification to represent what the system is required

to do. This language is important because it sets the tone for subsequent development. How

do you express a requirement in a form understandable by non-mathematicians whilst still

being suitable for machine reasoning?

� The language used between designers to communicate and discuss ideas.

� The language used in the formal design documentation produced at the end of the design

phase of a project.

By using a naturally rich language for the design, we can concentrate on the design and

not keep wondering about how low-level libraries need modifying to handle new opera-

tions. The nearer the design language is to the problem, the more confidence we have in the

solution and the easier it is to understand.

14 Chapter 2. Software Design

This language need not be the same as the previous language.

� The target implementation language. This impacts on the types of abstraction which will

be considered by the designer. Whilst it is true that all software ultimately runs in ma-

chine code, some languages are better suited to specific tasks, because they provide better

abstractions for the required task.

It should be noted that Customers often impose languages (e.g., RSL or Z, Ada or C). This is

a pity because it limits the engineers’ choices for exploring the problem domain.

Each time a designer changes between different languages, there are two consequences. First-

ly, effort has to be put into the translation, and there is always the danger of information being

dropped because it does not translate well, i.e., semantic distance. Secondly, changing languages

brings a change in perspective, which may or may not be beneficial.

In the following sections we look at three potential languages.

2.3.1 Natural Language

Natural language plays a vital part in the design process not only because it is how we com-

municate with each other; but because it is how the original requirements will have been first

represented. Two distinct but related phenomena may occur. Firstly, the same word or phase may

be used by different people in different ways (Curtis et al., 1988), and hence an implicit confusion

is introduced. Secondly, different words may be used for what is in essence an identical con-

cept consider (for example) the pairs “on/off” and “valid/invalid”, they are both fundamentally

Boolean but we find it useful to retain distinct names related to their intended use. Therefore

we would like a design assistant to understand natural language, but this seems an unreasonable

expectation in the medium term. Perhaps in the shorter term it might be possible to match ‘fea-

tures’ against a ‘basic’ understanding. This would require at least a semi-formal language, so

that requirements, etc. can be processed, compared and contrasted. Such a semi-formal language

must be wide spectrum to permit many different concepts to be expressed. Unfortunately, such a

wide spectrum language carries its own problems in recognising that apparently different descrip-

tions are in fact coincident. However, a semi-formal language should have associated proof rules

to demonstrate the equivalence of different sentences. This would require the construction of a

minimal sub-language.

A common method for capturing designs is just plain natural language. This has been criti-

cised as being imprecise etc. However, this is not necessarily a key feature of natural language

and may well be caused by various groups higher up the design process not wishing to commit

themselves. We should be concerned about natural language because it is large and not amenable

to automatic analysis. Bear in mind though that it is understandable by all groups involved in

software production. Moreover it is a language used to express our vague ideas.11

We need to represent designs clearly and unambiguously, so that our tool Morpheus can exam-

ine the design and check for consistency etc.

Once we move away from natural language three difficulties become apparent:

� Can we express our ideas in the new smaller language?

� If our new language is accompanied by natural language, which takes precedence?

� Translation between languages can loose or gain concepts in the process.

Natural language can lack structure and may be hard to follow whereas a more artificial lan-

guage may impose structure.

11We are not suggesting or denying it is the language of thought—merely that we do use it for communication, often

before we are prepared to commit ourselves to a more formal notation.

2.3. Design Notations 15

We are interested in architectural design, so what does this tell us about our design notation?

Architecture is concerned with how the bits fit together, not with the detailed operation of a part.

Therefore a good candidate language would have strong emphasis on connectivity and less em-

phasis on internal details.

2.3.2 Graphical Notations

It has been said many times that “a picture is worth a thousand words”. This may be true of the

right sort of picture. Clearly, in the context of architectural design, showing relationships between

parts is a central issue. However, we cannot directly analysis a picture—even through people find

these useful for communication and clarification of ideas. Pictures are good at explaining how

parts interrelate, precisely what is often vague in a natural language. However, if we choose a

language with a well-defined mapping between figures and a more formal textual representation,

we can analyse the text.

Pictures convey information, and certainly help understanding, but they can take a long time

to draw, and are hard to maintain.

A picture (for example a structure chart) must conform to conventions and in so doing a syntax

is imposed. The difficulty with free text systems is that anything goes. Imposing a syntax on text

reduces its simplicity and more effort is required to write valid text. Many modern design methods

require the production of a large number of pictures. These pictures generally convey information

very well, and certainly help understanding, but they take a long time to draw,12 and are often

harder to maintain. Note maintenance might just be a name change. A solution to this criticism is

simple, diagrams must be easily convertible between graphic and textual representations, so that

engineers can perform systematic changes using a text editor. Some CASE tools13 are beginning

to provide this type of support. Hence we would like our semi-formal language to have a pictorial

representation, even if, the picture represents only a subset of the full language. We can imagine a

designer producing a rough design using pictures that are subsequently refined into a semi-formal

(textual) language. The reader will observe that there is nothing new in such a system, however, the

ability to re-engineer a ‘draft’ design does not seem to be provided by current CASE tools. Most

of the current generation of CASE tools present a graphical front-end. The ‘intelligence’ of these

systems is often shallow, concerned more with superficial design rules concerning the syntax of

diagrams rather than the deeper knowledge used by a human in constructing the underlying system

(Bujnowski, 1993).

A further point to consider with a pictorial presentation is “what exactly does the picture

mean?”. There is research in progress (Ward and Mellor, 1985; France, 1992; Fuggetta et al.,

1993) to give Data Flow Diagrams (DFD) a precise semantics, but this is generally accomplished

by adding more symbols into the visual language, and hence moving away from a simple picture,

and therefore requires more knowledge to interpret the presentation.

2.3.3 Formal Languages

Formal languages, for example RSL (George et al., 1992), VDM-SL (Dawes, 1991), CSP (Hoare,

1985) and Z (Spivey, 1989), aim to remove the imprecision inherent in natural languages by using

a mathematically based notation for capturing designs. It is true that programming languages are

formal in the above sense, but they are not sufficiently wide for specification languages (Pressman,

1992, p.288). By wideness, we mean that the semantic domain which can be expressed in a pro-

gramming language is limited to the set of computable functions, whereas a formal specification

language permits a larger set of functions to be represented. Usually specification languages carry

a proof obligation to show that the resulting system is implementable (e.g., George et al., 1995,

p.240). Whilst it may seem strange to permit such a situation, such functions can simplify the

12For example, try drawing a Data Flow Diagram in MacDraw.
13For example Software through Pictures.

16 Chapter 2. Software Design

development and expression of a specification. Formal notations are intended to be accompanied

by a natural language description of what the mathematics is modelling.

Formal languages have the advantage of being precise, unambiguous and amenable to rigorous

analysis using all the leverage that mathematics can bring to bear. Moreover they permit the

engineer to move away from the fuzzy languages used in the initial specification, and use a more

abstract and precise notation. Precise notation allows the designer to look for missing parts of the

design/specification and ambiguities, whilst also permitting a more abstract model to be developed

which allows alternatives to be explored.

However, formal languages are not without their problems. Most notably their very reliance

on mathematical notation and reasoning which the average engineer is unfamiliar with. This

is not unreasonable since the software engineers must communicate with customers and other

non-specialists. Also as Jackson (1995, p.116) has noted “formalists often forget the need to tie

their descriptions to the reality they describe”. Fetzer (1988) observed that it is impossible to

mechanically (completely) derive an implementation from a specification, which some advocates

of formal methods seem to believe. The cost (in terms of time) of producing a formal model, can

be quite high and may not be justifiable in terms of the benefits to the project.

There are undoubted areas on some projects where the advantages of formal methods outweigh

their disadvantages, but they should not be seen as a panacea, but rather as a valuable part of

software engineering’s toolkit.

2.3.4 Choice of Language

By this stage the reader may be wondering about our choice of design notation. We believe that

pictures without too many different types of symbols are an excellent media for discussing and

describing the structure of a design. However, for automatic processing the pictures must be

supported by suitable text based notation. It important that the designer supports the pictures and

formal text by informal annotation explaining how his model relates to the problem at hand. We

shall return to this topic in Section 3.8, when we examine our reasons for choosing HOOD as our

design notation.

2.4 Design Methods

In this section we look at a range of different design methods. Broadly, design methods can

be categorised into the following groups: Functional Decomposition, Data-Driven and Object-

Oriented Design. Formal methods span all of these. The following sections will examine each of

these in turn, focusing on their key features and providing various examples. It should be borne in

mind that this categorisation is neither exhaustive nor clear cut.

2.4.1 Functional Decomposition

The overall system is viewed as performing a small number of functions, each of which is succes-

sively refined until sufficient detail is achieved to permit coding to start. Generally these methods

are interested in the flow of data (de Marco, 1979; Gane and Sarson, 1979; Yourdon, 1989) round

the system.14 Functional decomposition is the oldest design method and the most natural. Exam-

ples of these methods include:

� Structured Design (SD) also known as Stepwise Refinement (Wirth, 1971),

� System Architect’s Apprentice (SARA) (Lor and Berry, 1991),

� Structured Analysis and Design Technique (SADT) (Marca and McGowan, 1988),

14For real time systems see Ward and Mellor (1985)

2.4. Design Methods 17

� Modular Approach to Software Construction Operation and Test (MASCOT) (MASCOT,

1987)

Let us briefly consider stepwise refinement as an example of this design methodology. Step-

wise refinement was proposed by Wirth (1971). The design is developed by successively refining

the previous procedural detail. Thus a system is progressively decomposed from high level func-

tional statements until programming language statements are reached. This process can be though

of as elaborating the design, at each iteration we provide more detail.

At least three different “rules” for refinement have been identified, namely (Grogono, 1980):

divide and conquer, make finite progress, and analyse cases. It is important to realise that at

each iteration a decision (there are always choices) must be made on the “best” way to proceed.

Following this method can lead to dead-ends, and therefore it may be necessary to backtrack and

re-iterate again.

The method is not prescriptive and does not guarantee a solution, nor indeed does it always

provide a notation. It is heavily biased towards the Waterfall model, and is often used as a basis

for teaching design.

The criticisms raised against functional decomposition stem from three main observations.

Firstly, the top level decomposition must be made when knowledge of the problem is least devel-

oped and the method offers no certainty that we have identified the top level function correctly or

that our refinement is not a blind alley. (Think of this as a search, are we starting from the root

node and which child do we visit next?) Secondly, Jackson (1983) has argued that the functions

change over the life of the system as opposed to the structure of the data. Thirdly, the design of

key data structures etc. can permeate the entire program.

It is the second and third problems have led to the evolution of object-oriented design.

2.4.2 Data Structured Design

These methods seek to mould the program (structure) to the structure of the data. An archetypal

example is file handling. These methods do not attempt to model the flow of data through the

system, but rather the static structure of the data. Examples of these methods include:

� Jackson Structured Programming (JSP) (Jackson, 1975)

� Jackson System Development (JSD) (Jackson, 1983)

� Warnier-Orr (Orr, 1971)

The major problem with these methods is their rigidity; the necessity to identity the data’s

structure. Additionally implementations tend to be slow; JSD tends to lead to a large number of

processes, and context switching is expensive (Deitel, 1984). JSP tends to be more mechanistic

than some other design methods, and has been used as the basis for some undergraduate design

courses. However JSP can lead to dead ends caused by structure clashes due to discrepancies

between different real-world data structures.

2.4.3 Object Oriented Design

In this group of methods, the problem domain is seen as being composed of objects and classes of

objects. An object encapsulates both algorithms and data. Objects are potentially related to each

other in a variety of ways, not all of which are hierarchical in nature. For example, a filled red

square could be derived from a square and red coloured objects, both of which could be derived

from closed objects. Examples of this method include:

� Hierarchical Object-Oriented Design (HOOD) (Delatte et al., 1993)

� Booch’s Method (Booch, 1991)

18 Chapter 2. Software Design

� Object-Oriented Software Engineering (OOSE) (Jacobson et al., 1994)

� Unified Modelling Language (UML) (Fowler and Scott, 1997)

However, much has been written about general OOD methods without giving each a distinct

label, see for example Cox (1986); Meyer (1988). OOD represents a new strand of development,

which is still evolving. Unfortunately, it has developed its own specialised vocabulary which

obscures its meaning. Since OOD has become popular, a number of older methods have suddenly

become object oriented. However we believe that a weak form of OO can be identified. (This

is not intended to imply that we should categorise methods as being weakly or strongly OO or

that there is any value in doing so, merely that some OOD methods use a purer form of OO than

others). By weak OOD we mean the ideas of information hiding, modularity and abstract data

types, in contrast strong OOD includes the notion of class, inheritance and explicit polymorphic

functions.

OOD arose from information hiding, abstract data types and in particular the development of

Simula 67 (Birtwistle et al., 1973). It is apparent that to conduct a design in an OOD fashion

requires suitable input from the requirement analysis phase. However a common theme is to

identify objects, which it is suggested is best done by looking at the nouns and verbs in the problem

description (requirement specification) (Booch, 1987); perhaps natural language processing has

something to offer here. This may sound simple, but we are entitled to wonder how well this

works in practice.

There is wide divergence among programming languages on how these facilities are provided

(compare Smalltalk (Goldberg and Robson, 1983) and C++ (Stroustrup, 1994)), and this inevitably

spills over into design. Smalltalk regards everything as an object (e.g., integers, strings, etc.), but

this seems unnatural especially in relation to commutative binary operators,15 whilst C++ is an

extension of C (ANSI C, 1989) to incorporate classes, thus making it possible to program without

objects at all.

All OOD methods require several iterations in order to identify all the classes and the relation-

ships between them. It is hoped that OOD will lead to increased reuse of components. However

this raises a question, how does the designer know what classes exist and what the relationships

are between classes? This requires advances in indexing and identifying concepts.

What can inheritance do? Inheritance can be used to modify the behaviour of a previous class,

this can be achieved in one of three ways:

� Add a new method or field.

� Delete an existing method or field.

� Modify the behaviour of an existing method, or override an existing field.

In general, deleting a method is not permitted, because most OOD systems require a class

hierarchy progressing from the most abstract to the more specialised.

OOD is derived from a rigorous abstract data structure approach. Harrison and Ossher (1993)

have suggested that this strict view of an object needs to be weakened somewhat to handle cases

where the same objects belong to multiple classes depending on their observer’s viewpoint.

2.4.4 Formal Methods

This is to some extent a collection of divergent methods, linked by utilising mathematics to provide

a well-defined syntax and semantics, see also our discussion in Section 2.3.3 on formal languages.

Examples include:

� Z (Spivey, 1989)

15Additionally in Smalltalk a+b� c means (a+b)� c (Meyer, 1988, p.438)!

2.5. Complexity: The Scourge of Engineering 19

� Vienna Design Method (VDM) (Jones, 1986)

� OBJ2 (Goguen et al., 1985)]

Also included in this category are:

� Finite State Machines (FSM) (Rayward-Smith, 1983)

� Petri Nets (Reisig, 1985)

The latter may be useful complements to other methods for example DFDs.

Formal methods are based on defining a precise formal specification, and then refining this

specification until sufficient detail is achieved to permit implementation to occur. The obvious

advantage of such a specification is that it is specified in mathematics, and can thus be subjected

to the wealth of knowledge and techniques known to mathematics. The specification is produced

in abstract terms. Another advantage is that such a specification facilitates the removal of ambigu-

ities. Additionally formal methods are seen as aiding the construction of executable specifications

(and automatic programming).

Several objections to formal methods can be put forward. Not least that people are uncomfort-

able with the required mathematics, and that most examples are small (if not trivial). Moreover,

such methods have not been demonstrated on large scale systems. More serious however is that

our study of design casts grave doubt on the ability to construct an initial (complete) specification.

Fetzer (1988) challenged the entire concept of formal methods by distinguishing between an al-

gorithm (which can be formally verified) and a program (running on a physical machine) which is

only empirically observable.

We believe that formal methods are best used as an adjunct to less precise methods for handling

areas where a rigorous proof is required.

2.5 Complexity: The Scourge of Engineering

The principle difficulty facing software engineering is complexity. As Booch (1987) puts it:

The fundamental cause of the software crises is that massive, software-intensive sys-

tems have become unmanageably complex. Furthermore, we cannot expect them to

become any less complex, for as we improve our tools and gain experience in design-

ing such systems, we actually open up even more complex problem domains. As a

solution to this crises, we must therefore apply a disciplined artistry, using tools that

help us manage this complexity. Booch (1987, p.28)

How is this complexity to be brought under control? Pressman (1992) suggests the following

criteria for good design:

1. A design should exhibit a hierarchical organization that makes intelligent use of

control among components of the software.

2. A design should be modular; that is, the software should be logically partitioned

into components that perform specific functions and subfunctions.

3. A design should contain distinct and separable representations of data and pro-

cedure.

4. A design should lead to modules : : : that exhibit independent functional charac-

teristics.

5. A design should lead to interfaces that reduce the complexity of connections

between modules and with the external environment.

20 Chapter 2. Software Design

6. A design should be derived using a repeatable method that is driven by inform-

ation obtained during software requirements analysis.

Pressman (1992, p.318)

Although the term module is used above, it is clear that our definition of object could equally

be used in its place.

2.6 Architectural Design

In this section we look in more detail at the concept of architectural design. In particular we

examine why we regard architectural design as more significant to the success or failure of a

design than detailed design.

By architectural design we mean the identification of the major components of the design,

especially their purposes and interfaces. How we can see the reason why we claim that detailed

design is less important; detailed design is concerned with designing the internals of the identified

components. As Fowler and Scott (1997, p.22) observed “ : : : the biggest technological risks

are inherent in how the components of a design fit together, rather than present in any of the

components themselves”. Moreover, designing the internals is obviously a much smaller and self-

contained problem than the original problem.

In practice, of course, once a ‘large’ component has been identified, the design of its internal

structure is also architectural in nature not just detailed design. We regard the architecture of

‘large’ components to be part of the architectural design phase. Specifically we classify detailed

design as deciding how a component’s services should be provided rather than deciding what

services should be provided.

We saw in the previous section that good design requires objects which are largely indepen-

dent and have a good logical structure. These two concepts are captured by loose coupling and

high cohesion, respectively. These concepts are further examined below, after we have described

exactly what is meant by a component.

2.6.1 What is an Object?

So far, we have been deliberately rather vague about what we mean by a software component or

object. We now offer a more precise definition.

An object is a model of a real-world entity or a software solution entity that combines

data and operations in such way that data are encapsulated in the object and are ac-

cessed through the operations. An object thus provides operations for other objects,

and may in turn also require operations of another object. An object may have a state,

either explicitly to provide control or implicitly in terms of the value of the internal

data. Robinson (1992a, p.34)

This definition accords with Pressman (1992) earlier properties for good design, and gives us

a good definition of an object. It is important to note that an object (generally) both provides

services to other objects and requires services from other objects. This definition does not rule out

mutual recursion, but normally this is rare.

Most modern programming provide the object concept, albeit under a variety of different

names: class, cluster, module, package and structure.

2.6.2 Are these the Right Objects?

Having defined the term ‘object’, and a definition of good design properties, we how require some

guidance on determining the quality of a proposed architectural design.

2.6. Architectural Design 21

2.6.2.1 Coupling

Coupling describes how the components of a system are interdependent. Page-Jones (1988) de-

scribes a spectrum of coupling. For example, if a routine simply takes in a parameter and returns

a result based solely on the input, then the routine is only loosely coupled (data coupling) to its

environment. Whereas, if a search routine presumes that the data (to be searched) is already sorted

and in the same location, it is tightly coupled (at least common coupling) to its environment.

A good system is only loosely coupled. However, in practice, moderate coupling is unavoid-

able,16 and is not too serious provided it is restricted to well defined parts of the system.

A generally recognised coupling scale from necessary to unacceptable is shown below, (Press-

man, 1992, p.336):

No Direct Coupling No direct linkage between modules.

Data Coupling Arguments are only passed between modules via parameters and returned results.

Further, the data exchanged between modules is only that directly required.

Stamp Coupling Similar to Data Coupling, but extra (unwanted) data is exchanged. For example,

passing an employee’s full personal data to a module which just calculates the number of

years with the company.

Control Coupling Two modules are control coupled when a ‘flag’ is used to instruct the caller to

perform different actions on the supplied data.

External Coupling A module exhibits external coupling when it has knowledge about the world

outside the software system. For example, specific knowledge about how social security

numbers are formatted.17

Common Coupling Modules have common coupling when they have knowledge about global

data areas. For example, a payroll module reads an employee’s salary directly from a central

area rather than using another dedicated module to extract the required information.

Context Coupling Modules have context coupling when one module has knowledge about the

internal details of another module. For example, jumping into a module after the parameters

have been verified, in the belief that the data must be correct.

Common coupling is generally regarded as the cut-off point for acceptable coupling. Note that

these definitions refer to individual modules as well as objects.

2.6.2.2 Cohesion

In contrast to (undesirable) coupling, cohesion describes how well the internals (sub-components)

of a component fit together. Page-Jones (1988) describes a spectrum of cohesion. For example

an object to update a display may have high cohesion (functional cohesion); whilst objects con-

structed by arbitrarily cutting up a program into fixed length chunks has low cohesion (coincidental

cohesion).

A good system has components with high cohesion. As with coupling, some low cohesion is

generally unavoidable.18

The advent of OOD has to some extent invalidated the traditional cohesion scale. Since con-

centrating on one area of a data structure (i.e., communicational cohesion) (Pressman, 1992, p.335)

is less than ideal. For example, in a library system a module may be responsible for manipulating

16For example, external interfaces and calls to the OS, see Pressman (1992, p.338).
17In England a social security number consist of two uppercase letters followed by three pairs of digits, terminated

by a single uppercase letter from the set fA,B,C,Dg.
18For example, initialisation routines, exhibit only temporal cohesion.

22 Chapter 2. Software Design

books, which results in communicational cohesion and hence is traditionally considered unsatis-

factory. However, in OOD using an object to represent an abstract data type is considered good

practice.

A generally accepted cohesion scale from highly desirable to accidental is shown below,

(Pressman, 1992, p.334):

Functional Cohesion All components of the module contribute to a single task.

Sequential Cohesion The module’s components are used in some fixed order to perform a task;

but it lacks a strong sense of single mindedness.

Communicational Cohesion The components are located in the same module because they use

the same input or output data rather than having functional cohesion.

Procedural Cohesion The components are related because they are used in some fixed order at

particular moments in time. For example, the use of procedure B must always be preceded

by the use of procedure A.

Temporal Cohesion Like procedural cohesion, but the components are just related in time with-

out any predefined functional ordering. Unlike procedural cohesion, the usage of procedures

A and B, can occur in any order.

Logical Cohesion Components are grouped because they share a common theme rather than a

common purpose.

Coincidental Cohesion No meaningful relationship between components at all.

Procedural cohesion is generally regarded as the cut-off point for acceptable cohesion. Note

again that these definitions are based on modules, but upgrade to objects.

2.6.2.3 The Relationship between Coupling and Cohesion

Figure 2.3: Interaction of Coupling and Cohesion

Having read these two definitions, the reader may be wondering what the precise difference is be-

tween coupling and cohesion. Cohesion measures the internal strength of an object whilst coupling

measures the interdependencies between objects. In a sense these two concepts are not disjoint

since changing the cohesion is likely to have a knock on effect on coupling amongst the surround-

ing objects. For example, see Figure 2.3, moving the entity in object B into A2 (say) would effect

the coupling between A and B and the cohesion of A. We cannot say what would happen to B since

we do not have sufficient information.

If cohesion within objects is increased, it may well serve to reduce the coupling between

objects. If this seems a little odd, consider an arbitrary system, if the internal composition is good

2.7. Design as a Graph 23

then the individual objects will communicate cleanly and each object will have a definite well

defined purpose.

However, with nest-able objects the relationships all become more complicated. It is worth

noting that most work on coupling concentrates on the relationship between modules at a similar

depth in the hierarchy rather than discussing what happens between nesting levels.

2.6.3 What does Ψ Measure?

In Chapter 3 we shall describe HOOD, our chosen design notation, and in Chapter 6 we shall de-

scribe our theoretical model for calculating Ψ, our measure of design complexity. At this point

we should consider what effect our choice of input language has on measuring coupling and co-

hesion. Firstly, however, it should be stressed that Ψ does not measure coupling or cohesion, per

se, but rather a balance between these two abstract concepts. Our measure, Ψ, makes no attempt

to identify the type of coupling or cohesion—just the overall effect across the entire design. To do

otherwise would require far greater knowledge about the nature and use of links than our present

model possess. In particular knowledge of the purpose of an object, calling sequences and the

internal structure of data. None of which can be expressed adequately in HOOD.

HOOD itself cannot be used to express designs which contain common or context coupling,

because the language is based upon a strong notion of an object only providing services as de-

termined by a well-defined interface. The other forms of coupling (see Section 2.6.2.1) can be

expressed in valid HOOD. Note however that external coupling exists primarily in the ‘mind’ of

the designer rather than the formal design. On the other hand, designs containing all forms of

cohesion (see Section 2.6.2.2) can be expressed in HOOD.

The reader may feel that a metric which purports to find better designs without first explicitly

determining coupling and cohesion is in some sense misguided. However, Ψ, seeks to find better

designs based on the services required by each component of the design and grouping compon-

ents by common requirements. This idea of grouping by requirements is not itself new, (see for

example Calliss and Cornelius (1989)). From a mechanism view this is the essence of coupling

and cohesion. It also means that this approach may be useful for maintaining legacy systems. It

is anticipated that by seeking modules with a common set of required services that we will find

a balance between coupling and cohesion. Moreover, complexity, is not just a measure of cou-

pling and cohesion, but must involve some concept of an object’s size and the size of its external

interface.

Calliss’s work was based on looking for particular kinds of grouping (i.e., grouping by type-

families, grouping by imports and grouping by state variables) and several different kinds of

graphs; all of which were reverse engineered from the source code. Our works takes a unified

view of links and graphs, considering them all to be fundamentally similar. This gives us a wider

choice of link, but perhaps at the cost of more specific knowledge of how to process the link.

The mathematical model presented in Chapter 6 is built upon the hypothesis that all kinds of

links are fundamentally similar. A future project would be to investigate the use of a link’s kind.

However, we speculate that this would make the model much more complex and unwieldy.

2.7 Design as a Graph

Once we accept the notion of architectural design as being the identification of objects with their

respective interfaces and sub-components, it is not a great step to realising that a design can be

represented as a graph.

The structure of a software design can be regarded as a directed graph G(N ;E), where the

nodes, N , represent design entities, and the directed edges, E , represent a requires relation. That

is, if an entity A directly requires B in order for A to provide its services, there is an edge from A to

B in the design graph. For example, a routine sqrt to find the square root of a real number would

require a real type, and a set of arithmetic operations on the reals.

24 Chapter 2. Software Design

Unfortunately, this description is a little too simple, because most large designs require some

form of encapsulation/nesting mechanism. We call this encapsulation mechanism an object. We

permit objects to nest without limit. Further, an object may contain any design entity. In the

remainder of this thesis we use the term entity to include objects and the term basic entity to

indicate entities which may not be objects in their own right.

Such a model of a design’s structure is very general. Different design methodologies may

impose different restrictions on the use, placement and connectivity of entities and objects. This

model of design requires a client to know which objects and basic entities provide its required

services. However, the server needs no knowledge of who uses it services.

The desire to understand the world

and the desire to reform it

are the two great engines of progress.

BERTRAND RUSSELL (1872–1970)

Marriage and Morals

Chapter 3

An Overview of HOOD

Synopsis

This chapter provides a brief overview of HOOD version 3, which is the authors chosen

method for capturing designs.

Note 3.1. This thesis is based on HOOD 3, rather than HOOD 4, since HOOD 4 was released too

late into the development process. HOOD 4 is based on Ada95, which aims to provide a purer form

of OOD than Ada83. HOOD 4 extends HOOD 3’s notion of class.

3.1 Introduction

This chapter introduces the main features of HOOD, used in this study. A number of other features

are not used, and are discussed in Section 3.7, below.

3.1.1 What is HOOD?

HOOD stands for Hierarchical Object Oriented Design, but unfortunately this tells us little about

HOOD. HOOD has evolved out of work done by the European Space Agency (ESA) as part of its

adoption of the Ada Programming Language for very large scale projects. HOOD was derived by

marrying ideas from Abstract Machines with those from Object Oriented Design.

Although HOOD is named after OOD, its principle target language is Ada. Some would argue

(e.g., Booch, 1991), that Ada is not an object oriented language, and by implication HOOD is not

an OOD method. There is certainly merit in this argument, Ada and HOOD lack a number of

the characteristics of fully object oriented languages, for example classes, inheritance and type

polymorphism. However, this thesis is not specifically an examination of object oriented designs,

but rather the use of structural methods for analysing large scale designs, and there can be no doubt

that HOOD is being used to create large designs for ESA.1

The fundamental building blocks of a HOOD design are objects, and we shall address the

question of what an object is shortly (see Section 3.3).

3.1.2 Where does HOOD sit in the Software Life-cycle?

In discussing software engineering, it is useful to have a model of the production process. There

are several alternative models,2 with varying degrees of sophistication. However, for our purposes

1HOOD has been used on Columbus and Arianes 5 (HOOD HUM, 1996).
2For example the Spiral model.

26 Chapter 3. An Overview of HOOD

it suffices to use a basic model, called the Waterfall model (Pressman, 1992). The Waterfall model

is depicted in Figure 3.1. It must be stressed that the Waterfall is an idealised model, and not a

description of what may happen on a real project.

System
Engineering

""
Analysis

!!

cc

Design

��

aa

Code

��

__

Testing

$$

^^

Maintenance

dd

Figure 3.1: Waterfall Model of the Software Life-cycle

The European Space Agency (ESA) explain HOOD’s position in the software life-cycle with

reference to the Waterfall style model. HOOD can be used from the tail end of the Analysis phase

until the latter stages of the testing phase.

What does HOOD provide? HOOD encourages decomposition, information hiding, encapsula-

tion and abstraction. A design in HOOD consists of a tree like structure with the main objects at the

top of the tree along with several environmental objects (see Section 3.4.4). The top objects are

called root objects. The concept of decomposition permits both refinement and abstraction. Re-

finement because once an object has been defined with reference to its siblings in the design tree, it

can be considered in isolation and refined in a much detail as required. The objects identified from

such a decomposition are called child objects and the original object is called the parent object.

Clearly an arbitrary object can (in general) be both a parent and a child object, with respect to

other objects. The leaf nodes of a design tree are called terminal objects, and any non-leaf object

is called a non-terminal object. Of course, if refinement shows that the parent object was incorrect

it is necessary to revisit the design of the parent object. Abstraction is supported because we can

represent an entire sub-tree by just one object, (i.e., the sub-tree’s parent object).

We are interested in software architecture, and to quote from Robinson

One of the major objectives of the architectural design is to provide a clear identifi-

cation of the components of the design and their interfaces. Such architectures are

most clearly expressed using good diagrams, especially data flow and control flow

diagrams. Robinson (1992a, p.4)

ESA’s experience has been that people are reluctant to commit to a particular architecture until

the code was complete (Robinson, 1992a). Not a good idea. To help overcome this problem HOOD

should support graphics and encourage the capture of designs in a more formal sense than the back

of an envelope. However, we cannot perform analysis or more detailed design on a simple graphic,

so HOOD provides a textual representation, called an Object Description Skeleton (ODS), which

is capable of capturing all the information in the diagram and more besides (see Section 3.6).

3.1.3 The HOOD Design Method

The HOOD design method has four principle steps which are reiterated as required until the desired

level of detail is reached. The four steps are (Delatte et al., 1993, p.135):

1. Problem definition

3.2. Example: Controlling the Traffic Lights 27

(a) Statement of the problem

(b) Analysis and structuring of the requirement data

2. Elaboration of an Informal Solution Strategy

3. Formalisation of the strategy

(a) Identification of Objects

(b) Identification of Operations

(c) Grouping Operations and Objects

(d) Graphical descriptions

(e) Justification of the design decisions

4. Formalisation of the solution

(a) Parent Object Description Skeleton

(b) Child Object Description Skeleton

3.2 Example: Controlling the Traffic Lights

In order to ease the exposition of the HOOD design notation, this section outlines a small design

problem. This design is taken from Robinson (1992a), most of the HOOD design is quoted verba-

tim.

sensors

ACAC

BD

BD

Figure 3.2: Traffic Junction with Lights

At a cross-road (see Figure 3.2 there are two sets of two lights. The lights are to be controlled

by a computer so that (a) the two streams of traffic do not attempt to cross the junction at the

same time, and (b) if traffic is waiting for more than 20/40 seconds, the lights change to prevent a

build-up of traffic.

We shall sketch the solution as we progress in order to illustrate various HOOD facilities.

HOOD designs are based on objects as building blocks, see Sections 3.3 and 3.4. HOOD em-

ploys several different flavours of objects, and so before describing the objects in detail, it is

helpful to identify the entities which make up an object.

28 Chapter 3. An Overview of HOOD

3.3 Objects - Architectural Components

HOOD regards objects as the architectural building blocks. This section explains the nature of

objects, and in particular objects in HOOD. What is an object? Unfortunately, this is not a simple

question, and many definitions pervade software engineering. However, to provide an answer

consider the following definition.

An object is defined by the services it provides to its users, the services it requires

from other objects and its behaviour, whereas the internal structure is hidden to the

user, thus giving a view of how it appears to other objects. Robinson (1992a, p.27)

This looks fine, but it still begs the question what is an object? Basically anything the designer

chooses. Put differently, it is anything that a computer system must model in software to reflect

the behaviour of the real-world.

HOOD objects have three principle components:

Provided interface defining the services that the object provides to its clients.

Required interface identifies the services required from other objects, so that the current object

can satisfy its own provided interface.

Internals the hidden details of the object’s implementation.

Objects provide operations to operate on their hidden parts. An object may provide a type

definition for data. Objects may encapsulate data, and hence have state. This is fundamentally

different from a functional programming view, in which values are only defined whilst the function

is being executed.

We prefer to think of an object as encapsulating a secret and providing services to operate on

this secret. Where a secret can be for example, a piece of data, a data type or a constant. By this

we mean that the details of the secret are not visible to the object’s user only a set of types and

operations for manipulating the secret in a well-defined way. This means that we can change the

internal details without any impact on the object’s users; since by implication they cannot know

these details. There is however an obligation on the designer to provide a sufficient interface and

not to allow unnecessary detail to be seen outside the object. For example, if an object maintained

a list of books in a library, an enumerator’s documentation must not suggest that the books are

returned sorted by author, if this is not a necessary requirement. Otherwise, if the object later

returned the books in a random order the users’ of the object would have problems.

3.3.1 Traffic Lights - Graphical Notation

Returning to our traffic lights example from Section 3.2, we can how sketch a solution in HOOD’s

graphical notation, see Figure 3.3.

The largest curved box labelled traffic lights is the top of the design tree. It exports

(shown by the large rectangular box) a single operation called second. Traffic lights consists

of three children, namely: seconds, traffic sensors and lights. Each child provides a single

operation, respectively: count, check and change.

Traffic lights receives an interrupt on address ‘1234’, shown by the ‘lightening bolt’ and

labelled ‘ASER BY IT’. The ‘A’s in the corners of the objects traffic lights and seconds

shows that they are active objects, i.e., interrupt driven. The other objects (traffic sensors and

lights) are both passive objects, i.e., not interrupt driven.

Strictly speaking (but not always observed) a parent object, should not contain anything except

other objects. Hence we see the dotted line from traffic lights.second to seconds.count.

Incidentally, the previous two names are called dotted notation for obvious reasons, and apart

3.4. HOOD Components 29

Figure 3.3: HOOD graphical notation - Traffic Lights

from possible overloading fully specify a HOOD entity. In particular, all objects in a tree must be

uniquely named, and an entity is not named by its full path, just as object.name.

On being invoked seconds uses traffic sensors and lights to fulfil some of its services.

This is shown by the broad arrows. We cannot tell from the diagram what seconds requires

from either traffic sensors or lights. However, in this case, it would be a good guess that

traffic sensors.check and lights.change form part of the required services. It should be

noted that seconds is not required to use traffic sensors or lights on every invocation, but

the designer is required to list all possible required objects.

The small little arrows (labelled road name, is present, to colour and road name) show

data flows along the uses relationship. The direction of the arrow indicating the direction of data

flow. This information is fully optional, and is generally used only the major data flows around an

object.

3.4 HOOD Components

In this section we shall examine the basic components of a HOOD design in more detail.

3.4.1 Passive Objects

The basic HOOD building block, this is an object which provides operations and datatypes. A

passive object can be either terminal or non-terminal. A terminal object has no children, a non-

30 Chapter 3. An Overview of HOOD

terminal object has at least two child objects. It makes no sense for an object to decompose into

itself, as having a single child would imply.

A passive object has a provided interface, a required interface and internals. It is important

to appreciate that if an object is non-terminal all its functionality must be decomposed into its

children, i.e., the non-terminal object is just a shell to aid understanding. However, this rule is not

always followed and has been debated in the HOOD community (e.g., Robinson, 1992b)

3.4.1.1 The Include Relationship

If a passive object is decomposed into children, then these objects are said to be included in the

parent object; hence each child object has exactly one parent. Moreover the complete functionality

of the parent must be reflected in the children. That is the parent is an abstraction of the children’s

behaviour.

3.4.1.2 The Uses Relationship

One object uses another if the using object requires at least one operation from the other. Such

usage requires that the provided interface of the server provides the desired operation and that the

client cites the required operation and object in its required interface.

3.4.2 Active Objects

These are closely akin to passive objects, but are generally interrupt driven and always have a

control-flow semantics.

3.4.3 Operation Control Objects

This is an object that implements the mapping between one parent operation and multiple op-

erations of child objects. It has no provided interface, and cannot contain other objects. It is a

degenerate kind of object, useful in a few situations, but it can always be replaced by a full-blown

object.

3.4.4 Environmental Objects

Environmental objects represent the provided interface of another object used by the system being

designed, but which is not part of the current HOOD design tree. For example the interface to the

underlying operating system or part of the system being designed by another group (say).

3.4.5 Visibility

The key to understanding a HOOD design is to appreciate HOOD’s visibility rules. This is a slightly

complex issue. There are two cases to consider, intra-object and inter-object visibility. Not sur-

prisingly, an entity is only visible if it has been declared. However, the order of declaration is

irrelevant.

3.4.5.1 Intra-Object Visibility

� Entities declared in the Provided Interface are visible throughout the object.

� Entities declared in the Required Interface are visible throughout the object. Note however

that all non-local entities must be fully named (i.e., the dotted notation).

� Entities declared only in the Internals section are only visible inside the object’s internal

section. Further entities named in the provided interface, must be declared again in this

section.

3.5. HOOD Entities 31

3.4.5.2 Inter-Object Visibility

The question of inter-object visibility really boils down to the question, what objects are visible to

the Required Interface of the object being considered. Note that all such entity references must be

resolved by including the object’s name.

� All environmental objects are visible throughout the system.

� The Provided Interface of all of an object’s siblings are visible.

� The Required Interface of the object’s parent (if not a root object) is visible.

� Nothing else is visible.

3.5 HOOD Entities

This section describes the entities which may make up a HOOD object.

Types in HOOD serve the same role as types in conventional programming languages. Types are

used to identify the set of values which a variable may take, and the formal parameters of

an operation.

Types are not shown in HOOD’s graphical notation. Type details are shown in the textual

representation. However, the Standard Interchange Format (SIF), does not define any uni-

versal mechanism for describing a type other than by name. If a type is refined, it must be

specified as a comment in the target implementation language. Hence, the only form of type

equivalence supported in ‘pure’ HOOD is name equivalence. This means that the SIF cannot

represent any relationships (except name equality) between different types.

Variables are called data in HOOD, and may have an associated type. They cannot be referenced

outside of the encapsulating object, and hence may only be declared in the internals of an

object. Variables are never shown in HOOD graphical notation.

Constants are just like their counter-parts in conventional programming languages. Constants are

never shown on HOOD graphics.

Operations corresponding to functions and procedures in conventional programming languages.

However, HOOD makes no graphical distinction between these two categories, even the

textual notation just calls them both operations.

Operation names (in the ODS) can be overloaded by declaring two operations with the same

name, but with different signatures.

Operation Sets are purely a graphical convenience, permitting a collection of operations (in a

single object) to be given a single name.

Exceptions are just like their counter-parts in conventional programming languages. Exception

flow is shown in a HOOD diagram as a short bar across the uses arrow.

3.6 Textual Representation

Each HOOD object is described by an Object Description Skeleton (ODS). ODSes are the principle

input to Morpheus , and are described in this section, by reference to the Traffic Lights example from

Section 3.2.

The order of declaration is unimportant, and upper and lower case letters are treated as identi-

cal.

The design for traffic lights is shown below

32 Chapter 3. An Overview of HOOD

OBJECT traffic_lights IS ACTIVE

DESCRIPTION

--The traffic lights system controls four traffic lights at a crossroads.

The traffic sensors inform the system of waiting traffic.--

IMPLEMENTATION_CONSTRAINTS

--The system is driven by a 1Hz clock--

PROVIDED_INTERFACE

OPERATIONS

second ;

OBJECT_CONTROL_STRUCTURE

DESCRIPTION

--Each second, traffic_lights is activated to look at the traffic

sensors and to change the lights.--

CONSTRAINED_OPERATIONS

second CONSTRAINED_BY ASER_BY_IT --|#1234|-- ;

REQUIRED_INTERFACE

NONE

INTERNALS

OBJECTS

seconds ;

traffic_sensors ;

lights ;

TYPES

road ; --| is (AC, BD) defines road configuration |--

OPERATIONS

second IMPLEMENTED_BY seconds.count ;

OBJECT_CONTROL_STRUCTURE

IMPLEMENTED_BY seconds ;

END_OBJECT traffic_lights

The description section introduces a textual comment describing the problem. It may contain

anything the designer wishes. All comments in an ODS are bracketed by ‘--f’ and ‘g--’. In

addition to comments, an ODS may contain free text, bracketed by ‘--|’ and ‘|--’. Free text may

only occur in specific places in the ODS, and used as a mechanism for passing additional inform-

ation to other tools, the text has no defined meaning in HOOD. The implementation constraints

section is used in the same way, but is intended to document implementation restrictions.

The provided interface section lists the provided interface of the object. All exported entities

must be listed. In this example we just have the seconds operations.

The visible object control structure section describes any semantics for interacting with

other objects, usually via task rendezvous.

The required interface section in this object is empty, as expected for a root object. In this

example the keyword none is used to indicate that the filed is empty. It is perfectly acceptable to

leave out any empty fields.

The internals section describes the internal details of the object. In this case it declares

traffic lights three child objects, a type road and an operation second. It also states that

the operation second is fully implemented by the operation seconds.count. Finally the inter-

nals section (in this example) tells us that the semantics of object are fully implemented by the

child object seconds.

3.6. Textual Representation 33

The design for lights is shown below

OBJECT lights IS PASSIVE

DESCRIPTION

--fObject lights is used to set a traffic light pair to a selected colour;

allowing for proper sequencing of all lights as necessary for safety.g--

IMPLEMENTATION_CONSTRAINTS

--fIn this simulation, text_io is used to provide a readable output.g--

PROVIDED_INTERFACE

TYPES

colour ; --| is (RED, RED_AMBER, GREEN, AMBER) |--

OPERATIONS

change (road_name : IN traffic_lights.road ;

to_colour : IN colour) ;

REQUIRED_INTERFACE

OBJECT traffic_lights

TYPES

road ;

OBJECT text_io

TYPES

string ;

OPERATIONS

put_line (item : IN string) ; --| print a string |--

INTERNALS

DATA

other_road : traffic_lights.road ;

OPERATION_CONTROL_STRUCTURES

OPERATION change (road_name : IN traffic_lights.road ;

to_colour : IN colour)

DESCRIPTION

--fThe data item other_road is initialised to the opposite of the

value of road_name. If the requested colour is GREEN, operation

change controls the full sequencing from GREEN to AMBER to RED

for one light set, and RED to RED-AMBER to GREEN for the other

light set.

If the requested colour is RED or AMBER, operation change simply

sets the requested light to RED or AMBER.g--

USED_OPERATIONS

text_io.put_line (item : IN string) ;

PSEUDO_CODE

--|if road_name = AC then

set other_road = BD

else

set other_road = AC

end if ;

if to_colour = GREEN then

set other_road lights to AMBER ;

set road_name lights to RED-AMBER :

34 Chapter 3. An Overview of HOOD

set other_road lights to RED ;

set road_name lights to GREEN :

else

set road_name lights to to_colour ;

endif |--

END_OPERATION change

END_OBJECT lights

Much of this is as for traffic lights so we will only discuss the new sections.

The required interface section now says that lights requires types traffic lights.road

and text io.string, in addition to the operation text io.put line.

The new section operation control structures contains an entry for each operation declared

in the internals. Each operation is described as required. This is followed by a list of used

operations, and optionally as comments) pseudo code and the final code.

The designs for seconds and traffic sensors are shown below

OBJECT seconds IS ACTIVE

DESCRIPTION

--fObject seconds is activated from its parent object traffic_lights by the

operation traffic_lights.second. It checks for traffic and changes the

lights if appropriate.

Seconds keeps a count of the time since the last light change and the

road pair that is GREEN (AC/BD).

After 40/20 seconds elapsed, seconds checks the traffic_sensors each

second. When the traffic sensors show that there is traffic waiting at

the other road, the lights are changed.g--

IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS

--fOperation count of object seconds is activated once every second by

interrupt at address 1234.g--

PROVIDED_INTERFACE

OPERATIONS

count ; --f activated by interrupt g--

OBJECT_CONTROL_STRUCTURE

DESCRIPTION

--fSeconds keeps a count of the time since the last light change and the

road pair that is GREEN (AC/BD).

After 40/20 seconds elapsed, seconds checks the traffic_sensors each

second.g--

CONSTRAINED_OPERATIONS

count CONSTRAINED_BY ASER_BY_IT --|#1234|-- ;

REQUIRED_INTERFACE

OBJECT traffic_lights

TYPES

road ;

OBJECT lights

TYPES

colour ;

OPERATIONS

change (road_name : IN traffic_lights.road ;

3.6. Textual Representation 35

to_colour : IN colour) ;

OBJECT traffic_sensors

TYPES

present

OPERATIONS

check (road_name : IN traffic_lights.road ;

is_present : IN OUT present) ;

DATAFLOWS

road_name => lights ;

to_colour => lights ;

road_name => traffic_sensors ;

is_present <= traffic_sensors ;

INTERNALS

TYPES

second ; --| is new integer |--

DATA

elapsed : second --| := 0 |-- ;

ac_present : traffic_sensors.present ;

bd_present : traffic_sensors.present ;

current_green_pair : traffic_lights.road

--| := traffic_lights.AC |-- ;

OBJECT_CONTROL_STRUCTURE

OPERATION_CONTROL_STRUCTURES

OPERATION count

DESCRIPTION

--fThis operation implements the logic of operation seconds to

control traffic light changes according to the presence of

traffic on the two road pairs.g--

USED_OPERATIONS

lights.change (road_name : IN traffic_lights.road ;

to_colour : IN colour) ;

traffic_sensors.check

(road_name : IN traffic_lights.road ;

is_present : IN OUT present) ;

END_OPERATION count

END_OBJECT seconds

OBJECT traffic_sensors IS PASSIVE

DESCRIPTION

--fObject traffic_sensors reads the hardware sensor data to find out if

traffic is present, and returns the value is_present set to TRUE or

FALSE.g--

PROVIDED_INTERFACE

TYPES

present ; --| is boolean |--

OPERATIONS

check (road_name : IN traffic_lights.road ;

36 Chapter 3. An Overview of HOOD

is_present : IN OUT present) ;

REQUIRED_INTERFACE

OBJECT traffic_lights

TYPES

road ;

INTERNALS

TYPES

latch ;

DATA

ac_sensors : latch ;

bd_sensors : latch ;

OPERATIONS

read_sensor (sensor : IN latch) RETURN present ;

check (road_name : IN traffic_lights.road ;

is_present : IN OUT present) ;

OPERATION_CONTROL_STRUCTURES

OPERATION check (road_name : IN traffic_lights.road ;

is_present : IN OUT present)

DESCRIPTION

--fOperation check reads the hardware sensors for the road given in

the parameter road_name to find out if traffic is present on

either side, and returns the value is_present set to TRUE or

FALSE.g--

USED_OPERATIONS

read_sensor (sensor : IN latch) RETURN present ;

END_OPERATION check

OPERATION read_sensor (sensor : IN latch) RETURN present

DESCRIPTION

--fOperation read_sensor reads a hardware sensor at the given sensor

latch, and returns the value TRUE or FALSE.g--

END_OPERATION read_sensor

END_OBJECT traffic_sensors

Finally the design of the environmental object text io is below, recall that such objects have

nothing except a provided interface.

OBJECT text_io IS ENVIRONMENT PASSIVE

PROVIDED_INTERFACE

TYPES

string ;

OPERATIONS

put_line (item : IN string) ; -

END_OBJECT text_io

3.7 Unused HOOD Facilities

As mentioned in the introduction to this chapter, some features of HOOD were not used in this

thesis. This section briefly outlines these unused features, and explains why they were omitted.

Generic Classes in HOOD allow the creation of Ada generic objects, which can then be instanti-

ated to form objects. Their use in HOOD is not very common, and how this kind of inform-

ation should be handled in our complexity measure is far from clear.

3.8. Rationale for Choosing HOOD 37

Data Flows show the flow of information between objects. They are optional, and are used to

document information already captured in the details of the ODS.

Exceptions Flows like data flows are an optional documentation aid. Note however that we do (in

principle) process exception handling information, which identifies which operation raises

the exception, and which operation is prepared to handle it.

Active Objects are (in principle) treated just like passive objects.

Interrupts are currently ignored.

Virtual Nodes allow a HOOD design to be distributed amongst a number of logical nodes which

in due course are mapped to another (smaller) set of physical nodes.

3.8 Rationale for Choosing HOOD

This section examines why we choose HOOD.

The design method we have chosen to use as the basis of this thesis is HOOD which supports

decomposition, reuse and object oriented design (at a simple level). A HOOD design is primar-

ily architectural and in particular identifies the services needed to support an object. This is not

unique, MASCOT supported similar ideas. It should be apparent that such a system permits the

easy interchange of components provided the interfaces are kept the same. This helps testing and

integration. More importantly the HOOD method can be applied opportunistically to individual

objects as and when they are identified. The benefits of a well-defined interface have been high-

lighted by work on Abstract Data Types and Object Oriented Design. Such interface definition is

fostered by HOOD. It should further be apparent that HOOD makes (nearly) impossible the worse

forms of coupling.

3.9 Augmented HOOD

In order to fully capture all the architectural information in a HOOD design, we have slightly

extended the textual representation. These extensions are fully described in Section 7.1, along

with the rationale for their introduction. Appendix A details the precise syntax changes to the

input language’s BNF.

3.10 Further Reading

The HOOD Reference Manual (Delatte et al., 1993), provides the definitive definition of the HOOD

language. The more recent edition (HOOD HRM, 1995) also covers HOOD 4. For a more tuto-

rial introduction Robinson (1992a) provides a description of HOOD, and the evolution of object-

oriented design. The HOOD User Manual (HOOD HUM, 1996) presents the definitive treatment

on using HOOD in real-world projects. The Ada programming language is defined in Ichbiah et al.

(1983).

When we try to pick out anything by itself,

we find it is tied to everything else in the universe.

JOHN MUIR (1838–1914)

U.S. naturalist, explorer

Chapter 4

Complexity Measures

Synopsis

This chapter provides a critique of previous work on measuring software design com-

plexity. The advantage of a design metric is that it can be used early in the production

process to identify potential trouble spots thereby reducing the costs of production.

Design metrics are therefore required to detect over complex objects. We conclude

the chapter by considering ways to validate proposed complexity measures.

In Chapter 2, we examined the problems associated with capturing designs, in terms of design

as an activity, the effects of different design notations and the different design methodologies. In

Chapter 3, we introduced HOOD as our chosen design notation and method for reducing complex-

ity. The Chapter concluded by demonstrating that HOOD is a reasonable choice in the light of

Chapter 2. Before developing our model further this chapter provides a critical review of related

work in determining design complexity.

Figure 4.1: Overview of Morpheus

In order to provide a relevant critique of related work, we must be clear about what our system,

Morpheus , is intended to achieve. Morpheus’s basic intention is simple (see Figure 4.1), “given an

initial closed design, Morpheus seeks a structurally less complex (alternative) design. Morpheus

takes the lowest level connections formed by the designer as fixed and manipulates the design’s

modular structure.” It immediately follows that we need a systematic method for comparing two

designs, and a method for producing alternatives. However, not only do we need a method for

comparing two designs, we need some basis for believing that the results of our comparisons are

reasonable, otherwise we could just pick “the best” design by some random process. However we

want a repeatable process, we do not want one based on whim or magic.

4.1. Requirements for a Complexity Measure 39

4.1 Requirements for a Complexity Measure

Based on the above overview, we want our complexity measure to satisfy the following require-

ments

� It must be possible to evaluate a design’s complexity without reference to its implementa-

tion.

� Complexity must be rigorously defined, so that its definition is unambiguous.

� Complexity must be computable for all possible designs.

� Complexity must be automatically computable from the design, when expressed in some

suitable notation.

� The process must be repeatable.

� There must exist a weak ordering amongst all designs, i.e., for any two arbitrary designs A

and B (say), it must be possible to determine if A� B or B� A, where A� B implies that A

is more complex than B.

� The complexity measure should capture notions of good software engineering. In particular,

obviously poorly structured designs should have a higher complexity than well structured

designs.

� The complexity measure should permit trade-offs between engineering attributes, for exam-

ple coupling and cohesion, in a hierarchical framework.

4.2 Existing Complexity Metrics

As we saw in Chapter 1, we choose structural complexity as the design property that Morpheus

should aim to improve. There are clearly other possible choices, for instance just the size of the

design, the coherence of individual objects or just the coupling between objects. However, these

attributes, whilst all individually important do not capture the essential nature of the trade-off

between all these properties that a good design must encompass. As we shall show in Section 6.3,

our proposed complexity measure permits this trade-off to occur.

The majority of the complexity measures proposed in the literature are not suitable for our

needs. The following sections will briefly examine a number of proposed metrics and explain why

they were rejected.

4.2.1 Program Complexity Metrics

Probably, the first attempt at a measure of program complexity was the number of source lines of

code (LOC). Whilst such a measure might be naively appealing, it fails to meet our requirements

on several counts:

� The required information becomes available only after the code has been written, which is

too late in the production process to be useful in assessing the quality of the design before

the next phase of development.

� LOC are difficult to define rigorously, and are very responsive to different styles and hence

yield different values, (for example unrolling a simple iterative loop). Very similar designs

may yield significantly different values.

� LOC take no account of software engineering practice, for example the distribution and size

of objects. Indeed adding a modular structure could make the LOC increase!

40 Chapter 4. Complexity Measures

� LOC tells us nothing about how to make complex designs less complex.

We have been very critical of LOC, perhaps unfairly as this measure was never meant to reflect

design quality or complexity. However, this analysis does serve to lay a framework for discussing

other proposed program complexity measures.

The most notable code metrics are Software Science (Halstead, 1977) and Cyclomatic Com-

plexity (McCabe, 1976). Both have been quite well researched; and were initially regarded quite

favourably, but more recently their theoretical underpinnings have been shown to be weak (see

Shepperd and Ince, 1993, p.28–40).

Since software engineers use such a wide variety of notations, some researchers have tried

to extract design information from the resulting program code rather than the design (Shepperd,

1993, p.8), but as Shepperd comments “this must be considered a last resort”. The problem is that

the information is available so late and furthermore the code implementation may have an impact

on what exactly is measured.

Clearly, due to their late availability and doubts over their value as complexity metrics, code

metrics are unsuitable for our purposes. So we shall now look at some of the proposed design

metrics.

4.2.2 Design Metrics

A number of design metrics have been proposed, for example Embley and Woodfield (1987),

Embley and Woodfield (1988), McCabe and Butler (1989), Rotenstreich (1994), Bieman and Ott

(1994) and Chidamber and Kemerer (1994). However, most of these measures fail to satisfy our

requirements for a complexity measure. The obvious failures are those metrics which only use

a singe factor as the determinant of complexity, such as coupling or cohesion. These measures

provide no means of assessing the relative merit of both cohesion and coupling. In a similar way

we can reject measures based solely on size.

Another widely used metric is based on data flow (exemplified by Henry and Kafura (1993)).

We have two principal objections to this approach: Firstly, information flow is being used as a

proxy for coupling with length serving as a proxy for the internal complexity of subcomponents

without any obvious justification for such an assumption. Secondly, Henry and Kafura compute

information flow based on

length� (fan in� fan out)
2

without any adequate explanation of why this should compute information flow (see Shepperd and

Ince, 1993, p.41–50). Interestingly however, Henry and Kafura (1993, p.105–110), do apply their

metric to find a better abstraction model for part of the UNIX system hierarchy; but their method

is not adequately defined and in our view still seems to rely on intuition.

Shepperd and Ince (1993, p.119–133) proposed an interesting alternative called a ‘work’ met-

ric based on object requirements. The metric tries to measure the work done by each object in

a system. Their contribution is important since it is based on a formal algebraic model and has

been subjected to a theoretical validation. However, we reject it because the metric requires the

establishment of a mapping from functional requirements (derived from the requirement specifi-

cation) onto individual objects. This process cannot (yet) be carried out automatically and it is

unlikely that different engineers would agree on a unique object, especially for ‘large’ require-

ments. Further this mapping would be particularly prone to object restructuring and changes in

the requirements.

Another interesting idea is the use of cluster analysis to group similar objects together, see for

example Hutchens and Basili (1993) and Neil and Bache (1993). This is an idea which we find

intuitively appealing. However as Shepperd (1993, p.9) comments “the greatest stumbling block

is that the shape of the : : : dendrograms is highly dependent upon the choice of cluster algorithm”.

This was confirmed by our own experiments. We found the situation to be much worse than

4.2. Existing Complexity Metrics 41

Shepperd reports because distance metrics which yielded intuitive results with one design failed

to produce acceptable results for other examples. Even small changes to a design could make the

resultant dendrogram unappealing to our intuitive notions of a good design. We conclude therefore

that this approach was unsuitable for our purposes.

4.2.3 Object Oriented Design Metrics

As explained earlier this thesis is not based on object oriented design but rather object based design

concepts, but given the current interest in the work of Chidamber and Kemerer (1994), we deal

briefly with this subject. Chidamber and Kemerer proposed a set of six metrics for measuring a

variety of attributes of object-oriented systems (by examining the program code). These attributes

are: weighted methods per class, depth of inheritance tree, number of children of a class, coupling

between object classes, response for a class (i.e., the number of methods potentially called by a

class) and lack of cohesion in methods.

Their work, which has become a de facto standard for object-oriented metrics, includes a philo-

sophical basis and theoretical validation against the Weyuker (1988) property set for complexity

measures. However Chidamber and Kemerer offer no method for trading between the measured

attributes, for example coupling and cohesion. Churcher and Shepperd (1995) have also observed

that Chidamber and Kemerer definitions need to be made more precise in the light of differences

between languages—so that cross comparisons amongst different work can be carried out. Briand

et al. (1996) also show that Chidamber and Kemerer metrics do not satisfy their proposed require-

ments for complexity metrics. However, Chidamber and Kemerer never claim that their metrics

were intended to be complexity measures.

4.2.4 Information Theory and Design Metrics

There have been a few measures of software complexity based on information theory. Khoshgof-

taar and Allen (1994) survey information theory and software metrics. The following section is

derived from their survey findings.

Mohanty (1981) uses a measure of excess entropy1 to study the information shared between

objects. Mohanty regarded this as a measure of interface complexity, but Khoshgoftaar and Allen

see this as a measure of object coupling. Whatever Mohanty is measuring, his approach does not

offer any form of trade-off between object properties.

Lew et al. (1988) take measurements of several different kinds of connectivity between objects,

based on message type (control or data) and the static structure of the exchanged data types, to

produce three different entropy measures. These measures are then combined into a single measure

of complexity. Lew et al.’s use of distinct measures for different design attributes reflects their

different role in a design, but forming a single measure from unrelated sources seems unjustified.

Harrison (1992) proposed a complexity measure based on measuring the entropy of a pro-

gram in terms of used operations. Harrison’s approach is similar in nature to Halstead’s Software

Sciences and suffers from the obvious problem of being code based rather than design based.

However, Harrison did validate his proposed metric against Weyuker’s property set, and showed

that it should be considered as a contender for measuring complexity. Harrison’s metric is quite

closely related to our proposed metric (for a given graph), but unfortunately uses out-degree rather

than (total-)degree for each node. Furthermore, Harrison does not extend his metric to handle

hierarchical structures.

These uses of information theory based on entropy clearly have the advantage of moving

towards an objective basis, i.e., the information content of a system. However, they offer no solid

basis for claims to measure complexity.

1Based on a feature signature of each object, which serves as a form of feature measure between objects.

42 Chapter 4. Complexity Measures

4.3 Combining Different Measures

We have already observed that design involves trade-offs between different attributes, for example

coupling and cohesion. Strictly speaking, however, we cannot make these comparisons, because

the two attributes are measured on different scales in different dimensions. Some researchers

leave these comparisons to the individual engineer’s judgement (Shepperd and Ince, 1993, p.134–

137). Others have applied some form of multi-argument function (e.g., Hops and Sherif (1995))

to compute a single value.

Both approaches raise the question of whether or not this is a valid way to perform trade-

offs based on different scales. The essential problem is that the various dimensions are measured

in isolation, rather than having a single unified basis. We shall argue in Section 6.3 that our

proposed complexity measure involves elements of coupling, cohesion and size. But since our

model derives a single measurement from a unified approach, trade-offs are not performed in some

ad hoc manner. Indeed with our proposed complexity metric, one cannot isolate these individual

attributes.

4.4 The Dual Problem: Reverse Engineering

One of our requirements for constructing Morpheus is a method for deciding which entities should

be placed in a particular object and how objects should be nested. Whilst, metrics generally aim to

provide a test for object structure, they do not provide any insight on how to grow objects. Reverse

engineering provides a useful insight into this problem.

Calliss (1989) proposed three methods for identifying objects from the raw source code,

namely: grouping by type-families, grouping by imports and grouping by state variables. We

find this idea intuitively appealing as it accords with our intuition on one of the ways in which we

look at designs to see if proposed objects are reasonable. However, two areas are not covered in

Calliss’s work. First how to determine which possible set of groupings gives the best objects, and

second, how to find the next and subsequent layers of the resulting structure. Calliss’s work was

based on what we have termed design entities.

Choi and Scacchi (1990) use the files containing source code as the basis for identifying ob-

jects and they then introduce an algorithm for finding the system’s higher structure. Anecdotal

evidence (Howell, 1996) suggests that the content of a source file may have more to do with the

programming language being used than with any notions of object structure, so source files may

not be the best indication of the system’s modular structure. Choi and Scacchi’s algorithm seeks

to minimise the impact of potential changes to any part of the design, determined by how many

objects are visible to a higher level (controlling) object and coupling between objects. The draw-

back with Choi and Scacchi’s approach is the apparent mixing of different measures without any

rigorous justification.

Benedusi et al. (1992) presents a method for reverse engineering source code to produce design

documents and structure charts. The system uses an algebraic system for abstracting away from

the code detail to a design. Attention is focused on the low-level code detail and is more akin to

the program restructuring school (e.g., Rich and Waters, 1990).

4.5 Towards a Merit function

Müller et al. (1993) describes a method for building systems from the lowest level upwards by

examining coupling a lower levels. This section outlines their method.

A graph G(N ;E) consists of a set of nodes, N , (representing the software building blocks)

and a set of edges, E , (representing the connectivity between the nodes). Each edge is an ordered

pair (v;w) representing the flow of resources from v to w, further each edge has an associated edge

capacity, EC, representing the set of resources flowing from v to w. A resource is a set of syntactic

4.6. Validating Complexity Measures 43

entities, e.g., procedures, types and variables. There is no reason why both the edges (v;w) and

(w;v) should not exist in the same graph.

A node v will in general require a set of requisitions, Req(v), and offer a set of provisions,

Prv(v), algebraically,

Prv(v) =
[

x2V

EC(v;x)

Req(v) =
[

x2V

EC(x;v)

However, most languages do not offer precise control over imports and exports, so Müller

et al. defines exact requisitions, ER(v;w), (of v from w) and exact provisions, EP(v;w), (of v to w)

between nodes, which can be calculated as below

ER(v;w) = Req(v)\Prv(w)

EP(v;w) = Prv(v)\Req(w)

Having defined exact provisions and exact requirements, Müller et al. now defines a measure

of interconnection strength, IS(v;w), as the exact number of resources flowing between the two

nodes v and w as

IS(v;w) = jER(v;w)j+ jEP(v;w)j

Their system provides controllable high coupling threshold Th and low coupled threshold Tl .

These thresholds are adjusted to look for modules which are highly coupled relative to their neigh-

bours. The idea being that if two or more modules are highly coupled, they should be merged to

form a cohesive (super-)module. Interconnection strength as defined above relates two individual

objects together, and does not yield a more general measure of the coupling within the system.

Müller et al. then defines the coupling between an object and the rest of the system as system

strength, SS, by summing over all other system objects, i.e.,

SS(v) = ∑
x2V

jER(v;x)j+ jEP(v;x)j

Müller et al. suggest searching for objects with strong coupling and grouping these objects to-

gether to form a high cohesion subsystem. The resultant (super-)object would have some cohesion

because of the existing coupling between objects. Hence Müller et al. clearly regard coupling and

cohesion as just dual aspects of the same phenomenon.

We believe that Müller et al.’s work provides a very interesting foundation for our work, since

it is based on identifying the specific interface between objects. Whilst Müller et al. uses a simple

count for determining the size of the interface between objects, we use a statistical method which

takes account of the relative importance of each node. One objection to Müller et al.’s work is

that they force their systems to be (k;2) partite graphs,2 and we see no reason for this assumption.

There is no reason to suppose that once an object has been decomposed into smaller (internal)

entities that these entities should be in any way related to other internal entities from another

object.

4.6 Validating Complexity Measures

Having proposed any kind of complexity measure, we need to validate the measure to ensure that

it effectively performs its intended function. Validation should be both theoretical and empiri-

cal. Unfortunately, due to time constraints and the unwillingness of industry to allow access to

2A (k;2) partite graph consists of a series of graph layers G1; : : : ;Gn. Layers are connected by means of vertical

edges; however vertical edges may only connect adjacent layers. Moreover the number of nodes per layer is bounded

by k (paraphrased from Müller et al., 1993, p.186).

44 Chapter 4. Complexity Measures

their designs, we have been unable to carry out any empirical validation. However, we have con-

ducted a number of informal experiments (see Chapter 8) and we are satisfied that the measure is

reasonable.

Weyuker (1988) proposed a set of nine properties which any measures of program complexity

should satisfy. Her proposal is widely accepted (Shepperd and Ince, 1993) as a basis for theoretical

validation, although it has some shortcomings. For example Fenton (1994) argues that two of

Weyuker’s properties (i.e., W-Property 6.5 and 6.6, see Chapter 6) capture different notions of

complexity versus comprehension. However, we do not see why different members of a set of

properties should not try to capture different aspects of a relationship. We would be concerned if

the property set was internally inconsistent.

Briand et al. (1996) proposed a set of five properties for a design complexity measure. Like

Shepperd and Ince, Briand et al. partly rephrased Weyuker’s properties in terms of design com-

plexity. Briand et al. concluded that their proposed property set did not contradict Weyuker’s set.

However, Briand et al.’s properties assume that complexity has a strictly additive nature, and we

see no reason a priori to accept such a hypothesis. Therefore our theoretical validation is based

on Weyuker’s property set, restated for design complexity rather than code complexity.

I often say that when you can measure what you are speaking about,

and express it in numbers, you know something about it;

but when you cannot measure it,

when you cannot express it in numbers,

your knowledge is of a meager and unsatisfactory kind.

LORD KELVIN (1824–1907)

English physicist and mathematician

Part II

Theory

45

Chapter 5

Mathematical Background

Synopsis

This chapter provides the necessary mathematical background for understanding the

calculation, derivation and theoretical validation of our proposed complexity measure.

This chapter formally defines a number of mathematical definitions required for the understanding

of our complexity measure, Ψ, defined in Chapter 6. Some standard results are stated, without

proof (references are provided), which are useful in the theoretical validation of our complexity

measure.

5.1 Graph Theory

The building blocks of basic graph theory are sets (see for example Denvir (1986, Chapters 2 and 4)

and Carré (1979, p.1–7)), and relations (see Denvir (1986, Chapter 7) and Carré (1979, p.17–23)).

The reader unfamiliar with these mathematical concepts may wish to refer to the cited references

before continuing. This thesis uses standard set notation, which is summarised in Appendix D.

Unfortunately, the graph theoretic literature has not yet evolved a definitive terminology; so

we shall start by defining some basic terms. The following definitions are derived from Carré

(1979) and Munro (1992).

5.1.1 Basic Terms

Definition 5.1 (Graph). A graph, G(N ;E), is a finite set of nodes, N , together with a subset, E ,

of the Cartesian product N �N . The elements of the set E are called edges.

The order of the elements in the ordered pair representing an edge is significant. Such graphs are

sometimes referred to as or directed graphs or digraphs.

Definition 5.2 (Multi-graph). A multi-graph, G�

(N ;E�

) is a finite set of nodes, N , together

with a finite bag, E�, of the Cartesian product N �N . The elements of the bag E� are called

edges.

Generally in this thesis we only use graphs, rather than multi-graphs. When multi-graphs are

required, we shall explicitly say multi-graph.

It is often convenient to represent a graph visually as for example in Figure 5.1. The arrows

are used to show the direction of each edge. The set of nodes N is fw;x;y;zg, and the set of edges

E is f(w;x);(w;z);(z;z);(z;y);(y;x);(z;x);(x;y)g. However, it must be stressed that such pictures

are only for ease of understanding, it is the two sets, N and E , that define the graph.

48 Chapter 5. Mathematical Background

w x//

z
��

y//

OO

��
MM

HH

Figure 5.1: A graph (Ross and Moore, 1995)

Definition 5.3 (Predecessor). In a graph G(N ;E), a node ni is called a predecessor of a node

n j if (ni;n j) 2 E .

Definition 5.4 (Initial and Terminal endpoints). The two nodes in an ordered pair representing

an edge, (ni;n j), are respectively known as the initial endpoint and the terminal endpoint of the

edge.

Definition 5.5 (Degree). An edge, (ni;n j), is said to be incident from node ni and incident to node

n j. The sum of number of edges incident to and from a node is called the degree of the node.

For example in Figure 5.1, the node w has degree 2. In the case of a loop, such as the edge (z;z),

the edge counts twice, so that node z has degree 6.

Theorem 5.1. Let G(N ;E) be a (multi-)graph with n nodes and e edges. Let node ni have degree

di for i = 1; : : : ;n. Then

n

∑
i=1

di = 2e

Proof. See Munro (1992, p.160).

Definition 5.6 (Paths and Cycles). A path is a finite sequence of edges of the form

(ni0 ;ni1);(ni1 ;ni2); : : : ;(nir�1
;nir);

i.e., a finite sequence of edges in which the terminal node of each edge coincides with the initial

node of the following edge. A path such that the two endpoints (i.e., ni0 and nir) coincide is said to

be a cycle.

Since a path is uniquely determined by the sequence of nodes ni0 ;ni1 ; : : : ;nir which it visits; it is

often convenient to just specify a path by listing the required node sequence.

For example in Figure 5.1, the path z;y;x;z is a cycle. Note also, that there is no path to node w,

since no edge has node w as its terminal endpoint.

Definition 5.7 (Acyclic). A graph is called acyclic if is does not contain any cycles.

Definition 5.8 (Simplification). The simplification of a digraph G(N ;E) is a graph Gs(N s;Es),

in which each edge in E is replaced by two edges. One edge being the original (ni;n j) and the

other formed by swapping the order of the two endpoints, i.e., (n j;ni).

Mentally, it is much easier to consider Gs(N s;Es) as being the original graph G(N ;E) but without

any restriction on the direction of edges.

Definition 5.9 (Connections). Two nodes ni and n j in a graph G(N ;E) are connected if there is

a path from ni to n j on the simplification Gs of G.

Clearly, if such a path exists, there is also a path from n j to ni in Gs.

Definition 5.10 (Components). The set of nodes connected to an arbitrary node is called a com-

ponent of the graph.

5.1. Graph Theory 49

The components of a graph are obviously disjoint, and hence form a partition of the graph.

Definition 5.11 (Connected Graph). A graph with exactly one component is called a connected

graph.

Definition 5.12 (Trees). A tree is an acyclic graph G(N ;E) in which one node nr has no prede-

cessors and every other node has exactly one predecessor. The node nr is called the root of the

tree. A set of trees is called a forest.

It follows from the above definition that a tree is a connected graph; and that a forest is not

connected.

a

b c d

e f g

ww♦ ♦ ♦
♦ ♦ ♦

♦ ♦ ♦
♦ ♦ ♦

♦ ♦

�� ��❄
❄❄

❄❄
❄❄

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

��❄
❄❄

❄❄
❄❄

��

Figure 5.2: A tree

Figure 5.2 shows an example of a tree. The root of this tree is the node a. It is frequently

convenient to draw trees with the root at the top of the page, as in our example. In such a diagram,

it is often convenient to leave out the arrow-heads; there is no ambiguity since parent nodes are

shown above their respective children.

5.1.2 Operations on Graphs

Definition 5.13 (Strict Graph Equality). Two graphs, G1(N 1;E1) and G2(N 2;E2), are equal if

N 1 = N 2 and E1 = E2.

Sometimes, it is convenient for an edge to have a label, in which case the representation of an edge

becomes an ordered tuple (edgei, edge j , labelk). In this case two edges are only equal if they have

the same tuple. Labels can be drawn from any desired set, and have no relation with the node set.1

Definition 5.14 (Subgraph). A graph G1(N 1;E1) is a subgraph of a graph G2(N 2;E2), if N 1

is a subset of N 2 and E1 is a subset of E2. We use the notation G1(N 1;E1) v G2(N 2;E2) to

represent such a relationship.

Since the subgraph relation is based on the subset of the underlying sets, it follows that a graph is

a subgraph of itself.

Definition 5.15 (Proper Subgraph). A proper subgraph can be defined in terms of the subgraph

relation above, by adding the requirement that at least one of the set of nodes or edges is a proper

subset. We use the notation G1(N 1;E1)< G2(N 2;E2) to represent this relationship.

The following definitions of graph union and graph intersection are adapted from Calliss (1989).

Graphs can be combined by graph union based on set union of the underlying sets. Figure 5.3

shows two graphs, and Figure 5.4 shows the resultant graph union. Formally, we have the follow-

ing definition.

Definition 5.16 (Graph union). The graph union of two graphs G1(N 1;E1) and G2(N 2;E2) is

a third graph Gu(N u;Eu), symbolically G1(N 1;E1)tG2(N 2;E2). The set N u is given by N 1[

N 2, and the set Eu by E1[E2.

1Nodes may be labelled in a similar way, but this extension is not needed in this work.

50 Chapter 5. Mathematical Background

a

b c

v

�� ��❄
❄❄

❄❄
❄❄

❄

OO

(a) Ga(N a;Ea)

w

c u

v

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

OO
��

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

(b) Gb(N b;Eb)

Figure 5.3: Two graphs

a w

b c u

v

�� ��❄
❄❄

❄❄
❄❄

❄

OO
��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

��

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

Figure 5.4: Graph union

The example in Figure 5.3, has two nodes fc;vg and an edge (v;c) in common. If one graph had

instead had an edge (c;v), there would have been two edges (v;c) and (c;v) between nodes fc;vg

in the resulting graph.

If the two graphs being combined have no nodes in common, graph union still yields a single

graph, consisting of at least two distinct components.

c

v
��

Figure 5.5: Graph intersection

Graphs can also be combined by graph intersection, again based on the underlying set opera-

tion, intersection. Again considering the two graphs in Figure 5.3, the result of graph intersection

is shown in Figure 5.5. Formally, graph intersection is defined as:

Definition 5.17 (Graph intersection). The graph intersection of two graphs G1(N 1;E1) and

G2(N 2;E2) is a third graph Gi(N i;Ei), symbolically G1(N 1;E1)uG2(N 2;E2). The set N i

is given by N 1\N 2, and the set Ei by E1\E2.

The definitions of graph union and intersection, can be extended to encompass labelled graphs in

the obvious manner.

We can construct a more general definition of graph equality than Definition 5.13, by replacing

the strict set equality used there by requiring the sets to be isomorphic in the following way.

Definition 5.18 (Isomorphic Graph Equality). Two graphs, G1(N 1;E1) and G2(N 2;E2), are

equal if there exists a bijective mapping f from N 1 to N 2 and another bijective mapping g from

E1 to E2, such that

g
�

e1i;e1 j

�

=

�

f (e1i); f (e1 j)
�

=

�

e2i0;e2 j0

�

8e1i 2E1 and 8e2i 2 E2

and

g�1
�

e2i;e2 j

�

=

�

f�1
(e2i); f�1

(e2 j)
�

=

�

e1i0;e1 j0

�

8e1i 2 E1 and 8e2i 2 E2

5.1. Graph Theory 51

The identity function obviously satisfies the requirements on f and g, thus yielding the previous

definition as a special case. It is this isomorphic equality between two graphs which allows us to

validly draw pictures of graphs and represent graphs as data structures in Morpheus . Obviously, the

definitions of graph union and intersection (above) can be generalised in this framework.

5.1.3 Simple Design Graphs

Before progressing on to look at hierarchical graphs (see Section 5.1.4) we need to pause and

consider how a software design can be represented by what we shall call design graphs.

Consider the outline definition of the single object shown below.

OBJECT a_stack IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

push (datum : IN int) ;

pop RETURN int ;

INTERNALS

TYPES

stack ;

OPERATIONS

push (datum : IN int) ;

pop RETURN int ;

DATA

my_stack : stack ;

OPERATION_CONTROL_STRUCTURES

: : :

END_OBJECT a_stack

The construction of a stack is not visible outside the enclosing object. A user of this object

can only see the provided operations, namely: push and pop. This object can be used to store a

sequence of integers in a last-in first-out order. We assume that the surrounding environment will

supply a suitable object with integers without being explicitly referenced. Figure 5.6 shows the

design graph generated from this design. Operations are indicated by ovals, variables are shown by

boxes, whilst datatypes are shown as trapeziums. The arrows from push to int indicate that the

operation push requires ‘the services’ of the datatype int, so that push can provide its services

to others. Similarly push needs the variable my stack for storing the sequence of integers, and

the datatype stack in order to manipulate my stack This concept is similar to the resource flow

graph of Müller et al. (1993) and others.

pop

stack

my_stack int

push

Figure 5.6: Design Graph of Simple Stack

52 Chapter 5. Mathematical Background

Such a model is fine for ‘flat’ software architectures, but is not sufficient for true hierarchical

designs.

5.1.4 Hierarchical Graphs

The previous sections described standard ‘flat’ graphs, that is every node is just an element of

some set. In this section, we introduce the concept of hierarchical graphs or nested graphs. In

a hierarchical graph, a node may itself expand to contain further nodes and edges, and so on ad

infinitum.

a

w

x

✧ ✧ ✧

✮ ✮ ✮

✶ ✶ ✶
❁ ❁ ❁

❍ ❍ ❍
◗ ◗ ◗❳ ❳ ❳❢ ❢ ❢♠ ♠ ♠

✈ ✈ ✈
✂ ✂ ✂

✌ ✌ ✌

✕ ✕ ✕

✜ ✜
✜
✧✧
✧

✮✮
✮

✶✶✶

❁❁❁
❍❍❍ ◗◗◗ ❳❳❳ ❢❢❢ ♠♠♠

✈✈✈
✂✂✂
✌✌✌

✕✕✕

✜✜✜
y

z

b

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

��✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗
✗ ✗

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

��❄
❄❄

❄❄
❄❄

❄

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

tt❥ ❥ ❥ ❥
❥ ❥ ❥ ❥

❥ ❥ ❥ ❥
❥ ❥ ❥ ❥

❥ ❥ ❥ ❥
❥

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

Figure 5.7: A hierarchical graph

Figure 5.7 shows an example of a hierarchical graph, and the nodes fw;x;y;zg (inside the

circle) nested inside the collapsed node. One might consider the top-level graph2 to be that shown

in Figure 5.8, where the node W represents the collapsed nodes fw;x;y;zg. However, a little

reflection will show this view to be inadequate, because it has only a single link between the nodes

W and b.

a

W

b

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

��✎ ✎
✎ ✎
✎ ✎
✎ ✎
✎ ✎
✎ ✎
✎ ✎

tt❥ ❥ ❥ ❥
❥ ❥ ❥ ❥

❥ ❥ ❥ ❥
❥ ❥ ❥ ❥

❥ ❥ ❥ ❥

Figure 5.8: Top graph of the hierarchical graph

The subgraph consisting of the nodes fw;x;y;zg is of course a graph in its own right. However,

such a view loses the three edges (a;w), (x;b) and (z;b), which cross the nested graph’s boundary.

That is, in a nested graph, we potentially have edges which ‘go nowhere’. An alternative view is to

have two edges from W to b, however the number of such links may not always be known; nor is

such a situation intuitively obvious. With such possible expansion of nodes in hierarchical graphs

Theorem 5.1 does not hold.3

5.1.5 Full Design Graphs

Referring back to our stack example in Section 5.1.3. Now consider a typical use of a stack. The

design might look something like

2Technically such a graph is a condensation of the nodes fw;x;y;zg, (see Carré, 1979, p.34).
3Proof, look at circled part of Figure 5.7, the problem is that there are edges which ‘go nowhere’ thus breaking the

relationship between edges and degrees.

5.2. Information Theory 53

OBJECT stack_adt IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

push (datum : IN int) ;

pop RETURN int ;

INTERNALS

TYPES

stack ;

OPERATIONS

push (datum : IN int) ;

pop RETURN int ;

DATA

my_stack : stack ;

OPERATION_CONTROL_STRUCTURES

: : :

END_OBJECT stack_adt

OBJECT caller IS PASSIVE

PROVIDED_INTERFACE

TYPES

int ;

OPERATIONS

main ;

REQUIRED_INTERFACE

OBJECT stack_adt

OPERATIONS

push (datum : IN int) ;

pop RETURN int ;

INTERNALS

: : :

END_OBJECT caller

The resulting design graph is shown in Figure 5.9. Such a graph actually represents two distinct

pieces of information, namely: the modular structure (which is always a tree, see Figure 5.10) and

the ‘requires’ relationship which can flow through object boundaries.

5.1.6 Design Graph Concatenation

The property set for judging complexity metrics proposed by Weyuker (1988) requires the defini-

tion of a concatenation operation for two designs. Clearly concatenating two designs is non-trivial.

However, we must define at least a plausible systematic concatenation operation. We therefore de-

fine design concatenation on the basis of graph union, with the following added condition: If the

underlying object hierarchy of the standard graph union has two (or more) top-level objects, a

single unique object is added at the top of the hierarchy. This ensures we always have a single

hierarchical tree.

It follows immediately, that concatenating a design with itself, yields the original design.

5.2 Information Theory

In Chapter 6, we will develop a method for encoding the structure of a hierarchical graph as a

(binary) message. This section provides the background theory to explain how the length of such

54 Chapter 5. Mathematical Background

pop

stack

my_stack

int push

main

Figure 5.9: Design Graph of Stack ADT with Caller

root

caller stack adt

main int push pop stack my stack

♦ ♦ ♦
♦ ♦ ♦

♦ ♦ ♦
♦ ♦

❖❖❖
❖❖❖

❖❖❖
❖❖

⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧

♦ ♦ ♦
♦ ♦ ♦

♦ ♦ ♦
♦ ♦

⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧

❄❄
❄❄

❄❄
❄

Figure 5.10: Object Structure of Stack ADT with Caller

messages can be calculated. However, we must first explain why the length of such a message is

interesting.

The following sections are derived from Li and Vitányi (1997).

5.2.1 Kolmogorov Complexity

Intuitively, if something can be described with a shorter description than something else, we might

suspect that the former was in some sense simpler than the latter. Of course, if the second descrip-

tion started from basic principles or used only a simple vocabulary, whilst the first was based on

other complex descriptions or used a larger vocabulary, we might question our initial assumption.

If, however, both descriptions started from the same baseline, our suspicions would be calmed.

This concept of judging complexity based on the amount of information needed to describe some-

thing lies at the heart of Kolmogorov Complexity.

The foregoing appealed to intuition, we need a more rigorous basis if we are going to use

this as a model of complexity. This concept of complexity can be made formal by insisting on

using strings of binary digits and permitting no a priori knowledge. The description language is

limited to the class of languages that can be processed by a Turing machine (Turing, 1937). This

corresponds to the class of partial recursive functions. We then take the length of the shortest

possible universal Turing machine program which provides the required description. This length

is called the Kolmogorov Complexity of the item being described.

Unfortunately, such a function is noncomputable. Rissanen (1978) developed an approach for

choosing between competing alternative hypothesises based on the ideas of Kolmogorov Com-

plexity.

5.2. Information Theory 55

5.2.2 Minimum Description Length Principle

Definition 5.19 (Minimum Description Length (MDL) principle). The best theory to explain a

set of data is the one which minimizes the sum of:

� the length, in bits, of the description of the theory; and

� the length, in bits, of data when encoded with the help of the theory.

Li and Vitányi (1993, p.308)

Given some data D, MDL states that we should pick that theory T which minimises

length(T)+ length(D j T) (5.1)

where length(T) is the number of bits needed to minimally encode the theory T , and length(D j T)

is the number of bits needed to minimally encode the data D given the theory T . The resultant

message must be decodable, otherwise we could just send 1 bit!

From Kolmogorov complexity theory (Li and Vitányi, 1997), we know that

KC(x)�min
i

length(xi)

where KC(x) is the Kolmogorov complexity of x. That is the Kolmogorov complexity of x is

approximately the length of the minimum message describing x in bits.

This enables us to interpret the MDL principle in Bayesian terms (see Li and Vitányi, 1993,

p.309). It can seen that minimising length(T)+ length(DjT) corresponds to maximising KC(T)�

KC(D j T) and hence KC(T j D). In practice we cannot enumerate all possible T s, so we are

limited to a set of possible T s. In this thesis we limit ourselves to a class of preselected theory (see

Section 6.2.3) and just transmit the graph’s structure according to our chosen theory. A significant

piece of future work will be the development of alternative theories.

5.2.3 Prefix Encoding of Positive Integers

In Chapter 6, we will see that part of our model for describing a graph, requires a method for

transmitting positive integers between the message’s sender and receiver. Since, a priori we can-

not know the values of the required integers or the lengths of the corresponding binary string

representations, we have to use a coding scheme which can unambiguously detect the end of the

required integer. Coding schemes which satisfy this criteria are called prefix codes. The following

two definitions are quoted from Jones (1979, p.45).

Definition 5.20 (Uniquely Decodable). A code is uniquely decodable if, for each source sequ-

ence of finite length, the sequence of code letters does not coincide with the sequence of code

letters for any other source sequence.

Definition 5.21 (Prefix Codes). A prefix condition code is one in which no code word is the prefix

of any other code word.

We concentrate on prefix codes because every uniquely decodable code can be replaced by an

equivalent length prefix code (see Li and Vitányi, 1997, p.74).

To transmit a positive integer, so that it can be decoded, it is not possible to send just the in-

teger’s binary representation, because we cannot detect the end of the integer’s representation. To

overcome this problem; we transmit the length of the required binary string. This length inform-

ation is encoded using a prefix scheme so that the end of the length field can be unambiguously

detected. This is done by doubling up each digit of the length field and adding a single bit (0) at the

end of the length field. This sentinel can be detected, since the binary representation of all positive

integers start with 1. Hence, the end of the length field is uniquely terminated by the sequence

‘01’, which of course cannot occur whilst doubling up the length’s individual binary digits.

56 Chapter 5. Mathematical Background

To make this clear, consider the transmission of the integer 2710; this has a binary code of

110112, and the length of this binary code is clearly 510 which in turn has a binary code of 1012.

Therefore, 2710 can be transmitted as

2710
�

=

11 00 11 0 11011

Where �
=

indicates that the right and left hand sides are different representations of the same

number. The right hand side is the coded representation of the left hand side. Spaces have no

significance, and are just added for clarity.

Clearly, the length of this representation is 12 bits. This length can be calculated as

2blog2 blog2 27+1c+1c+1+ blog2 27+1c

We can approximate blogx+1c by logx, with an absolute error of at most 1 bit.

This concept of prefixing an integer by its length, can of course be continued by prefixing

the length with the length’s (binary string) length, and so on until a length of exactly one bit is

achieved.4 Hence for example in the case of 2710 we have

2710
�

=

1 10 100 0 11011

This representation again has a length of 12 bits.

Hence in general we can represent an integer n by the code sequence

L� n = log2 n+ log2 log2 n+ log2 log2 log2 n+ � � �

The logarithm sequence terminates when log(: : : logx) becomes less than 0.

Using Kraft’s Theorem (Jones, 1979, p.48), we can deduce a lower bound on the length of a

code for a given integer, represented by log�2: where (see Li and Vitányi, 1993, p.75)

log�2 n = L� n+ log2 2:865064

= log2 n+ log2 log2 n+ log2 log2 log2 n+ � � � + log2 2:865064

This function is obviously strictly monotonically increasing. We note that log�2 27 � 9:918 bits, to

which our previous lengths of 12 bits compare quite favourably.

Finally, we note that to transmit the set of natural numbers including zero, it is only necessary

for the sender and the receiver to agree that the sender shall always add one to the required value

prior to encoding and transmission.

Broadly speaking a code is universal if it can be used to transmit a sufficiently long string

without knowledge of the initial probability distribution of the source alphabet. Similarly, a code

is asymptotically optimal if after some initial value the average code word length is minimised.

L� satisfies these requirements, (see Li and Vitányi, 1997, p.75–80 for details).

Figure 5.11(a) shows the graph of log�2, as we can see the graph tails off slowly, as required for

an asymptotically optimal code. However the initial segment climbs rapidly, see Figure 5.11(b).

This may not be the most appropriate shape for a function encoding small integers which seem

to dominate the entity counts of designs. The code, L�, is not the only asymptotically optimal

universal code for integers, but “[L�] has had a virtual monopoly in MDL applications” (Baxter,

1996, p.81). There are many possible alternatives, some assuming more prior knowledge, (see

Baxter, 1996, p.81–95). However as Baxter notes, we need to consider the choice of integer

coding schemes:

Although their code lengths converge asymptotically, feasible inductive inference is

never done with an asymptotically large amount of data. So the difference in code

lengths may affect the inference. Baxter (1996, p.83)

4Technical note. Since the function blog2 n+1c has a fixed point at n = 2, we actually use ‘length�1’ in place of

length. However, this change has no impact on the remainder of this thesis.

5.2. Information Theory 57

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

le
ng

th
 (

bi
ts

)

integer value

(a) Moderate Integers

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

le
ng

th
 (

bi
ts

)

integer value

(b) Small Integers

Figure 5.11: Graph of log�2

5.2.4 Length of Code Words with Known Probabilities

In Chapter 6, we will see that we need to find the length of a message describing the structure

of a graph. Since we are only interested in the structure, a flat (multi-)graph can be described

by just transmitting the details of its edges, where a node is identified by some arbitrary symbol

from a (finite) alphabet. Hence we need some way of estimating the minimum message length of

a sequence of symbols drawn from a known frequency distribution.

For a message describing a (given) graph (as above), we can determine the a priori probability

of a node being chosen at random from the node sequence describing the graph. Let such a node

be ni, and let Prni be the probability of ni being selected from the node sequence. For a practical

example of how to describe a graph, see Section 6.2.1.

We need a way of estimating the corresponding minimum message length for such a node

sequence. Shannon (1948) showed that the message length of a sequence of symbols chosen from

a fixed finite alphabet is equal to the sum of the corresponding symbol length for each symbol, i.e.,

length(s1 : : : sn) = ∑
i

length si

Hence we need an estimate for the length of each symbol. Shannon further showed that the mini-

mum length of such a symbol (from a finite alphabet) can be estimated by � log2(Prsi) where Prsi

is the probability of the symbol si occurring.

Example Consider the message, aabab, consisting of just two distinct symbols a and b. The

message has a total of five symbols, hence Pra =

3
5

and Prb =

2
5
; since a occurs three times and

b occurs twice. Hence the minimum length for representing a is 0.74 bits and b has a minimum

length representation of 1.32 bits. Thus the total (minimum) length for this message is 3�0:74+

2�1:32 = 4:86 bits. Observe that if we had encoded a and b using the obvious code of a = 0 and

b = 1 (say), then the length would have been 5�1 = 5 bits; this length is greater than Shannon’s

minimum message length.

It must be stressed that the above is a theoretical lower bound and that in general no practical

codes achieve this limit. The current best is Arithmetic Coding (see Witten et al., 1987). Further

it should be borne in mind that if the original a priori estimates of the probabilities are wrong, the

resulting message length will be suboptimal (Oliver and Hand, 1994). In our case this problem

does not arise with respect to edge endpoints because they are derived from the required graph.

Therefore, this estimate serves our purpose.

A flat graph can be described by a sequence of edges;5 each edge being described by exactly

5Plus some additional information for decoding which can be ignored for the present.

58 Chapter 5. Mathematical Background

two nodes. For our purposes, an isolated node need not be described, since (by implication) it does

not contribute anything to the system, otherwise it would be connected to another node.

Hence in our case, we can estimate the minimum message length of a graph’s edge description,

for the edge (ne1
;ne2

) by

� ∑
e2E

(log2(Prne1
)+ log2(Prne2

))

In our extended model for complexity (see Section 6.2.3) we represent the endpoint of an

edge in a hierarchical graph by a sequence of node symbols. (How such a sequence of nodes

is determined and how its last element is detected is explained in Chapter 6.) To find the (par-

tial) minimum message length corresponding to a sequence of node symbols, we simply take

the sum of the minimum length of each individual node’s symbol in the sequence. For example

if we have the node sequence n1n2 : : :nξ this has a corresponding minimum message length of

�

�

log2 Prn1 + log2 Prn2 + � � �+ log2 Prnξ
�

bits.

5.2.5 Further Reading

Li and Vitányi (1997) is probably the definitive reference on Kolmogorov Complexity.

Each problem that I solved became a rule

which served afterwards to solve other problems.

RENÉ DESCARTES (1596–1650)

Discours de la Méthode (1637)

Chapter 6

Describing a Graph

Synopsis

This chapter presents our complexity measure, Ψ, in detail, explaining how it is cal-

culated and why it is a complexity measure. We also show that Ψ satisfies Weyuker’s

(1988) proposed property set for complexity measures.

In this chapter we describe our complexity measure, Ψ, in detail, and show that it satisfies Weyuker

(1988) proposed property set for complexity measures.

6.1 The Message Passing Metaphor

Our message passing paradigm is very simple. We imagine that we need to communicate the struc-

ture of a design graph between a transmitter and a receiver along a perfect transmission medium.

That is, the receiver receives exactly what is transmitted, without any errors, duplication, or data

loss. The receiver must be able to recreate an equivalent graph from the received message, plus

knowledge of the message’s structure.

We hypothesise that the length of the resultant message is a measure of the structural complex-

ity of the proposed design. Further, by application of Occam’s razor,1 a smaller message length

indicates a better design.

6.2 Ψ: The Complexity of a Design Graph

In this section we describe our proposed complexity measure. This is a recursive definition, so we

start by describing a simplified base case, and building upwards.

6.2.1 Describing the Edges in a Graph

In this section, we are going to develop a partial message for describing the edges in a standard

graph. We ignore (for now) issues of how this message might be decoded by the receiver. This is

only done to simplify the exposition, a decodable message will be covered in Section 6.2.2.

Given a multi-graph G�

(N ;E�

) with ξ nodes fn1; : : : ;nξg. A directed link between ni and n j

can be represented by the sequence P(i) P(j), where P is some permutation of the set of nodes.

We need know nothing about P except that it is a permutation of the index set f1; : : : ;ξg. Since

however, we do not know how the original index set was assigned, we may as well take P as the

1“Entities should not be multiplied unnecessarily.”, William of Occam (c.1320).

60 Chapter 6. Describing a Graph

identity function, and hence ignore P. This modification reduces the complexity of the mathemat-

ical notation below, without any loss of generality; this can be formally justified by the definition

of isomorphic graph equality (see Definition 5.18).

Now consider a message, which consists of an arbitrary sequence of symbols drawn from

some finite alphabet. From Shannon’s (1948) information theory we know that the message

length2 required for each symbol in the message so that the message’s length is minimised is

log2(
1

Prµ
) = � log2(Prµ), where Pr(µ) is the probability of some symbol µ appearing in the mes-

sage (see Section 5.2.4).

x y((

z
��

hh

Figure 6.1: Simple graph

Example Consider the small graph shown in Figure 6.1. This graph consists of three nodes

fx;y;zg and three edges f(x;y);(y;x);(y;z)g. Recall that the order of the nodes in an edge is

significant. Hence, a message describing this graph could be:

xy yx yz

It is obvious that the above message contains three distinct symbols, and contains a total of six

symbols. Therefore the respective probabilities of x;y;z are 1
3
, 1

2
and 1

6
. From Section 5.2.4,

the corresponding message lengths (for each symbol) are respectively given by log2 3, log2 2 and

log2 6. Multiplying the message length of each symbol by the number of times it occurs, yields a

total message length of

2� log2 3+3� log2 2+1� log2 6 � 8:75 bits

This can be formalised as follows. We can see that the length of a message describing the

graph G� with ξ nodes fn1; : : : ;nξg, is

� ∑
i2N

c(i) log2 (Pr i)

Where ci is a count of the number of times node ni appears in the description. All that remains is to

find some function for c and an estimate of the probability of a node occurring in the description.

We know that for any multi-graph, each edge impinges on exactly two nodes. In a message

describing the structure of a multi-graph, each node appears once for each edge that impinges on

it. Therefore, the number of times each node appears in our message is equal to the number of

edges impinging on it. In other words, the function c is really the degree of the corresponding

node.

Moreover, in any multi-graph, the sum of the number of edges impinging on any node over

the whole graph is twice the number of edges in the graph, i.e.,

∑
i2N

ci = 2E

where ci is the number of edges impinging on node ni, and E is the number of edges in the graph.

Now from Theorem 5.1 we know that ∑i di = 2E . Hence

∑
i2N

ci = 2E = ∑
i2N

di

2We use log2 in what follows, which yields a result in bits. It is possible to use logarithms to any base, but the results

will differ by a multiplicate constant.

6.2. Ψ: The Complexity of a Design Graph 61

where di is the degree of node ni. The message describing the graph has 2E symbols. Therefore,

the probability of a node occurring in a message is the node’s degree divided by the sum of degree

of all nodes.

Hence, we can conclude that the message length of an arbitrary node ni in a message is:

� log2

�

di

D

�

Where di is the degree of node ni, and D is ∑i2N di. Therefore, the total length of a message

describing the structure of a multi-graph is

� ∑
i2N

di log2

�

di

D

�

(6.1)

We assume that 0� log2

�

0
x

�

= 0 for x > 0.

Such a (partial) message is sufficient to describe the edges in a multi-graph. This result holds

unchanged for a graph, G(N ;E).

6.2.1.1 Example: Chain Graph

To demonstrate the above, consider the small graph, shown in Figure 6.2. This graph consists of n

nodes arranged in a chain, such that, there is an edge from node 1 to node 2, node 2 to node 3, etc.

until finally node n�1 has an edge to node n, and node n has no other edges impinging on it.

1

2
((

n�166

nHH

Figure 6.2: Chain Graph

Degree Num. Nodes Degree � Nodes 1=Pr Length

1 2 2 2(n�1) 2log2(2(n�1))

2 n�2 2(n�2) n�1 2(n�2) log2(n�1)

Total 2(n�1) 2(n�1) log2(n�1)+2

Table 6.1: Calculation of Chain Graph’s Message Length

The calculation of the resultant message length is shown in Table 6.1. For ease of presentation,

the reciprocals of the probabilities are shown, thus yielding positive lengths. The first row gives

the calculation of the contribution of the two end nodes to the message length. The second row,

the contribution of the n� 2 middle nodes. The last row shows the column totals for columns 3

and 5. Column 3, “Degree � Nodes”, shows the product of the first two columns. Column 4,

“1=Pr”, shows the reciprocal of the probability of a node appearing in a message, and is just the

total of column 3 divided by the entry in column 1. Finally, column 5, “Length”, shows the length

attributable to each type of node, and is just the entry in column 3 times the log of the entry in

column 4.

Hence, for a chain graph of n nodes, the message length is 2(n�1) log2(n�1)+2.

62 Chapter 6. Describing a Graph

6.2.1.2 Example: Star Graph

Now, consider another small graph, shown in Figure 6.3. This graph consists of n nodes arranged

in a star-like configuration, such that, node n has edges to every other node, and the remaining

nodes (1; : : : ;n� 1) have no other edge connections dependencies. Note that the same result

would be achieved if the direction of every arrow was reversed.

n

1 2 : : : n�2 n�1
zzt t
t t
t t
t t
t t
t t
t t
t t
t t
t t
t t
t t

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

�� ��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

Figure 6.3: Star Graph

Degree Num. Nodes Degree � Nodes 1=Pr Length

1 n�1 n�1 2(n�1) (n�1) log2(2(n�1))

n�1 1 n�1 2 (n�1) log2 2

Total 2(n�1) 2(n�1)+(n�1) log2(n�1)

Table 6.2: Calculation of Star Graph’s Message Length

The calculation of the resultant message length is shown in Table 6.2. Hence, for a star object of

n nodes, the message length is 2(n�1)+(n�1) log2(n�1).

6.2.1.3 Discussion

Considering the two previous examples, we see that each has the same number of nodes, and

the same number of edges. However, each yields a different message length. Further, the star

configuration has a message length less than or equal to the same sized chain configuration for

most n.3

6.2.2 Connections in a Single Object

The previous section showed how to create a partial message for describing the edges in a standard

(multi-)graph. However, we ignored the issue of how this message might be decoded by the

receiver. In this section we expand our message definition to create decodable messages.

In order for our message to be understandable by the receiver, each message needs to include

information about the size of the symbol set required for encoding the graph’s structure, i.e., the

cardinality of the node set for the graph. If we assume some form of arithmetic coding scheme, this

information allows the receiver to establish an a priori probability for each symbol, see MacKay

(1997), and hence decode the message. It must be stressed that our message lengths are theoretical

results, and cannot be achieved in practice.

This begs the question of how to calculate the message length of the representation of the car-

dinality of a set, in our message. There are a number of possible representations. We have chosen

to use the L� function (see Section 5.2.3), which yields an optimal universal prefix encoding for

all positive integers.4 Recall that the code length of this coding scheme is given by log�2. We need

3Clearly, the formulae make no sense for n = 0 or n = 1, and there is equality only for the special cases of 2 and 3

nodes, when the respective graphs are identical.
4See the discussion at the end of Section 5.2.3.

6.2. Ψ: The Complexity of a Design Graph 63

to add one to the natural number being transmitted so that zero can be sent. Note that this function

is strictly greater than zero, for all positive integers, and is strictly monotonically increasing.5

Hence the length of a message describing a (multi-)graph is given by

log�2(E +1)� ∑
i2N

di log2

�

di

D

�

(6.2)

This extension now allows us to transmit a standard graph, which corresponds to a design graph

with no objects.

It follows that for a single object, such a message is sufficient to describe its structure; and that

for a given object, set of basic entities and connections, the message length is fixed.

Recalling our discussion in Section 6.2.1.3, it is easy to see that each of the two sample graphs

could be (contrived) designs. Further each design contains the same number of edges. Hence as

we saw each design yields a different message length.

6.2.3 Extensions for Multiple Objects

In the previous section we showed how the structure of a single object could be represented by a

message,6 and how the message’s length7 could be calculated.

In this section, we shall extend these ideas to permit multiple (and nested) objects. The signif-

icant difference is that now a basic entity in one object may need the services of a basic entity in

another object. Hence there are now two kinds of links, intra-object and inter-object. Inter-object

links also include links between entities nested inside different enclosing objects; as well as the

more common meaning of between objects.

Our message now needs to include information about object nesting and basic entity connec-

tions. It is convenient to assume that there is always a single top-level object, even if one has to be

artificially created. Hence the object nesting forms a tree with a single root.

To make this discussion clearer, we consider an example, see Figure 6.4. The design is purely

artificial and has no implied meaning. The design has the modular tree structure shown in Fig-

ure 6.5. To make this exposition clearer, basic entities are shown as lowercase letters and objects

are shown as uppercase letters. Further, each entity is given a unique letter.

Figure 6.4: A Nested Design Graph

Once again, we need to describe the edges between two basic entities. Intra-module edges can

be handled as before. We need a method for describing inter-module edges, i.e., edges which pass

through a module’s boundary. In a tree, there is a unique minimum length path between any two

5That is, 8a;b 2ℜ; a > b =) f (a)> f (b).
6Such messages are not unique, because the edge descriptions in the message can be reordered.
7The length for a given structure is constant.

64 Chapter 6. Describing a Graph

Figure 6.5: Modular Tree Structure of Nested Design Graph

nodes, and since we want to minimise message length this is a good starting point. So for example

the edge between h and f passes upwards from R to Q to P, where it peaks, and passes downwards

to S. It reduces message length to describe an edge in the highest object containing that edge, in

this case P. Hence the edge between h and f can be described by the message fragment

QRh�S f

as an edge description in object P.

Applying this principle to our example design, for the edge descriptions we have

edges(root) = PQRh�a b�Pe PS f � c

edges(P) = QRh�d QRh�S f

edges(Q) = g�Rh

edges(R) = none

edges(S) = none

The entities in several objects can be labelled by using distinct (small) alphabets for each

object, provided, that within the top-level of each object we can distinguish objects from basic

entities. In other words, as long as we can tell that the last symbol in an edge description is a basic

entity rather than an object. Now each part of an edge’s description only needs to be processed

in the context of its encapsulating object. Therefore, our message must provide information about

which entities in an object are themselves other objects. The use of such small alphabets, reduces

the number of distinct symbols required in each alphabet, and hence the resultant message length.

Hence in our example, root contains the entities a, b, c and P, and hence only needs an alphabet

with these four symbols.

In view of the above, we use the following message structure, for each object recursively:

object description = object id +

jnodesj +

jobjectsj fobject description1 , : : : , object descriptionmg +

jedgesj fedge1, : : : , edgeeg

edge = point1 – point2

point = fobject idg* basic entity id

Where jxj encodes the cardinality of the indicated set, and the symbols ‘+’, ‘–’, ‘f’, and ‘g’ are not

part of the message, but are shown only to aid human comprehension of the message’s structure.

The symbol ‘+’ represents concatenation, and ‘*’ indicates a (possibly empty) repeating set.

6.2. Ψ: The Complexity of a Design Graph 65

Note that in the above message description, we distinguish between objects and basic entities,

but they are drawn from the same alphabet. They can only be distinguished by the receiver because

of the included list of nested object descriptions, each of which starts with its own object id.

Continuing our example, we can describe our hypothetical design, (see Figures 6.4 and 6.5),

by the following five message fragments:

obj(root) = 1+4+1(obj(P))+3(PQRh�a;b�Pe;PS f � c)

obj(P) = P+4+2(obj(Q);obj(S))+2(QRh�d;QRh�S f)

obj(Q) = Q+2+1(obj(R))+1(g�Rh)

obj(R) = R+1+0()+0()

obj(S) = S+1+0()+0()

Where the symbols ‘,’, ‘+’, ‘–’, ‘(’, and ‘)’ are not part of the message, but are shown only to

aid human comprehension of the message’s structure. Note that the ‘1’ at the start of the root’s

object description is only to maintain symmetry between the object descriptions and has no other

purpose.

The full message is created by textually substituting the four sub-messages in place of each

‘obj(x)’. Hence the full message becomes:

design = 1+4+1(

P+4+2(

Q+2+1(

R+1+0()+0()

)+1(g�Rh);

S+1+0()+0()

)+2(QRh�d;QRh�S f))+

3(PQRh�a;b�Pe;PS f � c)

We know from Section 6.2.1 that, the message length of an arbitrary node ni in an object can

be calculated as � log2 (di=D). However, how do we calculate the message length of an arbitrary

object ni? Counting the occurrences of each basic entity in the above descriptions will show that

they occur with the same frequency as their corresponding node’s degree.

If we contract an object, keeping the edges which pass through its boundary, to a simple node,

we can create the ‘degree’ of an object; and we see that each object occurs with the same fre-

quency as its simple node’s degree. For example, the object Q has three edges passing through its

boundary, and occurs three times in the above description. Unfortunately, this yields an incorrect

probability for the total occurrences of the object id in the message, and hence to a longer message

length. The number of occurrences of the object id in the message is out by one, because of its

occurrence at the start of its own object description. Hence, when calculating a object’s degree,

we need to add one to the number of edges which cross the object’s boundary.

In our example, root contains the entities a, b, c and P. The degree of each entity is (re-

spectively) 1, 1, 1, 3, plus another occurrence of P at the start of its object description, so the

corresponding probabilities are 1
7
, 1

7
, 1

7
and 4

7
.

6.2.4 Further Extensions for HOOD

HOOD environmental objects do not fit into the model so far presented. Environmental objects

can be referenced from anywhere in a design. Therefore encoding such inter-object access as

above, would unjustifiably increase the message length for what is in fact outside of the designer’s

control. We therefore decided to modify the edge encoding of the previous section to indicate

if an environmental object was being accessed. This was done by adding a single Boolean flag

in front of the second point of each edge’s description, to indicate whether or not the next point

66 Chapter 6. Describing a Graph

is an environmental object. Environmental objects can only be referenced from an object in the

current design tree, an environmental object can never reference an object in the design tree. This

modification should not distort message length comparisons as it uniformly increases all edges by

one bit, and we never change the number of edges in a design graph.

Hence our final model looks like:

Design Description Message

object description = object id +

jnodesj +

jobjectsj fobject description1 , : : : , object descriptionmg +

jedgesj fedge1, : : : , edgeeg

edge = point1 – env object point2

point = fobject idg* basic entity id

env object = 1 iff next object is an environmental object, 0 otherwise

Length of Full Design Description Message

The length of a message describing a general design using this encoding has the form:

length = ∑
m2M

log�2(Nm +1)+ log�2(N
0

m +1)+ log�2(Em +1)� ∑
n2N m

fn log2

�

fn

Fn

�

+Em

!

+1

(6.3)

Where M is the set of all modules (objects), Nm is the number of entities (objects + basic

entities) in module m, N
0

m is the number of objects in module m (Nm � N
0

m), Em is the number of

edges described in module m and N m is the set of entities in module m. fn is the frequency of

entity n in module m, which for basic entities is given by the degree of the corresponding node,

and for objects is the degree of the contracted node plus 1 and Fn = ∑n fn.

Length of Single Object Design Description Message

Hence for a design consisting of a single object, we have the following equation for its message

length

length = log�2(N +1)+ log�2(E +1)� ∑
i2N

di log2

�

di

2E

�

+E +C (6.4)

Where C = 1+ log�2 1, E is the number of edges, N is the number of nodes in the graph, di is the

degree of the node i.

6.3. A Complexity Measure? 67

6.3 A Complexity Measure?

Having defined a complexity measure, we should demonstrate, at least informally, that it captures

notions of coupling and cohesion. Further that the complexity measure permits some form of

trade-off between these two concepts. We will give some more complete examples of this in

Chapter 8. For now we will just use an intuitive model.

Consider a design consisting of 10 basic entities, and three objects arranged in a balanced

binary tree. Further, let the 10 basic entities form two highly-cohesive groups, with no (or very

little) coupling between the groups. Intuitively, it seems reasonable that each group should be

placed in a leaf node of the binary tree.

Now consider moving one basic entity from one group, L into the other R. The object -

description of the group L will get smaller, it contains fewer entities and fewer links. The

object description of the group R will get larger, it now contains more entities. Additionally,

the object description of the root-group T will get larger, it contains several links from L to

R. The original design has a complexity of 155 bits, whilst the second design has a complexity of

166 bits. Forming a single object results in a complexity of 172 bits.

However, if the design only contains 6 basic entities, the design has a complexity of 58 bits,

but moving all the entities into a single object has a complexity of 52 bits.

6.4 Theoretical Validation

Many proposed software complexity metrics have been criticised for not having been theoreti-

cally validated. In this thesis we present a new complexity measure based on a message passing

paradigm, and this section will show that this metric satisfies Weyuker’s Properties (Weyuker,

1988) for a complexity measure. Her proposal is widely accepted (Shepperd and Ince, 1993) as

providing a basis for theoretical validation.

In Section 6.2, we proposed a complexity measure based on the length of a message describing

the structure of the underlying graph. We showed how such a message could be constructed, and

how the length of such a message could be calculated. In this section, we shall examine how our

proposed complexity measure performs against Weyuker’s Properties for any complexity measure.

6.4.1 Weyuker’s Properties

Weyuker’s Properties requirements are mainly taken from Shepperd and Ince (1993, p.68–69),

with the systematic replacement of program by system, and a few rewordings from Briand et al.

(1996).

Let Ψ be our complexity measure (as described above), and let S be the set of all software

systems.

Before proceeding to look at Weyuker’s Properties, it is worth pausing to prove five theorems

and two small lemmas, which are useful in the following proofs of Weyuker’s Properties.

Definition 6.1. Define 0log2 0 = 0, since limε!0 ε log2 ε = 0.

Lemma 6.1.

∑
i

xi log
�xi

X

�

= ∑
i

xi logxi�X logX

where X = ∑
i

xi.

68 Chapter 6. Describing a Graph

Proof.

∑
i

xi log
�xi

X

�

=∑
i

xi (logxi� logX)

=∑
i

xi logxi� logX ∑
i

xi

=∑
i

xi logxi�X logX

Lemma 6.2. The function g(x) = (x+1) log2(x+1)�x log2 x is always non-negative and strictly

monotonically increasing for all x � 0.

Proof.

dg

dx
=

1

ln2
(1+ ln(x+1)� (1+ lnx)) x > 0

=

1

ln2
ln

�

1+
1

x

�

> 0

Hence g(x) is strictly monotonically increasing for x > 0, and

lim
ε!0

g(ε) =
1

ln2
ln

�

1+
1

ε

�

> 0

Hence g is strictly monotonically increasing for all x � 0.

To prove g(x) � 0, for x� 0 just rearrange the terms in g, thus

g(x) = (x+1) log2(x+1)� x log2 x

= log2(1+ x)+ x log2

�

1+
1

x

�

� 0

Since both summands on the right are positive.

Our thanks to Peter Williams for help with the above proof.

Corollary 6.1. Let g(x) = (x+ 1) log2(x+ 1)� x log2 x then g(X)� g(x) � 0 for all X � x � 0,

with equality only when X = x.

Proof. By Lemma 6.2 G(X)� g(x) and both terms are positive.

Theorem 6.1. Assuming optimal encoding for all messages, adding an extra symbol to a message

cannot decrease the size of the message.

Proof. If a message has symbols from an arbitrary set x1; : : : ;xn such that each symbol occurs

with frequency f1; : : : ; fn respectively, where some fi may be zero, then the probability of picking

symbol xi at random from the message’s content is fi=F where F = ∑i fi. From Shannon’s in-

formation theory, we know that the minimum message length for symbol xi is � log2 (fi=F), and

therefore the minimum message is given by

l =�∑
i

fi log2

�

fi

F

�

= F log2 F�∑
i

fi log2 fi by Lemma 6.1

6.4. Theoretical Validation 69

Hence we need to show that l is monotonically increasing for all members of X .

Let ẑ denote z the contents of the message after it has been changed by adding one symbol.

Hence

l̂ = F̂ log2 F̂�∑
i

f̂i log2 f̂i

All f̂i are equal to fi except one (denote this special fi by f 0i , say), which is fi + 1, and hence

F̂ = F +1. Then

l̂� l = F̂ log2 F̂�∑
i

f̂i log2 f̂i�F log2 F +∑
i

fi log2 fi

= F̂ log2 F̂�F log2 F +∑
i

fi log2 fi�∑
i

f̂i log2 f̂i

= F̂ log2 F̂�F log2 F + f 0i log2 f 0i � f̂ 0i log2 f̂ 0i since all other fi = f̂i

= g(F)�g(f 0) where g(x) = (x+1) log2(x+1)� x log2 x

� 0 by Corollary 6.1

The above theorem may not hold under conditions of sub-optimal encodings.

Corollary 6.2. Adding a connection to any part of a design graph cannot decrease the length of

partial message describing the object’s connections.

Proof. Adding an extra connection to an object, either involves adding an extra degree to a node in

an object or adding an extra edge crossing the boundary of an encapsulated object. In either case,

an extra symbol is added to the partial message describing the object’s connections, and hence by

Theorem 6.1 the length of this partial message cannot decrease.

Theorem 6.2. Adding an additional edge to a design graph, increases the design’s complexity.

Proof. For any design graph, adding an edge is equivalent to adding 1 to the total number of

connections in at least one object. From Equation 6.3, we have

l = log�2(N +1)+ log�2(N
0

+1)+ log�2(E +1)� ∑
n2N

fn log2

�

fn

F

�

+E for the affected object

and

l̂ = log�2(N +1)+ log�2(N
0

+1)+ log�2(Ê +1)� ∑
n2N

f̂n log2

�

f̂n

F̂

�

+ Ê

All the terms of which are obviously strictly monotonically increasing, except�∑n2N f̂n log2

�

f̂n

F̂

�

which is monotonically increasing by Corollary 6.2. Hence the length must increase.

Theorem 6.3. Adding an additional unconnected node to a design graph, increases the design’s

complexity.

Proof. For any design graph, adding a node to an object is equivalent to adding 1 to the total

number of nodes in the encapsulating object. From Equation 6.3, we have

l = log�2(N +1)+ log�2(N
0

+1)+ log�2(E +1)� ∑
n2N

fn log2

�

fn

F

�

+E for the affected object

70 Chapter 6. Describing a Graph

and

l̂ = log�2(N̂ +1)+ log�2(N
0

+1)+ log�2(E +1)� ∑
n2N

fn log2

�

fn

F

�

+E

The node is unconnected, so that all the terms in the above sum are unchanged, except log�2(N̂+1).

Since log�2 x is a strictly monotonically increasing function the length of the module’s description

must increase.

Theorem 6.4. Adding an additional object to a design graph, increases the design’s complexity.

Proof. Follows immediately from Theorem 6.3 since the node count in the encapsulating object

rises and the object count in the encapsulating object rises.

Theorem 6.5. Adding an additional node with degree at least 1 to a design graph, increases the

design’s complexity.

Proof. Obvious from proofs of Theorems 6.2 and 6.3.

W-Property 6.1. The measure must not assign the same number to all systems:

9p;q 2 S �Ψ(p) 6= Ψ(q)

Proof. Immediately follows from Theorems 6.2–6.5.

W-Property 6.2. There exist only a countable number of systems for a given measurement value.

The stated purpose of this axiom is to ‘strengthen’ the [previous] axiom, as violation

suggests that the measure is comparatively insensitive.

Shepperd and Ince (1993, p.68)

Proof. A graph, G(N ;E), consists of two countable sets, namely: nodes and edges. It follows im-

mediately that the number of graphs is countable since we have only countable unions of countable

sets.

W-Property 6.3. There are systems drawn from the same equivalence class:

9p;q 2 S �Ψ(p) = Ψ(q)

Proof. Our proof is by constructing two system with the same measure. Let p be an arbitrary

system with an underlying graph such that all nodes do not have identical degree. Let q have

exactly the same graph, but with the direction of each edge reversed. Since our complexity measure

is derived from a message describing the structure of a system; it follows that reversing the edge

direction cannot change the complexity. Since, p and q are not isomorphically equivalent graphs,

this concludes our proof.

W-Property 6.4. There must exist systems that compute the same function but have different num-

bers attached to them.

Since we are discussing systems not programs, it seems more general to replace ‘compute the

same function’ by ‘serve the same purpose’.

Proof. Construct a new system q from the original system p by adding an unconnected operation.

Then from Theorem 6.3 the complexity of q must be greater than p.

6.4. Theoretical Validation 71

W-Property 6.5. The measure must be monotonic, wrt. adding components:

8p;q 2 S �Ψ(p)�Ψ(p�q) ^ Ψ(q)�Ψ(p�q)

Where � denotes the concatenation operation (see Section 5.1.6).

Proof. Our proof is by induction on the structure of the graph. Recall that design concatenation

is derived from graph union, which is in turn derived from set union. Therefore p � q has at

least as many nodes as max(
�

�N p

�

�

;

�

�N q

�

�

) and has at least as many edges as max(jEpj ;

�

�Eq

�

�

).

Hence by structural induction using Theorems 6.2–6.5, the design’s complexity cannot decrease,

as required.

This result holds, even if there are no links between the constituent designs p and q.

Corollary 6.3. The complexity of a design concatenated with itself has the same complexity as

the original:

8p 2 S �Ψ(p) = Ψ(p� p)

Proof. Immediately follows from the definition of design concatenation (see Section 5.1.6), since

for all sets X , X [X = X .

W-Property 6.6. Concatenation of a system r to another system must not always yield a constant

increment to the total complexity measure:

9p;q;r 2 S �Ψ(p) = Ψ(q) ^ Ψ(r � p) 6= Ψ(r �q)

Also:

9p;q;r 2 S �Ψ(p) = Ψ(q) ^ Ψ(p� r) 6= Ψ(q� r)

Proof. Since design concatenation is a commutative operation, we have p�q = q� p for all p and

q. From Corollary 6.3 concatenating a design with itself yields a design of the same complexity.

Hence let p and q be design graphs as in the proof of W-Property 6.3, and let r = p, then Ψ(p) =

Ψ(q) and Ψ(p� r) = Ψ(p) but Ψ(q� r) � Ψ(p� r) since q� r contains more edges than p and by

Theorem 6.2 this increase the design’s complexity, as required.

Actually all that is required is that p and r have nodes/edges in common, whilst q has nothing in

common with p.

W-Property 6.7. The measure must be sensitive to the ordering of the system components. Let ρ
be a permutation function, then:

9p 2 S �Ψ(p) 6= Ψ(ρ(p))

We interpret ordering to refer to moving entities around the hierarchical structure. For example

creating a new object or moving a basic entity from one object to another. Weyuker, was discussing

moving program fragments, and we regard moving entities as similar for designs.

Proof. See Section 6.3 for an example.

W-Property 6.8. The measure must be insensitive to renaming changes of system components.

Let τ be a renaming function, then:

8p 2 S �Ψ(p) = Ψ(τ(p))

Proof. In Section 6.2.2, we saw that node index numbers are not significant in determining the

length of a message describing the graph’s structure.

72 Chapter 6. Describing a Graph

W-Property 6.9. Module monotonicity

9p;q 2 S �Ψ(p)+Ψ(q)< Ψ(p�q)

This property reflects the fact that there may be interaction between the concatenated

[designs]. : : : [W-Properties 6.5 and 6.9] allow for the possibility that as a [system]

grows from its component bodies, additional complexity is introduced due to the po-

tential interaction among these parts.

Weyuker (1988, p.1363)

Proof. The proof is by construction of an example. Let p be a single object system, containing two

basic entities a1 and a2, say. Hence Ψ(p) � 11:8. Now let q be another single object, containing

the basic entities b1 and b2, with the restriction that none of the basic entities are the same. Now

form r = p�q, then Ψ(r)� 33:6. Therefore 2�11:8 = 23:6 < 33:6 as required.

Note that there are designs which do not satisfy this property (e.g., set q= p giving Ψ(p)+Ψ(q) =

2Ψ(p) > Ψ(p � q) = Ψ(p)), which is of course, acceptable since the property only requires an

instance to exist. Which is what Weyuker intended from her logic.

6.5 Conclusion

In this chapter we have described a new software design complexity measure, based on a message

passing metaphor, and shown that Weyuker’s Properties hold for this measure. Having established

reasonable theoretical grounds for believing that Ψ is a complexity measure, we need to conduct

an empirical validation. Before doing so we need a prototype tool to both evaluate Ψ, and look for

improved designs. Such a system is the subject of the next chapter.

Mathematics is not a deductive science—that’s a cliche.

When you try to prove a theorem, you don’t just list the hypotheses,

and then start to reason.

What you do is trial and error, experimentation, guesswork.

PAUL R. HALMOS

I Want to be a Mathematician (1985)

A thing is obvious mathematically after you see it.

R. D. Carmichael

Mathematical Maxims and Minims (1988)

Part III

Morpheus

73

Chapter 7

Morpheus: A Prototype System

Synopsis

This chapter describes both our extensions to HOOD for capturing a more detailed

description of the proposed software architecture and the implementation of our pro-

totype system, Morpheus , for improving designs. Morpheus compares designs based on

our previously defined complexity measure Ψ.

Chapter 6 showed that our complexity measure, Ψ, had some desirable theoretical properties for a

complexity measure. Chapter 6 also described the computation of our complexity measure from a

hierarchical design graph.

This chapter describes Morpheus , a prototype tool, for finding Ψ from an initial design ex-

pressed in HOOD. Morpheus reads in an initial design and then searches for modifications to this

initial design which yield a lower numerical value for Ψ, and hence are we believe less complex;

and therefore ceteris paribus better designs.

Chapter 8 will show some practical examples of using Morpheus .

7.1 Extensions to HOOD - Augmented HOOD

HOOD was described in Chapter 3. In this section we describe our extensions to HOOD. These

extensions are necessary because standard HOOD does not provide sufficient detail on the rela-

tionships between entities, to permit the calculation of our complexity measure or the effect of

changing the modular structure.

In particular, the description of an operation in an ODS provides no information on the entities

it needs to perform its function. However, an object’s description has to provide this information.

So the designer must have given this matter some consideration. Not only is this information

necessary for our present purposes, but it seems useful to record these details as part of the devel-

opment process.

In considering how to extend HOOD, it was important to make only minor modifications to

the existing ODS—for compatibility with existing tool-sets. The changes had to be in line with

HOOD’s philosophy, and only the changes necessary for this research should be included. These

limitations were imposed so that we could (in principle) collect and analysis ‘real world’ HOOD

designs, for validation of Morpheus .

In line with the above objectives, the only modification to the existing ODS is in the pseudo-

code section of the description of operations. This introduced an optional new section called a

76 Chapter 7. Morpheus: A Prototype System

code linkage section. This new section contains information on the types and variables1 used by

the operation. The formal changes to the ODS’s syntax are documented in Appendix A.

It was also necessary to make an extension to HOOD’s semantics. We permitted the identifi-

cation of used operations in an operation’s definition to include constants as well as operations.

This could have been done by adding a further field to the existing ODS for operations. However,

since from a general semantic perspective there is little difference between a constant and a pro-

cedure, this seems a reasonable change. Additionally, not distinguishing these categories makes

mechanical collection easier; a point we shall return to shortly.

It may be objected that these changes impose more housekeeping on the designer and an extra

workload for Morpheus’s validation phase. The first objection is in a small way justified, but since

the designer must consider these issues, it does not seem a significant problem. Further, since

HOOD does not permit variables to be accessed outside of the enclosing object, and the current

ODS provides no indication of why the variables are present, this modification seems desirable

just from a design perspective.

The second objection, additional workload, (and indeed the first objection to some extent),

can both be overcome by creating a tool to parse the Ada pseudo-code, and generate the necessary

information automatically.

7.2 Implementation

This section describes the implementation of Morpheus . It is not intended to be a design document

as such, but rather to highlight the main features of Morpheus , and explain how Morpheus generates

its advice from an initial design. The entire Morpheus system is written in Pop-11.2

7.2.1 Basic Structure

The basic structure of Morpheus is shown in Figure 7.1. A proposed design, expressed in Aug-

mented HOOD’s ODS format is entered into Morpheus . Morpheus parses the entered design along

with a predefined environment to produce a parse tree of the initial design.

The parse tree is then processed by the Data Analyser to resolve cross references and determine

the modular structure of the entered design. The Data Analyser produces a hierarchical design

graph representing the structure of the initial design (see Section 5.1.5).

The design graph is then passed to the final phase, the Improvement Engine. The Improve-

ment Engine conducts a hill climbing search, by constructing possible (valid) alternative graphs;

and comparing the complexity values for each proposed graph. Finally, the Improvement Engine

produces a report describing the graph with the lowest computed complexity.

The following sections describe each of these three phases in more detail.

7.2.2 Parser

As we saw earlier, the purpose of this phase is to read in the proposed design and generate a parse

tree. A parse tree shows the composition of the initial design without regard for the text used to

represent the design. So far, we have described the Parser as if it was a single item, however, the

Parser consists of two components, namely: a lexical analyser and a syntax analyser. The purpose

of the lexical analyser is to process the input file and form the individual input characters into

discrete symbols according to the lexical conventions of the input language. The syntax analyser

1HOOD’s data entities.
2Pop-11 is a procedural language originally designed for artificial intelligence applications. Pop-11 shares a number

of features with modern Lisp, and provides a rich type system, which is dynamically typed, with facilities for adding

new user-defined types, and automatic storage management. For further information see, for example, Barrett et al.

(1985) or Laventhol (1987). Anderson (1989) provides a collection of papers on some of the more modern features of

Pop-11 not covered in the previous books. (This description of Pop-11 is adapted from POPLOG’s on-line help file

help pop11.)

7.2. Implementation 77

Figure 7.1: Architecture of Morpheus

takes each symbol produced by the lexical analyser and constructs a parse tree according to the

syntax rules of the language.

The advantage of using a parse tree is that only this phase of Morpheus needs to handle input

and know the concrete syntax of HOOD.3 The construction of a parse tree from a source file

which has a well-defined syntax is, of course, a standard phase of all compilers—and is well

understood.4 Appendix D of Delatte et al. (1993) contains a sample YACC description of HOOD’s

ODS using Standard Interchange Format (SIF). This was used as the basis for our input grammar

to the Parser. We did, of course, add our new syntax rules for Augmented HOOD.5

The work carried out by a parser as syntax phrases are recognised can vary considerably. We

choose to make our parser do very little work—just construct a new node and update the parse tree

accordingly. This decision was made because further processing of a HOOD design requires access

to information outside of the current syntax phrase. In passing it should be noted that HOOD does

not require the declaration of an entity before it is referenced. Hence the information for further

processing might not be available until after the whole file has been read in.

The design of any real parser has to address the problem of errors in the supplied input. We

3It would be quite possible for such a parse tree to be produced from some other tool, perhaps whilst a design was

being sketched out on a drawing tablet, but see Section 7.3.2.
4See for example Bornat (1979) or Watson (1989). From theoretical work in this area, a number of so-called

‘parser-generators’ have evolved; most notably YACC under UNIX. Our implementation does not use YACC but rather the

LR parser written by Robert Duncan for Pop-11. LR parser is similar to YACC, but with some additional meta-rules

for handling optional and repeating syntax phrases.
5For further information on the construction of YACC style grammar descriptions from BNF, see Schreiner and

Friedman, Jr (1985).

78 Chapter 7. Morpheus: A Prototype System

choose to assume, for ease of construction, that the input was essentially error free. If a syntax

error is discovered an error message is output and Morpheus halts. Unfortunately, HOOD’s syntax is

not well suited to clear error messages because the ODS sections do not have well-defined closers.

The Parser is also responsible for reading in the ‘Ada environment’. This environment is cur-

rently based on a subset of Annex C of Ichbiah et al. (1983). The purpose of this environment is to

define standard types (such as integer and Boolean) and operations (such as arithmetic operations).

With one minor exception, to be explained shortly, this environment is treated just like any part of

the supplied design. Therefore, in principle, it is possible to replace the chosen Ada environment

with another.6

We noted earlier that the environment was handled with one exception. The environment

is processed, by the Parser as normal, whilst however permitting a dollar symbol to be part of an

identifier.7 This feature of the Parser is optional, but its use permits the creation of ‘private’ objects

which cannot be accessed outside of the environment file. Since, with this facility disabled (the

normal case), attempting to use identifiers containing dollar symbols causes an error. This feature

is currently used to define $STANDARD as the base environment object.

7.2.2.1 The Parse Tree

This section briefly considers the produced parse tree. The precise structure of a parse tree node

is a design decision, and is not wholly dictated by the underlying grammar. Morpheus contains

around 70 distinct node kinds. For example, the node for required objects consists of four fields,

namely: line number, object header, note and required entities. Where the last field

may have an arbitrary set of (non-empty) members. This layout corresponds (almost) exactly with

the underlying syntax phrase, required object (see BNF production 13 in Delatte et al. (1993,

Appendix D)). The one exception being the addition of the line number field which is used for

error reports. A similar approach is used for all the required node types.

7.2.3 Data Analyser

The Data Analysis phase of Morpheus takes the parse tree constructed by the Parser (see Sec-

tion 7.2.2) and generates a graph detailing the structure of the supplied design. In a standard

compiler this phase would correspond to semantic analysis. HOOD’s semantic rules are described

in Appendices A and E of Delatte et al. (1993). The overall logic of the Data Analysis phase is

shown in Figure 7.2.

In essence, the graph required by the Improvement Engine (see Section 7.2.4) only requires

information on the hierarchical structure of the design and information on which entities are con-

nected. The former describes how entities are nested with respect to objects. The latter shows

which other entities an individual entity depends on in order to perform its function. Since the

Improvement Engine never changes the linkage information,8 (only the hierarchical structure) we

choose to use two separate data structures for these two different kinds of information.

In order for the Improvement Engine to process the supplied design graph in the context of

HOOD, a couple of secondary pieces of information are required, namely: which objects are envi-

ronmental objects and which entities in an object are variables. These are described after we have

covered the principal requirements (see Section 7.2.3.5).

Before describing the construction of the design graph, we must detour slightly and explain

the symbol table and lazy references.

6Perhaps, more usefully, on a large project, we could envisage the project having its own basic environment, proba-

bly built on top of the Ada environment.
7Standard HOOD requires identifies to start with a letter and only contain letters, digits and underscores.
8Changing the linkage information would require knowledge about why such links exists, which Morpheus does not

possess.

7.2. Implementation 79

data_analysis (parse_tree)

begin

walk parse_tree constructing

symbol_table, entity_structure_table

and object_structure_table ;

iterate over symbol_table to resolve lazy references ;

complete parent information in object_structure_table ;

construct entity_tree from object_structure_table ;

populate entity_tree by walking symbol_table ;

construct linkage_table from entity_structure_table ;

walk symbol_table and construct

set of environmental_objects and

set of data_entities ;

return entity_tree, linkage_table, environmental_objects

and data_entities ;

end

Figure 7.2: Data Analysis Phase

7.2.3.1 The Symbol Table

Central to Data Analysis is the construction of a symbol table. The structure of the symbol table

is shown in Figure 7.2.3.1.

Symbol-Table = Symbol-Table-Entry-set

Symbol-Table-Entry :: kind : Entity-Kind

object : Object-Name

name :
�

Entity-Name
�

signature :
�

Signature
�

full-name : Full-Name

Signature :: parameters :
�

Type�
�

returns :
�

Type
�

Entity-Kind = OBJECTjTYPEjDATAjCONSTANTjOPERATIONjOPERATION-SET

Type :: object : Object-Name

name : Entity-Name

Full-Name = String: full name of entity including kind and signature

Object-Name = Simple-Name

Entity-Name = Simple-Name

Simple-Name = String of alphanumeric characters starting with a letter

Figure 7.3: Symbol Table

80 Chapter 7. Morpheus: A Prototype System

The symbol table contains information about all the symbols in the supplied design. The

entity kind field is required because HOOD permits ‘overloading’ of an objects’s namespace,

using the kind of entity to resolve conflicts. Object is just the name of the object in which the

entity is declared.9 Name is the simple name of the entity. Full name is the fully expanded name

of the entity, and is used to give (unique) full names to the Improvement Engine. The signature

field, only applicable to constants and operations, contains a list of parameters and the return type.

Entities are added to the symbol table as they are found during a walk of the parse tree.

Since Data Analysis supports lazy references (see Section 7.2.3.2) only entities defined in the

provided interface and internals are added, references in the required interface are ignored.

Operations and constants cannot always be fully processed during the parse tree walk because

their signatures may involve lazy references. Therefore there is a completion process for the

symbol table at the conclusion of the tree walk to resolve fully all symbol table details.

7.2.3.2 Lazy References

Strictly speaking, according to the ODS’s definition, any reference to an entity should always

provide the object’s name, and for operations the full signature. Whilst this is probably true for

automatically generated designs, the authors’ own experience of writing designs suggests that

people are lazy and just provide sufficient information to uniquely identify an entity. Such lazy

references can be resolved via the symbol table (see Section 7.2.3.1). This facility is not taken to

its full limit, because (for example) Morpheus does not resolve (overloaded) operations on the basis

of partial signatures. Either the signature is present or it is absent.

There is one problem with this approach caused by the ODS’s definition. If an operation is

overloaded with one form having a signature and another having an empty signature, it is not

possible to determine if a reference is lazy or is in fact a reference to the operation with an empty

signature.10

If Morpheus encounters ambiguous references or cannot find a matching symbol, it halts and

expects the designer to clarify their intent.

7.2.3.3 Deriving the Object Hierarchy

As we have seen, the Improvement Engine requires knowledge about the hierarchical nature of

the design. According to HOOD’s semantic rules only objects and operation sets can encapsulate

other entities. In particular, operations cannot be nested.11

Operation sets pose a problem for Data Analysis. They are only really a notational conve-

nience for the graphical subset of HOOD. The difficulty is how should they be treated with respect

to the object hierarchy. Two possibilities arise, either they are ignored or treated as an object. In

the first case, the designer (potentially) loses cognitive information because the set that he has

created is thrown away. In the latter case, operation sets clearly are not real objects because they

cannot encapsulate every kind of entity (e.g., objects and variables). Therefore regarding them

as real objects gives them a greater significance than they really merit. Currently Morpheus does

not accept operation sets, and ignoring them seems the best practical solution. Such an approach

would not significantly detract from the value of Morpheus’s suggestions; as operation sets are

purely a notational convenience.

HOOD’s object structure is just a standard tree where a non-leaf node can have as many children

as required. Three issues remain to be explained, namely: deriving the hierarchy from the supplied

design, populating the constructed tree with entities other than objects, and handling object names.

As we have already noted HOOD does not require an entity to be declared before being refer-

enced. In particular, an object can refer to entities in another object’s provided interface before

the referenced object is specified. Additionally a non-terminal object must identify its children,

9Objects declare themselves.
10Perhaps HOOD should require a reference to an operation with an empty signature to specify an empty pair of

parenthesis. At this time, we rejected this modification because of invalidating existing HOOD designs.
11We believe that this should be seen as a limitation of HOOD because it does not support decomposition of (poten-

tially) large operations.

7.2. Implementation 81

but a child object does not identify its parent. Fortunately, HOOD requires all object names to be

unique within a design tree. This means that as objects are seen, we can construct a table showing

the children (if any) of each object. Figure 7.4 shows the structure of the object structure table. On

completion of walking the parse tree, we can therefore identify the parent (if one exists) of each

object.

Object-Structure = Object-Structure-Entry-set

Object-Structure-Entry :: object-name : Object-Name

parent : Object-Name

children : Object-Name-set

siblings : Object-Name-set

Figure 7.4: Object Structure Table

This leaves us with two problems. Firstly, we may not have an object tree but rather an object

forest, and secondly, we do not know the identity of the root object. Both of these problems can

be overcome by creating a pseudo-object (called $top object$) and making its children, those

objects which do not have parents.

Entity-Tree = Entity-Tree-Node�

Entity-Tree-Node = Full-Name jEntity-Tree

Figure 7.5: Entity Tree

The entity tree (see Figure 7.5) can now be constructed from the object structure table. The

basic-entities can be inserted into the entity tree by scanning the symbol table, and placing each

basic-entity declared in a particular object into the corresponding place in the entity tree.

In the supplied design each object has a user-specified name. In principle it is easy to pass this

information into the Improvement Engine. However, the activity of the Improvement Engine will

create new objects and destroy some existing objects and move entities between objects. Thus

rendering the original object name misleading. It was therefore decided to ignore the supplied

object name.

7.2.3.4 Deriving the Linkage Information

The second major component of the graph for the Improvement Engine is the set of links. For

each entity these links show all the other entities upon which this entity directly depends. As the

parse tree is being walked an entity structure record is created for each entity as it is encountered.

Figure 7.2.3.4 shows the structure of the entity structure table.

Entity-Structure-Table = Entity-Details-set

Entity-Details :: full-name : Full-Name

kind : Entity-Kind

provides : Entities

requires : Entities

components : Entities

Entities = Full-Name-set

Figure 7.6: Entity Structure Table

At the very least each entity provides its own services. The components field is only really

used by objects and operation sets, since they are the only encapsulation entities in HOOD. The

requires field identifies only those other entities directly required by the current entity.

82 Chapter 7. Morpheus: A Prototype System

Linkage-Table = Entity
m
�! Depends-On

Entity = Full-Name

Depends-On = Full-Name-set

Figure 7.7: Linkage Table

Once no more changes to the set of entity details is required, construction of the graph’s linkage

information (see Figure 7.7) is easy. Just use the requires field of each entity detail record. No

data is generated for entities that have no dependencies, since its node has no outward edges in the

underlying graph.

7.2.3.5 Secondary Information

As we noted earlier, there are two minor information requirements due to the nature of HOOD and

the Improvement Engine.

Environmental-Objects = Objects

Variables = Entities

Objects = Object-Name-set

Entities = Full-Name-set

Figure 7.8: Secondary Information

A HOOD design must be closed and part of the design philosophy of HOOD is to permit the sep-

arate development of individual design components by independent designers (see HOOD HUM

(1996)). HOOD provides environmental objects (see Section 3.4.4) for describing the interfaces of

objects not currently being designed. Since the content of such objects is outside the control of

the designer of the current component, it was considered necessary for Morpheus to preserve the

integrity of environmental objects and not move entities across such object boundaries. Therefore

in addition to the information describing the design’s hierarchical graph, the Data Analysis phase

also passes a list of environmental objects (see Figure 7.8) to the Improvement Engine. This in-

formation can easily be derived from the parse tree, since each object’s kind must be specified in

the supplied design.

HOOD requires that variables12 are only accessed by entities in their enclosing object, see rules

V-6 on p. 87 and ODS-18 in Delatte et al. (1993, p.133). In order to encourage the observation of

this requirement, Morpheus penalises violations by doubling up the description of an edge which

requires a data item from another object. This has no impact on the message’s meaning - but does

increase the length (cost) of such a link. This approach is, of course, ugly—but serves its intended

purpose. Hence, the Data Analysis phase must also pass a list of variables (see Figure 7.8) to the

Improvement Engine. This list can be collected by scanning the symbol table generated during

Data Analysis.

7.2.4 Improvement Engine

The Improvement Engine takes the graph generated by Data Analysis (see Section 7.2.3) and per-

forms a search for better designs. A design is better if it has a shorter message length, constructed

according to the rules in Section 6.2.3. The overall logic is shown in Figure 7.9.

The design of the Improvement Engine has three main problems to address:

1. Computing the message length.

12HOOD’s data entities.

7.2. Implementation 83

improvement_engine (entity_tree, linkage_table,

environmental_objects, data_entities)

begin

assign [linkage_table] to history_list ;

copy linkage_table to best_design ;

loop

filter history_list giving active_list ;

generate new designs from active_list giving new_designs ;

calculate message lengths of new_designs ;

append new_designs to history_list ;

sort history_list by message length ;

update best_design if top of history_list is best ;

endloop ;

report best_design ;

end

Figure 7.9: Improvement Engine Phase

2. Generating alternative designs.

3. Type of search strategy to employ.

The first of these is simple to implement based on the work in Chapter 6. However it is

expensive13 in processing time, which given the large number of design alternatives to consider

is a burden and some form of approximation would be of significant benefit.

7.2.4.1 Generating Alternative Designs

The Improvement Engine has a set of rules for constructing alternative designs from an initial

design. There are four creation rules and two style rules.

The creation rules are:

Move Node which looks for a basic entity with a high external degree and attempts to move the

entity into another object. Hence trying to reduce the number of inter-object links.

Raise Node which like the previous rule, looks for a basic entity with a high external degree and

attempts to move the entity up the hierarchy one level. Hence trying to reduce the number

of intervening objects through which links must pass.

Split Object which looks for an object with a largish number of components, and splits the object.

Thus reducing the size of large objects.

Join Objects which merges the contents of sub-objects into their parent. Thus reducing the object

count.

The HOOD style rules are:

13This can be improved by use of an incremental model, see Section 7.3.1.

84 Chapter 7. Morpheus: A Prototype System

Figure 7.10: Morpheus’s Search Strategy

Remove Singletons Objects with only one element, are removed, by merging the single child into

the object’s parent.

No Mixed Objects HOOD does not permit an object to contain basic entities and other objects.

Currently, this rule is not used.

For each search iteration, the creation rules provide as many alternative designs as possible.

These designs are then (potentially) modified by the style rules to remove unacceptable designs.

This generates a new set of designs for consideration.

7.2.4.2 Search Strategy

Morpheus’s search strategy is simple, see Figure 7.10; Morpheus hill climbs with a narrow search

beam (Thornton and du Boulay, 1992). That is it keeps a small active list (about 8–20, see Fig-

ure 7.11) of the currently best designs, and applies the rule base (see Section 7.2.4.1) to generate

new designs. The best designs from each iteration are kept as the input into the next iteration.

Active-List = Active-List-Entries�

Active-List-Entries :: message-length : R

design : Design

Design = Linkage-Table

Figure 7.11: Active List

This approach guarantees that the current best is always kept, but does run the risk of cycles

and blind allies. To help alleviate this problem, a larger history list (about 30–45, see Figure 7.12)

7.3. Limitations 85

History-List = History-List-Entries�

History-List-Entries :: expanded : B

active-entry : Active-List-Entry

Figure 7.12: History List

of the best seen designs is kept. Newly generated designs are compared to the history list, and

previously seen designs are discarded. Designs in the history list which have previously been used

as input to the rule base are marked, and at each iteration a new active list is generated from the

best unused members of the history list.

The search stops either after a predefined number of iterations or when the history list contains

no more unused entries. At which stage a report on the best design is produced. This report

identifies the proposed structure of the system.

7.3 Limitations

Having examined the implementation of Morpheus , it is useful to stand back a little, and look at the

main limitations of the current prototype.

7.3.1 Physical Resources

The biggest problem that Morpheus has at the moment14 is speed. It requires about 14 hours of

elapsed time15 to process the TriviCalc design (see Section 8.3). TriviCalc has some 300 basic

entities, distributed over 17 objects with in excess of 1050 links.

There are three significant time consumers in Morpheus , all in the Improvement Engine, name-

ly: generation of new designs, message length calculation16 and comparing different designs for

equality. The latter two principally arise because of the sheer number of designs considered.

Closely related to the problem of speed, is the consumption of memory. Morpheus requires

large quantities of memory for what can only be considered moderate sized designs. Whilst this

problem has not been fully explored, its origin appears to be closely related to the number of new

designs generated by the rule base.

Major benefits could be realised by having some heuristics for immediately rejecting ‘poor’

designs, and having a method for finding the approximate message length. However, this requires

further work. An obvious side-effect of such improvements would be that a larger number of

designs could be considered on each iteration of the search cycle.

Postscript Recently, an improved theoretical model for calculating message length has been de-

veloped. This model is fully described in Section 6.3. This model should enable an incremental

calculation of message length based on changes in the underlying design rather than the current

implementation’s full calculation of message length for each change.

It is anticipated that this change will also reduce memory requirements, since only the differ-

ences for each iteration might need to be kept.

Currently, Morpheus , does not incorporate this new theoretical model or incremental message

length evaluation and future work should include the introduction of these changes. We believe

that these modifications will have significant practical benefits.

14Since these timings were taken, we have developed a better model of how message length is related to node degree.

With this improved model, we believe that the time taken to calculate a message’s length would be cut significantly.
15Using a Sun Ultra Enterprise 2 server, employing one 300MHz UltraSPARC processor, with a 1Mb cache.
16This will be improved by the application of the theoretical model in Section 6.3.

86 Chapter 7. Morpheus: A Prototype System

7.3.2 Missing Information

As we have noted before Morpheus cannot handle partial designs or designs with missing inform-

ation. This problem has implications for the deployment of Morpheus in the early stages of design,

when its suggestions might be most useful.

It is unworthy of excellent men to lose hours like slaves in the labour of

calculation which could be relegated to anyone else if machines were used.

GOTTFRIED WILHELM VON LEIBNITZ (1646–1716)

German philosopher and mathematician

Chapter 8

Empirical Evidence in Support of Ψ

Synopsis

This chapter presents some empirical evidence in support of our hypothesis that Ψ
is a reasonable complexity measure; which permits trade-offs between various engi-

neering properties. We present a few small examples to illustrate this claim. Then

a few small real designs are considered. We end with an application of Morpheus to

TriviCalc, a working spreadsheet, and consider if the design has been improved.

In this chapter we examine empirical evidence to support Ψ as a complexity measure.

Note 8.1. All the graphs in this chapter were produced by dotty (Koutsofios and North, 1994)

which attempts to minimise edge crossings.

8.1 Initial Experiments

We start by looking at a few small (contrived) systems, to see how Ψ behaves. We start all these

designs off consisting of just a single object (unless otherwise noted), i.e., all basic entities in the

same object. We can regard this as representing a null hypothesis of no hierarchical structure.

There are no data or environmental entities in the experiments in this section.

8.1.1 Varying Group Size

In this experiment, we look at the effect of increasing group size. The results are shown in Ta-

ble 8.1.

The system consists of two sets, each of n basic entities. Each set has high cohesion. Specifi-

cally, each basic entity in the set has one link to or from every other basic entity; the links are from

low numbered entities to higher numbered entities. There is only one link between the two sets;

from A1 to B1.

The first most striking observation from Table 8.1 is how fast Ψ increases as new basic entities

are added. The reduction achieved by forming a hierarchical structure is quite impressive, for

example the case of 10 basic elements achieves a reduction of 21% which is significant.

The corresponding figures are interesting, particularly Figure 8.3 as it seems unlikely that a

human designer would have created this arrangement. It also shows just how complicated small

systems are to understand. Observe how the structures of the A and B groups are similar except

for the top-level entity in B (labelled B1). We can explain this difference because of the single

inter-object link between A1 and B1.

Figure 8.4 shows an example of the structure under our null hypothesis.

88 Chapter 8. Empirical Evidence in Support of Ψ

number Ψ under null final object structure see

of nodes hypothesis Ψ figure

3 58.5 58.5 (A1,A2,A3,B1,B2,B3) 8.1

5 179.8 160.8 ((B1,B2,B3,B4,B5) A1,A2,A3,A4,A5) 8.2

10 901.9 706.8 ((((B0,B4,B5,B6,B7,B8,B9) B2,B3) B1)

((A0,A4,A5,A6,A7,A8,A9) A2,A3) A1)

8.3

Table 8.1: Effect of Increasing Group Size

A1

A2

A3

B1

B2

B3

Figure 8.1: Grouping with 2 groups of 3 entities

8.1. Initial Experiments 89

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.2: Grouping with 2 groups of 5 entities

90 Chapter 8. Empirical Evidence in Support of Ψ

B
0

B
4

B
5

B
6

B
7

B
8

B
9

B
2

B
3

B
1

A
0

A
4

A
5

A
6

A
7

A
8

A
9

A
2

A
3

A
1

Figure 8.3: Grouping with 2 groups of 10 entities

8.1. Initial Experiments 91

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.4: No structure with 2 groups of 5 entities

92 Chapter 8. Empirical Evidence in Support of Ψ

8.1.2 Moving Basic Entities

From Section 8.1.1 we know that for groups of 5 with high internal cohesion and low coupling

that the Ψ favours the structure shown in Figure 8.2. In these two experiments we moved basic

entities from group A to group B to confirm that Morpheus was making the right choices.

In the first experiment, we moved A1 into the B group. This produced a complexity of

172.8 bits, compared to the previous best of 160.8 bits.

In the second experiment, we moved A5 into the B group. This produced a complexity of

174.6 bits.

We can explain both of these results, by observing that the two moves increased the inter-object

coupling, and hence we would regard it as sub-optimal.

8.1.3 Reducing Cohesion

Starting from the same base as the previous experiment, we wanted to study the effect of reducing

intra-object cohesion. We did this by progressively removing internal links inside the B group,

whilst leaving the A group unchanged.

We had to be careful not to remove all the links from one basic entity in succession, otherwise

Morpheus would just treat the basic entity as unattached, and place it in the best position, without

regard for our desire to keep a ‘cohesive’ group.

The results of this experiment are shown in Table 8.2.

number Ψ under null final object structure see

of links hypothesis Ψ figure

10 179.8 160.8 ((B1,B2,B3,B4,B5) A1,A2,A3,A4,A5) 8.5

9 171.5 154.6 as above 8.6

8 163.0 148.1 as above 8.7

7 154.0 141.4 as above 8.8

6 145.0 134.7 as above 8.9

5 135.6 128.0 as above 8.10

4 125.6 120.9 as above 8.11

3 115.5 113.6 ((B1,B2,B3,B4) A1,A2,A3,A4,A5,B5) 8.12

2 105.2 105.2 (A1,A2,A3,A4,A5,B1,B2,B3,B4,B5) 8.13

1 94.6 94.6 as above 8.14

0 83.4 83.4 as above 8.15

Table 8.2: Effect of Reducing Cohesion within a Group

We can clearly see from Table 8.2 that the first seven experiments all retained the same group

structure. It was not until the number of links in group B dropped below four, that the basic

structure was changed. This occurred when the last link to B5 was broken. We can understand

Morpheus’s decision to place B5 into the A, by realising that whilst log�2 x is a strictly monotonically

increasing function, its rate of growth decreases as x increases.

Once the number of links has dropped below three, there is no justification for keeping B as a

separate group. Not unreasonable, as its internal cohesion has virtually gone.

8.1. Initial Experiments 93

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.5: Cohesion with 2 groups, one with 10 links

B1

B2

B3

B4 B5

A1

A2

A3

A4

A5

Figure 8.6: Cohesion with 2 groups, one with 9 links

94 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.7: Cohesion with 2 groups, one with 8 links

B1

B2

B3 B4 B5

A1

A2

A3

A4

A5

Figure 8.8: Cohesion with 2 groups, one with 7 links

8.1. Initial Experiments 95

B1

B2

B3 B4

B5

A1

A2

A3

A4

A5

Figure 8.9: Cohesion with 2 groups, one with 6 links

B1

B2

B3

B4 B5

A1

A2

A3

A4

A5

Figure 8.10: Cohesion with 2 groups, one with 5 links

96 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2 B3 B4 B5

A1

A2

A3

A4

A5

Figure 8.11: Cohesion with 2 groups, one with 4 links

B1

B2B3 B4

A1

A2

A3

A4

A5

B5

Figure 8.12: Cohesion with 2 groups, one with 3 links

8.1. Initial Experiments 97

A1

A2

A3

A4

A5

B1

B2B3

B4 B5

Figure 8.13: Cohesion with 2 groups, one with 2 links

A1

A2

A3

A4

A5

B1

B2

B3 B4 B5

Figure 8.14: Cohesion with 2 groups, one with 1 link

98 Chapter 8. Empirical Evidence in Support of Ψ

A1

A2

A3

A4

A5

B1

B2 B3 B4 B5

Figure 8.15: Cohesion with 2 groups, one with no links

8.1. Initial Experiments 99

8.1.4 Increasing Coupling

Once again starting from the same base as the previous experiment, we wanted to study the effect

of increasing inter-object coupling. We did this by progressively adding links between the A and

B groups.

We did not want all the new links to go from one basic entity to another basic entity or this

would have resulted in a system with a few highly cohesive basic entities rather than just increasing

the links from A to B.

The results are shown in Table 8.3. The double line under the entry starting 5, is a reminder

that the linkage structure underwent a change. Between 0 and 5 (inclusive), we formed links from

group A to B, by just adding a link from Ai to Bi. However, after 5 we formed additional links

by adding links from Bi to Ai, the intention being to avoid just making B a sub-group of A. In

retrospect, this idea was correct in principle, but we would have been better to add links from Bi

to A6�i thus avoiding too much cohesion between specific basic entities.

number Ψ under null final object structure see

of links hypothesis Ψ figure

0 172.3 157.2 ((B1,B2,B3,B4,B5) A1,A2,A3,A4,A5) 8.16

1 179.8 160.8 as above 8.17

2 187.4 170.0 as above 8.18

3 195.2 178.9 as above 8.19

4 203.1 187.8 as above 8.20

5 211.0 196.5 as above 8.21

6 218.8 205.8 ((A1,A2,A3,A4,A5) (B1,B2,B3,B4,B5)) 8.22

7 226.5 213.8 as above 8.23

8 234. 225.9 (((A3,A4,A5,B3,B4,B5) A2,B2) A1,B1) 8.24

9 242.0 232.3 as above 8.25

10 249.7 238.7 as above 8.26

Table 8.3: Effect of Increasing Coupling between Groups

Looking at Table 8.3, we see that complexity rises as new inter-group links are added, as

expected. More interestingly, at 6 links, the two groups are formed into two ‘equal’ sub-objects,

which we speculate is caused by trade-offs on the complexity of adding a new object containing

6/7 edges versus the additional complexity of more links between the an encapsulated object and

its parent. We can explain this by observing that the (partial) message length needed to distinguish

between only two objects is 1 bit, as opposed to adding more bits to the message to distinguish

between nearly equal node degrees.1

Interestingly, after 7 links between the groups, the strategy changes again, this time to hav-

ing objects nested 3 deep. We hypothesis that this arrangement is arrived at by the interaction

of object size (number of encapsulated entities) versus the message length for describing edges.

Unfortunately at this time we cannot offer a more detailed explanation.

1It is well known that the length of a message is maximised when all the symbols have equal probabilities.

100 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.16: Coupling with 2 groups, and no links between groups

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.17: Coupling with 2 groups, and 1 link between groups

8.1. Initial Experiments 101

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.18: Coupling with 2 groups, and 2 links between groups

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.19: Coupling with 2 groups, and 3 links between groups

102 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.20: Coupling with 2 groups, and 4 links between groups

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.21: Coupling with 2 groups, and 5 links between groups

8.1. Initial Experiments 103

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Figure 8.22: Coupling with 2 groups, and 6 links between groups

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Figure 8.23: Coupling with 2 groups, and 7 links between groups

104 Chapter 8. Empirical Evidence in Support of Ψ

A3

A4

A5

B3

B4

B5

A2

B2

A1

B1

Figure 8.24: Coupling with 2 groups, and 8 links between groups

A3

A4

A5

B3

B4

B5

A2

B2

A1

B1

Figure 8.25: Coupling with 2 groups, and 9 links between groups

8.1. Initial Experiments 105

A3

A4

A5

B3

B4

B5

A2

B2

A1

B1

Figure 8.26: Coupling with 2 groups, and 10 links between groups

106 Chapter 8. Empirical Evidence in Support of Ψ

8.2 A Small Example: Traffic Lights

In this section we return to the example of traffic lights which we started in Section 3.2. The

ODS was updated to capture the extra design information provided by Augmented HOOD (see

Section 7.1 and Appendix A). The exact changes are described below.

Operation lights.change had an operation requirements section added to its pseudo code

section, showing that lights.change updates the variable other road.

OPERATION_REQUIREMENTS

WRITES_TO

other_road ;

END_OPERATION_REQUIREMENTS

Operation seconds.count had a pseudo code section added, showing that a number of in-

ternal variables were updated during the course of its operation.

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

elapsed ;

ac_present ;

bd_present ;

current_green_pair ;

END_OPERATION_REQUIREMENTS

Operation traffic sensors.check had a pseudo code section added, showing that a hard-

ware latches were read during the course of its operation.

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

ac_sensors ;

bd_sensors ;

END_OPERATION_REQUIREMENTS

Objects traffic lights and text io were left unchanged.

We conducted a number of experiments with this design, the results are summarised in Ta-

ble 8.4

no environment with environment

design see see

Ψ figure Ψ figure

Original 346.97 8.27 326.04 8.27

Flat 306.88 8.28 306.79 8.29

Morpheus’s proposal 276.78 8.30 283.36 8.31

Table 8.4: Experiments with Traffic Light Design

Recall that in these design graphs, trapeziums represent datatypes and boxes represent vari-

ables.

We took the original design as proposed by Robinson (1992a), and calculated it complexity,

both with text io as an environmental object and just as part of the design. This was contrasted

8.2. A Small Example: Traffic Lights 107

with a flat design containing no objects other than those needed when text io was made an

environmental object.

We then ran Morpheus on Robinson’s design (with and without text io as an environmental

object). Not surprisingly the complexity of Morpheus’s chosen solution with an environmental

object is larger than that without an environmental object. We attribute this to having a greater

freedom to rearrange the design without environmental objects.

More interestingly, the two designs produced by Morpheus are markedly similar, which gives

us more confidence in Morpheus’s behaviour. The principal changes between the original design

and Morpheus’s proposal were

� Moving datatype traffic lights.road into object lights. This reduces some of the

coupling between objects. Further, this is technically better HOOD, because a parent object

should not contain basic entities.

� Moving datatype traffic sensors.present into object seconds. This reduces the cou-

pling between traffic sensors and seconds, since seconds has two variables declared

as type present and an operation requiring type present, whereas traffic sensors

only has two operations depending on present. Note however that our complexity mea-

sure does not distinguish between different kinds of connections.

Perhaps examining the kind of connection is something that should happen in future, but

this would detract from the generality of our complexity measure Ψ. We believe that if such

comparisons are required, they would be better handled by changes to the style section of

Morpheus’s rule base.

� The operation traffic lights.second (labelled tl.second in our diagrams, for unique-

ness) is moved into object seconds.

We can well understand why this last move would occur (reducing coupling between tra-

ffic lights and seconds). Unfortunately, it highlights two potential difficulties. First, how to

handle HOOD’s implementation link, and second, keeping the design’s entry-point (if there is one)

at the top of the object hierarchy.

The first problem should, we believe, be handled by modification to Morpheus’s Data Analyser,

such that references to basic entities which have an implementation link should be redirected to

the entity responsible for actually providing the required service. This would only be a relatively

minor change to the Data Analyser, but might have repercussions for the presentation of Morpheus’s

results—a subject which is outside the scope of this thesis.

The second problem is as yet an open issue.

8.2.1 Discussion on the Traffic Lights Design

In this section we will look at the software design underlying the Traffic Lights example, com-

paring the before (see Figure 8.27) with the after (see Figure 8.31). The changes are described in

the above section. A quick count of the number of service requirements (links) flowing out of all

objects, shows a drop from 15 to 10 which supports the authors’ intuitive claim that the overall

system coupling has fallen. Looking at each object in turn (see Section 3.6).

Traffic Lights Basically this object has not changed (certainly from its outward appearance).

The operation tl.second and datatype road have moved into internal objects, but to some extent

tl.second is just a design artifact to provide the object traffic lightswith a callable interface

(via an interrupt). The datatype road is interesting because it is a global datatype used across

traffic lights. We think that from a design perspective road would be better as a global

datatype rather than as part of the object lights; but we accept that strictly this is poor HOOD.

In a similar view we would have made the datatype present global because it pervades several

objects.

108 Chapter 8. Empirical Evidence in Support of Ψ

We believe that this difference between Morpheus’s suggestion and our opinion is due to the

use of log�2 to represent natural numbers (see Section 5.2.3).

Lights The lights object is (apart from the datatype road) a well-defined conceptual object,

just providing services to manipulate the colour of the roads’ traffic lights. Obviously such an

object requires the operation change and the datatype colour to be external attributes.

The data other road is an oddity, but it is part of the design of the change operation and

so cannot be removed from the object lights. We would have preferred some form of dedicated

road object providing a datatype road with services for selecting which road was allowing traffic

to flow and its opposite road. This however is not what Robinson (1992a) specified. This illustrates

the significant limitation of not having knowledge of purpose of a design, but we see this as a major

piece of future work.

Traffic Sensors The object traffic sensors has remained well-defined, encapsulating private

data, operations and datatypes. The only real issue with traffic sensors is the location of the

datatype present. However, as we have already said, we believe present would be better as a

global datatype. We note that moving present from traffic sensors to the object seconds

reduces its external link count from 3 to 2 and does reduce the object’s coupling.

This raises a general question, should links to datatypes count as strongly as other kinds of

links? This is an open question, but in view of this example we are inclined to think they should

be a special case and have a length reduction factor. This however seriously complicates the

underlying theoretical model.

Seconds The object seconds is the largest object in the design and has not unreasonable had the

most changes. We have already discussed the datatype present, so we shall ignore it in discussing

seconds. The majority of seconds consists of internal data and operations, so it clearly has a

satisfactory structure. Moving the operation tl.second into seconds clearly reduces seconds’

coupling, but does raise questions about the availability of external functions.

There is no obvious way to inform Morpheus the the operation tl.second is an externally

required function. In this example, of course, this is not a serious problem because we can easily

make tl.second external. The concern that functions may get ‘lost’ inside internal objects rather

than been clearly visible.

Conclusion This discussion has highlighted some weaknesses in the application of Ψ and Mor-

pheus to this small example. Some of these matters clearly require more research. Whilst some are

partly due to this being a small example; because it is easy for humans to see better approaches in

such small systems. As Müller et al. (1993) have observed, humans are good at identifying build-

ing blocks, given sufficient time, but such time is often not available; this is of course especially

true in large complex systems.

We believe that Morpheus should be seen as a design aid, to make suggestions and hence raise

issues, rather than as a replacement for human judgement and intuition.

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
0
9

colour second

stringroad latchpresent

other_road

ac_presentbd_presentcurrent_green_pair elapsed

ac_sensorsbd_sensors

tl.second

count

checkchange

read_sensor put_line

F
ig

u
re

8
.2

7
:

G
rap

h
o
f

o
rig

in
al

T
raffi

c
L

ig
h
t

d
esig

n

1
1
0

C
h
a
p
ter

8
.

E
m

p
irica

l
E

vid
en

ce
in

S
u
p
p
o
rt

o
fΨ

coloursecond

string road latch present

other_road

ac_present bd_presentcurrent_green_pairelapsed

ac_sensors bd_sensors

tl.second

count

checkchange

read_sensorput_line

F
ig

u
re

8
.2

8
:

G
rap

h
o
f

fl
at

T
raffi

c
L

ig
h
t

d
esig

n
w

ith
o
u
t

env
iro

n
m

en
t

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
1
1

coloursecond

stringroadlatchpresent

other_road

ac_presentbd_present current_green_pairelapsed

ac_sensors bd_sensors

tl.second

count

check change

read_sensor put_line

F
ig

u
re

8
.2

9
:

G
rap

h
o
f

fl
at

T
raffi

c
L

ig
h
t

d
esig

n
w

ith
env

iro
n
m

en
t

1
1
2

C
h
a
p
ter

8
.

E
m

p
irica

l
E

vid
en

ce
in

S
u
p
p
o
rt

o
fΨ

colour second

string road latch

presentother_road

ac_present bd_presentcurrent_green_pair elapsed

ac_sensors bd_sensors

count

checkchange

tl.second

read_sensorput_line

F
ig

u
re

8
.3

0
:

G
rap

h
o
f

M
orpheus’s

T
raffi

c
L

ig
h
t

d
esig

n
w

ith
o
u
t

env
iro

n
m

en
t

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
1
3

coloursecond

stringroad latch

present other_road

ac_present bd_presentcurrent_green_pair elapsed

ac_sensors bd_sensors

count

checkchange

tl.second

read_sensor put_line

F
ig

u
re

8
.3

1
:

G
rap

h
o
f

M
orpheus’s

T
raffi

c
L

ig
h
t

d
esig

n
w

ith
env

iro
n
m

en
t

114 Chapter 8. Empirical Evidence in Support of Ψ

8.3 TriviCalc - A System to Design

Note 8.2. Unfortunately, it is not possible to include design graph samples in this section because

they are quite unreadable on any reasonable scale. Creating several disjoint sheets of a graph is

unfortunately not likely to aid the reader’s comprehension any better.

This section describes the application of Morpheus to a moderately sized software design. As

our sample project we have chosen a simple spreadsheet (called TriviCalc), which the authors

designed and then processed through Morpheus . We examine Morpheus’s proposed changes and

consider whether the design has been improved.

TriviCalc is a small spreadsheet, first described by Listov and Guttag (1986). A full description

of TriviCalc is contained in Section B.1. It permits only the four basic arithmetic operations, and at

most two dependencies into a third slot (e.g., we can say A1+A2! A5, and indeed A1+A2! A3

with A1+A3!A5, but not A1+A2+A3!A5). Having created a dependency, TriviCalc behaves

like a normal spreadsheet in that changes to A1 (say) are reflected into other slots (e.g., A5).

A small single line editor is provided for entering commands, along with a limited macro

facility. The contents of a spreadsheet may be saved to a file and later restored, this restoration

includes the current macro set.

Initial Design The guiding principal, was information hiding and the separation of concerns. It

can be seen that each module maps onto objects in the description of the problem. With the ex-

ception of the editor, all the other main objects in the problem domain map to single objects in the

design. The editor encapsulates several objects because it has a number of distinct sub-components

of the display to maintain. It should be stressed that the original design was of reasonable quality,

and did not contain any examples of strong coupling. The vast majority of the system only con-

tained data coupling, however the Display Manager2 does exhibit external coupling because it has

knowledge of control sequences for display terminals.

Morpheus’s Suggestions Morpheus was run on the authors’ initial design for TriviCalc. Although

Morpheus generates a log of its changes, describing these in detail would be counter-productive

because the broad picture would be lost in the mass of detail. So instead we will just outline

Morpheus main changes from a modular level.

Morpheus’s changes can be summarised as follows:

� The most obvious set of changes was the removal of the separate data-types module, with

the datatypes being redistributed around the other modules.

This clearly has a significant impact on system coupling, because datatypes only used in

one object can be localised. This is the ideal, but we must recognise that in a development

situation, it is not always possible to predict when some datatype will be required by another

new object. This may lead to unnecessary coupling between objects so that a single datatype

may be shared. Such a situation, generally indicates that the object structure should be

reviewed since there may be a need to introduce another object to handle the shared datatype

(e.g., an ADT).

� The other significant change was to break the system into two high-level objects, one respon-

sible for input of commands and command identification, the other responsible for obeying

the commands and maintaining the state of the spreadsheet.

This modification helps to reduce coupling and hence complexity by a clearer separation of

concerns, i.e., by increasing cohesion. This change also suggests that in future some form

of reusable editor and a reusable command despatch system might be worth developing,

especially if TriviCalc was to form part of a family of spreadsheets with different levels of

sophistication.

2Responsible for displaying the current state of the spreadsheet and the user’s input.

8.3. TriviCalc - A System to Design 115

� The other interesting change at the module level was the splitting of the spreadsheet cal-

culation pad into two separate but equal objects, one responsible for validating potential

commands, the other for actually performing the required changes.

Much of the internal complexity of the calculation pad comes from the need to propagate

changes to dependent slots and to save the spreadsheet in a suitable order for later restora-

tion. By splitting the validation from the implementation, the mechanics for propagating

changes can be further encapsulated.

8.3.1 Improvement?

Full details of both the initial and post-processing modular structures are shown in Section B.3.

The original design had a complexity of 12038.9 bits, whilst Morpheus’s suggestion had a com-

plexity of 9618.8 bits, a saving of about 20 percent.

Redistributing the datatypes is clearly a good thing, as the majority of types are only used

locally inside a module. We choose to separate them partly for ease of construction and partly

because initially we had no firm idea of where each type would be required. We suspect that

the latter is a common problem when starting a design. This highlights the tendency to create a

design and leave bits matters unchanged even when our ideas have solidified over the course of the

design. This is, of course, a common problem with legacy software—bits get added and removed

to solve the ‘immediate problem’ but without regard for the integrity of the overall design or future

changes. We believe that following a major update to a system, the design should be reexamined,

and a tool such as Morpheus would aid this process.

Rearranging the system into two high-level modules is at first sight odd. However on reflection

such an arrangement serves to better separate concerns. One object can manage input and com-

mand identification, a relatively self-contained problem. Whilst the other object is responsible for

carrying the entered commands without regard for how they arrived.

Breaking the spreadsheet’s calculation pad into two modules can also be seen as a good idea,

since validation of potential commands is not strictly part of obeying a set of commands. Obvi-

ously there is some overlap, since validation may depend on the current state of the calculation

pad.

We conclude therefore that Morpheus has produced a simpler design.

8.3.2 Support for Future Changes?

In this section we want to examine Morpheus’s changes in the light of a possible future change.

Currently TriviCalc does not support common (unary) mathematical functions,3 for example log-

arithms and trigonometric functions. It would clearly extend TriviCalc’s usefulness if such a

facility was added allowing a wider range of problems to be addressed.

Such a modification could easily be seen as a next step in enhancing TriviCalc’s capabilities.

Obviously there would need to be individual operations in the calculation pad to support each

required function and some form of validation mechanism to prevent illegal functions or operation

on inappropriate data (for example taking the log of a string).

Basically, TriviCalc would require two groups of changes; a new set of operations in the

calculation pad to support the additional functionality and modification of the command processor

to despatch the new command as required.

There are several possible approaches to this problem - but from a future enhancement perspec-

tive the best is to support some form of generic unary function. Under this scheme the command

identification sub-system would just recognise the ‘basic shape’ of a unary function and the calcu-

lation sub-system would be responsible for implementing the required function and propagating

the changes as required. Such an approach would allow further unary functions to be added as

3In this section we use the term function to refer to a mathematical function and reserve operation for HOOD

operations. There need not be a one-one mapping between a mathematical function and the equivalent implementation.

116 Chapter 8. Empirical Evidence in Support of Ψ

required. The editor would not require any changes and basic validation would remain unchanged

since it can already check for valid slot identities and slot containing strings rather than arithmeti-

cal expressions.

The calculation pad would need a look-up table for validation and despatch to the appro-

priate operation. However, the basic entry point for updating the calculation pad would remain

unchanged.

The biggest change to any object’s interface would be a new operation in the calculation pad’s

validation object to support identification of valid unary functions. However, this would only be

an example of data coupling and hence have no significant effect on the system’s overall coupling.

These changes could be easily incorporated into the revised TriviCalc without causing any

major perturbations. We therefore believe that the changes which Morpheus proposed for TriviCalc

are well founded.

The strongest arguments prove nothing so long as the conclusions are not

verified by experience.

Experimental science is the queen of sciences

and the goal of all speculation.

ROGER BACON (1214?–94?)

English philosopher, scientist

Chapter 9

Summary and Conclusion

Synopsis

In this chapter, we present a critical evaluation of this thesis and its contribution to

knowledge. Section 9.1 provides a brief summary of this thesis. Section 9.2 discusses

what this thesis has achieved, and how far its objectives have been met. Section 9.3

looks forward to future work, as a result of this research. Finally, Section 9.4 provides

a brief overall conclusion.

9.1 Summary of this Thesis

This thesis has studied the problem of providing an intelligent system to aid software designers

improve the quality of their designs. We have limited ourselves to the objective evaluation of a

design’s modular complexity. Little previous work has been done in producing systems for even

this limited objective.

Although there are clearly many other factors which influence quality; many of which are

subjective and involve value judgements. Further, some of these factors are subconscious and not

fully articulated or understood by human experts. We believe that reducing software complexity

makes a significant contribution to improving software quality, by reducing the amount of com-

plexity that engineers have to handle. Hence their time and effort can be spent on other areas of

software development.

We have rigorously defined modular complexity by developing a method to represent the struc-

ture of a design’s graph as a message. By reference to Kolmogorov complexity and in particular

the Minimum Description Length principle, the length of such a message is an objective measure

of the complexity of a proposed design.

We have examined some of the theoretical properties of our proposed complexity measure

against criteria proposed by other researchers, in particular Weyuker (1988). On this basis we

have shown that our measure satisfies these criteria and deserves further study. A key feature of

the design of our complexity measure is that it provides an approach for finding alternative designs

with reduced complexity.

We have created a prototype tool, Morpheus , which reads in a design expressed in HOOD, and

searches for a better design. Morpheus uses a narrow beam hill-climbing search strategy to look

for less complex designs using our complexity measure for evaluating potential designs. We have

applied Morpheus to a design which we created for a spreadsheet package. Morpheus successfully

found a less complex architecture.

118 Chapter 9. Summary and Conclusion

9.2 Evaluation

The previous section provided a brief summary of this thesis. In this section we shall look at how

well this work meets our original objective.

9.2.1 Achievements

There can be no doubt that we have created a prototype tool which takes in an architectural design

expressed in HOOD, and finds alternative designs with less complex structure. Complexity has

been defined in terms of the length of a message describing the structure of the design. The use of

message length as a measure of complexity is founded on Kolmogorov complexity, which gives

us an objective basis for comparing the structural complexity of designs.

We have shown that our complexity metric satisfies criteria that other researchers have sug-

gested are good properties for complexity measures. This has been rigorously proved for the

most general hierarchical modular structure consisting of inter-connected basic entities and ob-

jects (modules). The mathematical proofs make no assumptions about the nature of basic entities,

and only assume that modules can encapsulate basic entities and other modules.

The most significant achievement of this work is the development of an objective complexity

metric, which permits the evaluation of structural complexity. This claim to objectivity is not

based on other people’s notions of complexity, which others may wish to argue about; but is based

on the Minimum Length Description principle related to Kolmogorov complexity, and is embodies

Occam’s razor. Occam’s razor basically says that given the choice between two explanations, of

the same situation, the simplest should be preferred. This is exactly what our tool does for software

designs.

We have met the following objectives

� Development of a better complexity measure, which permits the complexity of alternative

designs to be objectively compared. The measure is based on well-established mathematical

principles.

� Highlighted weaknesses in the the HOOD design notation, and proposed some small exten-

sions to HOOD which correct some of these deficiencies. The designer must have already

considered the information missing from the design, so we are only tightening the descrip-

tion of the design and not adding substantially to the designer’s workload.

� Identification of a method for finding alternative architectural designs. Given that our com-

plexity measure is a message describing a graph, it is easy to see that manipulating the graph

will change graph’s complexity and hence the message length.

� Identification of a basic set of rules for manipulating design graphs.

� Production of an automatic system for finding simpler designs (if possible) to a proposed

design.

Potentially this may assist in

� Developing simpler designs.

� Identification of more defects in the design stage, which should reduce the cost of software

production.

� Reducing the costs of maintenance both through the development of more reliable software

with less bugs and conceptually easier designs to understand whilst making modifications.

� Simplifying software maintenance.

9.3. Further Work 119

� A better understanding of the relationship between coupling and cohesion. Particularly in

situations were the worst forms of coupling are not permitted.

As part of the development of Morpheus , we have identified a number of deficiencies in HOOD

as currently defined. Some of these deficiencies we have addressed in our extensions to HOOD.

The others (e.g., nested operations) would be quite simple to add, but require further consideration

because they alter what may be regarded as the philosophy of HOOD.

Although Morpheus is based on HOOD, in principle there is no reason why (with suitable

changes) it could not be applied to other modular based architecture design languages, for ex-

ample VDM-SL.

9.2.2 Industrial Application

Morpheus has the potential to be used commercially, but before this happens some remaining prob-

lems need to be addressed, namely:

� The resource requirements of Morpheus are currently excessive, and would prohibit the sys-

tem being used on a regular basis.

� The global structure of the rule base in Morpheus needs to be improved to make it easier to

modify the style rules to cater for different methodologies and handling of proposed design

changes for stylistic reasons.

� Industrial validation of Morpheus is required to boost confidence in its suggestions.

9.3 Further Work

The previous section considered the limitations with the present system. In this section, we shall

consider possible future work

� The modifications to the implementation of Morpheus referred to in Section 7.3 need to be

incorporated. This should significantly improve Morpheus’s run-time performance both in

terms of speed and memory utilisation.

� The introduction of a type theory and object-oriented design need to be investigated. Cur-

rently, this work is based upon HOOD’s typing system (name equivalence) rather than de-

composing a type into its constitution parts (if any). Further the underlying theoretical

model used in this thesis is object-based and hence has no support for a class concept. The

introduction of classes would broaden the application of this approach.

� A faster method for pruning Morpheus’s search space needs to be developed, probably by

refining our understanding of the relationship between coupling and cohesion. Although

we believe that Morpheus’s speed can be improved by use of an incremental model, some

mechanism1 for discarding ‘unsatisfactory’ changes to the design is still desirable.

� The effect of different coding schemes for natural numbers needs to be investigated.2 There

are a number of asymptotically optimal universal codes for integers (see Section 5.2.3).

More interestingly would be the investigation of a coding scheme which gave less weight to

small integers and had a smaller first derivate.

� Different ways of generating alternative designs should be investigated, possibilities include

genetic algorithms and simulated annealing. This thesis has only considered creating new

designs by manipulating the graph representation of a design. Clearly, there are alternative

approaches to creating ‘new’ designs, and these should be investigated.

1It is not sufficient to drop changes which increase message length.
2Our mathematical model only requires a monotonically increasing function.

120 Chapter 9. Summary and Conclusion

� Alternative theories for modelling a hierarchical graph need to be investigated, and their

impact on message lengths determined. This thesis assumes a single class of theories for

describing a hierarchical graph. There are undoubtedly others, some of which may yield

smaller message lengths and thus more closely approximate the true3 Kolmogorov Com-

plexity of the underlying design.

� Providing a clearer method for reporting Morpheus’s results, in a manner readily understand-

able to the end-user. Morpheus’s output is currently rather cryptic, and not obviously related

to the initial design; particularly as module names are not preserved. To make Morpheus

acceptable in an industrial setting, a simple to understand output is required. Even better

would be to reverse engineer Morpheus’s output into a design notation; ideally using the

same notation as the original design.

� Integrating Morpheus into other CASE tools. Morpheus is really intended as the back-end of

a CASE tool, and not for direct use by a designer. We need to merge Morpheus into a CASE

tool so that it has access to other facilities (in particular a database for storing large designs)

and supports industrial use.

9.4 Contribution of This Thesis

The research reported in this thesis has developed a metric for measuring the absolute complexity

of a software design’s architecture. Complexity is measured in an objective manner and does not

require any human judgement. This complexity measure has been theoretically validated against

Weyuker’s (1988) properties for a complexity measure. Using this metric a tool has been devel-

oped which takes an existing design and finds a simpler alternative. Initial empirical validation

shows potential.

Research is to see what everybody else has seen,

and to think what nobody else has thought.

ALBERT SZENT-GYÖRGI (1893–1986)

U.S. biochemist

Hofstadter’s Law: It always takes longer than you expect,

even when you take into account Hofstadter’s Law.

DOUGLAS R. HOFSTADTER (1945–)

Gödel, Escher, Bach (1979)

3Remember that Kolmogorov Complexity is non-computable.

Bibliography

Aceto, L. (1992). TriviCalc Reference Manual. COGS, University of Sussex, Brighton, England.

Anderson, J., editor (1989). POP-11 Comes of Age. Ellis Horwood, Chicester, England.

ANSI C (1989). The American National Standard for Information Systems - Programming Lan-

guage C. American National Standards Institute, New York, NY. ANSI X3.159-1989.

Atkinsom, G. (1977). The non-desirability of structured programming in user languages. ACM

Sigplan Notices, 12(7):43–50.

Bancroft (1969). English Dictionary. Bancroft and Co. (publishers) Ltd., London, England,

revised edition.

Barrett, R., Ramsey, A., and Sloman, A. (1985). POP-11: A Practical Language for Artifical

Intelligence. Ellis Horwood, Chicester, England.

Baxter, R. A. (1996). Minimum Message Length Inference: Theory and Applications. PhD thesis,

School of Computer Science, Monash University.

Benedusi, P., Cimitile, A., and de Carlini, U. (1992). Reverse engineering processes, design

documents production, and structure charts. Journal of Systems and Software, 19(3):225–245.

Bieman, J. M. and Ott, L. M. (1994). Measuring functional cohesion. IEEE Transactions on

Software Engineering, 20(8):644–657.

Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E. (1994). Program understanding and the

concept assignment problem. Communications of the ACM, 37(5):72–83.

Binder, R. V. (1996). Testing object-oriented systems: A status report. First published in American

Programmer April 1994.

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1973). SIMULA Begin. Petro-

celli/Charter, New York, NY.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ.

Booch, G. (1987). Software Engineering with Ada. Benjamin/Cummings Publishing Company,

Inc., Redwood City, CA, 2nd edition.

Booch, G. (1991). Object Oriented Design with Applications. Benjamin/Cummings Publishing

Company, Inc., Redwood City, CA.

Bornat, R. (1979). Understanding and Writing Compilers: A do-it-yourself guide. Macmillan

Computer Science Series. Macmilian Education Ltd., Basingstoke, England.

Briand, L. C., Morasca, S., and Basili, V. R. (1996). Property-based software engineering mea-

surement: Refining the additivity properties. IEEE Transactions on Software Engineering,

22(1):68–86.

Bujnowski, J. (1993). Knowledge elicitation report. Technical report, British Telecommunications

Research Laboratory, Martlesham Heath, Ipswich, Suffolk. draft.

122 Bibliography

Bundy, A. and MacQueen, H. (1994). The new software copyright law. The Computer Journal,

37(2):79–82.

Calliss, F. W. (1989). Inter-Module Code Analysis Techniques for Software Maintenance. PhD

thesis, School of Engineering and Applied Science (Computer Science), University of Durham.

Calliss, F. W. and Cornelius, B. J. (1989). A case study of module factoring. Computer Science

Technical Report 13/1989, School of Engineering and Applied Science (Computer Science),

University of Durham, England.

Carré, B. (1979). Graphs and Networks. Oxford applied mathematics and computing science

series. Clarendon Press, Oxford, England.

Casey, C. (1994). A Programming Approach to Formal Methods. McGraw-Hill international series

in software engineering. McGraw-Hill Book Company, London, England.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493.

Choi, S. C. and Scacchi, W. (1990). Extracting and restructing the design of large systems. IEEE

Software, 7(1):66–71.

Churcher, N. I. and Shepperd, M. J. (1995). Towards a conceptual framework for OO software

metrics. ACM Sigsoft Notices, 20(2):69–75.

Cox, B. J. (1986). Object-oriented Programming - An evolutionary Approach. Addison-Wesley

Publishing Company, Reading, MA.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design process for large

systems. Communications of the ACM, 31(11):1268–1288.

Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Structured Programming. Academic

Press, New York, NY.

Dasgupta, S. (1991). Design Theory and Computer Science: Processes and Methodology of Com-

puter Science Design. Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-

sity Press, Cambridge, England.

Dawes, J. (1991). The VDM-SL Reference Guide. Pitman Publishing, London, England.

de Marco, T. (1979). Structured Analysis and System Specification. Prentice-Hall, Englewood

Cliffs, NJ.

de Remer, F. and Kron, H. H. (1976). Programming-in-the-large versus programming-in-the-

small. IEEE Transactions on Software Engineering, 2(2):80–86.

Deitel, H. M. (1984). An Introduction to Operating Systems. Addison-Wesley Publishing Com-

pany, Reading, MA, revised first edition.

Delatte, B., Heitz, M., and Muller, J. F. (1993). HOOD Reference Manual 3.1. Prentice-Hall,

London, England.

Denvir, T. (1986). Introduction to Discrete Mathematics for Software Engineers. Macmillan

Computer Science Series. Macmilian Education Ltd., Basingstoke, England.

Dijkstra, E. W. (1968). Go to statements considered harmful. Communications of the ACM,

11(3):147–148. (letter to the editor).

123

Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10):TBD.

(Turing Award Lecture).

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.

Embley, D. W. and Woodfield, S. N. (1987). Cohesion and coupling for abstract data types. In

Sixth Annual International Phoenix Conference on Computer Communications, pages 229–234,

Washington, D.C. IEEE Computer Society.

Embley, D. W. and Woodfield, S. N. (1988). Assessing the quality of abstract data types written in

Ada. In Tenth International Conference on Software Engineering, pages 144–153, Washington,

D.C. IEEE Computer Society.

Englemore, R. and Morgan, T. (1988). Blackboard Systems. Addison-Wesley Publishing Com-

pany, New York, NY.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM

Systems Journal, 15(3):182–211.

Fenton, N. E. (1994). Software measurement: A necessary scientific basis. IEEE Transactions on

Software Engineering, 20(3):199–206.

Fetzer, J. H. (1988). Program verification: The very idea. Communications of the ACM,

31(9):1048–1064.

Fowler, M. and Scott, K. (1997). UML Distilled: Applying the Standard Object Modeling Lan-

guage. The Addison-Wesley Object Technology Series. Addison Wesley Longman, Inc., Read-

ing, MA.

France, R. B. (1992). Semantically extended data flow diagrams: A formal specification tool.

IEEE Transactions on Software Engineering, 18(4):329–346.

Fuggetta, A., Ghezzi, C., Mandrioli, D., and Morzenti, A. (1993). Executable specifications with

dataflow diagrams. Software Practice and Experience, 23(6):629–653.

Galton, A. (1992). On the notions of specification and implementation. Research Report 246,

Department of Computer Science, University of Exeter, England.

Gane, C. and Sarson, T. (1979). Structured Systems Analysis. Prentice-Hall, Englewood Cliffs,

NJ.

George, C., Haff, P., Havelund, K., Haxthausen, A. E., Milne, R., Nielsen, C. B., Prehn, S., and

Wagner, K. R. (1992). The RAISE Specification Language. Prentice-Hall, Hemel Hempstead,

England.

George, C., Haxthausen, A. E., Huges, S., Milne, R., Prehn, S., and Pedersen, J. S. (1995). The

RAISE Development Method. Prentice-Hall, Hemel Hempstead, England.

Goguen, J. A., Jouannaud, J.-P., and Meseguer, J. (1985). Operational semantics of order-sorted

algebra. In Brauer, W., editor, 12th International Conference on Automata, Languages and

Programming, pages 221–231. Springer-Verlag, Berlin, Germany. LNCS:194.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its implementation.

Addison-Wesley Publishing Company, Reading, MA.

Grogono, P. (1980). Programming in Pascal. Addison-Wesley Publishing Company, Reading,

MA, revised edition.

124 Bibliography

Halstead, M. H. (1977). Elements of Software Science. Elsevier North-Holland, New York, NY.

Hardy, G. H. (1947). A Mathematican’s Apology. Cambridge University Press.

Harrison, W. (1992). An entropy-based measure of software complexity. IEEE Transactions on

Software Engineering, 18(11):1025–1029.

Harrison, W. and Ossher, H. (1993). Subject-oriented programming (a critique of pure objects).

In OOPSLA ’93: Eightth annual conference on Object-Oriented Programming Systems, Lan-

guages and Applications, pages 411–428, Washington, DC. ACM Press. published in ACM

SIGPLAN Notices 28(10).

Henry, S. and Kafura, D. (1993). The evaluation of software systems’ structure using quantitative

software metrics. In Shepperd, M. J., editor, Software Engineering Metrics, Volume 1: Measures

and Validations, McGraw-Hill international series in software engineering, chapter 6, pages 99–

111. McGraw-Hill Book Company, Maidenhead, England. Reprinted from Software Practice

and Experience, 14(6); 561–573, 1984.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

HOOD HRM (1995). HOOD Reference Manual, Release 4. HOOD Technical Group. HRM4–

6/29/95.

HOOD HUM (1996). HOOD User Manual. HOOD User Groop. HUM-1.0.

Hops, J. M. and Sherif, J. S. (1995). Development and application of composite complexity models

and a relative complexity metric in a software maintenance environment. Journal of Systems

and Software, 31(2):157–169.

Howell, A. J. (1996). personal communications.

Hutchens, D. H. and Basili, V. R. (1993). System structure analysis: Clustering with data bindings.

In Shepperd, M. J., editor, Software Engineering Metrics, Volume 1: Measures and Validations,

McGraw-Hill international series in software engineering, chapter 5, pages 83–98. McGraw-

Hill Book Company, Maidenhead, England. Reprinted from IEEE Transactions on Software

Engineering, 11(8); 749–757, 1985.

Ichbiah, J. D. et al. (1983). Reference Manual for the Ada Programming Language, ANSI/MIL-

STD-1815A. Castle House Publications Ltd.

Jackson, M. A. (1975). Principles of Program Design. Academic Press, Orlando, FL.

Jackson, M. A. (1983). System Development. Prentice-Hall, Hemel Hempstead, England.

Jackson, M. A. (1995). Software Requirements & Specifications: a lexicon of practice, princi-

ples and prejudices. ACM Press series. Addison-Wesley Publishing Company, Wokingham,

England.

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1994). Object-Oriented Software

Engineering: A Use Case Driven Approach. ACM Press series. Addison-Wesley Publishing

Company, Wokingham, England. Revised printing.

Jones, C. B. (1986). Systematic Software Development using VDM. Prentice-Hall, Englewood

Cliffs, NJ.

Jones, D. S. (1979). Elementary Information Theory. Oxford applied mathematics and computing

science series. Clarendon Press, Oxford, England.

125

Khoshgoftaar, T. M. and Allen, E. B. (1994). Applications of information theory to software

engineering measurement. Software Quality Journal, 3(2):79–103.

Koutsofios, E. and North, S. C. (1994). Editing graphs with dotty. AT&T Bell Laboratories,

Murray Hill, NJ.

Laventhol, J. (1987). Programming in POP-11. Blackwell Scientific Publications Ltd.

Lew, K. S., Dillon, T. S., and Forward, K. E. (1988). Software complexity and its impact on

software reliability. IEEE Transactions on Software Engineering, 14(11):1645–1655.

Li, M. and Vitányi, P. (1993). An Introduction to Kolmogorov Complexity and its Applications.

Texts and Monographs in Computer Science. Springer-Verlag, New York, NY.

Li, M. and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and its Applications.

Graduate texts in Computer Science. Springer-Verlag, New York, NY, 2nd edition.

Listov, B. and Guttag, J. (1986). Abstraction and Specification in Program Development, pages

433–444. The MIT Press, Cambridge, MA.

Lor, K. W. E. and Berry, D. M. (1991). Automatic synthesis of SARA design models from system

requirements. IEEE Transactions on Software Engineering, 17(12):1229–1240.

MacKay, D. J. C. (1997). Information theory, pattern recognition and neural networks. forthcom-

ing, available in http://wol.ra.phy.cam.ac.uk/mackay/itprnn.

Marca, D. A. and McGowan, C. L. (1988). SADT—Structured Analysis and Design Technique.

McGraw-Hill.

MASCOT (1987). The Official Handbook of MASCOT: Version 3.1. Her Majesty’s Stationery

Office, London, England. Joint IECCA and MUF Committee on MASCOT.

McCabe, T. J. (1976). A software complexity measure. IEEE Transactions on Software Engineer-

ing, 2(6):308–320.

McCabe, T. J. and Butler, C. W. (1989). Design complexity measurements and testing. Commu-

nications of the ACM, 32(12):1415–1425.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall, Hemel Hempstead,

England.

Mohanty, S. N. (1981). Entrophy metrics for software design evaluation. Journal of Systems and

Software, 2:39–46.

Müller, H. A., Orgun, M. A., Yilley, S. R., and Uhl, J. S. (1993). A reverse-engineering approach

to subsystem structure identification. Software Maintenance Research and Practice, 5(4):181–

204.

Munro, J. E. (1992). Discrete Mathematics for Computing. Chapman & Hall, London, England.

Mynatt, B. T. (1990). Software Engineering with Student Project Guidance. Prentice-Hall.

Nakajo, T. and Kume, H. (1991). A case history analysis of software error cause-effect relation-

ships. IEEE Transactions on Software Engineering, 17(8):830–838.

Neil, M. and Bache, R. (1993). Data linkage maps. Software Maintenance: Research and Practice,

5:155–164.

126 Bibliography

Oliver, J. J. and Hand, D. J. (1994). Introduction to minimum encoding inference. Technical

Report 4–94, Department of Statistics, Open University, England. revised Dec. 1996.

Orr, K. T. (1971). Structured System Development. Yourdon Press, New York, NY.

Page-Jones, M. (1988). The Practical Guide to Structured Systems Design. Prentice-Hall, Engle-

wood Cliffs, NJ, 2nd edition.

Page-Jones, M. (1992). Comparing techniques by means of encapsulation and connascence. Com-

munications of the ACM, 35(9):147–151.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communi-

cations of the ACM, 15(12):1053–1058.

Parnas, D. L. (1997). Software engineering: An unconsummated marriage. Communications of

the ACM, 40(9):128.

Popper, K. R. (1968). The Logic of Scientific Discovery. Harper and Row, New York, NY.

Pressman, R. S. (1992). Software Engineering: A Practitioner’s Approach. McGraw-Hill Inc.,

New York, NY, 3rd edition.

Rayward-Smith, V. J. (1983). A First Course in Formal Language Theory. Blackwell Scientific

Publications, Oxford, England.

Reisig, W. (1985). Petri nets: An Introduction. Springer-Verlag.

Rich, C. and Waters, R. C. (1990). The Programmer’s Apprentice. ACM Press frontier series.

Addison-Wesley Publishing Company.

Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14:465–471.

Robinson, P. J. (1992a). HOOD: Hierarchical Object-Oriented Design. Prentice-Hall object-

oriented series. Prentice-Hall, Hemel Hempstead, England.

Robinson, P. J., editor (1992b). Object-oriented Design. UNICOM Applied Information Technol-

ogy. Chapman & Hall, London, England.

Room, A. (1990). NTC’s Classical Dictionary: The Origins of the Names of Characters in Clas-

sical Mythology. National Textbook Company, Lincolnwood, IL.

Rosen, J.-P. (1997). HOOD: An Industrial Approach for Software Design. HOOD Technical

Group, Spacebel, Belgium.

Ross, K. H. and Moore, R. R. (1995). XY-pic Reference Manual. DIKU, University of Copenhagen,

Denmark. Version 3.1.

Rotenstreich, S. (1994). Toward measuring potential coupling. Software Engineering Journal,

9(2):83–90.

Schreiner, A. T. and Friedman, Jr, H. G. (1985). Introduction to Compiler Construction with

UNIX. Prentice-Hall, Englewood Cliffs, NJ.

Shannon, C. E. (1948). The mathematical theory of communications. Bell System Technical

Journal, 27:379–423,623–656.

Shepperd, M. J., editor (1993). Software Engineering Metrics, Volume 1: Measures and Valida-

tions. McGraw-Hill international series in software engineering. McGraw-Hill Book Company,

Maidenhead, England.

127

Shepperd, M. J. and Ince, D. C. (1993). Derivation and Validation of Software Metrics. The

International Series of Monographs on Computer Science. Clarendon Press, Oxford, England.

Simon, H. A. (1973). The structure of ill structured problems. Artifical Intelligence, 4:181–200.

Simon, H. A. (1976). Administrative Behaviour. The Free Press, New York, NY, 3rd edition.

Simon, H. A. (1981). The Sciences of the Artifical. The MIT Press, Cambridge, MA, 2nd edition.

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Prentice-Hall, Hemel Hempstead,

England.

Stroustrup, B. (1994). The C++ Programming Language. Addison-Wesley Publishing Company,

Reading, MA, 2nd edition.

Thornton, C. J. and du Boulay, B. (1992). Artificial Intelligence Through Search. Intellect, Oxford,

England.

Turing, A. M. (1937). On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society (Series 2), 42:230–265.

UML (1997). Unified modeling language, version 1. http://www.rational.com/uml.

Visser, W. and Hoc, J.-M. (1990). Expert software design strategies. In Hoc, J.-M., Green, T.

R. G., Samurçay, R., and Gilmore, D. J., editors, Psychology of Programming, Computers and

People series, chapter 3.3, pages 233–249. Academic Press Ltd., London, England.

Ward, P. T. and Mellor, S. J. (1985). Structured Development for Real-Time Systems. Yourdon

Press, New York, NY. 3 volumes.

Watson, D. (1989). High-Level Languages and Their Compilers. Addison-Wesley Publishing

Company.

Weinberg, G. M., Geller, D. P., and Plum, T. W. (1975). If-then-else considered harmful. ACM

Sigplan Notices, 10(8):34–43.

Weyuker, E. J. (1988). Evaluating software complexity measures. IEEE Transactions on Software

Engineering, 14(9):1357–1365.

Wirth, N. (1971). Program development by stepwise refinement. Communications of the ACM,

14(4):221–227.

Wirth, N. (1974). On the construction of well structured programs. Computing Surveys, 6(4):247–

259.

Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540.

Wulf, W. A., Shaw, M., Hilfinger, P. N., and Flon, L. (1981). Fundamental Structures of Computer

Science. Addison-Wesley Publishing Company, Reading, MA.

Yourdon, E. N. (1986). Structured Walkthroughs. Prentice-Hall, 3rd edition.

Yourdon, E. N. (1989). Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, NJ.

Yourdon, E. N. and Constantine, L. L. (1979). Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Design. Prentice-Hall, Englewood Cliffs, NJ.

Appendix A

Augmented HOOD

This appendix presents the changes to HOOD’s Standard Interchange Format, as documented in

Delatte et al. (1993, appendix D). The syntax is presented using BNF notation as described in

Delatte et al. (1993). Meta-comments are delimited by ‘/*’ and ‘*/’. Numbers in round brackets

refer to the syntax phrases defined in Delatte et al..

A.1 Changes to Existing Syntax

A.1.1 Pseudo Code

pseudo code section ::= /* (29) */

PSEUDO CODE

[code linkage section]

[free text]

j PSEUDO CODE

NONE

A.2 Pseudo Code Enhancements

code linkage section ::=

OPERATION REQUIREMENTS

[requires type section]

[reads from section]

[writes to section]

END OPERATION REQUIREMENTS

j OPERATION REQUIREMENTS

NONE

requires type section ::=

REQUIRES TYPE

type reference semi colon

ftype reference semi colong

j REQUIRES TYPE

NONE

reads from section ::=

READS FROM

A.3. Semantics of Augmented HOOD 129

variable reference semi colon

fvariable reference semi colong

j READS FROM

NONE

writes to section ::=

WRITES TO

variable reference semi colon

fvariable reference semi colong

j WRITES TO

NONE

A.3 Semantics of Augmented HOOD

The previous section detailed the new syntax for Augmented HOOD. In this section, we shall

explain the meanings of these new syntactic phrases.

The code linkage section provides the opportunity to list additional information about the

design of an operation. The requires type phrase contains a list of the types used and thus required

in the current operation. It is not intended that the types listed in the operation’s signature should

be repeated, but of course it does no harm. Nor is it necessary to list the types associated with

other operations listed in the used operations phrase. Its intended use is to make explicit the use

of types which cannot be inferred from other parts of the ODS. Such usage will probably only be

needed in ‘large’ operations.

The two phrases reads from and writes to both provide the facility to list which data items

the current operation reads from and writes to respectively. It is assumed that an entry in the

writes to phrase implies a corresponding entry in the reads from phrase. This change will only

impact on operations which use data in the encapsulating object.

Additionally, one minor semantic extension is made to the used operations phrase. Con-

stants can and should be listed here, just as operations are in standard HOOD. This provides more

information on the facilities required by an operation.

Appendix B

TriviCalc - An Example

B.1 TriviCalc Reference Manual

Note B.1. The TriviCalc Reference Manual is taken verbatim from Aceto (1992). Aceto et al.

derived it, with only minor changes, from Listov and Guttag (1986).

TriviCalc is a program that can be used as a scratchpad for problems involving arithmetic. The

user of the program enters numbers or text into the storage area of the computer’s memory. The

data are then displayed on the terminal’s screen.1 The user can combine values that are already

displayed on the screen to obtain new values, which are stored in the computer and displayed

elsewhere on the screen. When this is done, the program remembers the relationships between the

numbers, so that the calculation can be repeated on different values.

As an example, imagine two numbers displayed at places on the screen labelled A1 and B1.

The user types a command that causes TriviCalc to add the value stored at A1 to that stored at B1

and store the result at C1. If the user later changes the value at A1, the value at C1 will also change

so that it remains the sum of the values at A1 and B1.

User Interface

During the operation of TriviCalc, the display is divided into three parts. Figure B.1 contains a

diagram of the display when the program is first begun.2

The first line of the display, known as the status line, is used to display descriptions of the ex-

ecution state of the program. The line is divided in two: the left portion contains error messages,3

while the right portion displays information about the contents of the current slot.4

The second line of the display is used as a working area. When the user types textual or

numerical input, it is displayed here, pending action by some user-specified command. The text

displayed in this area may be edited using a simple editor, described in detail in a later section.

The remainder of the screen is occupied by what is known as the storage area. It is used to

display textual representations of all the values stored in TriviCalc’s internal storage.

The storage area is divided into fields or slots, which are eight characters wide and one line

high. Each slot is named by a number describing its row and a letter describing its column, starting

1This is (part of) a data requirement. Unfortunately, nowhere is it made clear what capabilities the terminal is to

have. From the specified storage area indices and the given size of a slot, we can deduce that a 24�80 screen is being

assumed. That should be separated out and specified clearly.
2Here again we are left to deduce a lot of information about the initial state of TriviCalc , e.g., all slots are initially

blank.
3This is an example of incompleteness. What exactly are the error messages? How are they to be displayed?
4Here is an example of incompleteness: in what proportion is the line divided, and what does “information” mean?

B.1. TriviCalc Reference Manual 131

Status Line

Working Area (with cursor at left)

1

2

3

...

A

Current

Slot

[]

21

B C D E F G H

Blank

Storage Area

Figure B.1: Diagram of initial display

at the upper left-hand corner of the storage area. Thus the slot in this corner is named A1, and the

slot diagonally opposite it, in the lower right-hand corner of the storage area, is named H21.

Surrounding the storage area to the left and top is a border containing the name of each row and

column.

There is always one slot in the storage area that is considered to be the current slot. This slot is

displayed specially, perhaps in inverse video, so as to be easily recognisable by the user. The initial

current slot is A1. To make it easier to distinguish the different areas, the current slot contents,5 the

working area and the header lines for the storage area should also be displayed specially.6 Reverse

video is not shown in Figure B.1.

Description of Operation

TriviCalc’s storage consists of a two-dimensional array whose elements are referred to by a letter

in the range A to H describing one dimension and a number in the range 1 to 21 describing the

other.7 A textual approximation8 to the contents of each storage element is displayed continuously

in the storage area of the terminal display.

5Here is an ambiguity: the current slot’s contents appear at two locations on the screen, once in the status area and

once in the storage area. Are both to be displayed specially?
6How? What about the error messages? We might expect that they are also to be displayed specially, at least if they

are to catch the user’s eye.
7So, there are eight slots per line. Eight slots times eight characters takes sixty-four characters per line, so there is

probably intended to be space between the slots to keep them apart. Should it be at the front or at the back? This is an

example of incompleteness, since there are certainly many unsatisfactory implementations of what was asked for.
8It is never made clear what is meant by “textual approximation”.

132 Appendix B. TriviCalc - An Example

Elements of the storage area may be of three kinds: blank, value or comment.

� A blank line has no value.

� A comment is a string of up to eight characters.9

� When a comment occupies an element of storage, it has no effect on any other element of

storage.

A value is a floating point number.10 Values in storage may be related to each other by multipli-

cation, division, addition and subtraction. These relations are set by the user and may be changed

at any time. Some values in storage will be entered by the user as constants or parameters; others

will be derived as a result of one of the relations mentioned above. A derived value is said to

depend on the other values.

There are some general rules that apply to changing the contents of the storage area of Trivi-

Calc. TriviCalc maintains the consistency of the storage area. Given the set of commands dis-

cussed above, it is possible to set up a configuration of values in storage that has no consistent

interpretation. The TriviCalc command interpreter will not allow such a situation to occur. In-

stead, when a command would cause the storage area to become inconsistent, the command is not

carried out and an error message is displayed.11

The rules that the TriviCalc command interpreter follows to ensure the consistency of the

storage area are:

1. Only elements of storage whose contents are values may be depended on by other elements.

2. When an element’s contents are depended upon by other elements, that element’s type may

not be changed.12

3. When the contents of an element depend on those of other elements, changing the dependent

element’s contents causes the dependency to be broken.13

4. A given element may not depend, even indirectly, on its own value.

The TriviCalc Command Processor

Except for the movement commands described below, all commands and their arguments are en-

tered through the working-area editor. When a command is executed, the entire working-area is

submitted to the TriviCalc command processor, which either performs the command at once or

rejects the command as an error. The TriviCalc command processor never modifies the contents

of the working area of the display.

A full description of the operation of each command supported by the TriviCalc command

processor follows. The notation ‘CONTROL character’ is used to denote holding down the CON-

TROL key and pressing the key labelled character.

SAVE;FILE:name; The current state of the storage area is saved in a file named name.tc, where

name is the file argument.14 The state is stored as an ASCII string containing a sequence of

TriviCalc commands separated by line-feed characters. These commands should have the

9Presumably not all characters are allowed, e.g., control characters.
10The customer may have in mind some requirements on the range and precision of manipulation of floating point

numbers. If there are none, then this should be stated.
11The exact text of the error message should be given in each case, and agreed with the customer.
12Another ambiguity: what is a type?
13Example of specification which is difficult to read!
14The allowable forms of name are going to be executive dependent. This should be stated as a data requirement

since it details a feature of the environment in which TriviCalc is to run.

B.1. TriviCalc Reference Manual 133

property that if they were executed in sequence, beginning with a blank storage area, they

would generate the storage area in effect at the time the save was done.15

LOAD;FILE:name; The current state of the storage area is discarded and then reloaded based on

the contents of the file named name.tc. The file is assumed to be in the format produced by

the SAVE command.

STORE-COMMENT;WITH:string;AT:slot-address; The comment string is stored in the element of

storage labelled by slot-address.

STORE-VALUE;WITH:number;AT:slot-address; The value number16 is stored in the element la-

belled by slot-address. After this command has been executed, this element will not depend

on any other elements.

BLANK;SLOT:slot-address; The element labelled by slot-address becomes blank.

QUIT; The execution of TriviCalc is terminated and control is returned to the executive.

Movement Commands

The following movement commands affect the position of the current slot of the storage area:17

CONTROL P The current slot is changed to be the slot vertically above the current slot, if there

is one. If the row of the current slot is 1, the command has no effect.

CONTROL N The current slot is changed to be the slot vertically below the current slot, if there

is one. If the row of the current slot is 21, the command has no effect.

CONTROL B The current slot is changed to be the slot to the left of the current slot, if there is

one. If the column of the current slot is A, the command has no effect.

CONTROL F The current slot is changed to be the slot to the right of the current slot, if there is

one. If the column of the current slot is H , the command has no effect.

Binary Operator Commands

Binary operators commands take three arguments, each of which is a label of an element of the

storage area. The command relates the elements of storage labelled by the first two arguments to

a result stored in the element of storage labelled by the third argument. If slot3 labels an element

of storage that is already the result of a relation, the old relation is discarded in favour of the new

one.18 All these commands are of the form

op;VALUE1:slot1;VALUE2:slot2;GIVING: slot3;

Op may have the following values:19

ADD or + The element of storage labelled slot3 is related to the other two elements as

(slot1+slot2).

15Another incompleteness: it is not clear whether the cursor position is to be restored also. This relates to an earlier

ambiguity (not noted): do we save movement commands?
16Nowhere is it made clear what a number is to look like.
17The author of this document has not read Section 3.7 of Mynatt (1990), and the following sentence in particular:

“The use of obscure combinations of control, option, or shift keys with other key presses to move the cursor should be

avoided.”!
18This is the third statement of this consistency requirement! However, they fail to (re-)state the first requirement,

that only slots containing values may be depended upon. What is to happen if (say) slot1 or slot2 are blank?
19Here is another ambiguity: who has the choice whether to use ADD or +? Can we, as implementors, make the

choice to allow only one, or must both be available to the user?

134 Appendix B. TriviCalc - An Example

SUBTRACT or � The element of storage labelled slot3 is related to the other two elements as

(slot1�slot2).

MULTIPLY or ? The element of storage labelled slot3 is related to the other two elements as

(slot1?slot2).

DIVIDE or / The element of storage labelled slot3 is related to the other two elements as

(slot1/slot2).20

The Working-Area Editor

The working-area editor is a simple modeless editor with special functions to simplify the input

of commands to the TriviCalc command processor. The editor maintains a cursor in the working

area. Every keystroke is considered to be a command to the editor. All commands are atomic; they

are either processed to completion immediately or halt in error, after doing nothing except possibly

displaying an error message. Some keystrokes denote textual values (the characters, numerals and

punctuation keys). The command that is run by typing any of these keystrokes merely inserts the

key’s textual value at the cursor.21 These are known as textual input commands.

Other keystrokes do not denote textual values. These are special keys (such the carriage-return

or delete), or are typed by holding down the CONTROL key and pressing some other key. These

non textual keystrokes are interpreted by the editor as commands that affect the text in the working

area. A brief description of the nontextual commands follows.

CONTROL L Move the cursor to the left one position.

CONTROL R Move the cursor to the right one position.

CONTROL D Delete the character at the cursor, if there is one.

DELETE Delete the character to the left of the cursor, if there is one.

CONTROL A Operator Adjust. If the working area is of the form

slot1 op slot2

where op is one of the characters ?, /, � or + and slot1, slot2 are strings, the contents of the

working area are replaced with

op;VALUE1:slot1;VALUE2:slot2;GIVING:%;

Otherwise, if the contents of the working area represent a valid numerical value, the working

area is interpreted as number and its contents replaced by

STORE-VALUE;WITH:number;AT:%;

Otherwise, the working area is interpreted as string and its contents are replaced by

STORE-COMMENT;WITH:string;AT:%;

Finally, the effect of a CONTROL K command with the cursor at the beginning of the

working area, followed by a CONTROL E command is simulated. The effect of this is to

replace the % character with the address of the current slot.

20What happens if the value of slot2 is zero?
21Where precisely? Another example of ambiguity/incompleteness.

B.2. Original TriviCalc design 135

CONTROL K Search from the position to the right for a %, wrapping around to the beginning

of the working area if the end of the working area is reached. If a % is found, delete it and

leave the cursor at its position. If none is found, do nothing.22

CONTROL E The address of the current slot in the storage area is inserted at the cursor.

RETURN Pass the contents of the working area to the command interpreter for immediate execu-

tion. If the command interpreter does not flag an error, clear the contents of the working

area.

LINE-FEED Same as RETURN, but leave the contents of the working area unaffected in all cases.

CONTROL V – Insert a textual representation of the contents of the current slot into the working

area at the cursor.

CONTROL U – Delete the entire contents of the working area.

CONTROL W – The working area must be of the form digit string, where digit is between 1

and 9. The effect of the command is to cause the string to be saved at internal location digit.

When TriviCalc is first started up, the contents of the first four internal locations23 are the

strings:

1: SAVE;FILE:%;

2: LOAD;FILE:%;

3: QUIT;

3: BLANK;SLOT:%;

Internal locations 5 to 9 contain the empty string initially.

CONTROL X The working area must be of the form digit string, where digit is between 1 and 9

and string may be empty. The effect of the command is to cause the contents of the working

area to be replaced by the string stored at internal location digit. Then the effect of a CON-

TROL K followed by a CONTROL E is simulated, causing the % character, if it is present,

to be replaced with the address of the current slot.24

Every time a nontextual editing command causes the working area’s contents to change, the

contents are first saved in internal location 0. Entering CONTROL X when the working area

is of the form 0string causes the current contents of the working area and internal location 0

to be swapped.

B.2 Original TriviCalc design

Below is the original Augmented HOOD design for the TriviCalc problem.

OBJECT pop_11 IS ENVIRONMENT PASSIVE

PROVIDED_INTERFACE

TYPES

list ;

channel ;

property_table ;

OPERATIONS

open (file_name : IN string ; mode : IN string) RETURN channel ;

22What happens to the cursor in this case? Where does it end?
23What are these?
24Incompleteness: what happens if the % character is not present?

136 Appendix B. TriviCalc - An Example

close_file (channel : IN channel) ;

matches (pattern : IN list ; datum : IN list) RETURN boolean ;

parse_string (text : IN string) RETURN list ;

isstring (text : IN string) RETURN boolean ;

read_line (channel : IN channel) RETURN string ;

get_input_char (channel : IN channel) RETURN character ;

write_line (channel : IN channel ; text : IN string) ;

sysexit ;

END_OBJECT pop_11

OBJECT trivicalc IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

main_program ;

INTERNALS

OBJECTS

cli ;

data_types ;

dm ;

em ;

sa ;

wae ;

OPERATIONS

main_program

IMPLEMENTED_BY cli.main_program ;

END_OBJECT trivicalc

OBJECT wae IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

get_cs RETURN slot_id ;

init_cl ;

init_cs ;

is_macro_name (id : IN string) RETURN boolean ;

recall_all_macros RETURN list_strings ;

set_cs (slot : IN slot_id) ;

store_macro (id : IN integer ; text : IN string) ;

REQUIRED_INTERFACE

OBJECT cli

OPERATIONS

command_despatcher (command : IN string) RETURN validity

OBJECT dm

OPERATIONS

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

position_cl_cursor (cursor : IN cursor_position) ;

ring_bell ;

B.2. Original TriviCalc design 137

set_cs (slot : IN slot_id) ;

OBJECT em

OPERATIONS

escape_seen ;

OBJECT sa

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

INTERNALS

OBJECTS

cl ; ;;; command line

cp ; ;;; command processor

cs ; ;;; current slot

il ; ;;; internal locations

OPERATIONS

editor

IMPLEMENTED_BY cp.editor ;

init_cl

IMPLEMENTED_BY cl.init_cl ;

init_cs

IMPLEMENTED_BY cs.init_cs ;

recall_all_macros RETURN list_strings

IMPLEMENTED_BY il.recall_all_macros RETURN list_strings ;

set_cs (slot : IN slot_id)

IMPLEMENTED_BY cs.set_cs (slot : IN slot_id) ;

get_cs RETURN slot_id

IMPLEMENTED_BY cs.get_cs RETURN slot_id ;

is_macro_name (id : IN string) RETURN boolean

IMPLEMENTED_BY il.is_macro_name

(id : IN string) RETURN boolean ;

store_macro (id : IN integer ; text : IN string)

IMPLEMENTED_BY il.store_macro (id : IN integer ;

text : IN string) ;

END_OBJECT wae

OBJECT cs IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

get_cs RETURN slot_id ;

get_cs_content RETURN content ;

init_cs ;

move_cs_down ;

move_cs_left ;

move_cs_right ;

move_cs_up ;

set_cs (slot : IN slot_id) ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

set_cs (slot : IN slot_id) ;

OBJECT sa

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

INTERNALS

138 Appendix B. TriviCalc - An Example

OPERATIONS

get_cs RETURN slot_id ;

get_cs_content RETURN content ;

init_cs ;

move_cs_down ;

move_cs_left ;

move_cs_right ;

move_cs_up ;

set_cs (slot : IN slot_id) ;

DATA

current_slot : slot_id ;

OPERATION_CONTROL_STRUCTURES

OPERATION move_cs_up

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

min_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_up

OPERATION move_cs_down

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

max_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_down

OPERATION move_cs_left

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

min_column ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_left

OPERATION move_cs_right

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

max_column ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_right

B.2. Original TriviCalc design 139

OPERATION get_cs RETURN slot_id

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_cs

OPERATION set_cs (slot : IN slot_id)

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION set_cs

OPERATION get_cs_content RETURN content

USED_OPERATIONS

sa.get_contents (slot : IN slot_id) RETURN content ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_cs_content

OPERATION init_cs

USED_OPERATIONS

dm.set_cs (slot : IN slot_id) ;

min_row ;

min_column ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_cs

END_OBJECT cs

OBJECT cl IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

init_cl ;

cursor_left ;

cursor_right ;

delete_line ;

delete_char ;

delete_char_left ;

insert_string (text : IN string) ;

locate_sol ;

get_cl RETURN string ;

replace_percent RETURN validity ;

140 Appendix B. TriviCalc - An Example

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

position_cl_cursor (cursor : IN cursor_position) ;

ring_bell ;

INTERNALS

CONSTANTS

max_cursor : integer ;

max_length : integer ;

min_cursor : integer ;

min_length : integer ;

OPERATIONS

cursor_left ;

cursor_right ;

delete_char ;

delete_char_left ;

delete_line ;

get_cl RETURN string ;

init_cl ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

locate_sol ;

replace_percent RETURN validity ;

DATA

cursor : integer ;

eos : integer ;

line : string ;

OPERATION_CONTROL_STRUCTURES

OPERATION cursor_left

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

END_OPERATION_REQUIREMENTS

END_OPERATION cursor_left

OPERATION cursor_right

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

eos ;

WRITES_TO

cursor ;

B.2. Original TriviCalc design 141

END_OPERATION_REQUIREMENTS

END_OPERATION cursor_right

OPERATION insert_char (char : IN character)

USED_OPERATIONS

dm.insert_char (char : IN character) ;

dm.ring_bell ;

max_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION insert_char

OPERATION insert_string (text : IN string)

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

dm.display_cl_line (text : IN string) ;

dm.ring_bell ;

max_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION insert_string

OPERATION delete_char

USED_OPERATIONS

dm.delete_char ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

cursor ;

WRITES_TO

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_char

OPERATION delete_char_left

USED_OPERATIONS

dm.delete_char_at_left ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_char_left

142 Appendix B. TriviCalc - An Example

OPERATION delete_line

USED_OPERATIONS

dm.delete_line ;

min_cursor ;

min_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_line

OPERATION replace_percent RETURN validity

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

delete_char ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

string ;

boolean ;

READS_FROM

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION replace_percent

OPERATION locate_sol

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

END_OPERATION_REQUIREMENTS

END_OPERATION locate_sol

OPERATION get_cl RETURN string

USED_OPERATIONS

min_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_cl

OPERATION init_cl

USED_OPERATIONS

delete_line ;

END_OPERATION init_cl

END_OBJECT cl

B.2. Original TriviCalc design 143

OBJECT il IS PASSIVE

PROVIDED_INTERFACE

CONSTANTS

old_cl : integer ;

OPERATIONS

is_macro_name (id : IN string) RETURN boolean ;

store_macro (id : IN integer ; text : IN string) ;

recall_macro (id : IN integer) RETURN string ;

INTERNALS

CONSTANTS

max_macro : integer ;

min_macro : integer ;

old_cl : integer ;

OPERATIONS

store_macro (id : IN integer ; text : IN string) ;

recall_macro (id : IN integer) RETURN string ;

recall_all_macros RETURN list_strings ;

is_macro_name (id : IN string) RETURN boolean ;

init_il ;

DATA

macros : string ;

OPERATION_CONTROL_STRUCTURES

OPERATION store_macro (id : IN integer ; text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION store_macro

OPERATION recall_macro (id : IN integer) RETURN string

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION recall_macro

OPERATION recall_all_macros RETURN list_strings

USED_OPERATIONS

max_macro ;

min_macro ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION recall_all_macros

OPERATION is_macro_name (id : IN string) RETURN boolean

USED_OPERATIONS

max_macro ;

min_macro ;

END_OPERATION is_macro_name

144 Appendix B. TriviCalc - An Example

OPERATION init_il

USED_OPERATIONS

max_macro ;

min_macro ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_il

END_OBJECT il

OBJECT cp IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

REQUIRED_INTERFACE

OBJECT cli

OPERATIONS

command_despatcher (command : IN string) RETURN validity

INTERNALS

OBJECTS

editor ; ;;; main editor

ccp ; ;;; Control Character Processing

OPERATIONS

editor

IMPLEMENTED_BY editor.editor ;

END_OBJECT cp

OBJECT editor IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

REQUIRED_INTERFACE

OBJECT ccp

OPERATIONS

process_control_char (char : IN character) ;

is_control_char (char : IN character) RETURN boolean ;

OBJECT dm

OPERATIONS

ring_bell ;

OBJECT em

OPERATIONS

escape_seen ;

OBJECT pop_11

OPERATIONS

get_input_char (channel : IN channel) RETURN character ;

open (file_name : IN string ; mode : IN string) RETURN channel ;

close_file (channel : IN channel) ;

INTERNALS

B.2. Original TriviCalc design 145

OPERATIONS

editor ;

get_char RETURN character ;

is_printable (char : IN character) RETURN boolean ;

is_escape (char : IN character) RETURN boolean ;

init_cp ;

term_cp ;

DATA

channel : channel ;

OPERATION_CONTROL_STRUCTURES

OPERATION editor

USED_OPERATIONS

ccp.is_control_char (char : IN character) RETURN boolean ;

ccp.process_control_char (char : IN character) ;

dm.ring_bell ;

em.escape_seen ;

init_cp ;

get_char RETURN character ;

is_escape (char : IN character) RETURN boolean ;

is_printable (char : IN character) RETURN boolean ;

END_OPERATION editor

OPERATION get_char RETURN character

USED_OPERATIONS

pop_11.get_input_char (channel : IN channel)

RETURN character ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

channel ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_char

OPERATION is_printable (char : IN character) RETURN boolean

END_OPERATION is_printable

OPERATION is_escape (char : IN character) RETURN boolean

END_OPERATION is_escape

OPERATION init_cp

USED_OPERATIONS

pop_11.open (file_name : IN string ;

mode : IN string) RETURN channel ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

channel ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_cp

OPERATION term_cp

USED_OPERATIONS

pop_11.close_file (channel : IN channel) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

146 Appendix B. TriviCalc - An Example

channel ;

END_OPERATION_REQUIREMENTS

END_OPERATION term_cp

END_OBJECT editor

OBJECT ccp IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

process_control_char (char : IN character) ;

is_control_char (char : IN character) RETURN boolean ;

REQUIRED_INTERFACE

OBJECT cl

OPERATIONS

cursor_left ;

cursor_right ;

get_cl RETURN string ;

delete_line ;

delete_char ;

delete_char_left ;

insert_string (text : IN string) ;

locate_sol ;

replace_percent RETURN validity ;

OBJECT cs

OPERATIONS

move_cs_down ;

move_cs_left ;

move_cs_right ;

move_cs_up ;

get_cs RETURN slot_id ;

get_cs_content RETURN content ;

OBJECT il

CONSTANTS

old_cl ;

OPERATIONS

store_macro (id : IN integer ; text : IN string) ;

recall_macro (id : IN integer) RETURN string ;

is_macro_name (id : IN string) RETURN boolean ;

OBJECT cli

OPERATIONS

command_despatcher (command : IN string) RETURN validity

OBJECT em

OPERATIONS

report_error (text : IN string) ;

OBJECT sa

OPERATIONS

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

OBJECT pop_11

TYPES

property_table ;

OPERATIONS

matches (pattern : IN list ; datum : IN list) RETURN boolean ;

INTERNALS

B.2. Original TriviCalc design 147

CONSTANTS

despatch_table : pop_11.property_table ;

OPERATIONS

ccp_adjust ;

ccp_cli ;

ccp_cli_keep ;

ccp_delete_char ;

ccp_delete_char_left ;

ccp_delete_line ;

ccp_get_cs ;

ccp_get_cs_content ;

ccp_recall_macro ;

ccp_replace_percent ;

ccp_store_macro ;

is_control_char (char : IN character) RETURN boolean ;

obey_cl RETURN validity ;

process_control_char (char : IN character) ;

replace_cl (text : IN string) ;

save_cl ;

OPERATION_CONTROL_STRUCTURES

OPERATION is_control_char (char : IN character) RETURN boolean

USED_OPERATIONS

despatch_table ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

pop_11.property_table ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_control_char

OPERATION process_control_char (char : IN character)

USED_OPERATIONS

despatch_table ;

ccp_adjust ;

ccp_cli ;

ccp_cli_keep ;

ccp_delete_char ;

ccp_delete_char_left ;

ccp_delete_line ;

ccp_get_cs ;

ccp_get_cs_content ;

ccp_recall_macro ;

ccp_replace_percent ;

ccp_store_macro ;

cl.cursor_left ;

cl.cursor_right ;

cs.move_cs_down ;

cs.move_cs_left ;

cs.move_cs_right ;

cs.move_cs_up ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

pop_11.property_table ;

END_OPERATION_REQUIREMENTS

END_OPERATION process_control_char

148 Appendix B. TriviCalc - An Example

OPERATION save_cl

USED_OPERATIONS

il.store_macro (id : IN integer ; text : IN string) ;

il.old_cl ;

cl.get_cl RETURN string ;

END_OPERATION save_cl

OPERATION obey_cl RETURN validity

USED_OPERATIONS

cl.get_cl RETURN string ;

cli.command_despatcher (command : IN string) RETURN validity

END_OPERATION obey_cl

OPERATION replace_cl (text : IN string)

USED_OPERATIONS

cl.delete_line ;

cl.insert_string (text : IN string) ;

cl.locate_sol ;

END_OPERATION replace_cl

OPERATION ccp_delete_char

USED_OPERATIONS

cl.delete_char ;

save_cl ;

END_OPERATION ccp_delete_char

OPERATION ccp_delete_char_left

USED_OPERATIONS

cl.delete_char_left ;

save_cl ;

END_OPERATION ccp_delete_char_left

OPERATION ccp_delete_line

USED_OPERATIONS

cl.delete_line ;

save_cl ;

END_OPERATION ccp_delete_line

OPERATION ccp_get_cs

USED_OPERATIONS

cl.insert_string (text : IN STRING) ;

cs.get_cs RETURN slot_id ;

save_cl ;

END_OPERATION ccp_get_cs

OPERATION ccp_get_cs_content

USED_OPERATIONS

cl.insert_string (text : IN STRING) ;

cs.get_cs_content RETURN content ;

save_cl ;

END_OPERATION ccp_get_cs_content

OPERATION ccp_adjust

USED_OPERATIONS

cl.get_cl RETURN string ;

cl.insert_string (text : IN string) ;

cl.replace_percent RETURN validity ;

B.2. Original TriviCalc design 149

cs.get_cs RETURN slot_id ;

em.report_error (text : IN string) ;

sa.is_comment (text : IN string) RETURN boolean ;

sa.is_float (text : IN string) RETURN boolean ;

sa.is_operation (text : IN string) RETURN boolean ;

sa.is_slot (text : IN string) RETURN boolean ;

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

replace_cl (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

float ;

operation_math ;

s_string ;

END_OPERATION_REQUIREMENTS

END_OPERATION ccp_adjust

OPERATION ccp_replace_percent

USED_OPERATIONS

cl.replace_percent RETURN validity ;

save_cl ;

END_OPERATION ccp_replace_percent

OPERATION ccp_cli

USED_OPERATIONS

cl.delete_line ;

save_cl ;

obey_cl RETURN validity ;

END_OPERATION ccp_cli

OPERATION ccp_cli_keep

USED_OPERATIONS

save_cl ;

obey_cl RETURN validity ;

END_OPERATION ccp_cli_keep

OPERATION ccp_store_macro

USED_OPERATIONS

cl.get_cl RETURN string ;

em.report_error (text : IN string) ;

il.is_macro_name (id : IN string) RETURN boolean ;

il.old_cl ;

il.store_macro (id : IN integer ; text : IN string) ;

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

END_OPERATION ccp_store_macro

OPERATION ccp_recall_macro

USED_OPERATIONS

cl.get_cl RETURN string ;

em.report_error (text : IN string) ;

il.is_macro_name (id : IN string) RETURN boolean ;

il.old_cl ;

il.recall_macro (id : IN integer) RETURN string ;

il.store_macro (id : IN integer ; text : IN string) ;

replace_cl (text : IN string) ;

END_OPERATION ccp_recall_macro

150 Appendix B. TriviCalc - An Example

END_OBJECT ccp

OBJECT cli IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

command_despatcher (command : IN string) RETURN validity

main_program ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

init_dm ;

OBJECT em

OPERATIONS

init_em ;

report_error (text : IN string) ;

OBJECT sa

OPERATIONS

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

OBJECT wae

OPERATIONS

editor ;

get_cs RETURN slot_id ;

init_cl ;

init_cs ;

is_macro_name (id : IN string) RETURN boolean ;

recall_all_macros RETURN list_strings ;

set_cs (slot : IN slot_id) ;

store_macro (id : IN integer ; text : IN string) ;

OBJECT pop_11

OPERATIONS

close_file (channel : IN channel) ;

matches (pattern : IN list ; datum : IN list) RETURN boolean ;

open (file_name : IN string ; mode : IN string) RETURN channel ;

parse_string (text : IN string) RETURN list ;

read_line (channel : IN channel) RETURN string ;

sysexit ;

write_line (channel : IN channel ; text : IN string) ;

INTERNALS

OPERATIONS

command_despatcher (command : IN string) RETURN validity

full_file_name (name : IN string) RETURN string

is_file_name (name : IN string) RETURN boolean

load_file (command : IN list_strings) RETURN validity

main_program ;

quit (command : IN list_strings) RETURN validity

reinitialise_system ;

save_file (command : IN list_strings) RETURN validity

set_blank (command : IN list_strings) RETURN validity

B.2. Original TriviCalc design 151

set_current_slot (command : IN list_strings) RETURN validity

store_comment (command : IN list_strings) RETURN validity

store_expression (command : IN list_strings) RETURN validity

store_macro (command : IN list_strings) RETURN validity

store_value (command : IN list_strings) RETURN validity

DATA

load_in_progress : boolean ;

OPERATION_CONTROL_STRUCTURES

OPERATION command_despatcher (command : IN string) RETURN validity

USED_OPERATIONS

pop_11.parse_string (text : IN string) RETURN list ;

store_comment(command : IN list_strings) RETURN validity

store_value (command : IN list_strings) RETURN validity

set_blank (command : IN list_strings) RETURN validity

store_expression (command : IN list_strings) RETURN validity

quit (command : IN list_strings) RETURN validity

save_file (command : IN list_strings) RETURN validity

load_file (command : IN list_strings) RETURN validity

set_current_slot (command : IN list_strings) RETURN validity

store_macro (command : IN list_strings) RETURN validity

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

load_in_progress ;

END_OPERATION_REQUIREMENTS

END_OPERATION command_despatcher

OPERATION store_comment

(command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

sa.set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

sa.is_comment (text : IN string) RETURN boolean ;

sa.is_slot (text : IN string) RETURN boolean ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

s_string ;

END_OPERATION_REQUIREMENTS

END_OPERATION store_comment

OPERATION store_value (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

sa.set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

sa.is_float (text : IN string) RETURN boolean ;

sa.is_slot (text : IN string) RETURN boolean ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

float ;

list ;

152 Appendix B. TriviCalc - An Example

END_OPERATION_REQUIREMENTS

END_OPERATION store_value

OPERATION set_blank (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

sa.set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

sa.is_slot (text : IN string) RETURN boolean ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

s_string ;

END_OPERATION_REQUIREMENTS

END_OPERATION set_blank

OPERATION store_expression

(command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

sa.set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

sa.is_slot (text : IN string) RETURN boolean ;

sa.is_operation (text : IN string) RETURN boolean ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

operation_full ;

operation_math ;

data_types.expression ;

END_OPERATION_REQUIREMENTS

END_OPERATION store_expression

OPERATION quit (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

pop_11.sysexit ;

END_OPERATION quit

OPERATION save_file (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

pop_11.open (file_name : IN string ;

mode : IN string) RETURN channel ;

pop_11.write_line (channel : IN channel ; text : IN string) ;

pop_11.close_file (channel : IN channel) ;

is_file_name (name : IN string) RETURN boolean ;

full_file_name (name : IN string) RETURN string ;

em.report_error (text : IN string) ;

sa.save_sa RETURN list_strings ;

wae.get_cs RETURN slot_id ;

wae.recall_all_macros RETURN list_strings ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

B.2. Original TriviCalc design 153

REQUIRES_TYPE

integer ;

END_OPERATION_REQUIREMENTS

END_OPERATION save_file

OPERATION load_file (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

pop_11.open (file_name : IN string ;

mode : IN string) RETURN channel ;

pop_11.read_line (channel : IN channel) RETURN string ;

pop_11.close_file (channel : IN channel) ;

is_file_name (name : IN string) RETURN boolean ;

full_file_name (name : IN string) RETURN string ;

reinitialise_system ;

command_despatcher (command : IN string) RETURN validity ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

load_in_progress ;

END_OPERATION_REQUIREMENTS

END_OPERATION load_file

OPERATION set_current_slot

(command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

sa.is_slot (text : IN string) RETURN boolean ;

wae.set_cs (slot : IN slot_id) ;

END_OPERATION set_current_slot

OPERATION store_macro (command : IN list_strings) RETURN validity

USED_OPERATIONS

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

wae.is_macro_name (id : IN string) RETURN boolean ;

wae.store_macro (id : IN integer ; text : IN string) ;

END_OPERATION store_macro

OPERATION is_file_name (name : IN string) RETURN boolean

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

integer ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_file_name

OPERATION full_file_name (name : IN string) RETURN string

END_OPERATION full_file_name

OPERATION reinitialise_system

USED_OPERATIONS

dm.init_dm ;

wae.init_cl ;

wae.init_cs ;

sa.init_sa ;

154 Appendix B. TriviCalc - An Example

END_OPERATION reinitialise_system

OPERATION main_program

USED_OPERATIONS

em.init_em ;

reinitialise_system ;

wae.editor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

load_in_progress ;

END_OPERATION_REQUIREMENTS

END_OPERATION main_program

END_OBJECT cli

OBJECT sa IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ; value : IN content)

RETURN validity ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

display_value (slot : IN slot_id) ;

OBJECT em

OPERATIONS

report_error (text : IN string) ;

INTERNALS

CONSTANTS

blank : slot_type ;

comment : slot_type ;

expression : slot_type ;

float : slot_type ;

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

blank (slot : IN slot_id) ;

address (slot : IN slot_id) RETURN slots_index ;

create_sa ;

create_slot (column : IN column_position ;

B.2. Original TriviCalc design 155

row : IN row_position) RETURN a_slot ;

add_successor (slot : IN slot_id ; to_slot : IN slot_id) ;

remove_successor (slot : IN slot_id ; from_slot : IN slot_id) ;

list_successors (slot : IN slot_id) RETURN list_slot_ids ;

is_successor (slot : IN slot_id ;

of_slot : IN slot_id) RETURN boolean ;

complete_update (slot : IN slot_id ; success : IN boolean) ;

display_value (slot : IN slot_id) ;

depth_first_search (slot : IN slot_id) RETURN slot_id ;

update_order (slot : IN slot_id) RETURN list_slot_ids ;

update_slots (slots : IN list_slot_ids) RETURN validity ;

evaluate (slot : IN slot_id) RETURN full_value ;

is_slot_arithmetic (slot : IN slot_id) RETURN boolean ;

is_slot_float (slot : IN slot_id) RETURN boolean ;

is_slot_blank (slot : IN slot_id) RETURN boolean ;

is_slot_comment (slot : IN slot_id) RETURN boolean ;

is_slot_expression (slot : IN slot_id) RETURN boolean ;

get_value (slot : IN slot_id ;

new_value : IN boolean) RETURN value ;

DATA

slots : slot_array ;

stack : list_slot_ids ;

OPERATION_CONTROL_STRUCTURES

OPERATION set_slot (slot : IN slot_id ;

value : IN content) RETURN validity

USED_OPERATIONS

em.report_error (text : IN string) ;

address (slot : IN slot_id) RETURN slots_index ;

complete_update (slot : IN slot_id ; success : IN boolean) ;

evaluate (slot : IN slot_id) RETURN full_value ;

is_successor (slot : IN slot_id ;

of_slot : IN slot_id) RETURN boolean ;

remove_successor (slot : IN slot_id ;

from_slot : IN slot_id) ;

add_successor (slot : IN slot_id ; to_slot : IN slot_id) ;

update_order (slot : IN slot_id) RETURN list_slot_ids ;

update_slots (slots : IN list_slot_ids) RETURN validity ;

blank ;

comment ;

expression ;

float ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

data_types.expression ;

full_slot_type ;

slot_id ;

slot_type ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION set_slot

OPERATION init_sa

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

156 Appendix B. TriviCalc - An Example

blank (slot : IN slot_id) ;

create_sa ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

row_position ;

column_position ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_sa

OPERATION create_sa

USED_OPERATIONS

create_slot (column : IN column_position ;

row : IN row_position) RETURN a_slot ;

min_letter ;

max_letter ;

min_row ;

max_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

slot_id ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION create_sa

OPERATION create_slot (column : IN column_position ;

row : IN row_position) RETURN a_slot

USED_OPERATIONS

blank ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

boolean ;

list ;

slot_type ;

END_OPERATION_REQUIREMENTS

END_OPERATION create_slot

OPERATION add_successor (slot : IN slot_id ; to_slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

list_slot_ids ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION add_successor

OPERATION remove_successor (slot : IN slot_id ;

from_slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

list_slot_ids ;

B.2. Original TriviCalc design 157

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION remove_successor

OPERATION list_successors (slot : IN slot_id) RETURN list_slot_ids

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION list_successors

OPERATION is_successor (slot : IN slot_id ;

of_slot : IN slot_id) RETURN boolean

USED_OPERATIONS

list_successors (slot : IN slot_id) RETURN list_slot_ids

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_successor

OPERATION complete_update (slot : IN slot_id ;

success : IN boolean)

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

display_value (slot : IN slot_id) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

value ;

boolean ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION complete_update

OPERATION display_value (slot : IN slot_id)

USED_OPERATIONS

dm.display_value (slot : IN slot_id) ;

END_OPERATION display_value

OPERATION depth_first_search (slot : IN slot_id) RETURN slot_id

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

boolean ;

list ;

list_slot_ids ;

READS_FROM

slots ;

158 Appendix B. TriviCalc - An Example

WRITES_TO

stack ;

END_OPERATION_REQUIREMENTS

END_OPERATION depth_first_search

OPERATION update_order (slot : IN slot_id) RETURN list_slot_ids

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

depth_first_search (slot : IN slot_id) RETURN slot_id ;

list_successors (slot : IN slot_id) RETURN list_slot_ids ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

boolean ;

list ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION update_order

OPERATION update_slots (slots : IN list_slot_ids) RETURN validity

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

evaluate (slot : IN slot_id) RETURN full_value ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

list ;

full_value ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION update_slots

OPERATION evaluate (slot : IN slot_id) RETURN full_value

USED_OPERATIONS

em.report_error (text : IN string) ;

min_float ;

max_float ;

false ;

get_contents (slot : IN slot_id) RETURN content ;

is_slot_arithmetic (slot : IN slot_id) RETURN boolean ;

is_slot_float (slot : IN slot_id) RETURN boolean ;

get_value (slot : IN slot_id ;

new_value : IN boolean) RETURN value ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

float ;

list ;

operation_math ;

END_OPERATION_REQUIREMENTS

END_OPERATION evaluate

OPERATION is_slot_blank (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

B.2. Original TriviCalc design 159

address (slot : IN slot_id) RETURN slots_index ;

blank ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_blank

OPERATION is_slot_comment (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

comment ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_comment

OPERATION is_slot_float (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

float ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_float

OPERATION is_slot_expression (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

expression ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_expression

OPERATION is_slot_arithmetic (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

is_slot_expression (slot : IN slot_id) RETURN boolean

is_slot_float (slot : IN slot_id) RETURN boolean

160 Appendix B. TriviCalc - An Example

END_OPERATION is_slot_arithmetic

OPERATION blank (slot : IN slot_id)

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

blank ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

boolean ;

content ;

list ;

list_slot_ids ;

slot_type ;

string ;

value ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION blank

OPERATION address (slot : IN slot_id) RETURN slots_index

USED_OPERATIONS

min_letter ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

integer ;

string ;

END_OPERATION_REQUIREMENTS

END_OPERATION address

OPERATION is_slot (text : IN string) RETURN boolean

USED_OPERATIONS

isstring (text : IN string) RETURN boolean ;

max_column ;

min_column ;

max_row ;

min_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

slots_index ;

slot_id ;

slot_letter ;

slot_number ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot

OPERATION is_operation (text : IN string) RETURN boolean

USED_OPERATIONS

isstring (text : IN string) RETURN boolean ;

"=" (left : IN string ; right : IN string) RETURN boolean ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

operation_text ;

B.2. Original TriviCalc design 161

END_OPERATION_REQUIREMENTS

END_OPERATION is_operation

OPERATION is_float (text : IN string) RETURN boolean

USED_OPERATIONS

isstring (text : IN string) RETURN boolean ;

max_float ;

min_float ;

END_OPERATION is_float

OPERATION is_comment (text : IN string) RETURN boolean

USED_OPERATIONS

isstring (text : IN string) RETURN boolean ;

max_s_string ;

END_OPERATION is_comment

OPERATION get_value (slot : IN slot_id ;

new_value : IN boolean) RETURN value

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

slots_index ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_value

OPERATION get_contents (slot : IN slot_id) RETURN content

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

slots_index ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_contents

OPERATION save_sa RETURN list_strings

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

depth_first_search (slot : IN slot_id) RETURN slot_id ;

get_contents (slot : IN slot_id) RETURN content ;

is_slot_blank (slot : IN slot_id) RETURN boolean ;

set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

max_column ;

min_column ;

max_row ;

min_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

boolean ;

row_position ;

162 Appendix B. TriviCalc - An Example

column_position ;

list ;

list_slot_ids ;

list_strings ;

slots_index ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION save_sa

END_OBJECT sa

OBJECT dm IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

clear_error_display ;

display_error_message (text : IN string) ;

display_value (slot : IN slot_id) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

set_cs (cs : IN slot_id) ;

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

position_cl_cursor (cursor : IN cursor_position) ;

ring_bell ;

init_dm ;

INTERNALS

TYPES

vdu ;

OPERATIONS

clear_error_display ;

clear_inverse_video (slot : IN slot_id) ;

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

display_content (content : IN content) ;

display_error_message (text : IN string) ;

display_value (slot : IN slot_id) ;

init_dm ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

locate_slot (slot : IN slot_id) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

position_cl_cursor (cursor : IN cursor_position) ;

reset_dm ;

ring_bell ;

set_cs (cs : IN slot_id) ;

set_inverse_video (slot : IN slot_id) ;

DATA

vdu : vdu ;

B.2. Original TriviCalc design 163

OPERATION_CONTROL_STRUCTURES

OPERATION clear_error_display

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION ced

OPERATION clear_inverse_video (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION civ

OPERATION delete_char

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dc

OPERATION delete_char_at_left

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dcal

OPERATION delete_line

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dl

OPERATION display_cl_line (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dcll

OPERATION display_content (content : IN content)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dc

164 Appendix B. TriviCalc - An Example

OPERATION display_error_message (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dem

OPERATION display_value (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dv

OPERATION init_dm

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION idm

OPERATION insert_char (char : IN character)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION ic

OPERATION insert_string (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION insert_string

OPERATION locate_slot (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION ls

OPERATION move_cs (old_cs : IN slot_id ; cs : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION mcs

OPERATION position_cl_cursor (cursor : IN cursor_position)

PSEUDO_CODE

B.2. Original TriviCalc design 165

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION pclc

OPERATION reset_dm

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION rdm

OPERATION ring_bell

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION rb

OPERATION set_cs (cs : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION scs

OPERATION set_inverse_video (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION siv

END_OBJECT dm

OBJECT em IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

escape_seen ;

init_em ;

report_error (text : IN string) ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

clear_error_display ;

display_error_message (text : IN string) ;

INTERNALS

OPERATIONS

add_to_queue (text : IN string) ;

display_error_message (text : IN string) ;

escape_seen ;

init_em ;

166 Appendix B. TriviCalc - An Example

remove_from_queue RETURN string ;

report_error (text : IN string) ;

DATA

display_in_use : boolean ;

error_queue : list_strings ;

OPERATION_CONTROL_STRUCTURES

OPERATION report_error (text : IN string)

USED_OPERATIONS

add_to_queue (text : IN string) ;

display_error_message (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

display_in_use ;

END_OPERATION_REQUIREMENTS

END_OPERATION report_error

OPERATION escape_seen

USED_OPERATIONS

remove_from_queue RETURN string ;

display_error_message (text : IN string) ;

dm.clear_error_display ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

display_in_use ;

END_OPERATION_REQUIREMENTS

END_OPERATION escape_seen

OPERATION add_to_queue (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION add_to_queue

OPERATION remove_from_queue RETURN string

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION remove_from_queue

OPERATION display_error_message (text : IN string)

USED_OPERATIONS

dm.display_error_message (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

display_in_use ;

B.2. Original TriviCalc design 167

END_OPERATION_REQUIREMENTS

END_OPERATION display_error_message

OPERATION init_em

USED_OPERATIONS

dm.clear_error_display ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

display_in_use ;

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_em

END_OBJECT em

OBJECT data_types IS PASSIVE

PROVIDED_INTERFACE

TYPES

a_slot ;

row_position ;

column_position ;

content ;

cursor_position ;

expression ;

full_slot_type ; --f type+ extended type of a slot

false | blank | comment | fp_value | expression g--

full_value ; --f value+ extended value of a slot expression

false | <fp_value> | <s_string> g--

list_slot_ids ;

list_strings ;

operation_math ; --f + | - | * | / g--

operation_full ; --f <operation_math> | <operation_text> g--

operation_text ; --f `add' | `subtract' | `multiply' | `divide' g--

s_string ;

slot_array ;

slot_id ;

slot_letter ;

slot_number ;

slot_type ; --f blank | comment | fp_value | expression g--

slots_index ;

validity ;

value ; --f value of slot expression -- <fp_value> | <s_string> g--

CONSTANTS

max_column : integer ;

min_column : integer ;

max_float : float ;

min_float : float ;

max_letter : character ;

min_letter : character ;

max_row : integer ;

min_row : integer ;

max_s_string : integer ;

nil : list ;

168 Appendix B. TriviCalc - An Example

zero_float : float ;

END_OBJECT data_types

B.3. TriviCalc Module Structure 169

B.3 TriviCalc Module Structure

This section presents the modular structure of TriviCalc. The nested lists shown delimited by

‘[%’ and ‘%]’ the contents of each object. The kind of each basic entity is indicated, and the full

signatures of operations and constants are shown.

The leading ‘C’ can be ignored, it is just used by Morpheus and Pop-11.

B.3.1 Original TriviCalc design Module Structure

Below is the original module structure for the TriviCalc problem, as derived from the Morpheus’s

Data Analyser.

[%

[%

C('<operation>$STANDARD.<<=>>:$STANDARD.STRING*$STANDARD.STRING

->$STANDARD.BOOLEAN'),

C('<type>$STANDARD.STRING'),

C('<type>$STANDARD.CHARACTER'),

C('<type>$STANDARD.FLOAT'),

C('<type>$STANDARD.INTEGER'),

C('<constant>$STANDARD.FALSE:->$STANDARD.BOOLEAN'),

C('<type>$STANDARD.BOOLEAN'),

%],

[%

C('<operation>POP 11.SYSEXIT'),

C('<operation>POP 11.WRITE LINE:POP 11.CHANNEL*$STANDARD.STRING'),

C('<operation>POP 11.GET INPUT CHAR:POP 11.CHANNEL->$STANDARD.CHARACTER'),

C('<operation>POP 11.READ LINE:POP 11.CHANNEL->$STANDARD.STRING'),

C('<operation>POP 11.ISSTRING:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>POP 11.PARSE STRING:$STANDARD.STRING->POP 11.LIST'),

C('<operation>POP 11.MATCHES:POP 11.LIST*POP 11.LIST->$STANDARD.BOOLEAN'),

C('<operation>POP 11.CLOSE FILE:POP 11.CHANNEL'),

C('<operation>POP 11.OPEN:$STANDARD.STRING*$STANDARD.STRING

->POP 11.CHANNEL'),

C('<type>POP 11.PROPERTY TABLE'),

C('<type>POP 11.CHANNEL'),

C('<type>POP 11.LIST'),

%],

[%

C('<operation>TRIVICALC.MAIN PROGRAM'),

[%

C('<operation>CLI.MAIN PROGRAM'),

C('<operation>CLI.REINITIALISE SYSTEM'),

C('<operation>CLI.FULL FILE NAME:$STANDARD.STRING->$STANDARD.STRING'),

C('<operation>CLI.IS FILE NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>CLI.STORE MACRO:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.SET CURRENT SLOT:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.LOAD FILE:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>CLI.SAVE FILE:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>CLI.QUIT:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE EXPRESSION:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.SET BLANK:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE VALUE:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE COMMENT:DATA TYPES.LIST STRINGS

170 Appendix B. TriviCalc - An Example

->DATA TYPES.VALIDITY'),

C('<operation>CLI.COMMAND DESPATCHER:$STANDARD.STRING

->DATA TYPES.VALIDITY'),

C('<data>CLI.LOAD IN PROGRESS'),

%],

[%

C('<constant>DATA TYPES.ZERO FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.NIL:->POP 11.LIST'),

C('<constant>DATA TYPES.MAX S STRING:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MAX ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MAX LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MIN FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MAX FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MIN COLUMN:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MAX COLUMN:->$STANDARD.INTEGER'),

C('<type>DATA TYPES.VALUE'),

C('<type>DATA TYPES.VALIDITY'),

C('<type>DATA TYPES.SLOTS INDEX'),

C('<type>DATA TYPES.SLOT TYPE'),

C('<type>DATA TYPES.SLOT NUMBER'),

C('<type>DATA TYPES.SLOT LETTER'),

C('<type>DATA TYPES.SLOT ID'),

C('<type>DATA TYPES.SLOT ARRAY'),

C('<type>DATA TYPES.S STRING'),

C('<type>DATA TYPES.OPERATION TEXT'),

C('<type>DATA TYPES.OPERATION FULL'),

C('<type>DATA TYPES.OPERATION MATH'),

C('<type>DATA TYPES.LIST STRINGS'),

C('<type>DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.FULL VALUE'),

C('<type>DATA TYPES.FULL SLOT TYPE'),

C('<type>DATA TYPES.EXPRESSION'),

C('<type>DATA TYPES.CURSOR POSITION'),

C('<type>DATA TYPES.CONTENT'),

C('<type>DATA TYPES.COLUMN POSITION'),

C('<type>DATA TYPES.ROW POSITION'),

C('<type>DATA TYPES.A SLOT'),

%],

[%

C('<operation>DM.SET INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<operation>DM.SET CS:DATA TYPES.SLOT ID'),

C('<operation>DM.RING BELL'),

C('<operation>DM.RESET DM'),

C('<operation>DM.POSITION CL CURSOR:DATA TYPES.CURSOR POSITION'),

C('<operation>DM.MOVE CS:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>DM.LOCATE SLOT:DATA TYPES.SLOT ID'),

C('<operation>DM.INSERT STRING:$STANDARD.STRING'),

C('<operation>DM.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>DM.INIT DM'),

C('<operation>DM.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>DM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>DM.DISPLAY CONTENT:DATA TYPES.CONTENT'),

C('<operation>DM.DISPLAY CL LINE:$STANDARD.STRING'),

C('<operation>DM.DELETE LINE'),

C('<operation>DM.DELETE CHAR AT LEFT'),

C('<operation>DM.DELETE CHAR'),

B.3. TriviCalc Module Structure 171

C('<operation>DM.CLEAR INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<operation>DM.CLEAR ERROR DISPLAY'),

C('<data>DM.VDU'),

C('<type>DM.VDU'),

%],

[%

C('<operation>EM.INIT EM'),

C('<operation>EM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>EM.REMOVE FROM QUEUE:->$STANDARD.STRING'),

C('<operation>EM.ADD TO QUEUE:$STANDARD.STRING'),

C('<operation>EM.ESCAPE SEEN'),

C('<operation>EM.REPORT ERROR:$STANDARD.STRING'),

C('<data>EM.ERROR QUEUE'),

C('<data>EM.DISPLAY IN USE'),

%],

[%

C('<operation>SA.SAVE SA:->DATA TYPES.LIST STRINGS'),

C('<operation>SA.GET CONTENTS:DATA TYPES.SLOT ID->DATA TYPES.CONTENT'),

C('<operation>SA.GET VALUE:DATA TYPES.SLOT ID*$STANDARD.BOOLEAN

->DATA TYPES.VALUE'),

C('<operation>SA.IS COMMENT:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>SA.IS FLOAT:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>SA.IS OPERATION:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>SA.ADDRESS:DATA TYPES.SLOT ID->DATA TYPES.SLOTS INDEX'),

C('<operation>SA.BLANK:DATA TYPES.SLOT ID'),

C('<operation>SA.IS SLOT ARITHMETIC:DATA TYPES.SLOT ID->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT EXPRESSION:DATA TYPES.SLOT ID->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT FLOAT:DATA TYPES.SLOT ID->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT COMMENT:DATA TYPES.SLOT ID->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT BLANK:DATA TYPES.SLOT ID->$STANDARD.BOOLEAN'),

C('<operation>SA.EVALUATE:DATA TYPES.SLOT ID->DATA TYPES.FULL VALUE'),

C('<operation>SA.UPDATE SLOTS:DATA TYPES.LIST SLOT IDS

->DATA TYPES.VALIDITY'),

C('<operation>SA.UPDATE ORDER:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<operation>SA.DEPTH FIRST SEARCH:DATA TYPES.SLOT ID

->DATA TYPES.SLOT ID'),

C('<operation>SA.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>SA.COMPLETE UPDATE:DATA TYPES.SLOT ID*$STANDARD.BOOLEAN'),

C('<operation>SA.IS SUCCESSOR:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.LIST SUCCESSORS:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<operation>SA.REMOVE SUCCESSOR:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>SA.ADD SUCCESSOR:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>SA.CREATE SLOT:DATA TYPES.COLUMN POSITION*

DATA TYPES.ROW POSITION

->DATA TYPES.A SLOT'),

C('<operation>SA.CREATE SA'),

C('<operation>SA.INIT SA'),

C('<operation>SA.SET SLOT:DATA TYPES.SLOT ID*DATA TYPES.CONTENT

->DATA TYPES.VALIDITY'),

C('<data>SA.STACK'),

C('<data>SA.SLOTS'),

C('<constant>SA.FLOAT:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.EXPRESSION:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.COMMENT:->DATA TYPES.SLOT TYPE'),

172 Appendix B. TriviCalc - An Example

C('<constant>SA.BLANK:->DATA TYPES.SLOT TYPE'),

%],

[%

C('<operation>WAE.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<operation>WAE.SET CS:DATA TYPES.SLOT ID'),

C('<operation>WAE.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>WAE.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>WAE.INIT CS'),

C('<operation>WAE.INIT CL'),

C('<operation>WAE.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>WAE.EDITOR'),

[%

C('<operation>CL.INIT CL'),

C('<operation>CL.GET CL:->$STANDARD.STRING'),

C('<operation>CL.LOCATE SOL'),

C('<operation>CL.REPLACE PERCENT:->DATA TYPES.VALIDITY'),

C('<operation>CL.DELETE LINE'),

C('<operation>CL.DELETE CHAR LEFT'),

C('<operation>CL.DELETE CHAR'),

C('<operation>CL.INSERT STRING:$STANDARD.STRING'),

C('<operation>CL.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>CL.CURSOR RIGHT'),

C('<operation>CL.CURSOR LEFT'),

C('<data>CL.LINE'),

C('<data>CL.EOS'),

C('<data>CL.CURSOR'),

C('<constant>CL.MIN LENGTH:->$STANDARD.INTEGER'),

C('<constant>CL.MIN CURSOR:->$STANDARD.INTEGER'),

C('<constant>CL.MAX LENGTH:->$STANDARD.INTEGER'),

C('<constant>CL.MAX CURSOR:->$STANDARD.INTEGER'),

%],

[%

C('<operation>CP.EDITOR'),

[%

C('<operation>EDITOR.TERM CP'),

C('<operation>EDITOR.INIT CP'),

C('<operation>EDITOR.IS ESCAPE:$STANDARD.CHARACTER

->$STANDARD.BOOLEAN'),

C('<operation>EDITOR.IS PRINTABLE:$STANDARD.CHARACTER

->$STANDARD.BOOLEAN'),

C('<operation>EDITOR.GET CHAR:->$STANDARD.CHARACTER'),

C('<operation>EDITOR.EDITOR'),

C('<data>EDITOR.CHANNEL'),

%],

[%

C('<operation>CCP.CCP RECALL MACRO'),

C('<operation>CCP.CCP STORE MACRO'),

C('<operation>CCP.CCP CLI KEEP'),

C('<operation>CCP.CCP CLI'),

C('<operation>CCP.CCP REPLACE PERCENT'),

C('<operation>CCP.CCP ADJUST'),

C('<operation>CCP.CCP GET CS CONTENT'),

C('<operation>CCP.CCP GET CS'),

C('<operation>CCP.CCP DELETE LINE'),

C('<operation>CCP.CCP DELETE CHAR LEFT'),

C('<operation>CCP.CCP DELETE CHAR'),

C('<operation>CCP.REPLACE CL:$STANDARD.STRING'),

C('<operation>CCP.OBEY CL:->DATA TYPES.VALIDITY'),

B.3. TriviCalc Module Structure 173

C('<operation>CCP.SAVE CL'),

C('<operation>CCP.PROCESS CONTROL CHAR:$STANDARD.CHARACTER'),

C('<operation>CCP.IS CONTROL CHAR:$STANDARD.CHARACTER

->$STANDARD.BOOLEAN'),

C('<constant>CCP.DESPATCH TABLE:->POP 11.PROPERTY TABLE'),

%],

%],

[%

C('<operation>CS.INIT CS'),

C('<operation>CS.GET CS CONTENT:->DATA TYPES.CONTENT'),

C('<operation>CS.SET CS:DATA TYPES.SLOT ID'),

C('<operation>CS.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>CS.MOVE CS RIGHT'),

C('<operation>CS.MOVE CS LEFT'),

C('<operation>CS.MOVE CS DOWN'),

C('<operation>CS.MOVE CS UP'),

C('<data>CS.CURRENT SLOT'),

%],

[%

C('<operation>IL.INIT IL'),

C('<operation>IL.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>IL.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>IL.RECALL MACRO:$STANDARD.INTEGER->$STANDARD.STRING'),

C('<operation>IL.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<constant>IL.OLD CL:->$STANDARD.INTEGER'),

C('<data>IL.MACROS'),

C('<constant>IL.MIN MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.MAX MACRO:->$STANDARD.INTEGER'),

%],

%],

%],

%]

174 Appendix B. TriviCalc - An Example

B.3.2 Final TriviCalc design Module Structure

Below is the final module structure for the TriviCalc problem, proposed by Morpheus .

[%

[%

[%

[%

[%

[%

[%

[%

C('<constant>DATA TYPES.MAX FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MIN FLOAT:->$STANDARD.FLOAT'),

C('<operation>SA.IS FLOAT:$STANDARD.STRING

->$STANDARD.BOOLEAN'),

%],

[%

C('<constant>DATA TYPES.MAX S STRING:->$STANDARD.INTEGER'),

C('<operation>SA.IS COMMENT:$STANDARD.STRING

->$STANDARD.BOOLEAN'),

%],

C('<constant>DATA TYPES.MAX LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MAX ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MIN ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.NIL:->POP 11.LIST'),

C('<constant>DATA TYPES.ZERO FLOAT:->$STANDARD.FLOAT'),

C('<constant>SA.BLANK:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.COMMENT:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.EXPRESSION:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.FLOAT:->DATA TYPES.SLOT TYPE'),

C('<operation>SA.CREATE SA'),

C('<operation>SA.CREATE SLOT:DATA TYPES.COLUMN POSITION*

DATA TYPES.ROW POSITION

->DATA TYPES.A SLOT'),

C('<operation>SA.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>SA.EVALUATE:DATA TYPES.SLOT ID

->DATA TYPES.FULL VALUE'),

C('<operation>SA.INIT SA'),

C('<operation>SA.IS SLOT ARITHMETIC:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<type>DATA TYPES.COLUMN POSITION'),

C('<type>DATA TYPES.CONTENT'),

C('<type>DATA TYPES.FULL VALUE'),

C('<type>DATA TYPES.OPERATION MATH'),

C('<type>DATA TYPES.ROW POSITION'),

C('<type>DATA TYPES.SLOT ID'),

C('<type>DATA TYPES.SLOT TYPE'),

%],

[%

C('<data>SA.SLOTS'),

C('<data>SA.STACK'),

C('<operation>SA.ADDRESS:DATA TYPES.SLOT ID

->DATA TYPES.SLOTS INDEX'),

C('<operation>SA.ADD SUCCESSOR:DATA TYPES.SLOT ID*

DATA TYPES.SLOT ID'),

C('<operation>SA.BLANK:DATA TYPES.SLOT ID'),

C('<operation>SA.COMPLETE UPDATE:DATA TYPES.SLOT ID*

B.3. TriviCalc Module Structure 175

$STANDARD.BOOLEAN'),

C('<operation>SA.DEPTH FIRST SEARCH:DATA TYPES.SLOT ID

->DATA TYPES.SLOT ID'),

C('<operation>SA.GET CONTENTS:DATA TYPES.SLOT ID

->DATA TYPES.CONTENT'),

C('<operation>SA.GET VALUE:DATA TYPES.SLOT ID*$STANDARD.BOOLEAN

->DATA TYPES.VALUE'),

C('<operation>SA.IS SLOT BLANK:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT COMMENT:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT EXPRESSION:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT FLOAT:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.LIST SUCCESSORS:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<operation>SA.REMOVE SUCCESSOR:DATA TYPES.SLOT ID*

DATA TYPES.SLOT ID'),

C('<operation>SA.UPDATE ORDER:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.A SLOT'),

C('<type>DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.SLOTS INDEX'),

C('<type>DATA TYPES.SLOT ARRAY'),

C('<type>DATA TYPES.VALUE'),

%],

C('<operation>SA.IS SUCCESSOR:DATA TYPES.SLOT ID*

DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

%],

C('<operation>SA.SAVE SA:->DATA TYPES.LIST STRINGS'),

C('<operation>SA.SET SLOT:DATA TYPES.SLOT ID*DATA TYPES.CONTENT

->DATA TYPES.VALIDITY'),

C('<operation>SA.UPDATE SLOTS:DATA TYPES.LIST SLOT IDS

->DATA TYPES.VALIDITY'),

%],

[%

[%

[%

C('<operation>SA.IS OPERATION:$STANDARD.STRING

->$STANDARD.BOOLEAN'),

C('<type>DATA TYPES.OPERATION TEXT'),

%],

C('<operation>CLI.QUIT:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>CLI.SET CURRENT SLOT:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE EXPRESSION:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<type>DATA TYPES.LIST STRINGS'),

C('<type>DATA TYPES.OPERATION FULL'),

C('<type>DATA TYPES.VALIDITY'),

%],

[%

C('<constant>DATA TYPES.MAX COLUMN:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN COLUMN:->$STANDARD.INTEGER'),

C('<operation>CLI.SET BLANK:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

176 Appendix B. TriviCalc - An Example

C('<operation>CLI.STORE COMMENT:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>SA.IS SLOT:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<type>DATA TYPES.EXPRESSION'),

C('<type>DATA TYPES.FULL SLOT TYPE'),

C('<type>DATA TYPES.SLOT LETTER'),

C('<type>DATA TYPES.SLOT NUMBER'),

C('<type>DATA TYPES.S STRING'),

%],

C('<data>CLI.LOAD IN PROGRESS'),

C('<operation>CLI.COMMAND DESPATCHER:$STANDARD.STRING

->DATA TYPES.VALIDITY'),

C('<operation>CLI.FULL FILE NAME:$STANDARD.STRING->$STANDARD.STRING'),

C('<operation>CLI.IS FILE NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>CLI.LOAD FILE:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE VALUE:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

%],

%],

[%

C('<constant>CCP.DESPATCH TABLE:->POP 11.PROPERTY TABLE'),

C('<operation>CCP.CCP CLI'),

C('<operation>CCP.CCP CLI KEEP'),

C('<operation>CCP.CCP DELETE CHAR'),

C('<operation>CCP.CCP DELETE CHAR LEFT'),

C('<operation>CCP.CCP DELETE LINE'),

C('<operation>CCP.CCP GET CS'),

C('<operation>CCP.CCP GET CS CONTENT'),

C('<operation>CCP.CCP REPLACE PERCENT'),

C('<operation>CCP.OBEY CL:->DATA TYPES.VALIDITY'),

C('<operation>CCP.PROCESS CONTROL CHAR:$STANDARD.CHARACTER'),

C('<operation>CCP.SAVE CL'),

%],

[%

C('<constant>CL.MAX CURSOR:->$STANDARD.INTEGER'),

C('<constant>CL.MAX LENGTH:->$STANDARD.INTEGER'),

C('<constant>CL.MIN CURSOR:->$STANDARD.INTEGER'),

C('<constant>CL.MIN LENGTH:->$STANDARD.INTEGER'),

C('<data>CL.CURSOR'),

C('<data>CL.EOS'),

C('<data>CL.LINE'),

C('<operation>CCP.REPLACE CL:$STANDARD.STRING'),

C('<operation>CL.CURSOR LEFT'),

C('<operation>CL.CURSOR RIGHT'),

C('<operation>CL.DELETE CHAR'),

C('<operation>CL.DELETE CHAR LEFT'),

C('<operation>CL.DELETE LINE'),

C('<operation>CL.GET CL:->$STANDARD.STRING'),

C('<operation>CL.INIT CL'),

C('<operation>CL.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>CL.INSERT STRING:$STANDARD.STRING'),

C('<operation>CL.LOCATE SOL'),

C('<operation>CL.REPLACE PERCENT:->DATA TYPES.VALIDITY'),

C('<operation>DM.POSITION CL CURSOR:DATA TYPES.CURSOR POSITION'),

C('<operation>WAE.INIT CL'),

C('<type>DATA TYPES.CURSOR POSITION'),

%],

B.3. TriviCalc Module Structure 177

[%

C('<constant>IL.MAX MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.MIN MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.OLD CL:->$STANDARD.INTEGER'),

C('<data>IL.MACROS'),

C('<operation>CCP.CCP RECALL MACRO'),

C('<operation>CCP.CCP STORE MACRO'),

C('<operation>CLI.STORE MACRO:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>IL.INIT IL'),

C('<operation>IL.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>IL.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>IL.RECALL MACRO:$STANDARD.INTEGER->$STANDARD.STRING'),

C('<operation>IL.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<operation>WAE.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>WAE.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

%],

[%

C('<data>CS.CURRENT SLOT'),

C('<operation>CCP.CCP ADJUST'),

C('<operation>CS.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>CS.GET CS CONTENT:->DATA TYPES.CONTENT'),

C('<operation>CS.INIT CS'),

C('<operation>CS.MOVE CS DOWN'),

C('<operation>CS.MOVE CS LEFT'),

C('<operation>CS.MOVE CS RIGHT'),

C('<operation>CS.MOVE CS UP'),

C('<operation>CS.SET CS:DATA TYPES.SLOT ID'),

C('<operation>DM.MOVE CS:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>WAE.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>WAE.INIT CS'),

C('<operation>WAE.SET CS:DATA TYPES.SLOT ID'),

%],

[%

C('<data>DM.VDU'),

C('<operation>DM.CLEAR ERROR DISPLAY'),

C('<operation>DM.CLEAR INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<operation>DM.DELETE CHAR'),

C('<operation>DM.DELETE CHAR AT LEFT'),

C('<operation>DM.DELETE LINE'),

C('<operation>DM.DISPLAY CL LINE:$STANDARD.STRING'),

C('<operation>DM.DISPLAY CONTENT:DATA TYPES.CONTENT'),

C('<operation>DM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>DM.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>DM.INIT DM'),

C('<operation>DM.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>DM.INSERT STRING:$STANDARD.STRING'),

C('<operation>DM.LOCATE SLOT:DATA TYPES.SLOT ID'),

C('<operation>DM.RESET DM'),

C('<operation>DM.RING BELL'),

C('<operation>DM.SET CS:DATA TYPES.SLOT ID'),

C('<operation>DM.SET INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<type>DM.VDU'),

%],

[%

C('<data>EM.DISPLAY IN USE'),

C('<data>EM.ERROR QUEUE'),

C('<operation>EM.ADD TO QUEUE:$STANDARD.STRING'),

178 Appendix B. TriviCalc - An Example

C('<operation>EM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>EM.ESCAPE SEEN'),

C('<operation>EM.INIT EM'),

C('<operation>EM.REMOVE FROM QUEUE:->$STANDARD.STRING'),

C('<operation>EM.REPORT ERROR:$STANDARD.STRING'),

%],

%],

[%

[%

C('<data>EDITOR.CHANNEL'),

C('<operation>EDITOR.GET CHAR:->$STANDARD.CHARACTER'),

C('<operation>EDITOR.INIT CP'),

C('<operation>EDITOR.TERM CP'),

%],

C('<operation>CCP.IS CONTROL CHAR:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>CP.EDITOR'),

C('<operation>EDITOR.EDITOR'),

C('<operation>EDITOR.IS ESCAPE:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>EDITOR.IS PRINTABLE:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>WAE.EDITOR'),

%],

C('<operation>CLI.MAIN PROGRAM'),

C('<operation>CLI.REINITIALISE SYSTEM'),

C('<operation>CLI.SAVE FILE:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>TRIVICALC.MAIN PROGRAM'),

C('<operation>WAE.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

%],

[%

C('<constant>$STANDARD.FALSE:->$STANDARD.BOOLEAN'),

C('<operation>$STANDARD.<<=>>:$STANDARD.STRING*$STANDARD.STRING

->$STANDARD.BOOLEAN'),

C('<type>$STANDARD.BOOLEAN'),

C('<type>$STANDARD.CHARACTER'),

C('<type>$STANDARD.FLOAT'),

C('<type>$STANDARD.INTEGER'),

C('<type>$STANDARD.STRING'),

%],

[%

C('<operation>POP 11.CLOSE FILE:POP 11.CHANNEL'),

C('<operation>POP 11.GET INPUT CHAR:POP 11.CHANNEL->$STANDARD.CHARACTER'),

C('<operation>POP 11.ISSTRING:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>POP 11.MATCHES:POP 11.LIST*POP 11.LIST->$STANDARD.BOOLEAN'),

C('<operation>POP 11.OPEN:$STANDARD.STRING*$STANDARD.STRING

->POP 11.CHANNEL'),

C('<operation>POP 11.PARSE STRING:$STANDARD.STRING->POP 11.LIST'),

C('<operation>POP 11.READ LINE:POP 11.CHANNEL->$STANDARD.STRING'),

C('<operation>POP 11.SYSEXIT'),

C('<operation>POP 11.WRITE LINE:POP 11.CHANNEL*$STANDARD.STRING'),

C('<type>POP 11.CHANNEL'),

C('<type>POP 11.LIST'),

C('<type>POP 11.PROPERTY TABLE'),

%],

%]

Appendix C

Glossary and Abbreviations

Abstract Data Types An object which encapsulates a type and its operations and operators,

but without declaring a data item for the type.

(Robinson, 1992a, p.227)

Abstract State Machine Is a module that encapsulates the states of the object and provides

operations to act on this state, or to direct the object to perform some

actions. (Rosen, 1997, p.23)

ADT Abstract Data Types, see also Abstract Data Types.

Architectural Design The creation of a software model. The identification of compon-

ents, their interactions with other components, and the hierarchically

structure of the system.

Basic Entity A design component, specifically excluding objects. In HOOD these

consist of types, operations, constants, variables, operation sets, and

exception.

BNF Backus Naur Form, a notation used to define the formal syntax of a

language.

CASE Computer Aided Software Engineering.

Closed System A system is said to be closed, if there are no references in the system

to entities not defined in the system.

Cohesion The ‘relatedness’ of a set of basic entities in an object. Also, ‘single-

ness’ of purpose of an object. High cohesion is desirable.

Complexity Intuitively, complexity measures the difficulty of understanding

something. Unfortunately, this idea is not suitable for this thesis,

since it involves a study of psychological phenomena which are out-

side the scope of this work. We therefore define complexity as the

‘difficulty’ of describing the architecture of a software design.

Component Design takes each component identified during architectural design and de-

termines how it will work in detail.

180 Appendix C. Glossary and Abbreviations

Coupling The dependency between two objects. High coupling indicates that a

change to one object is likely to impact on another. Low cohesion is

desirable.

Degree The number of edges incident on a graph’s node.

Digraphs A graph, where the direction of the edges is significant. Also called

directed graphs. All graphs in this thesis are digraphs.

DFD Data Flow Diagram.

Encapsulation The method of combining data and operations on those data in an

object. (Robinson, 1992a, p.228)

Entity (design) A design component, including objects. In HOOD these consist of

objects, types, operations, constants, variables, operation sets, and

exception.

Environmental Object An object which represents the provided interface of another object

used by the system to be designed, but which is not part of the [cur-

rent] HOOD design tree.

(Robinson, 1992a, p.228)

ESA European Space Agency.

Forest A set of trees, usually implying at least two disjoint trees.

Generic An object template to represent a reusable object with type, constant

and operation parameters.

Graph A graph G(N ;E) consists of a set of finite nodes N and a set of

edges E over N �N . The existence of a particular edge (ni;n j)

implies that there is a relationship between the two nodes ni and n j.

In this thesis, we are only concerted with directed graphs (or di-

graphs), in which case the order of the pair (ni;n j) is significant.

For brevity, we often use the term graph to refer to a directed graph.

HOOD Hierarchical Object Oriented Design.

HRM HOOD Reference Manual.

HUG HOOD User Group.

HUM HOOD User Manual.

Information Hiding Information hiding supplements encapsulation by preventing an en-

tity, usually data, from being visible to other software, by declaring it

in the internals of an object rather than in the interface (e.g., declara-

tion only in the body of an Ada package and not in the specification,

or as a private or protected declaration in C++), or by hiding imple-

mentation details of an entity, e.g., as a private type.

(Robinson, 1992a, p.228)

Inheritance The ability to define a class which is an extension of an existing class

(called a base class), so that the new class inherits all the attributes

(data and types) and all the actions (operations) of the base class.

(Robinson, 1992a, p.228)

181

Inter- Prefix meaning among, between, together, one with another, etc.

(Bancroft, 1969, p.181)

Interface Specification of the usable (visible) part of an object.

Internals (HOOD) The hidden details of an object’s implementation.

Intra- Prefix meaning within, inside. (Bancroft, 1969, p.182)

Isomorphic Having the same-shape. Technically, there exists a one-one relation

between the two isomorphic items.

Morpheus was a dream-god who caused human shapes to appear to dreamers.

In spite of popular associations with sleep itself (‘safe in the arms of

Morpheus’ and so on) his name actually means ‘form’ (morphe), the

reference being to the ‘forms’ or shapes seen in dreams. In a sense,

therefore, he is really a ‘transformer’. (Room, 1990, p.208)

MDL Minimum Description Length.

Object An encapsulation of data or a hardware interface with the operations

to access and change it, with relevant type definitions, constants and

exceptions. (Robinson, 1992a, p.228)

Object-based A weaker (older) form of OOD, lacking facilities such as inheritance.

Object Oriented The essence of an object-oriented method is the identification and

development of a design using an object as the basic building block

of the design. The term ‘object-oriented’ is often taken to imply de-

velopment of classes as well as objects, so that the executable design

consists of objects as instances of these classes.

(Robinson, 1992a, p.229)

ODS Object Description Skeleton. The formal textual notation of the de-

sign on object.

OO Object Oriented, see also Object Oriented.

OOD Object Oriented Design, see also Object Oriented.

Open System A system is said to be open, if it is not closed.

Operation An action that is performed on an object, to be represented by a pro-

cedure or function in Ada.

(Robinson, 1992a, p.229)

Operation Sets A shorthand form for a set of operations which precludes the neces-

sarity to write long lists of operations in a HOOD diagram.

(Robinson, 1992a, p.229)

Ordinal Scale A scale with at least a partial order.

OS Operating System.

182 Appendix C. Glossary and Abbreviations

Overloading The ability for an operation name to be repeated with the definition

of a single object, providing that there is some way of differentiat-

ing between them, i.e., by having different parameter and result type

profiles in Ada, or different argument signature in C++.

(Robinson, 1992a, p.229)

Polymorphism The ability for the selection of an operation body to be determined at

run time, according to the class of the object to which the operation

is currently referring. (Robinson, 1992a, p.229)

Provided Interface Defines the services that an object provides to its clients.

Ratio Scales A scale with a total ordering permitting statements such as “A is twice

as big as B” to be meaningful.

Requires An edge in a design graph represents a requires relationship, i.e., an

entity requires the services of another entity in oder for the first to

provide its services to others.

Required Interface Identifies the services required from other objects.

Root The ‘top’ of a tree. It is the unique item in a tree having no parent.

Root Object The top-level object which represents the system to be designed.

(Robinson, 1992a, p.229)

SIF Standard Interchange Format. The precise textual format used for

exchanging ODSes between different HOOD toolsets.

Tree A tree is a special kind of graph, which has no cycles.

TriviCalc A small spreadsheet used as a design study, and for empirical valida-

tion of Morpheus .

Appendix D

Notation Summary

? The empty set.

a 2 A a is a member of the set A.

A = B Set equality.

jAj The cardinality of the set A.

A[B Set union.

A\B Set intersection.

A� B Subset.

A� B Proper subset.

N The finite set of nodes of a graph G(N ;E).

E The finite set of edges of a graph G(N ;E).

E� The finite bag of edges of a multi-graph G�

(N ;E�

).

di The degree of node ni in a graph G(N ;E).

D The sum of the degree of all nodes in a graph

G(N ;E), D = ∑i2N di.

G(N ;E) A graph G with a set of nodes N , and a set of edges

E .

G�

(N ;E�

) A multi-graph G� with a set of nodes N , and a finite

bag of edges E�.

G1(N 1;E1)v G2(N 2;E2) G1(N 1;E1) is a subgraph of G2(N 2;E2).

G1(N 1;E1)< G2(N 2;E2) G1(N 1;E1) is a proper subgraph of G2(N 2;E2).

G1(N 1;E1)tG2(N 2;E2) Graph union.

G1(N 1;E1)uG2(N 2;E2) Graph intersection.

A�B The concatenation of two designs A and B.

Pr(x) The probability of x occurring.

184 Appendix D. Notation Summary

KC(x) The Kolmogorov Complexity of x.

A�
=

B Indicates an encoding, such that, B is an encoding of

A.

L�

(n) An optimal universal prefix code for all positive in-

tegers. Each integer has an encoding of the form,

log2 n+ log2 log2 n+ log2 log2 log2 n+ � � � , terminating

when log(: : : logn)� 0. See Section 5.2.3.

log�2(n) Length (in bits) of the L�

(n) function, given by

L�

(n)+ log2 2:865064. See Section 5.2.3.

S Set of all possible design graphs.

Ψ(G) The complexity of the design graph G. See Sec-

tion 6.2.

