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Cascade-Correlation as a Model of Representational

Redescription

J. K. Brook

Abstract

How does knowledge come to be manipulable and flexible, and transferable to other tasks?

These are issues which remain largely untackled in connectionist cognitive modelling.

The Representational Redescription Hypothesis (RRH) (Karmiloff-Smith, 1992b) presents

a framework for the emergence of abstract, higher-order knowledge, based on empirical work

from developmental psychology. The RRH claims that during learning/development initially-

implicit knowledge is rendered progressively more explicit via the reiterated action of the re-

description process, resulting in a hierarchy of increasingly explicit and accessible representa-

tions.

This thesis focuses on investigating in practice claims made for connectionism as a model

of redescription (e.g., Clark and Karmiloff-Smith (1993)) and on applying methods from recent

work in developmental connectionism to the construction of a computational model of RR. The

modelling effort centres on a constructive incremental architecture — cascade-correlation (CC)

(Fahlman & Lebiere, 1990) — which produces a conservative hierarchy of increasingly high-level

representations as the RRH proposes.

Two main models are presented. The first is designed to capture a feature of children’s

comprehension of the French article system (Karmiloff-Smith, 1979a). Redescriptive effects are

seen here in the changing functional status of article representations as well as in symptomatic

behavioural errors. Resource-phasing was also applied to two important internal parameters of

CC.

The second model aims to capture the effects of redescription on sequence learning. Recur-

rent CC was trained to count, and to give and compare the cardinalities of small series of stimuli.

Accessibility of representations was assessed here through task transfer. Despite some success in

capturing transfer, a short complementary study of structural transfer between networks learn-

ing formal grammars suggested that positive transfer in CC depends on perceptual similarity as

in other supervised connectionist schemes.

The models also address constraints on RR such as the timing and triggering of redescription

and the ordering of representational formats.

A brief comparative study of skeletonisation is also presented.

Submitted for the degree of D. Phil.

University of Sussex

April, 1997
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Chapter 1

Introduction

What is abstract thought? How are we able to manipulate concepts, to reflect upon them, and

redeploy them in novel contexts? How does what we have learned about a particular subject

become integrated and systematic? It is these questions which provide the motivation for this

project.

The project takes a dynamic and developmental approach to constructing computational

models of the mechanisms underlying flexible and systematic thought, attempting to model how

these might emerge from and interact with cognitive change.

The choice of a developmental framework in which to consider these questions reflects a

general movement (relatively recent in cognitive science (Clark, 1993a, p. ix)) away from the

consideration of mature human adult competence in isolation, and towards an approach which

is broader in explanatory scope, and in which dynamics plays a central role. An important

consequence of this approach is that development has a role, not merely as a domain to be

modelled, but also as a means of studying knowledge and cognition.

The modelling effort is guided by a hypothesis — the Representational Redescription Hy-

pothesis (Karmiloff-Smith, 1992b) — whose focus is the emergence of abstract concepts from

procedural knowledge over the course of both learning and development in humans.

The models presented have all been constructed within a connectionist framework1. The

link between connectionist modelling and the RRH was first made by Clark and Karmiloff-

Smith (1993) and Karmiloff-Smith (1992b) and can be seen as working in two directions. Firstly,

despite a lack of detailed commitment in the RRH itself concerning concrete mechanisms under-

lying cognitive change, connectionism has been observed by Karmiloff-Smith to exhibit certain

important correspondences with the RR model (discussed in more detail in section 1.1 below)

in terms of the style in which task-knowledge is represented and the operations facilitated by

that representation. Secondly, the RRH seems to encompass and reiterate requirements for a

model of human cognition which have traditionally been considered problematic for connec-

tionist modelling, in particular the systematic reuse of concepts for learning structurally related

tasks.

This project is aimed at examining the claims made for connectionism as a model of re-

description and focuses on machine-learning techniques known collectively as resource phasing

or incremental learning, which have been successfully used to model other aspects of cognitive

development.

The remainder of this chapter presents an overview of the RRH, as well as discussing the

claims for connectionism as a model of the mechanisms which might underlie it. The specific

connectionist architectures and incremental methods used are then presented and motivated as

1Familiarity with connectionism is assumed throughout this thesis. See Plunkett and Sinha (1992) for a brief

introduction tailored to developmental models
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well as the example task domains on which the modelling focuses. The chapter concludes with

a summary of the contributions made by this thesis.

1.1 The Representational Redescription Hypothesis

The Representational Redescription Hypothesis (Karmiloff-Smith, 1992b) is an attempt to ac-

count for certain qualitative phenomena observed in development and in child- and adult learn-

ing, in particular the progression from knowing how to do something (procedural knowledge)

to being able to reflect upon that knowledge, discuss it and manipulate it. What is important is

not that performance at a task actually changes but rather that the status of the knowledge to

the learner changes, i.e., the form in which it is understood and its integration into the rest of

the learner’s knowledge. Indeed overall task performance may actually worsen symptomatically

as the roles of knowledge change and conflict.

In attempting to explain this progression, the hypothesis puts forward a series of phases dur-

ing each of which knowledge is thought of as being represented and stored in different formats

(see figure 2.1). Each phase is more explicit than the last (at the highest level this is linked with

verbalisability) and allows progressively more flexibility in its use, whether verbal or non-verbal,

in particular in facilitating further learning on other tasks or domains.

The three phases are known as I (implicit) at which knowledge is procedurally represented

and unavailable outside the original input–output mapping, E1, an intermediate level of the so-

called ‘explicitation’ process, at which knowledge is more accessible than at the first phase, but

still not verbalisable, and E2/3 conscious (and possibly verbalisable) explicit knowledge. Tran-

sition between these formats is hypothesised to involve the reiterative redescription of previous

representations, which while not specified in detail, seems to ‘reduce’ the knowledge by discard-

ing some of the original detail. It is also hypothesised that the generation of new formats is

conservative or redundant — rather than each new format supplanting the last, representations

form a hierarchy of levels at which the same knowledge is differently represented. An important

aspect of the hypothesis is the emphasis it places on endogenous (or internally driven) change;

although learning happens with respect to external influences, representations are assumed to

change ‘off-line’ after (at least some) initial competence at the task has been achieved, rather

than in response to external pressures, such as the need to improve task performance. Rather

than being provoked to improve by the presence of instability, the system is driven to reappropri-

ate already stable states.

An informal example of this progression presented by Karmiloff-Smith (1992b) is that of

learning to play a musical piece. First one must learn to reach the initial mastery of having

assembled notes and phrases into a continuous piece. Playing at this point is competent but

relatively inflexible — maybe the volume of the whole piece may be adjusted but little else. The

RRH has it that with time, redescription acts to increase the flexibility and accessibility of the

knowledge and its components. This manifests itself in effects such as the ability to begin playing

at arbitrary points during a piece, to add subtle emphases, and to improvise upon it.

Chapter 2 describes the RRH in more detail, presenting supporting empirical work done by

Karmiloff-Smith, and surveying it in the context of other developmental hypotheses and direct

responses.

1.2 Connectionism, Developmental Modelling and the RRH

The RRH is put forward as ‘a framework — rather than a precise theory — for exploring pos-

sible generalities in developmental change across a range of domains.’ (Karmiloff-Smith, 1994),

and makes no detailed commitment to any possible mechanisms for redescription itself. How-

ever, in Clark and Karmiloff-Smith (1993) a set of general requirements are put forward: any

model should spontaneously come to manipulate its own representations, preserving the results

of previous learning, and should form new structured representations of its knowledge which can
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be manipulated by other processes. In the light of these requirements Karmiloff-Smith (1992b),

Clark and Karmiloff-Smith (1993) models based on connectionism were put forward as the most

promising of the computational modelling paradigms then current.

The link between the hypothesis and connectionism was prompted in part by the observation

(Karmiloff-Smith, 1992b) of an apparent similarity between the opaqueness and embeddedness

of procedural knowledge at the initial level of the RR model and the kind of knowledge captured

by a trained network. But as Clark and Karmiloff-Smith (1993) point out, standard error-driven

networks do not spontaneously go beyond this success to further link, systematise and redeploy

their knowledge as the RRH demands.

In response to this point, several (existing) schemes for augmenting standard networks have

been proposed in the literature as models for RR. These suggestions are discussed at greater

length in Chapter 3, but briefly these have generally involved structural manipulations on net-

works, such as copying whole or partial networks during or after training and using these and

other means to capture the idea of re-representing and redeploying knowledge.

Techniques such as these, which involve the qualitative control of learning by manipulat-

ing the structure of the network or its training data are examples of incremental-learning or

resource-phasing methods. What unites such methods in general is the manipulation over the

course of evolution, development or learning of the data seen by the agent.

Resource-phasing techniques have already been explored as part of work on connectionist

developmental modelling (e.g., Elman (1991), Plunkett and Marchman (1991)). Recent years

have seen a growth in interest in the use of connectionist models to capture developmental

change (McClelland (1989), Plunkett and Sinha (1992), Bates and Elman (1992)). A central mo-

tivation for this is the ability of connectionist systems (in contrast with most symbolic systems)

to capture change, especially qualitative change, emergently within a unitary framework. This

provides us with a means of modelling process and thus with a concrete testbed for theories of

cognitive change (Simon & Halford, 1995). Chapter 3 focuses on developmental connectionism

as well as covering relevant issues from connectionist efforts to model cognition in general, in

particular representation, systematicity, and explicitness.

The experimental work reported in this thesis explores the applicability of existing connec-

tionist developmental modelling techniques to the construction of a computational model of

the RRH, focusing on the claim implicit in Clark (1993a) that resource phasing in networks

supports the progressive explicitation and redescription of the products of learning that the

RRH requires. These efforts are focused in turn on a particular resource phasing scheme — the

Cascade-correlation architecture (Fahlman & Lebiere, 1990).

Cascade correlation is an example of a constructive (or generative) architecture — its policy

is to ‘recruit’ hidden units over the course of learning. These are installed hierarchically into the

network. Shifts in on-line processing and representational power are controlled in a gradualistic,

incremental way which has made it suitable for developmental modelling (see Shultz, Schmidt,

Buckingham, and Mareschal (1995) for an overview of this work). Cascade-correlation is partic-

ularly promising as a model of redescription as it is not only incremental, but hierarchical and

conservative (the results of previous learning are preserved and mediate subsequent learning).

Another obvious analogue between it and the RR model is that it also uses separate mechanisms

for on- and off-line training (based on reducing error and maximising correlation respectively)

integrating these within a single framework. Cascade-correlation is described in more detail in

Chapter 4.

A short complementary study of the selectionist resource-phasing scheme skeletonisation

(Mozer & Smolensky, 1989a, 1989b) is presented in chapter 7 in the context of the article-

function task. Skeletonisation prunes units from previously trained networks according to a

measure of relevance not directly based on error-reduction.
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1.3 Example domains

The experimental work reported in this thesis is based around two tasks drawn from those

investigated by Karmiloff-Smith in the domains of language and number. The first is based on

the learning of the correspondences between articles and their functions presented in Karmiloff-

Smith (1979a). The second looks at counting and cardinality as an example of sequence-learning

domains.

The models of the two tasks also complement each other in exemplifying differing domain-

general constraints, in terms of their use of recurrent or non-recurrent architecture, as well as

in the domain-specific constraints inherent in the design and biasing of training examples, dis-

cussed for each model. Beyond these differences, the models are constructed within the same

learning framework, allowing both comparison and discussion of the possibility of constructing

a domain-general connectionist model of RR.

1.3.1 Redescriptive effects in the acquisition of the French article system

Children’s usage and comprehension of the definite and indefinite articles in French exhibits a

U-shaped behavioural curve (Karmiloff-Smith, 1979a) as they try to reconcile the non-specific

(‘a’) and specific (‘one’) functions of the indefinite article (‘un’/‘une’). Karmiloff-Smith (1992b)

explains this within the framework of the RR model. Initially the articles are represented in-

dividually, obeying a one-form–one-function constraint, but as redescription renders the com-

monalities between these representations explicit, overmarking appears in production as well as

errors in comprehension. Eventually these two representations are reconciled, giving a pluri-

functional status to articles and resulting again in correct behaviour.

Cascade-correlation was used to model these redescriptive phenomena on comprehension.

The effects of training-set bias on learning trajectory was examined, as well as the effects of

different proportions of externally and internally driven learning. This work is presented in

Chapter 5.

1.3.2 Sequence learning and the RRH

The second set of experimental work presented focuses on temporal sequence learning, in par-

ticular in the domain of counting. This class of tasks was chosen for a number of reasons. Firstly

the redescriptive phenomena associated with it are observed in a cross-section of domains stud-

ied by Karmiloff-Smith and it is thus useful in examining whether RR effects are underlain by

a unitary mechanism. Sequence-learning is also associated with a well-defined set of effects in

the RRH literature — for instance it is claimed that redescription first makes end-most compo-

nents of sequences accessible before individuating inner components. In the counting domain

this is claimed to explain how the concept of number gained through counting is linked to that

of cardinality. Recurrent cascade-correlation was trained to count short sequences of stimuli, to

output the cardinality of a sequence without producing the intermediate counting outputs, and

to compare the cardinalities of two consecutive sequences. Transfer between each of these tasks

was also investigated.

To control for the role of perceptual cues in the results of the transfer experiments between

counting cardinality and comparison, RCC was also trained on strings generated by regular

grammars, i.e., to approximate the behaviour of deterministic finite-state automata. Unlike the

counting task correct performance on this task requires the network to attend to the identities

of individual stimuli during learning and to abstract from these when trained to induce a ma-

chine which is isomorphic but differently labelled. Another motivation for this study was com-

parison with previous work on learning and structural transfer using discrete locally recurrent

networks (e.g., Cleeremans (1993), Chrisley (1993), Dienes, Altmann, and Gao (1995), Jackson

and Sharkey (1995)). Chapter 6 presents the sequence-learning studies in more detail.
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In terms of formats, the aim in all the models reported here has been to capture the pro-

gression from level I to level E1 — the modelling of accessibility to consciousness or verbal

expression was considered to be outside the scope of this project. The models are also designed

to capture the overall dynamics of the behavioural progressions in each domain.

1.4 Contributions of this thesis

This thesis presents the first study dedicated to investigating the claims that connectionist archi-

tectures can provide models for the RRH in the context of particular domains discussed as ev-

idence for RR effects by Karmiloff-Smith, specifically sequence-learning (exemplified by count-

ing) and language acquisition. In particular it investigates whether a class of such architectures

— those which are both incremental and error-driven — are particularly suited to this modelling

effort. It is also the first practical investigation of network transfer as the operationalisation of

the progressive accessibility characteristics of the RRH.

The playroom experiment extends the range of incremental learning techniques which have

been used in developmental models based on cascade-correlation. Specifically, the patience and

candidate pool-size parameters were varied over the course of training in an attempt to con-

trol the timing and nature of qualitative representational and behavioural change as well as to

capture the early one-form–one-function constraint.

The study of counting, cardinality and comparisons was the first use of recurrent cascade-

correlation in constructing a developmental model of temporal behaviour. The application of

cascade-correlation to structural transfer between isomorphic but re-labelled finite-state ma-

chines was also novel.

The short study using skeletonisation was the first application of this technique in an at-

tempt to model the RRH. The augmentation of the technique with weight freezing and network

copying was a novel extension to skeletonisation.



Chapter 2

The Representational Redescription Hypothesis

2.1 Introduction: the Representational Redescriptional Hypothesis

The Representational Redescription Hypothesis (RRH) (Karmiloff-Smith, 1986, 1992b) is a set

of related claims about qualitative behavioural change during development, child learning and

also adult learning in some cases. It is concerned with the progression from competent perfor-

mance of a skill (simply, knowing how to perform a task, such as balancing objects on a fulcrum

or producing mature usage of personal pronouns), to the ability to reflect upon, discuss and

manipulate that knowledge.

2.1.1 Implicit and explicit representations

Representations, in the terms of the RRH, are considered to be that which sustains behaviour

in a particular domain. The RRH also proposes that the learning of a particular task can be

divided into a number of serially ordered phases. It is assumed that the initial phase of learning,

which results in (at least partially) successful performance at a task (or behavioural mastery), is

associated with an implicit procedural representational format. The hypothesis states that the

final phase of learning, at which knowledge is accessible to introspection and verbal expression,

is underlain by an explicit representational format. If these two levels are viewed in isolation, the

hypothesis is similar to many other theories of learning and mental representation (e.g., Mandler

(1988)) in that it proposes that unconscious procedural behaviour involves implicit representa-

tion while conscious behaviour involves explicit representations. Where the RRH differs from

these accounts, and what makes it of particular interest to connectionist modellers in my view,

is that its main concern is with the actual process of transition between these two types of rep-

resentational formats, and identifies explicitly intermediate states between them on the basis of

experimental evidence.

Domains

Before continuing discussion of the general characteristics of the RRH, it is necessary to define

the term domain as used in this context. A domain has two important senses here. The first is

that it is to be contrasted with the Fodorean notion of a module (Fodor, 1983). Specifically the

latter is an ‘information-processing unit that encapsulates . . . knowledge and the computations

on it’ (Karmiloff-Smith, 1992b, p. 6), while a domain is a ‘set of representations sustaining a

specific area of knowledge’, examples being language, number and physics. The process of RR

is seen as acting domain-specifically but this does not imply that knowledge is modularised

according to these domains.

The second reason for defining RR with respect to domains is that, unlike representational

change in a stage theory, RR occurs at different times with respect to different areas of knowl-

edge and thus some way of distinguishing between these is needed.
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The granularity of domains may be partially defined with respect to the related notion of

micro-domains. These are smaller groups of related tasks, skills, or bodies of knowledge, such as

pronoun-acquisition, or basic knowledge of gravity, and are seen as being subsets of the domains

(of language and physics respectively).

As Keil (1990) observes, the notion of domain varies considerably between different theorists.

To some extent, the knowledge considered to form a domain relates to the constraints which

apply to it. Despite variations in the breadth of knowledge circumscribed by a given set of

constraints, the common factor is that ‘domain specific constraints are predicated on specific

sorts of knowledge types and do not blindly constrain any possible input to learning.’ (Keil,

1990, p. 139), and Keil goes on to add that the working definition of a domain is ‘in terms of

patterns of learning’ — if restrictions to possible solutions are unique to a particular body of

knowledge, that knowledge is considered a domain.

2.1.2 Accessibility of knowledge

Closely related to the process of increasing explicitness is that of increasing accessibility —

knowledge and representations at the initial level are ‘bracketed’ and unavailable outside the

original input–output mapping, and become increasingly widely accessible over the course of

the so-called explicitation process, central to RR. At the intermediate level these representa-

tions become available to other tasks within the same domain, and at the final level transferable

between domains.

2.1.3 Sources of knowledge

Another of the fundamental assumptions from which the RRH proceeds is that the knowledge

stored in the mind derives from several different sources. The first is environmental feedback,

which allows us to learn from failure in achieving some action, while a second external source

of information is provided by linguistic statements made by others. The focus of the RRH is on

the way internal sources of knowledge, in particular the redescribed versions of mastered tasks,

are pressed into service by learners.

These three factors — the transition from implicit to explicit, the increase in accessibility

and the emphasis on internal sources of knowledge (and knowledge change) — are key aspects

of the RRH. The next section presents the phases of the RR model in more detail, describing

experimental evidence for the associated effects.

2.2 The RR Model

In attempting to explain the implicit–explicit progression, Karmiloff-Smith (1986, 1992b) has

formulated the RR model (see figure 2.1). This proposes that over developmental time, knowl-

edge about a task or domain comes to be represented as a hierarchy. In more recent formula-

tions (e.g., Karmiloff-Smith (1992b)) this comprises at least four different formats known as I

— implicit, E1 — the first explicit level, E2 — at which knowledge is explicit and conscious but

non-verbalisable, and E3 — at which it becomes explicit, conscious and verbalisable.

It is hypothesised that transition between these formats involves the reiterated action of the

process of representational redescription from which the hypothesis takes its name. The phases

mentioned above refer to periods between and including such transitions. A given learner may si-

multaneously be in different phases with respect to different tasks or domains, thus these phases

are domain-specific and should be contrasted with Piagetian stages (Piaget, 1953). Each of these

phases and the representational format associated with it is considered in more detail below.

The Implicit Phase

At the initial level representations are thought of as being implicit and orientated towards the

task of ‘responding to and analyzing stimuli in the external environment’ (Karmiloff-Smith,
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externally, error-driven

learning towards

behavioural mastery

I format — implicit-level representation

externally, error-driven

learning

E1 format — first explicit level

E2 format — data available to conscious access

E3 format — data available to verbal report

Phase 1

Phase 2

Phase 3

Figure 2.1: The Representational Redescription Model

1993). The hypothesis also has it that in this phase new knowledge about a task is added piece-

meal through a process Karmiloff-Smith (1990, 1992b) refers to as ‘representational adjunction’.

The idea is that, once stable, representations corresponding to microdomains, tasks or parts of

tasks accumulate independently of each other and without regard to possible redundancy, giving

rise to characteristic I-level behaviour, which is efficient and at least partially successful in that

it sustains competent performance at a task, but is neither flexible in its use, linked to or usable

by representations of other similar tasks, or available for verbal expression. It is important to

note that performance at this level may closely resemble eventual performance; it may only be

the underlying representations which differ.

The Implicit Format

The hypothesis proposes that underlying such behaviour is an implicit representational format.

In addition to being inaccessible beyond the task itself and stored independently of each other,

representations in this format also conform to the constraints that information is encoded in

procedural form, and that these procedures are ‘sequentially specified’ (Karmiloff-Smith, 1992b,

p. 20).

Rutkowska (1993) distinguishes between the sense of the term ‘procedural’ in computing

(where it is set in opposition to declarative, particularly in traditional AI) and as it is used in de-

velopmental psychology. In this context, knowledge which is action-based and perhaps available

to other subsystems only implicitly in special-purpose procedures is considered to be procedu-

rally represented (Rutkowska, 1993). Karmiloff-Smith (1990) adds to this definition constraints

such as serial ordering, which are considered to be domain-general or to act independently of

particular domains.

Such procedures are available to other operators (such as other procedures) only as wholes,

and the hypothesis has it that it is only after redescription that their components become avail-

able (although the exact force of the term ‘components’ is not made precise outside the context

of specific tasks).

Examples

The performance of children on the task of balancing a set of visibly or invisibly weighted blocks

exhibits a ‘U-shaped behavioural curve’ (Strauss & Stavy, 1982). Karmiloff-Smith and Inhelder

(1975) observed that the children of 4 and 8 years they studied were able to balance any blocks

presented to them, while at intermediate ages some were rejected as ‘unbalancable’.

In this microdomain, the initial phase provides concrete examples of two characteristics of
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the implicit phase and format. Firstly the performance of the youngest children is data-driven —

there is no apparent sensitivity to anything but the observable data, which here takes the form of

proprioceptive and visual feedback. Secondly, this microdomain provides evidence for the idea

of representational adjunction — information was seemingly not generalised from a block to

other identical blocks; rather the balancing of each block was treated as an isolated problem.

In the microdomain of counting, we see again that at the implicit level children ‘run off’ a

mastered procedure. Karmiloff-Smith (1992b) reports that young children who have mastered

counting up to small numbers are like the youngest group in the block-balancing study, in that

they go through the whole procedure again when faced with an identical display. These effects

are symptomatic of the action of sequential representational constraints.

Also, despite knowing the relevance of the question ‘How many?’ to performing a count,

these children do not recognise that there is a component of the count which corresponds to the

cardinality of the set to be counted. In the terms of the hypothesis ‘the knowledge embedded in

the procedure is not yet available as separate components’ (Karmiloff-Smith, 1992b, p. 104).

In the language domain the initial level is generally characterised in the studies carried

out by Karmiloff-Smith (1979b, 1992b) by correct usage, based, as in the block-balancing mi-

crodomain, on superficial characteristics of the input data. For instance, although by the age of

around 3, children are able both to perceive and produce words, their idea of what words are is

comparatively impoverished, with closed-class words (e.g., ‘the’, ‘of’) often being excluded from

consideration.

The Explicit-1 Phase

In the second phase the focus of learning shifts from external inputs to the learner’s own repre-

sentations. Internal dynamics take over and the current state of the learner’s representations may

predominate over the actual input. Representations at this level are not yet explicit in the usual

sense, and thus the regularity in behaviour exhibited at this phase is what (Karmiloff-Smith &

Inhelder, 1975) refer to as a theory in action, since it is still considered by the hypothesis to be

somewhat embedded in action.

The formulation of a theory in action may result in new (and revealingly systematic) errors.

If its predictions conflict with certain of the observable data, this may result in the pattern of

decline (and subsequent recovery) of performance associated with a U-shaped behavioural curve.

As Karmiloff-Smith (1992b, p. 20) points out, this intermediate deterioration is a ‘deterioration

at the behavioural level not the representational level’ .

Although representations at this level are not available to conscious access, the use of the

term ‘explicit’ here seems to derive some of its force from the idea that it is after this first re-

description stage that manipulations, such as the violations of purely data-driven descriptions

required for pretend-play, become possible, something which also suggests accessibility outside

the original task mapping. Karmiloff-Smith hypothesises that such representations form the

basis of a flexible cognitive system.

An important aspect of this phase is that it is hypothesised to begin only after an initial

competence, or behavioural mastery, has been achieved at all or part of a task. This also has the

implication that the onset of redescription is endogenous and is provoked by a period of stability

rather than disorder in the organisation of what has been learnt.

The Explicit-1 Format

At level-E1, some of the sequential and procedural constraints acting at the first level are relaxed.

At the same time some of the perceptual detail of the implicit representations is lost — E1 rep-

resentations are often described by Karmiloff-Smith as being ‘compressed’ or ‘reduced’ versions

of the original procedural and perceptual encoding.

This level of representation is also identified as being conceptual (where the previous level

was characterised as procedural), in a similar sense to that used by Mandler (1988). Represen-

tations at this level also lose their ‘bracketing’ and become available for comparison with the
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explicitised versions of other procedures, allowing the relationships between them to become

‘marked and represented internally’ (Karmiloff-Smith, 1992b).

Representations at this level take their place alongside the original procedural and perceptual

representations, which are preserved in order that they can ‘continue to be called for particular

cognitive goals which require speed and automaticity’ (Karmiloff-Smith (1992b), p. 21). The

re-represented versions are then used wherever explicit knowledge is needed, for instance when

components of the procedure are required for incorporation into another procedure.

Examples

In the microdomain of block-balancing (Karmiloff-Smith & Inhelder, 1975), it was found that

children in the intermediate age-group (around 6 years old) were unable to balance blocks other

than those whose weight was evenly distributed about their geometric centre. This is seen as

evidence for the emergence of level-E1 representations. The hypothesis proposes that, through

redescription of their implicit representations, these children have developed a theory-in-action

based on the recognition of this regularity in the data, and that, since learning is now internally

focused, this theory acts top-down and causes children to reject as unbalancable any cases which

do not conform. This task setup also provides evidence for the claim that redescription preserves

earlier, implicit, representations, in that it was possible, through an experimental manipulation,

to force these original behaviours to be exhibited. When children who were acting according

to the geometric-centre theory-in-action were asked to balance the blocks with their eyes closed

they reverted to the proprioceptive strategy which characterised the implicit level and were again

able to balance all blocks.

In the microdomain of the acquisition of possessive pronouns in French (Karmiloff-Smith,

1979b), after achieving an initial mastery in which words such as ‘mes’ (which conveys both plu-

rality and possession) were deployed in a way corresponding to mature usage, children tended

to pass through an intermediate phase in which each of these roles was marked explicitly and

redundantly in the output using separate lexical items (e.g., ‘toutes les miennes’, ‘all’ + ‘the’

+ ‘my’, for the usual ‘mes’ which implies all these functions in adult usage). Karmiloff-Smith

(1979b) proposes that this change reflects a progression from representations of the roles of such

words as a set of representationally adjunct ‘unifunctional homonyms’, learned under a strong

innate one-form–one-function constraint, to a grasp of the plurifunctionality of individual lexi-

cal items. The initial attempt to reconcile plurifunctionality with the earlier constraint leads to

the temporary overmarking of the separate functions.

Explicit overmarking of components is also seen as symptomatic of explicitised knowledge

in the production of American Sign Language (ASL). Children learning ASL as a native language

are seen to pass through a phase in which they mark out morphological components (which adult

learners are unable to individuate) by (unconsciously) making previously fluid signs staccato.

Knowledge in E1 format is also thought to provide the control, flexibility and mobility of

concepts needed for creativity. This knowledge is presumably not represented in either E2 or E3

format. As Boden (1990) notes, ‘since not all aspects of skill are represented at a consciously

accessible level, creative people usually cannot tell us how their novel ideas came about’ (p. 73).

The Explicit-2 Phase and Format

Knowledge in E2 format is said to be explicit and available to conscious access but not verbal-

isable. In most presentations of RR to date, (e.g., Karmiloff-Smith (1992b)), no distinction is

made between E2 and E3 pending further experimental investigation. The presence of E2 in the

RR model is primarily intended not to exclude the possibility of a conscious, non-verbal format.

Whether this format is a necessary precursor to verbal formats is an open question.

Examples

As an example of a case in which knowledge is consciously accessible but not verbalisable,

Karmiloff-Smith (1992b, p. 22) cites the situations in which we are able to draw a diagram of

something which we cannot express verbally. Karmiloff-Smith (1992b, p. 23) notes that ‘[n]o re-
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search has thus far been directly focused on the E2 level : : : most if not all metacognitive studies

focus on verbal report’. An example of empirical work concentrating on this kind of representa-

tion is given by Goldin-Meadow and Alibali (1994). Their work has investigated the emergence

of gestures symptomatic of representation in children performing Piagetian conservation tasks,

before verbal report on those task representations was possible.

The Explicit-3 Phase

At the final level, knowledge is assumed to be accessible both to conscious reflection and to ver-

bal expression. In domains in which intermediate performance is characterised by behavioural

regression, this phase sees the reconciliation through redescription of the I and E1 represen-

tations into a single system capable both of correct performance and activities such as verbal

reflection and analogy which require the later, more systematic representations.

The Explicit-3 Format

Karmiloff-Smith hypothesises that it is at this level that knowledge is recoded into a cross-system

format, which is in addition ‘close enough to natural language for easy translation into statable,

communicable form.’ (Karmiloff-Smith, 1992b, p. 23). She contrasts this idea with Fodor’s

claim that all knowledge is immediately transformed by innately-specified input modules into a

common propositional language of thought.

It is hypothesised that for knowledge to be considered to be at this level, it must be able to

support not only verbal expression but also certain other activities such as the making of explicit

analogies.

Examples

Representations at level E3 are hypothesised to underlie verbal report. For instance in the ex-

periments exploring children’s comprehension of the article system in French (Karmiloff-Smith,

1979a), the oldest group were not only aware of the linguistic system they used to produce correct

performance but were also able to discuss it. In particular they could now use their knowledge

and awareness of the linguistic subsystem concerned in justifying their responses (younger chil-

dren either could not justify these or referred to extralinguistic information), as well as using

their knowledge to produce counterfactual examples to accompany these justifications.

E3 representations are also assumed to underlie activities requiring inter-domain accessibil-

ity of knowledge such as analogy, or those involving conscious exploration of knowledge such as

explicit theory change (Karmiloff-Smith, 1992b, p. 16) and the formulation of real or conceptual

experiments.

Although acknowledging that some knowledge enters the system verbally and is presum-

ably thus stored directly in E3 format, Karmiloff-Smith argues that redescriptive processes are

still relevant to such knowledge, since other knowledge in the same (or other) domain with

which it interacts must be in the same cross-system format before this becomes possible. As

Rutkowska (1993, p. 217) puts it, the E3 level of explicitation ‘is thought to underwrite transla-

tion between different codes or systems of representation, in particular non-linguistic codes and

language’. It is also noted that not all knowledge is redescribed into this format. For instance,

Karmiloff-Smith (1992b) reports that long-range discourse constraints did not become available

to conscious access or verbal expression.

The RR Process and the RR Model

Karmiloff-Smith (1992b) distinguishes between the RR model described above and the RR pro-

cess which is what acts recurrently within the model. According to Karmiloff-Smith, if various

features of the model, such as the ordering of phases, or the timing of behavioural mastery were

shown to be in error, the validity of the process would not thereby be compromised. Evidence

against the process would, on the other hand, constitute a challenge to the whole RR frame-

work. Alternative RR-based models to that shown in figure 2.1 are possible (see Karmiloff-Smith

(1992b, p. 24)), and indeed the current account of the RR model corresponds better to that in

which E1 representations are redescribed into either E2 or E3.
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In summary, representational redescription results in the existence in the mind of a set of

multiple encodings of similar knowledge at different levels of explicitness. That these encodings

form a conservative hierarchy is supported by the evidence presented by Karmiloff-Smith (1992b)

that innate constraints as well as the theories-in-action resulting from explicitation are reflected

in the structure of subsequent conscious explanations. Re-representations also form a hierarchy

according to their accessibility beyond their original context.

2.3 The RRH in Context

The following sections put the RRH in context by comparing it to other theories of represen-

tational change and development, and by trying to establish its position on the key issue of

representation.

2.3.1 The Position of the RRH

The RRH is offered as a speculative theory and a more or less implicit challenge to other theo-

rists to provide mechanistic detail (Karmiloff-Smith, 1992b, 1994). However, as well as setting

out certain constraints on the form of the RR model, Karmiloff-Smith also uses it to argue for

general standpoints on development, discussed below.

Reconciling nativism and empiricism

The hypothesis is also characterised by a strong emphasis on the intention to reconcile nativist

and empiricist theory. Karmiloff-Smith (1992b) thus defines her position in part by contrasting

and relating it to those of both Piaget and Fodor. Briefly, she takes from Piaget a real role for

development although allowing innate constraints more influence (see also section 2.5.1 below).

She is very critical of Fodor’s strong nativism, its attendant prespecified modularisation, and the

notion that input undergoes direct translation into a common Language of Thought. However

she does not reject the idea of modules wholesale, arguing instead that the products of learning

(particularly in some domains such as language) are progressively encapsulated.

Also, in common with current trends in developmental theory, Karmiloff-Smith’s approach

incorporates aspects of both extreme positions in terms of the roles of innate and acquired

knowledge. In Karmiloff-Smith (1992b), her position assumes the presence of innately-specified

domain specific constraints in common with workers such as Spelke (1990) and Gelman (1990).

Causes of representational change

The RRH also involves a distinctive emphasis on endogenous change over exogenous change,

although it does not exclude external influences as the cause of other representational change,

nor denies them some sort of supporting role for RR. For instance, Karmiloff-Smith (1994, p.

738) claims that she has ‘never argued that RR is solely generated endogenously’. She does

consider, however, that RR is always provoked by positive feedback and stability rather than

conflict and error.

In their response to Clark and Karmiloff-Smith (1993), Scutt and O’Hara (1993) contend

that it is the pressure to make knowledge from one domain accessible in another which drives

the process of redescription, rather than any stable representations spontaneously getting re-

described.

Other commentators have also argued that knowledge of external representational systems

is inherent in redescription. Dennett (1993) argues that the ability to use linguistic labels con-

tributes to redescriptive ability and conceptual mobility in general, as does pressure to express

one’s ideas via language. Olson (1994, p. 725) cites examples where knowledge of the written al-

phabet facilitates segmentation of words and phonemes, which he claims supports the idea that

redescription is less a spontaneous appropriation of implicit features of the phonemic system

itself than simply an adaptation of the categories offered by a cultural artifact such as the alpha-

bet. Boden (1990) also notes the role of external notations in facilitating conceptual flexibility.
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Karmiloff-Smith (1994, p. 738) responds that the RRH has never denied that literacy training

during development affects brain configuration. She disputes, however, that literacy is necessary

to awareness of word-boundaries, or for the phonological (as opposed to phonemic) awareness

which sustains activities such as rhyming, as these abilities are found in illiterate adults and

preliterate children respectively.

Conceptuality of early knowledge

There is some debate as to whether initial knowledge is conceptual or non-conceptual. A central

proponent of the idea that knowledge in infancy is conceptual is Mandler (1988). Mandler pro-

poses, that, in contrast with the Piagetian notion of sensorimotor schemas being transformed

into conceptual systems, the two systems run separately and in parallel, with neither being

derivative of the other. Mandler (1988) cites infants’ capacity for imitation, recall of absent

objects and motor recognition as evidence for the conceptual nature of early representations.

Although sympathetic to the evidence Mandler (1988) brings to her argument for the con-

ceptual nature of initial knowledge, Karmiloff-Smith (1992b, pp. 77–78) does not actually make

an explicit commitment to this position, although she is seen as implicitly adhering to a con-

ceptual view of infant knowledge by Rutkowska (1994b) in her acceptance of central structures

as mediators of behaviour. As Mandler (1988) acknowledges, the RRH, in proposing a series

of shifts which link sensorimotor to conceptual knowledge, is not in precise agreement with her

own view. However it does have some commonalities with the process by which Mandler claims

infants encode perceptual information into an accessible system, and Karmiloff-Smith (1992b,

p. 42) regards Mandler’s work as a way of applying the RRH to infancy (see section 2.5.2 below).

The issue of representation in developmental study

The related issue of the representational status of acquired knowledge, (whether conceptual

or non-conceptual, see Kirsh (1991) for instance) is a controversial one in both contemporary

developmental studies (e.g., Smith and Jones (1993), Thelen and Smith (1994)) as well as in

cognitive science (Brooks (1991), van Gelder (1992), Clark and Toribio (1994)). The debate

concerns the extent to which internal representations are present, necessary and explanatory.

The traditional view of internal representation (see the account in Thelen and Smith (1994)

for instance) sets it apart from action and knowledge embedded in specific instances of percep-

tual phenomena. Particularly in the case where these representations are also characterised as

explicit or declarative (to be contrasted with the procedural representations at level I of the RR

framework for instance), this division is regarded by Rutkowska (1993), for instance, as ‘driving

a misplaced wedge between knowledge and processes’ (p. 127).

Smith and Jones (1993)’s argument for a holistic view of cognition cites the variability of

cognition as grounds for rejecting conceptual accounts such as Mandler’s. Their criticism of

the traditionally central role of concepts is based on the claim that adaptiveness is central to

intelligence, and thaand that it is not the stability of (generalised and abstracted) concepts which

explains this adaptiveness but rather their variability and sensitivity to external input. They thus

propose instead a pure-process approach similar to that of van Gelder (1992) in which concepts

retain fluid perceptual cores.

Thelen and Smith (1994) are also critical of the objectivist Piagetian view of development as

directed towards an end-point of transcendent, rational behaviour, and more specifically to the

discussion of representation, reject the discontinuity not only of process but also of format:

Language, logic, consciousness, imagination, and symbolic reasoning are not “above”

the processes of motivated perception, categorization, and action : : : [r]ather they

are part and parcel of these processes, seamless in time and mechanism : : : higher

cognition is developmentally situated.

(Thelen & Smith, 1994, p. 321)
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A slightly different line of anti-representationalist criticism is pursued by Rutkowska. For

instance Rutkowska (1994a) is doubtful that to the extent that robots use any kind of represen-

tation, this is likely to take the form of ‘world-model’-style internal representation. She argues

instead for a situated and action-based view of representation which acts to establish selective

correspondences between subject and environment. According to Rutkowska the agent-specific

bias inherent in notions of internal representation also makes it problematic as an interpretative

tool, as it demarcates and also gives an artificial prominence to what is merely one component

of a complex system in the genesis of organisation, thus limiting attempts to understand how

that organisation is achieved.

An account of higher cognition without representation So what has the anti-representationalist

literature to offer in terms of an account of phenomena such as metacognition and creativity

most commonly assumed to require some form of conceptual or representational explanation?

Thelen and Smith (1994) take up the challenge of accounting for higher cognition within a uni-

fied dynamical systems framework. As a way of integrating the idea of ‘higher’ cognition with

their commitment to the idea of developmental continuity and situatedness they make use of

Lakoff and Johnson (1980)’s idea of body metaphors. Briefly this is the notion that a great many

familiar metaphorical linguistic constructs, which have come to seem quite abstract, originate in

and, more importantly, remain grounded in, bodily experience. Thelen and Smith use the the-

ory of neuronal group selection (TNGS) due to (Edelman, 1992) as a basis for discussing how

this progression might come about: ‘According to the TNGS, it is [the] continual forming and

storing of varied categories that is the foundation for emergent higher-order abstractions.’ (p.

325). More specifically, this process is characterised as a widening of influence as experiences

originating in different developmental histories overlap where they have commonalities. This

leads to something which seems as if it were a superordinate category which has emerged from

these instances, but as Thelen and Smith (1994) reiterate ‘[t]his abstract knowledge : : : is not a

representation however, disconnected from its specific instances.’ (p. 326).

This account also extends to the relationship between cognition and metacognition. Again,

Thelen and Smith stress that ‘higher’ cognitive functioning remains grounded in action, for ex-

ample:

thinking about weaving will involve some of the same patterns of behavioural ac-

tivity as weaving but one set will not be contained within the other nor will one be

raised up to form the other.

(Thelen & Smith, 1994, p. 337)

thus firmly identifying metacognition as a behaviour which self-organises from the real-time

solutions of everyday life.

Mandler (1993) responds to Smith and Jones (1993) by arguing that the instability of per-

ceptual categories has no necessary connection with the idea that perceptions remain at the core

of concepts. She also considers that efficient deployment of perception does not explain the

behaviour of children, who are able to form superordinate categories.

In his response to Brooks (1991), Kirsh (1991) also argues that representation, whether con-

ceptual or non-conceptual (terms which correspond for Kirsh to the E2/3 and E1 levels of the

RR model respectively), is necessary to an account of learning in that abstractions underlie the

progressive transferability of knowledge.

The above account is suggestive, presenting a continuous, unitary mechanism within which

action and metacognition may be accommodated. However it seems that the charge of explana-

tory poverty levelled at such accounts in the realm of higher cognition is not entirely dispelled

by this rather impressionistic story, as its claim to be capturing metacognitive behaviours in any

detail must still be seen as somewhat lacking.
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Representationalism and the RRH It seems that Karmiloff-Smith seeks not to exclude entirely

mechanisms from any particular cognitive scientific paradigm as potential explanatory mecha-

nistic vehicles for the RRH. For instance, although concentrating on connectionist models she

also alludes (in the closing pages of Karmiloff-Smith (1992b)) to the potential of the dynamical

systems framework. Despite this apparent agnosticism, the explanatory metaphors in terms of

which the RRH is presented give an indication of an affiliation with a position in the represen-

tationalism debate.

In particular, earlier accounts of the RRH make explicit use of the computer metaphor in

characterising the interaction of the process of explicitation with representational formats. In

Karmiloff-Smith (1990) for instance, she is explicit in her agreement with Rutkowska’s view that

action is best explained in terms of the concept of a program, specifically in the sense of that term

which conveys something which can both be ‘activated to generate processes’ and, significantly,

can be used as data by other procedures and manipulated. In the context of this analogy, part

of the process of cognitive development becomes that which ‘consists in building the second of

these two functions, by redescribing the procedure at a higher level of abstraction such that the

knowledge is then represented at two different levels.’ (Karmiloff-Smith, 1990, p. 59).

Although the presentation of the RRH given in Karmiloff-Smith (1992b) is more explicitly

in sympathy with aspects of a connectionist approach, terminology remains which is explicitly

computer-metaphoric — the results of redescription are described as being ‘abstractions in a

higher-level language’ (Karmiloff-Smith (1992b), p. 21), and also as data-structures. The use

of such terminology suggests (at least) a commitment to the idea that external representational

formats are an appropriate framework in terms of which to discuss internal representation and

its change.

I suggest that there are two main problems with this. The first is methodological — the RRH

is proposed as an avowedly diachronic hypothesis, conceived of with the intention of emphasis-

ing dynamics and the process of representational change over the representations themselves.

While use of the computer metaphor clearly does not, of itself, exclude useful discussion of pro-

cess, as the above examples show, Karmiloff-Smith tends to concentrate on its static aspects such

as data structures and notations in order to explain representational formats. Even this is prob-

lematic in that, to the extent that programming notations form a sort of continuum, the gaps

between any two instances tend to be larger than seems to suit the explanatory grain of the RRH

at the microdevelopmental level, and differences are often unhelpfully qualitative. In particular,

the analogy to programs does not provide us with any way of elaborating on the progression

from one status to the other in the way that I will argue process models such as connectionist or

dynamical systems models do. This is because, without bringing the human programmer into

the picture, there are few examples in computing of automatic processes (disassemblers being

a notable exception) which act to transform notations into others which are qualitatively more

abstract, and it seems likely that this scarcity of examples may explain this focus on structure.

Although automatic symbolic abstraction procedures exist, such as that used in the lambda cal-

culus, this does not seem to be the kind of radical qualitative transformation envisaged by the

RRH, but corresponds better to the declarative–declarative transformation possible at E3.

While the above indicates that Karmiloff-Smith regards representational constructs as useful

explanatory metaphors, it does not commit her to the idea that representations are necessary.

But in Karmiloff-Smith (1992b)’s discussion of what might constitute criteria for disproof of the

RRH, clearer indications emerge of her affiliation to a particular view on the status of internal

representations are to be found. In her view the process of representational redescription would

lose plausibility if, for instance:

all representations in the mind were of equivalent status, or if totally distinct con-

straints were operative on procedural versus declarative knowledge, rather than each

level involving redescription of the previous one.
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(Karmiloff-Smith, 1992b, p. 25)

This strongly suggests a position which is in opposition to the continuous, same-status view of

Thelen and Smith (1994) for instance, and in a brief review of that work (Karmiloff-Smith &

Johnson, 1994), her position is that while Thelen and Smith are to be congratulated for both

the dynamic approach taken by their work and their rejection of the computer metaphor, their

denial of a ‘special status’ (p. 53) to representations in the brain (as opposed to other physical

sources of control variables) is misguided. Karmiloff-Smith and Johnson’s main justification for

this view is that even if conceptual categories emerge from the interaction of multiple levels of

information, ‘they are still qualitatively different from the perceptual categories.’ (p. 54).

And in turn, Thelen and Smith (1994) criticise the RRH specifically for its apparent com-

mitment to the idea that concepts have a ‘transcendent’ relationship to lower-level thought. Re-

description on this view ‘raises up’ more basic processes to give a layer above real brain activity,

rather than being a product of global activity. This idea, in their view, raises many problems, in-

cluding a suggestion that redescription implies a homunculus, and the problem of how symbolic

thought is to be considered as being represented if not also as distributed patterns of activity

over time within the same dynamic system as the original activity.

Although some presentations of the RRH (e.g., Karmiloff-Smith (1990, p. 77)) do assume

a notion of central processing, in which representations come to be represented explicitly, the

fact that the redescriptive process is postulated to be domain-general need not imply that it

acts centrally. Also, the implementational suggestions (e.g., connectionism) made by Karmiloff-

Smith (1992b) suggest that redescription could be sustained by a locally acting process of self-

organisation similar to that proposed by Thelen and Smith (1994).

In the sense that redescriptions, at whatever level, are part of a single hierarchical system,

there is no implication that higher-level representational formats require a different implemen-

tational substrate.

Another criticism, which is closer to the core of the idea of the RR model, is that although the

idea of hierarchy and the retention of grounding concepts and processes is inherent in the model,

there is no suggestion that higher-concepts remain grounded in these lower ones. As Thelen

and Smith observe, the relationship between higher and lower cognition only flows one way —

lower concepts contribute nothing to higher concepts once formed and are mainly preserved for

situations requiring efficient performance.

Despite the obvious conflicts between the RR model and non-representational accounts of

development, it seems that particularly in terms of implementations and potential mechanisms

the two approaches could be reconciled in terms of dynamic self-organising environmentally

grounded knowledge programs, in the way Rutkowska (1994b) advocates. The reformulations

of key concepts, such as ‘theory’ in terms of process, by Clark (1993a), also go some way towards

an RR model which is distanced from the idea (which Clark (1993a, p. 81) finds too rationalistic)

of RR as involving reflection on previously acquired knowledge. These reformulations also

constitute a way of operationalising notions such as explicitness, and form some of the central

working assumptions in this project.

2.4 The Scope of the RRH

This section surveys the main issues raised in debates concerning the applicability of the RRH,

and in doing so tries to map out where its predictive boundaries might lie.

2.4.1 Ontogenetic boundaries

The empirical work out of which the RRH arises has been conducted primarily with subjects

in middle-childhood (specifically between the ages of 4 and 11, see Karmiloff-Smith (1990),

Karmiloff-Smith and Inhelder (1975), Karmiloff-Smith (1979b) for instance). However Karmiloff-

Smith (1992b) also attempts to link infancy into the RR framework, and further claims that the
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hypothesis can be used to account for representational change in adult learning — albeit only in

certain domains, specifically those (unlike language in particular) in which knowledge has not

become encapsulated through the process of progressive modularisation, which is assumed to

accompany redescription. I consider each of these in turn.

Infancy

As Karmiloff-Smith acknowledges, the RRH stems from work on subjects in middle childhood

and initially made no attempt to take infancy results into account. Karmiloff-Smith (1992b)

however, cites the volume of recent work on infancy as a primary motivation for including it

in discussion of the RRH. According to Karmiloff-Smith, the main consequences of this new

attempt to integrate infancy are to be seen in the epistemological framework, which this work

tries to establish, of a reconciliation between nativism and constructivism, and more specifically

in the highlighting of domain-specific constraints on development.

Despite the new prominence given to domain-specific (and usually innate) constraints in the

presentation of the RRH in Karmiloff-Smith (1992b), it is also claimed that ‘[a]s a model of

representational change, it would stand unaltered even if it turned out that there were no in-

nate predispositions or domain-specific constraints on development’ (p. 165). Karmiloff-Smith’s

primary interest in infancy in the context of the RRH is the representational status of infant

knowledge. It is claimed that, in the framework of the RRH, it would probably be inconsistent

to regard this knowledge as a ‘theory’ as, for instance, Spelke does, since the hypothesis requires

that knowledge be represented in at least E1 format before it has this status. Infant behaviours

on the other hand often seem to require no more than representation in I-level format. Specifi-

cally, Karmiloff-Smith prefers to characterise infant knowledge as procedurally represented (see

Rutkowska (1993)), in the sense that, while not seeking to deny that infant knowledge is both

rich and coherently organised, she also contends that it is ‘first used by the infant to respond

appropriately to external stimuli’ (Karmiloff-Smith (1992b), p. 78). This gives it a procedural

representational status and suggests its integration into the RR model at the I level.

In terms of the RR model, Rutkowska concurs with this, in that she does not consider the

conscious explicit formats (E2 and E3) to have particular relevance to an account of infancy, be-

lieving instead that ‘[o]verall, the three-phase model 1 current I and E1-levels appear to provide

an appropriate space within which to locate the intrasystem representational changes needed to

account for infancy.’(p. 217), and giving examples of how the three-phase model seems to corre-

spond to the recurring three levels of infant performance. The idea of a three-phase progression

in infant behaviour is also central to the work of Mounoud (e.g., Mounoud (1982)). Rutkowska

(1994b) is more critical of Karmiloff-Smith, referring more specifically to the problems inher-

ent in Karmiloff-Smith’s assumption that infant knowledge (both innate constraints as well as

that arising through learning) is characterised only by the implicit format. Rutkowska (1994b)

is doubtful about this mapping, commenting that ‘[s]ince level-I representations are limited to

mediating the context-bound input-output relations that underlie behavioural mastery at least

the E1 level might be expected.’ (p. 727) since properties such as systematicity and predictability

would seem to be necessary to a characterisation of knowledge at this level, and in these, the

(minimal) notion of explicitness which E1 would seem to be intended to embody.

The difficulties encountered by Karmiloff-Smith in mapping the formats of the RR model

(including Mandler (1988)’s notion of an image-schematic format which seems to lie between the

implicit and E1 formats) onto infant knowledge, are cited by Rutkowska (1994b) as grounds for

rejecting not only, as does Karmiloff-Smith, that infants have theories, but also that their knowl-

edge is conceptual in any sense usually employed in philosophy. Rutkowska suggests instead

that by viewing the infant as a situated agent and regarding any central processing as not orien-

tated around the fixation of propositional beliefs but the flexible coordination of perceptual and

1An earlier formulation of RR model in which representations progressed through ‘procedural’, ‘meta-procedural’

and ‘conceptual’ phases (see Karmiloff-Smith (1984) for instance), and which Rutkowska (1993) considers to corre-

spond more closely with phases in infant performance.
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behavioural components in a supporting environment.

Other issues also remain to be addressed. For instance what precludes infants from redescrib-

ing this knowledge beyond level-I in the way that older children do? Rutkowska (1993) points

out that the path to initial mastery is not addressed. Karmiloff-Smith also seems to say nothing

about the timing of any initial redescription, or about the possible age of onset of the domain-

general predisposition to redescribe or what provokes this.

The integration of infancy into the RR framework, although providing epistemological

grounding and evidence for the conservativeness of the redescriptive process, is still a partial

one in the account provided by Karmiloff-Smith (1992b), in terms of the questions of timing and

formats that it leaves open. It seems that infancy studies still have more to offer the RRH than

it has to offer in return.

Adulthood

The RRH makes two main claims regarding adult learning. The first is that redescriptive effects,

in particular conscious reflection, are associated with the development of scientific theories and

exploration of analogy (Karmiloff-Smith & Inhelder, 1975). Although these activities tend to

be restricted to adults (and older children) it is hypothesised that they are ‘possible only on the

basis of prior representational redescription’ (Karmiloff-Smith, 1992b, p. 16).

The second claim is that redescription can apply to earlier, non-conscious parts of the adult

learning process as it does in children. As evidence for this Karmiloff-Smith (1990) notes that the

phonological representations of newly literate adults are subject to sequential constraints which

suggest that a phase of redescription has occurred. She goes on to infer that ‘the [RR] process

involves a phase in a reiterated cycle of representational change, and not a developmental stage

only to be found in children.’ (Karmiloff-Smith, 1990, p. 78).

The main constraint given on the redescription of adult learning is the extent to which the

domain has become modularised, as such knowledge is no longer available for redescription. It

is considered likely that language is such a domain. For instance, Karmiloff-Smith (1992b, p. 49)

reports that deaf parents learning American Sign Language as adults do not go on, as children

do, to analyse the signs’ morphological structure. Despite the E1-level redescription in the case

of the newly literate adults above, there is no indication given that their representations progress

beyond this stage and become consciously accessible or verbalisable.

Further investigation is clearly necessary to establish the constraints on this progressive en-

capsulation across domains, as well as that of the details of conscious conceptual exploration

and its place in the RRH.

Micro- and macro-developmental change

The RRH is presented both as a theory of development in which the characteristic phases and

representational changes occur over the course of as much as several years, as well as one of task-

learning in which a similar pattern may emerge over the course of a single experimental session

(Karmiloff-Smith, 1979b, 1992b). Karmiloff-Smith (1979b) relates the two levels (as observed in

experiments on plurifunctionality of linguistic forms and map drawing) thus:

In both cases, an initial phase of superficially complex forms is followed by a phase

during which children indicate by concrete external markers each piece of informa-

tion they wish to convey.

(Karmiloff-Smith, 1979b, p. 114)

So what is the ‘default’ level of granularity at which the RRH has explanatory power, and

how are the two levels of granularity related? Karmiloff-Smith (1992b) suggests that the macro-

developmental level is the default level of explanation of the RRH:

in previous chapters : : : it was established that representational change does in-

deed occur macrodevelopmentally. Here I address microdevelopmental change, i.e.,

change that occurs within the confines of an experimental session.
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(Karmiloff-Smith, 1992b, p. 148)

while the following suggests that microdevelopmental change has something of a secondary role:

If, as I argue, representational change is pervasive in human development, then there

is no a priori reason to limit it to the macrodevelopmental time scale. It should be

possible to establish its occurrence also in the microdevelopmental timescale.

But although Karmiloff-Smith stresses the similarity of the processes at work on these differ-

ent timescales, there is little indication of how they are related — specifically for us as computa-

tional modellers, how microlevel changes accumulate, contribute to and bring about macrolevel

changes. The implication that RR has a self-similar microstructure, or simply that it can provide

explanations of phenomena at different levels, according to the domain, remains an open issue.

In the map-annotation task described in Karmiloff-Smith (1979b, 1992b), the introduction

of redundant information into subjects’ notation is explained as the explicit marking of infor-

mation implicit in the original, efficient, system.

So, despite the overall similarity, can we pick out significant differences between the form

of the RR model at the micro- and macro-levels? The most obvious difference seems to lie in

the proposed level of accessibility of the final phase of RR. In the macro-level model this level

is explicitly designated E3 and associated both with verbal expression and conscious awareness.

Although at the microlevel the final RR phase is seen to follow a similar pattern of reconciliation

between initial implicit and subsequent explicitised knowledge formats, this is not associated

with a specific level or type of access.

Another difference is that the solution of the task must be well within the subjects’ compe-

tence if redescription is to be observed over the course of a task (Karmiloff-Smith takes this as

providing evidence for the necessity of prior behavioural mastery for redescription).

2.4.2 Phylogenetic boundaries

Karmiloff-Smith’s attitude towards possible phylogenetic breakpoints in RR has also undergone

some changes during the evolution of the RRH. There are repeated suggestions that redescrip-

tion is a distinctive feature of human cognition and, if not, is at least likely to be far less sponta-

neous and widespread in other animals (Karmiloff-Smith, 1979b, 1990, 1992b)

However Karmiloff-Smith (1992b, p. 16) also adds that she considers explicit theory change

and the other conscious activities which characterise level E3, to be ‘more obviously restricted to

the human species’.

But although there is a difference in general competence between even chimpanzees and

children after quite an early age, there is some evidence against a sharp phylogenetic breakpoint

in capabilities associated with redescription and metacognition in general.

Some controversial evidence from recent studies with chimp and gorilla sign language (e.g.,

Patterson, Patterson, and Brentari (1987)) suggest that apes are capable of puns and ‘rhymes’ —

activities which would seem to require both access to component morphemes, and which sug-

gest something of the kind of spontaneous tendency to treat one’s acquired linguistic knowledge

as a system that the RRH demands. Boysen, Berntson, Shreyer, and Hannan (1995) found that

chimpanzees experienced in counting small arrays and comprehension of number symbols spon-

taneously displayed gestures such as pointing and rearranging items, indicating the structure of

their representations of number in a way similar to that observed in young children.

It seems likely that the enculturation of apes, specifically the teaching of symbolic systems

of communication (e.g., Savage-Rumbaugh, Murphy, Sevcik, et al. (1993), Boysen and Berntson

(1995), Boysen et al. (1995)), affects their tendency or ability to form structural, transportable

conceptualisations whose components they can then manipulate. For instance, Boysen and
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Berntson (1995) found that chimpanzees who had been trained to use Arabic number sym-

bols were able to overcome perceptual-motivational cues in a task requiring them to choose the

smaller of two piles of sweets only when numerals were used instead of the sweets themselves.

Karmiloff-Smith (1983) speculates that such systems may provide them with the necessary

abstract code, or the possibility of forming multiple representations. This has implications for

the issue of the role of external notations for redescription in humans discussed above, and also

suggests that redescription, or its ingredients, may well be as domain-specific in non-human

animals as they are in humans.

Donald (1994) suggests an explicit role for the succession of increasingly explicit formats of

RR as phylogenetic intermediaries — although arguably in characterising human cognition in

terms of E3 representations he is omitting the earlier, more procedural levels of representations

in human learning.

Although the place of animal cognition in the overall picture of representational redescrip-

tion remains to be determined, it seems probable that such a tendency to work on one’s own

knowledge is significantly more pronounced in humans, even if it is present in non-human ani-

mals. However it would be interesting to investigate whether a similar pattern of redescription-

like phases was at work in non-human primates’ learning of language or number as discussed

for the case of infants in section 2.4.1 above.

2.5 The RRH and other theories of the emergence of explicit knowledge

2.5.1 Piaget

Although Piaget’s theory of qualitative developmental change and the emergence of abstract

thought has broad similarities with the RRH, there are important differences which Karmiloff-

Smith stresses. Piaget’s is a stage theory (see Piaget (1953)), proposing across-the-board change,

whereas the RRH posits domain-specific phases of redescription.

Karmiloff-Smith is in support of the epigenetic perspective on knowledge and development,

but believes that innate constraints play an important role in guiding development and in this

her viewpoint differs strongly from Piaget’s.

The endogenous nature of change in the RRH also differentiates it from Piagetian theory.

For Piaget, qualitative change, via the process of equilibration, occurs in response to a state of

disequilibrium caused by external information which is beyond the scope of the system as it

stands. While not denying a role to externally driven change, the RR model focuses on change

which comes about after a period of comparative stability has been reached.

2.5.2 Mandler

Mandler (1988, 1992) gives an account of early knowledge in which a process of perceptual anal-

ysis acts to render perceptions into first an image-schematic format and then subsequently into

linguistic form. Mandler (1992, p. 589) refers to this process as a simple version of the redescrip-

tion of procedural information found in the RRH, and an obvious parallel with the RRH can

be seen in this progression through formats. Karmiloff-Smith (1992b) relates Mandler’s work to

the RRH thus:

The redescription of perceptual primitives into image-schematic representations and

of the latter into language, indicates how the RR model : : : can be applied to very

early infancy. I have stressed the fact that representational redescription can occur

outside input–output relations, Mandler extends the RR model to on-line process-

ing, suggesting that redescription also takes place as the child is actively engaged

in analyzing perceptual input and redescribing it into the more accessible format of

image schemas

(Karmiloff-Smith, 1992b, p. 42)
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Mandler also has it that some detailed information is lost through perceptual analysis, as in

the RR process, and that it is based on an innately specified analytical mechanism, which may

however act on innate or acquired knowledge.

2.5.3 Halford

Halford (1993) describes a theory of cognitive development based on representations (mental

models) which increase in the dimensionality of the relations they can capture over time.

Halford also differentiates between implicit and explicit representations on the basis of cog-

nitive accessibility. He suggests that implicit representations in the form of contingencies are

recoded into explicit condition–action pairings, whose components are cognitively accessible.

This recoding involves a process of abduction, i.e., of forming a hypothesis about a contingency

through reflection upon it.

Halford (1993, p. 50) is also in agreement with Karmiloff-Smith that the ability to transfer

knowledge to isomorphic tasks and to reorganise the relational structure of domains in order to

relate them to other domains are requirements for a definition of understanding.

2.5.4 Relating the RRH to a general associative–relational divide

Several workers in cognitive science have related the RRH to a more general account of implicit

and explicit thought, which aligns them with associative and relational learning and representa-

tion. For instance, Philips, Halford, and Wilson (submitted), working in a framework similar to

that of Halford (1993), link implicit to associative and explicit to relational knowledge respec-

tively, on the basis that the latter is omnidirectional, i.e., any component is accessible via any

other and the roles of these components are individuable.

Thornton (1995) makes a similar alignment. According to his account, implicit knowledge

is that which is embodied in relations (as opposed to being manifest in the statistics of the input

data), and the work of an explicitation process is to bring such knowledge within the grasp of

an associative learning mechanism.

Both of these formulations differ from the RRH as presented by Karmiloff-Smith in being

purely domain-general, in common with many machine learning algorithms, (although in the

implementational work of Thornton (1995) (see chapter 3) task-specific biasing is used to scaf-

fold learning).

2.6 Domain-specific differences and the RR model

Despite the emphasis on domain-specificity in presentations of the RRH such as Karmiloff-

Smith (1992b), the RR process is hypothesised to be domain general. However some of the

difficulty of characterising RR in general derives from the fact that it manifests itself in differing

ways in different domains.

2.6.1 Behavioural marking of E1 representations

In lexical morphology (Karmiloff-Smith, 1979a, 1979b), a U-shaped behavioural curve in con-

junction with overmarking is used to diagnose redescription to E1 format. In the block balancing

task of Karmiloff-Smith and Inhelder (1975), the emergence of explicit representations is also

marked by a decline in performance as well as systematic errors reflecting a theory-in-action.

In the domains of counting and music (Karmiloff-Smith, 1992b) however, no such macro-

developmental U-shaped curves or external behavioural marking is reported. Karmiloff-Smith

acknowledges that behavioural marking is not necessary to a diagnosis of redescription.
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2.6.2 Conservation of earlier representations and procedures

Karmiloff-Smith stresses the fact that redescription is not a drive for economy (Karmiloff-Smith,

1992b, p. 23), rejecting analogies with data compression or garbage collection2 — representa-

tions are, rather, conservative and hierarchical.

Part of the evidence for this is provided by the ability to elicit an earlier (and more successful)

strategy from children in the block balancing task. The RRH has it that the level-I procedures

(here balancing blocks using proprioceptive feedback) are preserved for use in efficient produc-

tion.

But is this always the case and does it apply to representations at the higher, explicit levels?

It would seem rather odd to categorise the presence or absence of an effect which is proposed as

central to RR as a domain-specific difference.

For instance, in the domain of lexical morphology, it does not seem to be the case that the

earlier unifunctional homonyms are preserved as such, although the phonological procedures to

produce the words may be. The idea of a change in status here seems to imply that these are reap-

propriated more radically. It would be interesting to see whether an experimental manipulation

exists which would provoke a return to the earlier stage in older children or adults.

From the evidence surveyed in Karmiloff-Smith (1992b) for instance, it is also difficult to

see that aspects of E1 or E2 representations are preserved in the same way in the redescribed

E3 format. In the block-balancing task, the I-level theory in action is reflected in subsequent

representations. If this effect were observed across a number of domains it might violate the

idea that RR is conservative and hierarchical at all levels.

2.6.3 Extent of redescription

As Karmiloff-Smith acknowledges, redescription need not reach level E2/3. Karmiloff-Smith

(1979b, p. 97) also reports a case in which the behavioural symptoms of the three phases are

observed but without verbal or conscious access having been achieved. Karmiloff-Smith (1994)

acknowledges Scholnick (1994)’s observation that the RR model lacks a principled way of dis-

criminating between domains which do or do not become modularised. Karmiloff-Smith sug-

gests that these differences may be due to competition for computational resources.

2.7 Other responses to the RRH

This section surveys general responses to the RRH itself. Responses to implementational pro-

posals made by Karmiloff-Smith and her collaborators (see Clark and Karmiloff-Smith (1993),

Karmiloff-Smith (1992b, 1992c)) are discussed in chapter 3 below.

2.7.1 Form of the RR model

Issues raised in this area can be divided into two main categories. Commentators who lack

a basic sympathy with the idea of representational format which the RRH puts forward have

tended to direct their criticisms towards the nature of formats in the RRH, while others focus

more on issues affecting the structure of the model at a more macroscopic level, such as the

number and sequencing of formats.

Number of representational formats

Carassa and Tirassa (1994) put forward the general concern that proposing many represen-

tational formats entails also proposing a large amount of detecting and decoding machinery.

Goldin-Meadow and Alibali (1994) provide experimental support for Karmiloff-Smith’s four-

format story. Evidence for representations at Karmiloff-Smith’s level E2 comes from work in

which conscious awareness is revealed through gesture before verbal access has been gained.

2the automatic periodic removal of data-structures no longer needed by a computer program in order to save

space
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Many levels vs. simple implicit–explicit distinction

de Gelder (1994) uses evidence from the domain of language to argue that implicit and explicit

systems can dissociate. In Donald’s evolutionary account, (Donald, 1994), the two paths which

he claims have evolved for access to implicit memory seem to take knowledge directly from I to

(either or both of the) E2 and E3 formats, with E1 having a role perhaps only as a phylogenetic

intermediary in the development of fully explicit representations in humans.

Sequencing of representational formats

de Gelder and Carassa and Tirassa are worried about the kind of ‘temporal logic’ assumed to

link implicit to explicit representations in the RRH. Carassa and Tirassa (1994) make the point

that the fact that procedures are learnt first need not mean that initial knowledge is procedurally

represented, and that some knowledge starts off in declarative form, a point which Karmiloff-

Smith (1992b) acknowledges.

Goldin-Meadow and Alibali (1994) claim that studies of gesture suggest that accessibility

(and indeed redescription) may require not mastery as the RRH proposes, but merely stability.

According to the account of the conditions under which the RR model might be refuted as set

out by Karmiloff-Smith (1992b) (pp. 23–25), this has implications for the validity of the model.

Peterson (1993) examines and rejects the RRH as a potential theory of general re-representation,

explicitly avoiding discussion of its status as a theory of cognitive development (p. 3). In partic-

ular he is concerned with the kind of declarative–declarative transformations of problem formu-

lations that characterise conscious adult problem solving. He argues that in the examples given,

re-representations of the problem domain lead not to ‘more succinct statements about a domain’

(p. 3) as the RRH might suggest but to improvements in procedural performance. I would argue

that there is nothing in the RRH to suggest that redescription cannot result in improvements in

performance; it is simply that the need to make such improvements does not provoke redescrip-

tion. Also, Karmiloff-Smith claims that explicit problem transformation, for instance using

analogy, is facilitated by the products of previous redescription, and involves manipulations on

declarative representations, just as Peterson suggests.

Sequencing of accessibility

Scholnick (1994) considers that the processes which must underlie the initial implicit–explicit

transition differ radically from those which transform the resulting explicit representations into

verbalisable form.

2.7.2 Nature of representational formats

Campbell (1994), Rutkowska (1994b) and Vinter and Perruchet (1994) are all unhappy about the

epistemological status of representational format in the RRH. For Vinter and Perruchet (1994),

even initial mastery may well have to be underlain by explicit knowledge, since there is evidence

to suggest that implicit knowledge may not contain embedded knowledge of rules for later reap-

propriation and explicitation. Rutkowska (1994b) is unhappy about the suggestion that implicit

knowledge could be conceptual, a claim made more explicitly by Mandler (1988), while Camp-

bell (1994) argues that formats cannot be viewed as encodings in a formal sense since this leads

to a lack of basic grounding for the representations.

Another set of commentators focus on the idea that representational formats are insufficient

in themselves to explain increased accessibility. Olson (1994) stresses the importance of explicit

external categories in the explicitation process. Boden (1990) highlights the role of language, in-

cluding technical forms such as music notation, in supporting the passage from domain-specific

structure to conscious access.

For Losonsky (1994), a ‘procedural representation’ relies on the ordered and integrated de-

ployment of both internal and external representations via some sort of feedback loop.

Carassa and Tirassa (1994) also claim that it is the content of the representations which

determines their accessibility rather than anything in their format, and further that RR seems to



24 Chapter 2. The Representational Redescription Hypothesis

deal with how knowledge contents are used rather than how they are represented.

Formats and verbalisability

The RRH claims that representations must be redescribed into E3 format before they become

accessible to both consciousness and verbal expression. This format is also seen as facilitating

transferability of knowledge outside the original domain.

This link is criticised by Carassa and Tirassa (1994), who point out that even Language

of Thought theories do not require knowledge to be represented in a form similar to natural

language in any respect but constituency, and that this in itself is sufficient for interdomain

transfer, and in a way which does not needlessly exclude members of most other species.

For Donald (1994), the RRH is wrong in proposing separate formats for different kinds of

explicit access — for him, the important thing about a format is that it supports explicit access

whether verbal or non-verbal.

Origins of knowledge and redescription

Bloom and Wynn (1994) are concerned that whereas, as they see it, the real challenge to any

constructivist developmental theory is to explain how knowledge arises from development, the

RRH concentrates on how knowledge which is already in the mind is redescribed. Campbell

(1994) also worries that RR cannot introduce new knowledge into the system.

Several commentators raise similar issues in relation to the ‘takeoff’ of the RR process itself.

For instance, Olson (1994) considers that RR must be externally driven since the individuation of

components it brings about must rely on the provision of external explicit categories for instance

via cultural artifacts. Scholnick (1994) makes a similar point in attributing a socio-cultural origin

to redescriptive ‘skills’ and knowledge to input.

Grounding of representations

Campbell (1994) raises doubts about the epistemological status of representations; if RR for-

mats are ‘encodings’, then these need to be grounded and I-level representations are not the

‘foundational encodings’ necessary.

2.7.3 Motivations for redescription

The E1–E2/3 transition

Some commentators are specifically concerned with what motivates the final transition from

phase 2 to phase 3 (formats E1 to E2/3) in micro-domains which exhibit U-shaped curves. For

Dennett (1993), it is the pressure to verbalise which drives all RR, while for Scutt and O’Hara

(1993), it is the continuing external pressure to perform which drives the learner to regain per-

formance, rather than internally driven processes.

RRH as a general theory of re-representation

Peterson (1993) takes a problem-orientated view of re-description. In his example problems

the redescriptions proposed are closer to the shifts in viewpoint discussed in the knowledge-

representation literature (for instance the re-representation of the ‘missionaries and cannibals’

problem as a graph of legal states and transitions) and seem to be in direct contrast with the

progressive procedural–declarative redescription of the RRH.

This fact is at the heart of Peterson’s criticisms of the RRH; for him the account of procedural–

declarative representations is too narrow to capture declarative–declarative problem re-representations

and is thus incomplete as a theory of representational redescription in general.

He bases his comparisons on a characterisation of Karmiloff-Smith’s position in terms of

the following five issues: the existence of ontogenetic and phylogenetic breakpoints, sponta-

neous endogenously driven change, abstraction, procedural-to-declarative transformations and

implicit-to-explicit transformations. He then tries to show that these characteristics do not ap-

ply to all cases where representations are redescribed, by comparing the re-representations from

the knowledge-representation literature with the list of characteristics. The redescription of a
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game called number scrabble as a game of noughts and crosses over a magic square, and the Ro-

man and Arabic numeral systems are presented as examples and Peterson makes the following

analysis of the applicability of his list of characteristics. Although he is uncertain as to whether

such redescriptions can be termed abstractions, his criticisms focus on the nature of the trans-

formations involved. In number scrabble, he argues, the transformation is not from procedural

to declarative, but rather from procedural to procedural, the virtues of the re-representation be-

ing to reduce the load on working memory rather than to increase the expressive power over a

domain, while in the case of numerals, the point of re-representation is to facilitate arithmetic

procedures. In terms of explicitation, he argues that the transformations involved in number

scrabble are from explicit to implicit since knowledge becomes incorporated in the diagram it-

self, while in the numeral case no previously implicit knowledge is rendered explicit by the act

of re-representation.

Although Peterson seems to focus his criticisms on the initial implicit–explicit level of re-

description, it is arguable that the examples he gives would be characterised by the RRH as

involving purely procedural–declarative transitions as he implies.

The notion of re-representation he employs seems to be more in keeping with that which

might occur at the E-2/3 level, at which knowledge is seen as explicitly represented and trans-

ferable between tasks. There is no suggestion that the RRH seeks to exclude the possibility of

declarative–declarative redescriptions especially at this high level.

It is also arguable that the example in which the Arabic and Roman numeral systems are

compared is actually an example of redescription at all, although both are systems for repre-

senting the same data. It may not even qualify as an example of re-representation since this

would seem to imply that one system was devised as a transformation of the other rather than

both having emerged independently from the need to represent large quantities.

Peterson also stresses the ‘point’ of redescription in these examples (‘to facilitate arithmetic’,

‘to reduce cognitive workload’ for instance), seeming to suggest that such goals place his exam-

ple problems outside the space described by the RRH. However there seems no suggestion that

such facilitation is outside the predictive scope of the RRH, even if some of the declarative repre-

sentations formed may cause temporary declines in performance. Indeed in Rutkowska (1993)’s

view ‘[t]he goal of this procedural reorganisation is greater control over the environment and ac-

tion on it’ with representations seen as mediating procedure and representational redescription

as a means of developing the ability to use knowledge to anticipate and form pre-conditions for

actions.

Peterson’s work may be best seen as an examination of the relationships which exist between

differing representations of the same problem, and interesting questions remain as to how ‘re-

description’ in the sense he intends it may be linked to the term as used by Karmiloff-Smith —

in particular, such redescriptions may well be seen as characteristic of the RRH at E3. However

it is not obvious that he is comparing these two formulations of redescription at a similar level.

2.8 Modelling the RRH

Although the enterprise of constructing a computational model of the RRH is the central focus

of this thesis, it is appropriate to make some general comments here about the motivations for

such an undertaking and the possible mechanisms for the RRH.

The speculative nature of the RRH

According to Karmiloff-Smith (1994) the RRH is formulated as a speculative theory in the an-

ticipation that precise mechanisms will be provided by others with expertise in modelling.

Karmiloff-Smith (1992b) cites Klahr’s distinction between soft-core and hard-core approaches

to modelling development. This distinction is basically that between models which focus on the

general processes at work or on specific mechanisms. Karmiloff-Smith is eager to emphasise the
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complementary nature of these approaches and defends soft-core approaches such as the RRH

on the basis that they avoid premature commitment to artificial or terminological separations

between processes which are in fact fluid or interactive. In her view soft-core approaches thus

support a better general conception of processes.

Motivations for the computational modelling of development

General motivations for constructing computational models for developmental phenomena in-

clude the fact that, as Klahr (1995) argues, irrespective of paradigm, computational models (in

particular, so-called process models) offer theorists a chance to examine their hypotheses under

dynamic conditions. This process may then expose weaknesses which were not apparent from

the original static formulations of a particular theory.

Rutkowska (1993, pp. 3–6) however is skeptical of the intrinsic value of ad hoc translations

of developmental principles into programs in traditional AI languages such as LISP and Prolog,

and cautions modellers to focus instead on models of proven worth which ‘illustrate robust ideas

from [cognitive science] about the way computation might be organized’ (p. 4).

Exploring constraints on redescription

Another motivation for modelling cited by Karmiloff-Smith (1992b) is to try to discover the

constraints on the process of redescription itself. This might in turn provide answers to questions

such as the status of redescription which does not lead to verbalisability for instance (Karmiloff-

Smith, 1992b, p. 188), or redescription in adults versus that occurring during development. It

might also provide explanations for why certain features of a domain are redescribed and in

what order this must occur.

Other issues, such as the role of domain-specific and domain-general constraints, the default

level of RR, the relationship between explicit and accessible representations, and the roles of

external input or continued on-line processing, are amongst those which a computational model

might help to clarify. On the other hand it seems less likely that computational modelling as it

stands could tell us so much about such comparative questions.

Representational redescription and connectionism

Connectionism in particular has been linked with the RRH (Clark & Karmiloff-Smith, 1993;

Karmiloff-Smith, 1992b, 1992c) on the basis that, of current computational modelling paradigms,

it seems ‘closest to the spirit of epigenesis and constructivism’ (Karmiloff-Smith, 1992b, p. 176),

and secondly that ‘a number of features of the RR model : : : map interestingly onto features

of recent connectionist simulations’ (Karmiloff-Smith, 1992b, p. 176). In particular, the path

to behavioural mastery seems to correspond well to the gradual adjunction of representations

leading to stability which is characteristic of learning using gradient-descent methods such as

backpropagation.

Computational models of development, the RRH, and connectionism in particular will be

the focus of the next chapter.

2.9 Summary

In this chapter I have introduced the representational redescription hypothesis and described

the RR model in detail, presenting examples of each phase and its associated representational

format. The hypothesis was put into context through comparison with other developmental

theories, in particular those of Piaget, Mandler, and Halford. The applicability of the hypothesis

to infants, adults and non-human animals was discussed.

In terms of adherence to the idea of strong internal representations, it was argued that there

was a conflict between Karmiloff-Smith’s talk of dynamical systems and the use of computer-

metaphoric terminology in the presentation of the RRH. Although representation is considered
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necessary to the RR model, it was argued that in the implementational suggestions given by

Karmiloff-Smith (1992b), the suggestions of Rutkowska (1993, 1994b), and the reformulation of

the RRH along connectionist lines by Clark (1993a), certain aspects of the dynamical systems

perspective might be reconciled with the RRH, in particular the notion of different representa-

tional format as gradual increments in multiple usability.

The predictive scope, although touching on infancy and adulthood, was still found to centre

on middle-childhood, while suggestions that redescriptive processes occur in non-human ani-

mals are still very much open to debate.

Criticisms of the hypothesis centre on the form of the RR model, in particular its discontinu-

ous and conceptual representational formats, and the strain evident in the attempt to apply it to

infancy. The RR process itself is less critically received (perhaps partially because it is described

in much less detail).

Motivations for constructing a computational model of the RRH include providing, and

testing dynamically, candidate mechanisms for the RR process or model, and thereby also in-

vestigating constraints on the model, such as the timing of redescription and domain-specific

differences.
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Connectionism and Developmental Modelling

3.1 Introduction

This chapter surveys computational models of development, comparing connectionist models,

the focus, with symbolic and dynamical systems approaches. The second half of the chapter

reviews requirements and previous suggestions for a computational model of the RRH, dis-

cussing related connectionist issues, in particular systematicity, explicitness and task transfer,

which such an enterprise raises. Practical investigations into modelling the RRH using resource-

phased connectionist models are reported in chapters 5–7.

3.2 Computational models of development

As discussed in the closing sections of chapter 2, computational modelling has been advocated

for developmental study for several central reasons. Klahr (1995) notes two clarifying roles.

Firstly, a given developmental theory may be ‘sufficiently complex that only a computational

model will enable one to derive predictions from it’ (p. 358), and secondly, in comparison to ver-

bally expressed theories in particular, such models afford testable, explicit formulations whose

assumptions are evident, and may thus be compared against each other in detail (although it

could be argued that certain aspects of connectionist models, for instance the opaque nature

of the products of learning, still lead to problems of interpretation, albeit in a different way to

those arising from verbal theories such as Piaget’s).

The 1990s has seen the main rise to prominence of both developmental modelling and com-

putational approaches to developmental psychology (e.g., Rutkowska (1993), Karmiloff-Smith

(1992b)). For instance, Boden (1988, p. 213) notes the comparative rarity of both these enter-

prises at the time of writing. In his chronology of computational models of development, Klahr

(1995) notes that despite the appearance in the early 1970s of production-systems models of per-

formance at distinct developmental stages, process models (here in the form of self-modifying

production systems such as Wallace, Klahr, and Bluff (1987)) did not appear until the early

1980s.

Developmental models may be divided along essentially similar lines to computational mod-

els of cognition in general. Klahr (1995) distinguishes between production-system, connection-

ist, and ad hoc models (i.e., those intended to capture the fine-grain behaviour in a particular do-

main or task without commitment to a particular cognitive architecture or modelling paradigm).

The following sections review and compare these approaches as well as models conceived of in

the dynamical systems paradigm.
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3.2.1 Symbolic Models

Although many symbolic models are based on production systems architectures (discussed be-

low), other styles of symbolic model also exist. Klahr (1995) discusses what he calls ad hoc

models, in the sense that they are not constructed within a specific framework such as a produc-

tion system, although they may give a finer-grained fit to the data, for instance the Structure-

Mapping Engine of Gentner et al. (1995). Schmidt and Ling investigate the use of traditional

machine learning techniques such as discrimination trees for modelling development in the do-

main of the acquisition of the English past tense (Ling, 1994) and the balance-scale task (Schmidt

& Ling, forthcoming).

Discovery learning models

Although not explicitly intended as developmental models, discovery learning models are a class

of symbolic models with particular relevance to some of the ideas of the RRH. Examples in-

clude BACON (Langley, Bradshaw, & Simon, 1983), a data-driven model of scientific discovery;

COPYCAT (Mitchell & Hofstadter, 1990), which applied analogical mappings in a domain

of simple letter strings; AM (Lenat, 1982), and EURISKO (Lenat, 1983), which investigated

theory-driven discovery. The AM program modelled discovery of concepts in the domain of

number theory, while its successor EURISKO was an attempt (which was less successful) to

capture concepts about heuristics themselves. Of these models, BACON, AM and EURISKO

may be related to the ideas about the role of theorising in learning put forward by Karmiloff-

Smith (1988) and Karmiloff-Smith and Inhelder (1975). EURISKO also represents an attempt

to capture the reappropriation of knowledge associated with metacognition.

Production Systems Models

A production system is a computer model stated in terms of condition–action rules. The basic

structure of a production system comprises two memory spaces:

� Working memory — a collection of symbol structures called working memory elements

� Production memory — condition–action rules (or productions) which consist of condi-

tions corresponding to patterns of working-memory elements, and actions which modify

the contents of working memory

This structure is used in conjunction with a cyclical condition-matching and action-execution

process, and a mechanism which resolves conflicts between any productions whose conditions

have been satisfied simultaneously. The handling of conditions provides a parallel associative

recognition memory while the actions take place serially.

The main advantages of production systems are outlined by Neches, Langley, and Klahr

(1987, p. 13). These include the fact that rules tend to carry equivalent amounts of information,

the psychologically realistic combination of serial and parallel processing inherent in the match-

ing and execution procedures and the ability to model long- and short-term memory and the

relationship between them. Of particular relevance to developmental modelling, according to

Neches et al., is the independence of rules, as this facilitates the addition or removal of rules and

hence the system’s ability to capture incremental change and successive developmental stages.

The general strengths of the production systems approach include its ability to capture fine-

grained behaviours and its ability to model strategy change (see below).

Although earlier models were used to capture only static performance, learning and devel-

opment were subsequently introduced (Neches et al., 1987). Production systems have been used

to model the development of cognitive competence in domains such as children’s counting and

mathematical skills (Wallace et al., 1987), Piagetian tasks such as seriation (Young, 1976) and

transitive reasoning and grammar acquisition (Langley, 1987). More sophisticated systems also

make use of augmentations such as production weightings and self-modifying productions (Wal-

lace et al., 1987).
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Production system models of developmental change include Langley’s discriminant learning

model of stage-transitions on the balance-scale task (Langley, 1987), and Wallace et al.’s self-

modifying production model of children’s number sense (Wallace et al., 1987).

Some workers in this field (e.g., Anderson (1983), Newell (1988)) also make strong claims

that production systems correspond to the cognitive architecture (defined by Neches et al. (1987,

p. 14) as ‘the invariant features of the human information processing system’) underlying human

cognition.

3.2.2 Dynamical Models

Several models intended to capture Piagetian stage phenomena have also been constructed in dy-

namical systems terms. The models proposed by Preece (1980) and van der Maas and Molenaar

(1992) are based on the notion that qualitative changes in catastrophe theory provide a basis

for reasoning about qualitative changes during development, in the absence of any discussion of

representation, but in a more abstract manner than the dynamical systems framework of Thelen

and Smith (1994) discussed in Chapter 2.

3.2.3 Connectionist models

Although connectionist models are discussed in more detail in sections 3.3–3.6, it is worth sur-

veying here the qualities which, it is argued, make them appropriate for modelling development.

Karmiloff-Smith (1992a, p. 4) emphasises the qualities of connectionist approaches which

have particular relevance to her work; specifically their potential as a means to analyse implicit

representations, since connectionist models do not rely on the explicit codings often underly-

ing performance in traditional cognitive models. Like Mareschal and Shultz (1993), she also

points to the gradualism and non-linearity of connectionist models and the way this changes

ideas about stage transitions, as well as allowing systems to avoid premature commitment to

hypotheses. As discussed in section 3.4.1, Karmiloff-Smith also sees networks as implementing

a kind of progressive modularisation in the form of increasing informational encapsulation.

Such models also take advantage of some of the inherent qualities of connectionism consid-

ered relevant to models of cognition in general. For instance the fact that networks simultane-

ously learn by rote and extract graded generalisations and that the representations they develop

are graded and distributed, exhibiting graceful degradation and saturation.

3.2.4 Discussion

Comparing production systems with connectionist models

Cognitive architecture As Klahr (1995) points out, implicit in production systems models is a

strong claim about cognitive architecture, while connectionist models, according to Klahr ‘are

less of an architecture than a set of shared assumptions’ Klahr (1995, p. 363). In comparing

the two approaches, he goes on to argue that properties such as parallelism and distribution of

representations, usually claimed as advantages for connectionism, are also inherent or possible

in production systems.

Capturing change Boden (1988) in reviewing computationally inspired answers to the question

of the difference in abruptness supposed to exist between learning and developmental change,

notes that adding a single rule to a production system model can lead to a qualitative change

in behaviour ‘comparable to what Piaget would term a stage progression’ (p. 211). It should

perhaps be remembered here that productions vary greatly in the granularity and abstraction

of knowledge they embody. Thus a single production rule may well capture a crucial strategy

change in itself, in a way in which a connectionist training pass in particular typically does not,

except perhaps in special cases where learning is one-shot or semantically transparent (Clark,

1989). However, Klahr (1995) argues against the intuition that a change in the rule-base of

a production system must always be viewed as a qualitative change at a much higher level of
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granularity than a change to some component of a connectionist system. He claims instead that

the granularity of an individual production rule may be sub-symbolic or implicit, and that, using

productions with continuously varying strengths, gradualistic behaviour similar to that usually

exhibited by networks, which as he points out, can also exhibit dramatic change.

Critics of the traditional (symbolic) approach to cognitive modelling (e.g., Bates and Elman

(1992), Plunkett and Sinha (1992)) tend to regard it as antidevelopmental in more fundamental

ways. For Plunkett and Sinha, the three notions of an essentially private, internal and represen-

tational cognition, functionalism and what semantic transparency, together with a perspective

on development which is essentially ahistorical, make the cognitivist programme the antithesis

of the epigeneticism they argue for.

Bechtel and Abrahamsen (1991), although regarding connectionism favourably as a means of

modelling development, take a less radical view of the divisions between traditional and connec-

tionist approaches. They point out that some of the same shortcomings of traditional models

which helped to prompt the renewed interest in connectionism in the early 1980s (e.g., poor

generalisation, inflexibility, and particularly brittleness) also provoked a new wave of symbolic

models, which Bechtel and Abrahamsen refer to as ‘non-traditional’ symbolic models. The mod-

ifications in approach which characterise such models include the use of finer grain ‘microrules’,

parallel rule-selection and/or activation, soft constraints — effected by adding strength param-

eters to rules and using these as part of the criteria for rule-selection, resilience via redundancy,

greater attention to learning algorithms, knowledge compilation, chunking and rule transfer.

Wallace et al. (1987)’s BAIRN model is an example of a non-traditional symbolic develop-

mental model, claiming to provide an integrated model of learning and development, using a

network of knowledge-communicating nodes which undergoes self-modification as a result of

its interactions with the environment, i.e., the input-data with which it is presented.

Although differences such as the use of explicitly sequenced symbol strings and operations,

and non-local control still exist between connectionist and non-traditional symbolic models,

the revised approach has served to bring the two programmes closer. Bechtel and Abrahamsen

(1991) regard these differences as being small enough that ‘empirical adequacy will not be the

primary determinant of the fate of symbolic versus connectionist models’ (p. 18).

Implicit representation As Karmiloff-Smith (1992a) points out, it seems more appropriate to

investigate implicit learning on the basis of representations which are not explicitly coded in the

way in which production rules tend to be.

Production system models are at a higher granularity than connectionist models, are inher-

ently not semantically opaque, and provide no way of explaining the sub-symbolic–symbolic

transition.

Production systems as models of RR Boden (1988) points out that ACT* allows rules to be

fired as well as matched in parallel, resulting in a redundant multiplicity of representations (as

the RRH requires). However ACT* is essentially a model of knowledge compilation and the

progressive automatisation of processes which Karmiloff-Smith (1992b, p. 17) contrasts with the

RRH.

Some production system models exist, such as the HPM (Heuristic Procedure Modification)

framework (Neches, 1987) which seem closer to ideas in the RRH. HPM emphasises the role

of invention in learning and the redeployment of the components of past learning, contrasting

the latter with proceduralisation. However, although such a model might be able to capture the

transitions between the levels of explicit representation in the RR model, again it could provide

no explanation of the initial implicit–explicit progression.

Process models

A criticism which could be directed at early production system models of developmental phe-

nomena, for instance, is that, as Neches et al. (1987, p. 18) say, ‘these stage models : : : explained

behavioral differences at successive stages in terms of slightly different rule sets, but yet provided
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no mechanisms to account for the transition process.’, and as mentioned above, advocates of

the epigenetic approach such as Plunkett and Sinha are critical of symbolic approaches partly

for the synchronic modelling they seem to encourage. Although connectionist models are seen

as closer to the ideal of true process models of development, we must perhaps still be cautious

about ascribing developmental properties to learning systems, or as Clark (1993a) puts it, to

differentiate between learning trajectories and developmental trajectories.

The following sections present several examples of connectionist process models of develop-

ment in more detail, focusing on qualitative change, occurring both macro- and microdevelop-

mentally.

3.3 Connectionist models of qualitative change

3.3.1 Modelling stages

There have been a number of attempts to use connectionist models to capture aspects of Piage-

tian stages by trying to replicate the results of various experiments concerning tasks such as seri-

ation (Mareschal & Shultz, 1993) and torque-difference (McClelland, 1989; Shultz & Schmidt,

1991).

McClelland (1989) used a modified backpropagation architecture in which the learning of

the torque-difference effect (in this context the rule that a balance-scale will balance if the prod-

uct of the weight and distance from the pivot is equal on both sides) is modelled by presenting a

localist encoding of the weight on each side of the balance as well as its distance from the pivot,

in conjunction with training information about whether the scale goes down on the left, right

or balances. The standard backpropagation learning rule is used to train the network which

successfully learns to use the comparison of the two weight–distance products as a means of

determining whether the scale will balance, even in cases where distance and weight both dif-

fer on each side. The model also exhibits a stage-like progression through different strategies,

first using only information about weight alone, then distance alone and finally using the full

torque-difference rule.

The model includes several assumptions including the modification of the architecture so

that the inputs relating to weight are connected to a distinct set of hidden units from those rep-

resenting distance although the network does learn to partition these weight and distance units

according to which units correspond to which side of the balance). According to McClelland,

these structural constraints were necessary in order for the network to exhibit the desired stage

progression.

Some biasing is also inherent in the presentation of the training data, in that early on more

examples of problems in which only the weight differed while distance was kept constant) were

presented, followed by a phase in which equal-weight/differing-distance problems predominated,

moving finally to a stage where the network is exposed to the most difficult problems in which

both values differ, i.e., those which the concept of torque-difference is necessary to solve.

Considering the careful manipulation of training schedule along with the explicit hand-

structuring of the network, it is somewhat unsurprising that the network focuses first on the

equal-distance problems which predominate early in the training data and transfers its focus

of attention to equal-weight problems. There are no domain-specific constraints built into the

network which make it attend to the visual modality first — this is built into the training data.

Shultz and Schmidt (1991) attempted to obtain the same results without recourse to the same

weight of assumptions. Their study also made use of training-data manipulation, using a data

set that was both gradually expanded over the course of training as well as including a bias to-

wards equal-distance problems. An important contrast between their work and McClelland’s is

that they used the cascade-correlation architecture (see 4.1) which is inherently capable of shifts

in representational power.

The training bias was effected by making the random selection of the 100 initial training
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patterns (of a total of 625 possible configurations) subject to a bias of 0.9 in favour of selecting

an equal-distance problem. At each output epoch the training set was expanded by one pattern

drawn at random with replacement and subject to the same bias towards equal-distance prob-

lems. Shultz and Schmidt note that these measures were found to be necessary if the network is

not to find learning extremely difficult and also, as in the McClelland (1989) model, if the model

is to exhibit any behaviour other than the final torque-difference strategy.

Mareschal and Shultz (1993) again used cascade-correlation in their model of the seriation

task, proposed by Inhelder and Piaget (1969) as a test of transitive reasoning involving the sorting

of elements according to their their relative values on some scale or dimension, e.g., different-

length sticks according to length.

The stage phenomena to be captured in this task are as follows. At the (first stage circa age 4)

children make no real effort at ordering, making only random movements of the sticks. By age 5

they are able to perform localised orderings of two or three sticks at a time according to absolute

quantities whether a stick is ‘big’ or ‘small’). The third stage (circa age 6) involves the ability to

construct a series with difficulty through trial and error, while at the final stage children are able

to use a strategy to perform the task efficiently.

The results of this study conformed to the above pattern, with stages often overlapping in

time. Of 20 network trials run, 7 exhibited all four stages, with the majority of the remainder

exhibiting either 1, 2 and 4 or 1, 3 and 4. The model was also shown to respond to percep-

tual variation in a plausible way with stage-3 performance becoming stage-4 when the relative

difference in length between the sticks was increased.

Stage differences were not found to be marked by large differences in the weights, although

the network was observed to adjust weights relating to the short end of the series first, progress-

ing to the larger end, an effect which Mareschal and Shultz see as consistent with findings that

children build linear-order representations from the ends inwards.

Although previous computational models of the seriation task exist, e.g., Young’s (1976)

production-system model, in which the development of an individual’s performance is modelled

by a continuous process of new-rule acquisition according to the selection and evaluation of

items and the correction of incorrect choices, the authors claim that

[n]one of these models are truly developmental since they do not provide a mecha-

nism for passing from one stage to the next.

(Mareschal & Shultz, 1993, p. 2)

Shultz (1991) argues in the context of the cascade-correlation models presented above that

connectionist models which exhibit stage behaviour tend to do so in a way which exhibits several

desirable properties which are less characteristic of rule-based models — transition to a higher-

level stage is typically soft and tentative, there is some stage-skipping and a limited amount of

regression to earlier stages. Network models are also comparatively successful in capturing the

ordering and organisation of stages.

Causes of stagelike transitions in networks

Shultz et al. (1995) attribute the ability of cascade-correlation to capture stagelike behaviour in

the seriation, balance-scale, personal pronoun, and time-distance-velocity tasks to a variety of

factors, in particular a combination of initial training-data biases and the changes in representa-

tional power due to the recruitment of a small number of hidden units. The additional bias due

to the modularisation of selecting and moving tasks also contributed to the staged behaviour in

the seriation task.

McClelland (1995) also attributes the stagelike progressions observed in backpropagation

networks to a combination of initial bias and changes in learning speed observed in standard

backpropagation networks. For instance in the case of the balance-scale model:
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qualitative changes — apparent stagelike progression — could arise from the accu-

mulation of small incremental changes. In the model, acquisition of the use of each

of two cues [weight and distance] begins with an initial phase in which the effects of

experience accumulate gradually, followed by a more rapid acceleration.

(McClelland, 1995, p. 193)

Although not aiming to model stages as such, Plunkett and Marchman (1993) also note

that in the context of learning the past tense of English verbs, improvements in performance

accelerate rapidly after an initial period of gradual change. The frequencies of regular and

irregular verb form were also central to the pattern of qualitative change (consisting in learning,

overregularisation and eventual correction) observed.

Shultz (1991) highlights several features which contribute towards the emergence of stagelike

features in networks, including hidden-unit herding (Fahlman & Lebiere, 1990), overgeneralisa-

tion, and the hidden-unit recruitment of generative architectures, all of which are seen as ways

in which networks form partial solutions to problems. This last is central in Shultz’s view to net-

work models of qualitative stage-transitions. The generative capacities and attendant increases

in representational power of networks such as cascade-correlation are implicated in the ability

to reach and stay in stage 4 of the balance-scale task, requiring a grasp of the principle of torque

(other models were unable to reach this stage or were able to only at the expense of earlier

stages).

Qualitative change in networks and Piagetian stages

Several of these connectionist workers attempt to relate the qualitative change in their models to

that which occurs in Piagetian stage-transitions, considering connectionism as a potential mech-

anistic explanation (although Klahr (1995) is critical of this enterprise on the basis that Piaget’s

original formulations are not well specified enough to permit such a comparison to be made on

a scientific basis). For instance, McClelland (1995, p. 193) compares the accumulation of incre-

mental change to give (macro-developmental) qualitative change in connectionist networks to

Piaget’s (verbal) description of equilibration.

Shultz et al. (1995, p. 255) claim that learning in cascade-correlation can be described within

a Piagetian framework in terms of assimilation, assimilative learning and accommodation. Pure

assimilation corresponds to correct generalisation to new exemplars without further learning or

structural change, and assimilative learning to learning which modifies weights but not struc-

ture. Accommodation occurs when the network is forced to increase its representational power

through recruitment of a new hidden unit.

Shultz (1991) notes important differences between Piagetian stages and qualitative transi-

tions in networks, in particular that network changes are gradual (rather than abrupt), task-

or domain-specific rather than broad-based and domain-general, and timed according to task,

rather than occurring concurrently across domains (although it is difficult to think of a connec-

tionist model which investigates development across unrelated domains; despite the existence of

some models relating the concurrent development of the verbal and visual or verbal and concep-

tual domains (e.g., Schyns (1991)), none seem to exhibit stages. Despite these differences, Shultz

notes that networks are capable of capturing other aspects of stages including invariant ordering

and organisation.

3.3.2 Modelling U-shaped behavioural curves

Modelling the acquisition of the English past tense

A model which has become one of the most controversial in discussions of connectionist learn-

ing and representation is that of the learning of the English past tense by children originally

constructed by Rumelhart and McClelland (1986). This model was an attempt to account for

the way in which English-speaking children tend to produce errors in their formation of the past
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tense of verbs such as ‘sitted’. The model also sought to reflect the observation that the learn-

ing of this domain is often observed to produce a U-shaped behavioural curve (Strauss & Stavy,

1982).

The model uses the perceptron learning rule to form associations between a layer represent-

ing the verb stem and another layer representing the past-tense form, both of which are encoded

using a pronunciation-based scheme.

The model’s apparent ability to capture many of the overregularisation and U-shaped per-

formance effects found in the experimental literature, for instance the way irregular verbs are

treated as regular verbs during the early stages of learning — an effect resulting in the ‘trough’

of a U-shaped curve, seems impressive, and its creators considered that the models ability to

exhibit these phenomena without recourse to rules and without a separate mechanism being

necessary for treating irregular and regular verbs could be, as Plunkett and Sinha (1992) put it:

interpreted as challenging the traditional view that acquisition is necessarily a pro-

cess of organizing and reorganizing explicitly represented rules, with a separate rep-

resentation of exceptions to the rules.

(Plunkett & Sinha, 1992, p. 224)

In the now-familiar critique by Pinker and Prince (1988) the main criticisms of this model

are that there are fundamental dissimilarities between the task which the system has to learn

and that faced by children, who are not exposed to stem and past-tense forms occurring side-

by-side in the input in the absence of semantic information, for instance. It is also argued that

the U-shaped curves are not caused by anything more than the manipulation of the size of the

data set. In particular, training begins with presentation of one instance of each of the ten most

common English verbs, eight of which are irregular and this initial training phase is followed

by both an increase in the number of regular verbs as less common verbs are included in the

training corpus as well as an increase in the overall size of the training corpus. It is argued that

the U-shaped curve is a direct result of this change in the training data and that it is unsurprising

that a degradation in performance on irregular verbs should coincide with the point at which

the network begins to see many more examples of regular verbs.

More recently Marchman has responded to these criticisms by constructing network models

of the same phenomena which do not rely upon the same assumptions regarding the manip-

ulation of training-set size. For instance, Plunkett and Marchman (1989, 1991) showed that

U-shaped patterns were observed even if the training corpus remained fixed. This is attributed

to the fact that conflicting mapping types exist in the training corpus and that it is the network’s

attempts to resolve these conflicts that lead to the temporary degradations in performance ob-

served on particular categories. This would seem to be explained by what Fahlman and Lebiere

(1990) call ‘hidden-unit herding’ or the ‘moving target’ problem (see section 4.1).

Plunkett and Marchman (1989) also discovered evidence that U-shaped patterns are neither

restricted to a single period of development nor constrained to occur simultaneously for different

categories, or indeed not to occur multiple times even in the case of a single verb. All these

findings suggest that U-shaped patterns might be best considered a micro- rather than a macro-

developmental phenomenon.

Incrementing the training corpus one verb at a time yielded improved performance in the

mapping of verb-stems to past-tense forms. Plunkett and Sinha (1992) also note two other related

points which are important in this context, firstly that changes in the way verbs are represented

occur when the corpus reaches a certain ‘critical mass’, and secondly that these changes result

from an internal pressure towards a generalisation of the early form of the network. They note

that performance on the newly added verbs early in training is difficult to classify, adding that

[t]his result demonstrates that the form of representation underlying the network’s

successful mapping of the initial set of 20 stem/past-tense pairs does not generalize
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well to new forms and that these initial 20 verbs are essentially memorized by the

network by a process we can refer to as rote learning.

(Plunkett & Sinha, 1992, p. 227)

and concluding that

later in training, the network’s representations become systematized (as evidenced

by the performance on novel verbs) : : : the network continues to map irregular verbs

correctly even though the mapping of novel verbs is systematic.

These results support the important claim that learning and generalisation can be realised within

a single mechanism.

It could be argued however that a network implementing a rule-plus-exceptions scheme

should no longer be regarded as utilising a single mechanism. Indeed in some cases, the so-

lution formed by a network may be a very close approximation to an explicit mechanism in

terms of its classification behaviour. But even if we reject the claims made by Pinker and Prince

(1988) that connectionist systems never fully implement the equivalent of categorical symbolic

rules or even rote-memorisation of exemplars, it should be noted that, whatever their behaviour

when fully trained, the kind of connectionist systems under discussion here begin with a single,

undifferentiated mapping strategy, and only come to realise the two kinds of behaviour through

learning. By contrast, a symbolic system of the kind outlined by Pinker and Prince (1988) is

equipped from the outset with separate and explicit mechanisms for rote-memorisation and

rule-acquisition (via the generation and testing of hypotheses). In terms of developmental mod-

elling, it seems we stand to learn more from the emergence of full or partial approximations to

classical systems than by assuming their presence, although the issue can also be seen as one of

the extent to which symbolic mechanisms are innate.

3.4 Other issues for connectionist developmental modelling

In the sections which follow I discuss a number of (somewhat interrelated) issues which are im-

portant in current work on connectionist developmental modelling. Also particularly pertinent

to the enterprise of constructing a model of the RRH are the issues of how to capture the increas-

ing explicitness and accessibility of knowledge as well as the different sources of that knowledge

(see 2.1).

3.4.1 Innateness

Connectionism has often been criticised as implying an empiricist standpoint, with modellers

regarding their efforts as existence proofs that learning can proceed from an initial tabula rasa

(Bechtel & Abrahamsen, 1991). Karmiloff-Smith (1992a, p. 23) comments that although some

connectionists would deny that such a viewpoint is inherent in their research, their approach is

still comparable in some sense with a Behaviourist position, in that it allows for innate structure

while ignoring any need to specify innate content.

Plunkett and Sinha (1992, p. 250) argue that a connectionist position ‘is in no way equivalent

to a tabula rasa account’, but is rather aimed at establishing the minimum necessary initial

conditions for the emergence of rich behavioural and representational properties in relation to a

particular environment.

Connectionism and domain-specific constraints

In her discussion of this topic, Karmiloff-Smith (1992b, p. 181) notes that in being applied only

to single tasks, networks are inherently domain-specific and that, although they are informa-

tionally encapsulated, their learning echoes progressive modularisation rather than prescribed

Fodorean modularity.
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However she also complains (Karmiloff-Smith, 1992b, p. 188) that connectionist models

are in fact task specific (or in other words microdomain-specific). In more recent discussions

(Karmiloff-Smith, 1994) she has softened this claim, agreeing with Shultz (1994) that modelling

would do best to proceed by trying to integrate several tasks before aiming for some abstracted

notion of ‘task-independent’ learning.

But apart from restricting exposure to data from particular domains, it is difficult initially to

see how constraints which are truly domain-specific with respect to content but precede learning

are to be incorporated into connectionist nets.

Karmiloff-Smith (1992a) suggests that training-set design and the biasing of initial weights

to simulate innate attentional biases constitute examples of this, citing as an example of the

latter the initial bias towards weight information in McClelland (1989)’s simulation of children’s

performance on the balance-scale.

Another way to simulate such biases within a purely developmental model may be by pre-

training and freezing a preliminary recoding subnet. More naturalistically, and truer to the

idea of innate (rather than early-acquired) constraints, evolutionary techniques could be used to

produce a network with the appropriate initial biases (see Nolfi, Parisi, and Elman (1994) for

example).

Karmiloff-Smith (1992a) also distinguishes between representational and architectural bi-

ases to development in networks. A network such as that of Elman (1991), she claims, incorpo-

rates both architectural biases in terms of the choice of a locally recurrent network model as well

as some representational biases in the form of the meta-linguistic assumptions made by Elman

in designing the training set.

In methodological terms, Karmiloff-Smith (1992a, p. 23) speculates that (despite the orthog-

onality of the domain-general–domain-specific issue to the underpinnings of the connectionist

framework) the fact that, in her view, ‘in practice the notion of domain-general learning al-

gorithms and knowledge-free starting points : : : has been championed by connectionist mod-

ellers’(p. 31). may be due to the often adverse reactions of nativists (e.g., Pinker and Prince

(1988)) to connectionist work. I suggest further that the desire to move away from the hand-

crafted nature of traditional symbolic models may also contribute to the strong drive to avoid

building initial content into connectionist models.

Connectionism and domain-general constraints

Domain-general constraints seem easier to relate to connectionist models. Karmiloff-Smith

(1992b, 1992c) sees in connectionist work on developmental theory a claim to be producing

domain-general models, on the basis that single architectures are put forward as capturing be-

haviour or development in several domains (see Shultz et al. (1995) for instance). Karmiloff-

Smith (1992c, p. 257) points out that despite using the same general class of learning algorithms,

in practice any given model is distinguished by architecture, choice of learning rules, initial pa-

rameters, learning rate and so on.

The following sections deal with problems which have been identified with connectionist

cognitive modelling in general (Fodor & Pylyshyn, 1988; Clark & Karmiloff-Smith, 1993; Hal-

ford, 1993), but are of particular relevance to the RRH as well developmental modelling.

3.4.2 Systematicity

The issue of whether (and secondarily to what extent, and how inherently), connectionism can

capture the systematicity of knowledge is one which now pervades connectionist study. System-

aticity was highlighted in Fodor and Pylyshyn (1988)’s critique as a central problematic capacity

for connectionist cognitive modelling. The relationship between development and systematicity

is discussed in section 3.5.1 below.

There are several responses to this challenge. Clark (1989) makes the important observation

that systematic behaviour need not imply systematic, and specifically classical symbolic, innards.

It is also questionable whether the full-blown systematicity which Fodor and Pylyshyn assume
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is as pervasive as they claim. For instance in the RR literature we see that (for reasons yet to be

determined) not every domain is redescribed into systematic form, while in other domains, such

as adult language learning in particular, modularisation prevents redescription. Bechtel and

Abrahamsen (1991, p. 235) note that even in (nominally systematic) adult sentence-processing

asymmetries remain which reflect developmental differences.

A third response, related to Clark’s above, is to concentrate on the kinds of systematicity

which connectionist systems capture naturally. As we saw above, Plunkett and Marchman (1993)

found that backpropagation networks were forced to develop (partially) systematic hidden rep-

resentations when the number of training items increased beyond that which the network could

represent by ‘rote’ (i.e., as a form of look-up table). This kind of systematicity would seem to

correspond to Kirsh (1991)’s intermediate level concepts, which may be used for prediction (in

the model, the correct generalisation to novel forms) but are not accessible to consciousness, and

thus also perhaps to level E1 in the RR model.

Clark (1993a) argues that this typically connectionist kind of partial systematicity can be

viewed as a legitimate intermediate representation on the way to a state which approximates

full syntactic systematicity in the way human adult performance seems to demand, but differs

fundamentally from that conceived of by Fodor and Pylyshyn in that it is the product of, rather

than the prerequisite for, a developmental process.

3.4.3 Transfer of learning

In chapter 2 we saw that one way of characterising the later levels of redescription was according

to their accessibility to the processes associated with other tasks or domains. Transfer of learn-

ing between networks is an obvious way of operationalising this abstract idea of accessibility.

For the purposes of this discussion, studies of transferability in networks can be divided into

two classes: those in which problems are clustered according to their similarity with respect

to a certain learning scheme (e.g., Pratt (1993, 1994), Sharkey and Sharkey (1993), Thrun and

O’Sullivan (1995)), and those which attempt to transfer learning to tasks which are structurally

related (e.g., Dienes et al. (1995), Dienes, Altmann, and Gao (submitted)). Although both of

these kinds of methods imply a space of related tasks, the ways in which they are related is

fundamentally different, corresponding in some ways to the associative–relational divide identi-

fied by Clark and Thornton (1993), Philips et al. (submitted) in that in the first class, similarity

maps onto actual proximity in the hyperspace defined by the network, while in the latter similar

solutions are likely to be distributed throughout the space.

3.4.4 Explicitness

Although the semantic opacity of standard connectionist systems is well-acknowledged (Clark,

1989; Karmiloff-Smith, 1992b), the extent to which networks can represent explicit knowledge

is still in question.

Kirsh (1991) distinguishes between three levels of conceptual knowledge: the first is used

for recognition of perceptual features, the intermediate level allows prediction but not conscious

analysis, while the third is what might more usually be referred to as conceptual knowledge, and

facilitates full-blown compositionality, systematicity and expressibility.

I would argue that, for connectionist systems, explicitness, like accessibility and systematic-

ity, is both continuous and relative to the particular system(s).

For instance Plunkett (1993, pp. 554–5) points out that representations implicit in one net-

work may be explicit to another and that although the representations may be opaque and im-

plicit to the experimenter, the network reacts directly to them. Thus, he emphasises that ‘one

must evaluate whether the network has constructed an implicit or explicit representation in the

context of the task to be performed. (p. 555). Karmiloff-Smith and Clark (1993) concur with this

continuous view, relating it to the representational multiplicity inherent in the RRH. This idea
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of explicitness leads Clark (1993a) to equate (or operationalise) explicitness as some function of

accessibility and multiple usability.

3.5 Incremental learning

Incremental learning (Bates & Elman, 1992; Elman, 1991) is a broad term used to refer to a

collection of (mainly connectionist) methods in which (in the most general terms) learning is

staged in some way such that the complexity of the overall task to be learnt is reduced. These

techniques have arisen in both engineering and cognitive modelling settings primarily as ways

of facilitating learning in otherwise intractable scenarios (see Elman (1991) for instance), and

also represent the major technique (besides the choice of basic learning algorithm) used in the

connectionist simulation of development (Shultz et al., 1995; Elman, 1991).

Examples of incremental methods include manipulations to resources such as training set

or units (e.g., cascade-correlation models (Shultz et al., 1995)), connections, or subnetworks,

or manipulations to training corpora, typically increments (Plunkett & Marchman, 1993, 1991;

Rumelhart & McClelland, 1986; Shultz & Schmidt, 1991) or changes in composition by token

type (Rumelhart & McClelland, 1986). Some of these, e.g., the phasing of training-set difficulty

and incremental increase in attention in Elman (1991) are considered to be functionally equiva-

lent, but whether this applies to all the above methods in more than the most general terms is,

as yet, an open question.

In terms of biological realism, architectural resource phasing can be seen as a loose analogue

of maturation. Progressive pruning of components of a network architecture may also corre-

spond at some level of abstraction to selectionist processes which accompany brain maturation

(see e.g., Johnson and Karmiloff-Smith (1992)).

More recently Clark and Thornton (1993) have refined the notion of incremental learning,

introducing a distinction between what they term conservative and extended incremental solu-

tions. A body of training data constitutes a conservatively decomposable problem if it is possible

to reduce the search space for subsequent learning by focusing at first on a subset of that same

body of data, while if the lower-level feature-detectors (or other recodings necessary for learning

later complexities) must instead be developed through attempts to perform some other task (i.e.,

in cases where this cannot be achieved by any amount of exposure to the original data), then the

problem has only what Clark and Thornton (1993) call an extended incremental solution.

Both of the resource-phasing techniques presented in Elman (1991) constitute examples of

conservative incremental methods. Batching and grading training examples and placing initial

limitations on the network’s attentional window both involve presenting the network initially

with a simpler subset of the original training data in way which fortuitously provides a basis

for learning the data in its full complexity. Spatial modularisation schemes such as that of Ja-

cobs, Jordan, and Barto (1991) are cited by Clark and Thornton (1993) as examples of extended

incremental learning methods.

3.5.1 Developmental trajectory

Related to the idea of incremental learning is that of a developmental (or representational) tra-

jectory (Clark, 1993b, 1993a). Fundamentally the idea is that, in order to learn complex or

hierarchically structured problems, a learning system must pass through an ordered set of con-

figurations of increasing power (termed by Clark (1993a, p. 151) the cascade of significant virtual

machines).

Trajectory and Systematicity

Clark (1993a, p. 149) argues persuasively against Fodor and Pylyshyn (1988)’s concept of sys-

tematicity, which he re-expresses as

a notion of closure of a set of potential thoughts under processes of logical combi-

nation and recombination of their component “parts”
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(Clark, 1993a, p. 147)

He proposes that instead of viewing systematicity as something built into an underlying cog-

nitive architecture, we treat the space of interanimated concepts as another complex space and

systematicity as a knowledge-driven concept which the network must acquire through learning:

The mature knowledge of such a system will be expressible in terms of a (largely)

systematically interwoven set of concepts. But the systematicity will be learned as

a feature of the meanings involved. It will not flow from the shallow closure of

a logical system under recombinative rules, but from hard-won knowledge of the

nature of the domain.

(Clark, 1993a, p. 149)

Clark goes on to suggest that connectionist systems need to be scaffolded in order to learn about

complex spaces. The term scaffolding refers here to the process of supporting the progress of

a learner through a suitable series of configurations, for instance by incremental learning. This

implies also that systematicity (in the acquired sense described above) might require scaffolding.

3.6 Hybrid models

The term hybrid refers primarily to connectionist models which make use of a component from

a different modelling paradigm in order to take advantage of a different style of processing. The

most common form of hybrid models (in this sense) are connectionist–symbolic hybrids which

use a traditional symbolic component in order to provide systematicity or increase explanatory

power, e.g., in engineering contexts such as expert systems to introduce or identify human-

recognisable rules after training (e.g., Craven and Shavlik (1994)).

Another sense of hybrid refers to connectionist schemes which make use of a mixture of

representational styles (e.g., localist and distributed), learning strategies or architectures (e.g.,

Schyns (1991)), or consist of a number of modules between which data is communicated in a

way which is not essentially connectionist. In this weaker sense, many modern connectionist

schemes such as cascade-correlation (Fahlman & Lebiere, 1990) may be considered hybrid. It is

likely that it is these models to which Karmiloff-Smith (1992b) refers when she speculates that

in time the term ‘hybrid’ will lose force.

Plunkett and Sinha (1992, p. 251) argue against hybrid models (in the connectionist–symbolic

sense) that although they seem to provide both connectionist symbol-grounding and the full-

blown systematicity of mature human cognition, truly symbolic systems (those which exhibit

‘functional univocity’) cannot derive from anything but other such systems, and this leads to the

same kind of strong nativism required by purely cognitivist accounts, which in turn goes against

their vision of an epigenetic connectionism. Another objection to these hybrids is that they

can provide no explanation for the emergence of symbolic from sub-symbolic cognition since

a mechanism analogous to an external symbolic system is already assumed. It also seems that

there is no consensus about how the symbolic and connectionist components should be related,

making comparison between systems difficult.

3.7 Specific requirements for a model of RR

Although the RRH is put forward as ‘a framework — rather than a precise theory — for ex-

ploring possible generalities in developmental change across a range of domains.’ (Karmiloff-

Smith, 1994), and makes no detailed commitment to any possible mechanisms for redescription

itself, certain general requirements have been set out in the literature. For instance in Clark and

Karmiloff-Smith (1993, p. 509), the following are presented as requirements for a developmental

model (specifically a connectionist one, although they consider others) in the spirit of the RRH:
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� the model should treat its own representations as objects of manipulation

� do so independently of prompting by continued training inputs

� retain copies of the original networks

� form new structured representations of its own knowledge which can be manipulated,

recombined and accessed by other computational processes

Thus what is emphasised here is that any model of RR should be redundant, and the repre-

sentational change it gives rise to should be endogenously driven, and facilitate access and in-

spection to previously generated representations both for the original network (learning model)

and for other computational processes.

Karmiloff-Smith also makes implementational suggestions which are more specific to con-

nectionism in the context of discussions (Clark & Karmiloff-Smith, 1993; Karmiloff-Smith,

1992b, 1992c), of what current connectionist models lack in terms of developmental modelling.

In addition to the lack of tendency or capacity to move beyond their own success, Karmiloff-

Smith (1992c) again notes the lack of true early domain-specificity and the relatively small role

given to innate constraints.

The shortcomings of what Clark and Karmiloff-Smith (1993) call ‘first-order connection-

ism’ (a somewhat imprecise notion intended to cover many common connectionist systems, for

instance those whose architectures are not explicitly designed to implement higher-order pro-

cessing) imply more specific requirements for connectionist models of RR:

� Learning in first-order connectionist systems is purely example-driven and any change

reflects the statistics of the input–output mapping.

� Knowledge of rules is always emergent, depending on many subsymbolic representations

rather than symbolic expressions.

� First-order connectionist systems have no means of analysing their own activity so as to

form symbolic representations of their own processing. Their knowledge of rules always

remains implicit unless an external theorist intervenes.

These requirements obviously vary in their generality, in particular it is arguable in my view

that a specific dictate that networks keep actual copies of previous states or configurations is in

keeping with the other suggestions in this context of an exploratory paper.

3.8 Suggested computational models of RR

Since the publication of Karmiloff-Smith (1992b), Clark and Karmiloff-Smith (1993), a number

of schemes (whether existing or novel) have been put forward as going some way towards cap-

turing redescriptive effects. In what follows I survey these suggestions, concluding by presenting

some previous implementational work which is proposed either as a partial model of the RRH

or as implementing similar (but usually more general) mechanisms.

Suggested models of redescription fall into the following broad categories:

� Connectionist — novel schemes i.e., combinations of connectionist techniques not previ-

ously devised for another use

� Connectionist — existing schemes

� Connectionist–symbolic hybrids

� Non-connectionist suggestions, e.g., classifier systems

I will discuss each of these in turn.



42 Chapter 3. Connectionism and Developmental Modelling

3.8.1 Novel connectionist schemes

Skeletonisation of copied networks

Clark and Karmiloff-Smith (1993)’s main proposal for a purely connectionist architecture which

might be able to capture redescriptive effects involves combining Mozer and Smolensky (1989a)’s

skeletonisation procedure (hereafter simply ‘skeletonisation’) with network copying. Skeleton-

isation involves the pruning of input- or hidden units according to a relevance criterion which

assesses the importance of particular units in terms of their contribution to the reduction of the

overall error — a criterion which is claimed to transcend the statistical profile of the training set.

Skeletonisation has several properties which seem to make it a promising candidate for a

purely connectionist model of the RR process. In accordance with the requirements set down by

Clark and Karmiloff-Smith (see section 3.7 above), the skeletonisation procedure can be seen as

constituting a manipulation of representation, and as acting without the prompting of further

training. As Clark and Karmiloff-Smith (1993) acknowledge, the basic skeletonisation proce-

dure would need to be augmented by some form of network-copying scheme in order to make it

conservative, (particularly in the precise way that they specify, of course). In terms of the forma-

tion of structured representations of the network’s knowledge which are then accessible to other

processing, Clark and Karmiloff-Smith (1993) cite the claims of Mozer and Smolensky (1989a)

for the increased generalisation capacity and simplicity of skeletonised networks, suggesting in

turn that by using a skeletonised network as an initial basis for further learning it might be pos-

sible to obtain ‘a connectionist way of explaining the phenomenon of ‘transfer of learning’ to a

systematically altered but related domain.’ (p. 508).

One of the problems with these claims is that the idea of a skeletonised network’s being

easier to interpret in terms of rules for a human theorist, and that of the suitability of such a

network as a way of transferring knowledge can come apart, in that there is nothing ‘universal’

about the relevances certain input- or hidden units have in the context of their original training

in the way that there would need to be for transfer to be facilitated purely by skeletonisation in

the absence of the training examples for other domains being presented.

Abrahamsen (1993) makes the similar criticisms of skeletonisation that copying whole nets

rarely seems appropriate, partly due to the problems of re-using input representations, and also

on the grounds that this does not seem to be the way in which the results of previous learning are

copied when children extend their knowledge. This corresponds, she claims, better to a single

‘path’ through a network, or in other words, a single association or mapping. She also consid-

ers that there seem to be no grounds for claiming that skeletonisation serves to (re-)articulate

procedural components conflated by the original network.

Both Abrahamsen (1993) and Bechtel (1993) are concerned that skeletonisation cannot be

changing the overall scope of the system in a way that Clark and Karmiloff-Smith require, and

in a way which transcends first-order connectionist methods:

All that seems to be happening is that a procedure for pruning and copying is used

to create networks which then learn new tasks in the same manner as first-order

connectionist networks — by the use of new training inputs. The representations

are not being ‘operated upon’ or ‘manipulated’ [Clark and Karmiloff-Smith (1993)]

(p. 504) in any straightforward sense.

(Bechtel, 1993, p. 534)

and this is a point which Karmiloff-Smith and Clark (1993) seem to concede (p. 574).

Bechtel goes on to argue that in a possible system based on the creation of many skeletonised

network copies, the need for a procedure which would identify which of these could be produc-

tively used for further learning seems to imply the need for a hybrid system, rather than the

extended connectionist systems which Clark and Karmiloff-Smith (1993) envisage. It is diffi-

cult to see why such a scheme should be considered any more ‘hybrid’ than the procedure of

skeletonisation itself.
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Using competitive learning to extract features from previous learning

An example of the redescription of activations (rather than connection-weightings as in the case

of skeletonisation) is the use of a layer of units trained using competitive learning to extract the

most salient information from a network previously trained using some error-driven method.

This approach was proposed by Bechtel (1993, p. 532) and recent implementational work by

Greco and Cangelosi (1996b) (see section 3.9) also fits this general idea. Thornton (1995)’s

(hybrid) model also makes use of competitive learning for feature detection in conjunction with

an algorithmic component for exploiting relational effects.

This approach corresponds broadly to the redescriptive idea that the products of previous

learning are crystallised by a procedure which is not directly driven by the input data and which

differs from the original learning procedure. These schemes are also conservative, since in both

Thornton and Greco and Cangelosi’s versions, connections trained in a previous phase, or us-

ing error-driven learning are frozen. In Thornton’s scheme, the products of past learning are

progressively incorporated into a hierarchical structure. The implementational details of these

models are also considered in more detail in section 3.9.

3.8.2 Existing connectionist schemes

Some connectionist workers have reacted to the challenges to first-order connectionism put for-

ward in Clark and Karmiloff-Smith (1993) not by proposing extensions to existing models but

by arguing that existing models are not in fact subject to these limitations in the way, and to the

extent that Clark and Karmiloff-Smith (1993) suggest.

Backpropagation and emergent qualitative change

In his review of Clark and Karmiloff-Smith (1993), Plunkett (1993) argues that several of the ef-

fects which Clark and Karmiloff-Smith (1993) claim would require second-order connectionism

already seem to be emerging from the dynamics of processing in a standard backpropagation

network. In particular, Plunkett claims that the tendency to go beyond success and the ability to

form transferable internal representations are both to be observed in certain backpropagation-

based simulations.

The ability to progress beyond success is demonstrated by networks trained to form the

past tense of English verbs (see Plunkett and Marchman (1993) for instance). Despite early

success, performance in such networks tends to deteriorate with further training, even given an

unvarying training set, due to the conflicts in mappings inherent in it. Residual error is another

factor which can cause (apparently) successful networks to go through qualitative changes in

behaviour during subsequent training.

As evidence for the more controversial claim that internal representations in a backpropaga-

tion net can both be incorporated into a network intended to learn a different task, as well as

being beneficial to that training, Plunkett (1993, p. 556) describes a network which is first trained

to produce the past tense of English verbs by mapping semantic inputs onto phonological out-

puts, and then trained to produce the plural forms of English nouns using the same input–output

coding in the same network. It turns out that the training on verbs transfers positively to perfor-

mance on nouns. The key to this reusability is of course in part the choice of input and output

representations, which, as Plunkett (1993) points out are already explicit, as well as the closeness

of the two tasks in the context they define, as he also acknowledges.

Karmiloff-Smith and Clark (1993) respond to these claims cautiously, admitting that it is

plausible that effects such as interference may be responsible for causing RR effects in some

cases, such as that of the French determiner system where mappings from the form of the indef-

inite article ‘un(e)’ to its different functions must be resolved. Clark (1993a, p. 167) is clearer in

his disagreement with the idea that the reusability of representations exhibited by backpropa-

gation is of the right kind to model redescription; such reuse neither integrates knowledge nor

involves structure-transforming generalisations.
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The claim about the effect of residual error raises the important issue of the timing of RR,

particularly with respect to behavioural mastery. Karmiloff-Smith and Clark (1993) respond:

Connectionist simulations have certainly convinced us that full behavioural mastery

may not be a prior requisite for the processes of change to start to take place, for

indeed one can detect at the hidden layer representations which are not yet apparent

at the output layer.

(Karmiloff-Smith & Clark, 1993, p. 573)

The idea that redescription or similar representation reorganisation can take place before be-

havioural mastery is also supported by the work of Goldin-Meadow and Alibali (1994) and

Gentner et al. (1995).

Moving from feedforward to tensor-product networks

The proposal for an RR model presented in Philips et al. (submitted) also makes an alignment

between the implicit–explicit distinction in RR and that between associative and relational learn-

ing and knowledge representation.

Philips et al. (submitted) provide formal characterisations of associative and relational pro-

cessing based on specifying data structures and operators. In particular, associative systems

consist of data structures containing a set of cue-pairs over a set of primitive symbols, and oper-

ators for forming or deleting pairs as well a simple cueing operator. Relational systems consist

of a an underlying set of unordered n-‘tuples’ over the product of n sets of primitive symbols.

What distinguishes relational systems is the join, select and project operators. These allow new

relations to be formed from all pairwise instances of existing relations, cueing to relate only

to a subset of the tuple elements, and individual elements to be accessed on the basis only of

their roles, respectively. This latter structure is rich enough to represent recursive data-structures

such as trees and graphs and to support the omnidirectional processing necessary for full-blown

systematicity.

The implicit–explicit distinction of the RRH is mapped onto this associative–relational dis-

tinction. As a step towards unifying the two modes of processing, Philips et al. claim that:

Since connectionist architectures that exhibit either one of these two modes al-

ready exist, connectionism becomes a candidate framework for representational re-

description.

(Philips et al., submitted, p. 24)

and propose (in common with Clark and Karmiloff-Smith (1993) and most other commentators)

that feedforward networks provide a candidate associative architecture. Tensor product net-

works are proposed as way of representing relations within a connectionist framework. Briefly,

this scheme allows variable bindings and symbol structures to be represented in a distributed

manner. The basic idea is that a set of value–attribute pairs can be represented by accumulating

activity in a collection of units, each of which computes the product of a feature of a variable and

a feature of its value, hence the analogy to the tensor product of two vectors. It is claimed that

such networks can be used to represent complex recursive structures, respect the independence

of multiple bindings, whilst exhibiting more typically connectionist properties such as graceful

saturation. Tensor product networks (Smolensky, 1990) have been used to capture relational or

propositional knowledge in Halford, Wilson, Guo, Gayler, Wiles, and Stewart (1994)’s work on

structure-mapping during analogical reasoning.

Several criticisms have been made of tensor product representation. McClelland (1995) notes

that it is subject to a scaling problem since the number of internal nodes required explodes as the

length of the vectors increases. From a classical position Fodor and McLaughlin (1990) complain
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both that Smolensky has not provided a truly connectionist alternative to compositionality as

an explanation for systematicity, and also that the components of network vectors cannot be

involved in causal structure-sensitive processing in the way classical components are, because

they remain implicit in explicit instances of the vector as a whole.

Philips et al. (submitted) claim that RR could come about through a process of schema

induction in which associations are abstracted to form relations which can then be generalised

and applied to structurally similar situations via alignment of one structure to the other. But

clearly this proposal does not constitute a process model of redescription as it stands since no

transition mechanisms are specified. Philips et al. (submitted, p. 18) use the idea of increased

directionality as a way of discussing partially systematic/relational processing. For instance,

such representations can be conceived of as multi-directional (rather than omni-directional) and

the analogous suggestion is made that associative networks could be developed into (relational)

tensor-product networks through changes in connectivity.

Cascade-correlation models

Cascade-correlation (Fahlman & Lebiere, 1990) has been proposed as a model of RR by Brook

(1993) and Shultz (1994). (These proposals are covered in detail in Chapter 4 and so the dis-

cussion here is relatively brief.) Cascade-correlation builds a hierarchical, multilayer network

structure over the course of learning, alternating between error-driven and correlation-driven

learning. The latter takes place off-line after no further improvement can be made through

error-driven learning. Cascade-correlation thus clearly corresponds to the basic structure of

RR, and in being a constructive architecture facilitates incremental learning. The architecture

has also been used in several process models of qualitative change during development reviewed

in Shultz et al. (1995).

3.8.3 Connectionist–symbolic hybrids

Clark and Karmiloff-Smith (1993) divide the computational approaches they consider as poten-

tial RR models into ‘connectionist–symbolic hybrids’ and extended connectionist models which

simply use ‘more of the same’ in the attempt to transcend the limitations of first-order connec-

tionism.

The numerous references in the RR literature to qualitatively different representational for-

mats (in turn supporting different degrees of flexibility and accessibility in somewhat the same

way as a series of programming languages) might be taken as suggesting that the appropriate

modelling framework for RR might be a connectionist–symbolic hybrid.

Clark and Karmiloff-Smith (1993) consider several examples of such models, noting that al-

though such models do gain the resources of classical AI for representing structured knowledge,

at the same time they lose the natural generalisation abilities of standard connectionist models,

although this may relate particularly to those cases in which connectionism is used to implement

(graded versions of) conventional AI architectures — compare the rule-extraction scheme dis-

cussed by Clark (1993a, p. 153), in which rules play a supporting role to a core of connectionist

processing.

Clark (1993a, p. 152ff) also considers examples of hybrid models in the weaker sense, in

particular commending an example of a distributed–localist connectionist hybrid on its repre-

sentational multiplicity. He is however also critical of such approaches on the basis that even

they involve much human intervention in the form of parameter-setting and, more importantly

for potential developmental models, ‘provide little indication of how such a [representational]

multiplicity might automatically be developed by a system on the basis of a set of training inputs

and connectionist learning rules. (p. 154).

Although not committing themselves either to hybrid or extended connectionist models, one

of Clark and Karmiloff-Smith (1993)’s concluding observations is that:

Finally we note that systems capable of providing these benefits will probably need
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to resemble the RR model even more closely than the hybrid systems described above

in one further respect. They will probably need to generate multiple levels of in-

creasingly abstract and manipulable representations of the basic knowledge the ac-

quire by connectionist means. : : : Current systems are prone to fall back on human

intervention to bridge [the] gap [between statistically based, fully interwoven con-

nectionist representations and single highly abstracted symbolic forms], [b]ut since

the goal is a system that is self-driven to automatically generate the more symbolic

representational forms, such interventions cannot be tolerated for long.

(Clark & Karmiloff-Smith, 1993, p. 514, my emphasis)

while Karmiloff-Smith (1992b) observes that with time the boundaries of the class of hybrid

models may well become blurred, and perhaps in the modular, mixed-learning-algorithm, and

extended connectionist proposals for RR models, we may be seeing the beginnings of such a

trend, although Clark and Karmiloff-Smith still seem to favour ‘pure’ extended connectionist

approaches overall.

Greco and Cangelosi (1996b, p. 11) regard the issue of whether RR is best modelled using a

(connectionist–symbolic) hybrid implementation as a pseudo-problem. They emphasise instead

the question of whether symbolic representation is necessary, which they consider it is for in-

trospective awareness, while ‘composable elements, that act like words’ are also necessary to a

model of the RRH in their view.

3.8.4 Non-connectionist suggestions

Although, (presumably following the lead set in Clark and Karmiloff-Smith (1993), Karmiloff-

Smith (1992b), Clark (1993a)), most proposed RR models have involved connectionism in some

way, a few proposals from other computational modelling paradigms have also been made.

Kuscu (1993) suggests that a genetic-algorithm-based classifier system could provide a model

of RR, although this proposal has not been explored. Classifier systems (see Forrest (1991) for

instance) can be regarded as a kind of subsymbolic production system, incorporating condition–

action rules (or classifiers), a credit-assignment strategy and a genetic algorithm. Such sys-

tems are proposed as models of the RR process on the basis of the kind of rule-transformation

and consolidation which occurs over the course of learning/evolution, presumably uniting some

of the advantages of self-modifying production systems, while avoiding the problems of rule-

granularity and explicit representational framework noted above.

Grush (1994) suggests that RR effects may simply be a subset of those arising from the task of

learning emulators and controllers, and suggests that the hypothesis could be fruitfully formu-

lated in control-theoretic terms. Although his comments do not constitute an implementational

suggestion as such, simulations of such constructs have been built.

Rutkowska (1994b) suggests that RR may be best understood as a computational process

acting on action programs in a situated agent, and goes on to claim that attempts to provide a

computational model of how viable activity patterns can become permanent adaptive changes

need to concentrate on situated agents if they are to be of significance to an epigenetic approach.

3.9 Previous implementational work

Models of redescriptive effects have been constructed by Thornton (1995) and Greco and Can-

gelosi (1996b) in the domains of mobile-robot pursuit/evasion and a task involving the coordi-

nation of labelling and categorisation of stimuli respectively. These models both make use of

competitive learning techniques to extract features deriving (partially or wholly) from previous

training.
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Figure 3.1: Greco and Cangelosi’s redescription model. Connections in black are trained using

error-driven learning (backpropagation), connections in grey using competitive learning after

the other connections have been trained and frozen.

3.9.1 Greco and Cangelosi’s model

Greco and Cangelosi (1996b) present a model of redescription in which competitive learning is

used to map the results of training in an error-driven network onto a set of explicit categories.

This simple explicitness of semantic information is used as the main criterion of redescription

here, and Greco and Cangelosi define the act of making knowledge explicit as that of activating

‘a local symbolic output corresponding to the category : : : being named.’ (p. 8).

Method

The error-driven learning was performed using a backpropagation network. This network was

trained on a task which required it to coordinate the names and categorisations of objects, rep-

resented at the input as sets of localist features (see Greco and Cangelosi (1996a)). The input–

hidden weights of the network were then frozen, while the hidden-output weights were replaced

by connections from the hidden layer to a module of three banks of output units. These new

hidden–output connections were then trained using competitive learning. The architecture of

the model is shown in figure 3.1.

Results showed that this enabled the network to exploit the previously acquired semantic

structure implicit in the hidden representation, giving rise to a structure similar to that shown

by a cluster analysis of these representations.

Like Bechtel (1993), the authors enter into some debate about the significance of the new

output units in a complete learner. The other implementation to be considered here shows that

feature-detectors learned competitively can be re-appropriated into a complex and representa-

tionally rich system.

3.9.2 Thornton’s Explicitation model

Thornton (1995)’s hybrid explicitation technique is not put forward as a model of RR as such

(particularly in the sense of the RR model), although there are broad similarities (discussed

below).

As mentioned in section 2.5.4, Thornton relates I-level representations to relational learning

problems (i.e., problems such as parity whose solutions are not evident from the statistical profile
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of the input data), while explicit representations reflect simpler mappings, which are explicit

in the sense that they manifest themselves in the statistics. Explicitation works to transform

implicit into explicit, in the sense that it brings non-statistical regularities within the grasp of

(necessarily) statistical learners.

The network architecture is hierarchical and consists of multiple layers. These alternate

between those with nodes trained using competitive learning and those consisting of variables

extracted by a non-connectionist algorithm. Some modifications are also made to the conven-

tional competitive learning scheme, in particular double-weighted connections are used which

allow lower-order statistical effects to be exploited (Thornton, 1994).

Learning is incremental and phases of competitive learning are followed by a process of

relational exploitation which forms a new layer of higher-level variables. These in turn support

a new phase of competitive learning, and the whole process continues (ideally) until all statistical

and relational effects have been fully exploited. The model is also conservative in that all inputs

seen by the network are combinations of current and previous inputs.

The algorithmic explicitation technique works by identifying relationships in the data which

involve constant distances. A set of data is considered to exhibit a relational effect just in the

case that they can be ‘arranged into a linear order such that each variable would show a constant

difference from datum to datum’ (Thornton, 1995, p. 10); something he also terms a linear

signature.

Thornton interprets the internal feature-detectors formed through competitive learning in

symbolic terms. The inputs to the network at any given time are either raw sensor data or ‘sym-

bols for more-or-less abstract and in most cases dynamic features of the current environment’

(Thornton, 1995, p. 20). The network is thus seen as a dynamic multi-level recoding of environ-

mental processes and events.

He compares this process with Piagetian concepts of change in a similar way to Shultz et al.

(1995). The net is described as assimilating sensor data to its current internal representations.

Structural accommodation involves the creation of new nodes, variables and layers, while non-

structural accommodation corresponds to changes in network weights.

The explicitation procedure is also described as incrementally constructing ‘a sequence of

redescriptions or recodings of its sensory environment’ (Thornton, 1995, p. 20) reminiscent of

that in Karmiloff-Smith’s conception of RR. However a limitation of the model as it stands,

noted by Thornton, is that it relies heavily on scaffolding in form of a curriculum of learning

scenarios provided by the (experimenter-controlled) environment.

3.10 Summary

Computational modelling provides cognitive scientists and developmental theorists with a dy-

namic testbed for hypotheses about qualitative change, as well as enforcing to a degree the disci-

pline of a specification in computational terms, whether as a set of productions or the input and

output representations of a connectionist network.

Although production-system models can provide fine-grained fits to experimental data, and

have increasingly incorporated facilities for graded and incremental learning, the inherent ex-

plicitness of the underlying rules makes them seem inferior to connectionist systems in terms of

capturing the progression from implicit to explicit in RR.

Connectionist schemes were defended as models of development on the basis that the under-

lying grain of quantitative change in such models was suited to sustaining revealing simulations

of diachronic phenomena. The emergence of qualitative change from this gradual progression

within a unitary framework was also put forward as a distinctive quality of connectionist sim-

ulations. In this context it was argued that hybrid models did not contribute significantly to

our understanding of developmental phenomena. Incremental learning, via techniques such as

architectural manipulation or training-set phasing, was identified as an effective technique in
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simulating some kinds of representational change during development, and the related idea of

scaffolding a representational trajectory was introduced.

The three characteristics of RR outlined in section 2.1: accessibility, explicitness, and sources

of knowledge were discussed in a connectionist context. There is a sense in that, by demanding

these capabilities, representational redescription can be viewed as a challenge to connectionism,

requiring a developmental progression from associative to systematic and transferable knowl-

edge. It was found that explicitness could be usefully recast for connectionism in terms of a

continuum of system-relative levels of accessibility. The controversial related issue of system-

aticity could be usefully viewed as a product of scaffolded development, rather than a prerequi-

site in the cognitive architecture as Fodor and Pylyshyn (1988) insist. The role of domain-general

constraints and (with certain limitations) domain-specific constraints was also considered some-

thing which might be explored within a connectionist model.

It was also argued that connectionist models were able to address issues in the RRH con-

cerning the timing of mastery, its relationship to redescription and the role of continued on-line

processing and residual error.

Implementational suggestions for the RRH were reviewed. These were found predominantly

to involve connectionism, (presumably following the lead set by Karmiloff-Smith (1992b) and

Clark and Karmiloff-Smith (1993)). Although the qualitative differences between formats (as

well as the use of computer-metaphoric language) in the RR model might suggest the use of

connectionist-symbolic hybrids, these were criticised on the grounds that they move away from

the natural advantages of connectionism, such as direct generalisation, and that they require a

great deal of hand-intervention, seeming to tell us little about how qualitatively different repre-

sentational formats can emerge from a connectionist system.

Although most proposals for RR models involve augmented or weak hybrid (mixed-strategy

or modular) systems, Plunkett (1993) argues that standard schemes such as backpropagation

already embody systematic representations which are explicit in the restricted sense presented

in this chapter. The proposal that associative and tensor-product networks could be related is

intriguing but is not a process model of redescription as it stands.

Examples of implementations of redescriptive models are united in their use of competitive

learning to extract features in conjunction with another process, either of error-driven learning

(Greco & Cangelosi, 1996b) or a non-connectionist algorithm designed to exploit relational

effects exhibited by the data set (Thornton, 1995). These models, as well cascade-correlation

suggest that the explicit copying of whole networks put forward by Clark and Karmiloff-Smith

(1993) is unnecessary. It is argued that hierarchical constructive models with alternating learning

modes such as cascade-correlation and the explicitation technique constitute the most promising

general class of broadly connectionist proposals for RR models. Cascade-correlation is selected

for investigation here primarily since it is both an incremental and a wholly connectionist scheme

and has been used in several simulations of qualitative developmental change, both micro- and

macro-developmentally. The following chapter discusses these points in more detail.



Chapter 4

The cascade-correlation architecture and

representational redescription

Introduction

In this chapter, the cascade-correlation architecture is presented more formally and in greater

detail. The promise of the architecture as a model of RR is then discussed. Chapters 5 and 6

describe the experiments using cascade-correlation to model plurifunctionality and sequence-

learning.

4.1 The cascade-correlation architecture

The cascade-correlation architecture (Fahlman & Lebiere, 1990) (Figures 4.1(a)–(e)) is a multi-

layer supervised connectionist learning scheme. The most important difference between it and

other multilayer schemes such as the standard backpropagation model, for instance, in that al-

though it has (multiple) hidden layers, the number of hidden units is not predetermined. Instead

these are ‘recruited’ (added) as necessary to the progressive reduction of error. The net begins

with only the user-specified input and output layers (Figure 4.1(a)) and tries to learn the task

using an error-driven learning method (in practice the quickprop algorithm (Fahlman, 1988) is

used for speed). If this fails it then enters a correlation-driven recruitment phase in which units

are trained off-line to the outputs. In this candidacy phase (Figure 4.1(b)), a pool of new hid-

den units is created, having only (randomly-weighted) incoming connections from the inputs

and any previous hidden units. These are then trained via a gradient-ascent scheme in order to

maximise the value of S in the following expression:

S = ∑
o

�

�

�

�

�

∑
p

(Vp � V)(Ep;o � Eo)

�

�

�

�

�

(4.1)

(where p ranges over patterns, o ranges over the output units at which the error is measured)

i.e., the correlation1 between the hidden-unit activations, V , and the sum of Eo, the error at the

output units. The best of these candidates is then installed in a separate layer and connected to

the output units. A pool of hidden units is used to help prevent the installation of useless units,

e.g., those for which training got stuck in local maxima during the candidacy phase.

Since it is the absolute values of the correlations which are summed in Equation 4.1, candi-

dates attend only to the magnitude of these correlations. As Fahlman and Lebiere (1990) observe,

1As Fahlman and Lebiere (1990) note, in practice the covariance, which is what S in fact denotes, worked better.

Following Fahlman and Lebiere’s usage, the term ‘correlation’ will be used in this context throughout to denote the

covariance-based measure S.
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(a) (b) (c) (d) (e)

Figure 4.1: Learning phases in cascade-correlation over the course of two unit-recruitments. Arrows in

light grey indicate connections which remain trainable using error-driven learning, those in darker grey

indicate connections which are being trained using correlation-driven learning before installation, and

those in black indicate connections whose weights have been frozen. Input units are shown at the top. For

clarity only one candidate unit in each pool is shown.

if a candidate correlates positively with the error at a given unit, it will develop a negative weight

in an attempt to compensate for that error, while if the correlation is negative, the weight will be

positive.

On installation, the weights on the connections to the new hidden unit are frozen (Fig-

ures 4.1(c) and (e)) and the input–output and hidden–output connections are re-randomised

and re-trained to readjust overall performance. This process is repeated until either the total

error at the output has dropped to an acceptable level, or until any of various user-determined

limits on epoch numbers have been reached.

Each learning phase, whether error-driven (Figures 4.1(a), (c) and (e)) or correlation-based

(Figures 4.1(b) and (d)), continues until either the network has converged or there has been a

lack of significant (proportional) improvement in error over a period of a number of epochs.

The latter situation is known as stagnation and the parameter specifying the number of epochs

is called the patience. Upper limits are also set on the number of epochs of each kind of learning

which may take place in one phase. Stagnation causes the network to begin a new learning phase

of the opposite kind to the current one, i.e., to pass from error- to correlation-driven learning

or vice versa. Corresponding to the two kinds of learning is a division of sets of weights —

output-side weights (shown in light grey) are trained using error-driven learning, while input-

side weights (shown in dark grey/black) are trained using correlation-driven learning.

4.1.1 Performance characteristics of cascade-correlation

This section gives an overview of the performance characteristics and parameters of cascade-

correlation particularly relevant to the modelling of developmental dynamics and conceptual

change, summarising the main qualitative and quantitative differences between its performance

and that of comparable multi-layer supervised learning techniques, in particular backpropaga-

tion (Rumelhart et al., 1986).

Learning speed

On a number of benchmark problems reported in Fahlman and Lebiere (1990), cascade-correlation

performed significantly better than standard backpropagation. According to Fahlman and Lebiere

these speedups are due to the following factors:

� Unlike backpropagation or quickpropagation (Fahlman, 1988), CC requires only a for-

ward pass (rather than both a forward and a backward pass) through the network

� In cascade-correlation, many of the training epochs are run while the net is smaller than

its final size; since the weight-values for the earlier, frozen, layers of the network do not
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change, these can be cached, thus avoiding unnecessary calculations.

� Cascade-correlation uses freezing of existing structure and the restriction of each recruit-

ment to a single unit. This is an attempt to combat what Fahlman and Lebiere (1990) call

the moving target problem. Under these restrictions, the network only sees, a relatively

fixed aspect of the problem, and is thus able to focus on it.

Incremental learning

As Fahlman and Lebiere (1990) note, cascade-correlation is well suited to incremental learning,

i.e., in their terms, ‘when information is added to an already-trained net.’ (Fahlman & Lebiere,

1990, p. 11) (its suitability for capturing the related idea of incremental learning associated with

developmental modelling is discussed in section 4.3.1). One reason for this is that the freezing

of earlier-generated structure means that any feature detectors it embodies, once formed, are

never cannibalized. Of course the extent to which these frozen sets of incoming connections

are actively used by the network as feature-detectors depends on the strength of the weights

formed between the hidden and output units. For instance a change in training set can cause

these to change such that the effect of some of the previous input-side structure is diminished or

lost. However the input-side weights have a strong mediating effect on the connections trained

through error-driven learning, and Fahlman and Lebiere note that if the training set is changed,

the output-side weights ‘are quickly restored if we return to the original problem’ (Fahlman &

Lebiere, 1990, p. 11).

The constructive scheme used in cascade-correlation is also reminiscent of models and ac-

counts inspired directly by biological development. For instance, Linsker’s influential model of

the development of the visual system made use of a scheme in which (self-organising) layers were

added incrementally until the required higher-order feature-detectors had been formed. Quartz

and Sejnowski (forthcoming) cite cascade-correlation as an example of a scheme which accords

with their almost entirely constructive account of both neural and cognitive development.

Effects of parameters

Patience Patience controls how long the network takes to reach stagnation. i.e., for the propor-

tional improvement in either an input- or output-side learning phase to fall below a certain level.

Squires and Shavlik (1991) found this parameter to have one of the most important effects on

the performance of cascade-correlation. By preventing overfitting, setting patience to a relatively

low value can improve generalisation.

Input- and Output Epoch limits These parameters control directly the maximum number of

epochs spent in any one phase of input- or output-side learning respectively. Like patience they

can also be used to improve generalisation by preventing overfitting.

Size of candidate pool The size of the candidate pool controls the space searched for new

feature detectors to freeze and install into the network. Although this paramter has not been

used in previous developmental simulations, it is suggested here that it corresponds to a way of

controlling the number of hypotheses which are generated about higher-order regularities in the

data,

Generalisation

One of the most major problems besetting cascade-correlation is that of poor generalisation.

According to Squires and Shavlik (1991) and Mohraz and Protzel (1996), both of whom have

investigated the influence of freezing hidden-unit input weights on cascade-correlation (or in the

case of Mohraz and Protzel on an architecture with similar connectivity pattern and training

regime), it is this freezing which gives rise to the poor generalisation performance (and in some

cases poor training-set performance) of CC. The reason given for this is that freezing can some-

times lock the network into regions of the solution space from which it cannot escape, either to

converge on the solution, or in the case of generalisation, from an over-exact fit to the training

set.
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4.2 Comparison of other constructive algorithms with cascade-correlation

Cascade-correlation is an example of a class of connectionist algorithms known as constructive

(or generative (Shultz et al., 1995)) algorithms. Other examples of such algorithms include Gal-

lant (1993)’s pyramid and tower algorithms, tiling (Mézard & Nadal, 1989), and upstart (Frean,

1990). Gallant (1993) describes the motivation behind such algorithms as being ‘to transform the

hard task of building a network into the easier problem of single-cell learning’ (p. 195). These

algorithms are characterised by the following general features:

� progressive addition of structure (layers) over the course of learning

� addition of a single unit in each layer (CC, Tower, Pyramid)

� freezing of weights in previously added structure (Tower, Pyramid and CC)

� connections to all previous layers (CC and Pyramid only)

� option not to add a new node if doing so would be detrimental to performance (Tower

and Pyramid only)

In terms of providing a model of RR, two of the features that cascade-correlation lacks

might seem worth investigating. Firstly it is possible that a strictly layered network such as

the one produced by Tiling might capture the progression through phases better (although its

capacity to return to previous strategies might be less than that of a network which connects

each layer to all previous layers). Secondly, the option not to add a node which would result in a

performance decrement could be investigated as a control in the modelling of those domains in

which RR exhibits a U-shaped behavioural curve (although this would bias the network towards

error-driven feedback in terms of recruiting structure as well as in learning, which seems to move

away from the idea of redescription as outside the main error-driven input–output mapping).

Cascade-correlation is the only one of the above algorithms to have been used in model of human

development to the author’s knowledge (see 4.3.2 below for a review of these models).

The FlexNet scheme

Mohraz and Protzel (1996) present the FlexNet scheme. This is a family of models explicitly

based on cascade-correlation, and extended (in a similar but more general way to that of Squires

and Shavlik (1991)) by relaxing certain restrictions. Specifically, FlexNet differs from standard

cascade-correlation in allowing variable numbers of units in hidden layers, variable degrees of

cross-connection, variably sized candidate-pools and the freezing of weights to be made op-

tional. Hidden units can also undergo candidate training in the context of existing hidden layers

as well as new ones.

FlexNet also allows three connection strategies: adjacent in which only adjacent layers are

connected as in a standard multi-layer perceptron, full, in which all units have direct connec-

tions to all others except those in the same layer, and medium, in which units are connected

to the output units and all units in previous layers. Like cascade-correlation, FlexNet also uses

two training phases, described as ‘main’ and ‘candidate’ (although the training scheme for the

candidate units is not stated in Mohraz and Protzel (1996)).

In support of these extensions, Mohraz and Protzel claim that the restriction to single-unit

layers in cascade-correlation is detrimental to generalisation. They also find that freezing slows

training but does not affect generalisation, contrary to the findings of Squires and Shavlik (1991).

In terms of modelling redescription, the FlexNet model provides a superset of the features

of cascade-correlation, and would thus allow manipulation of certain features such as freezing

and unit-recruitment strategy.

To sum up, cascade-correlation represents a relatively powerful and general example of an

important class of constructive, internal resource-phasing network architectures, and is the only
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one which has been used to model development (although it has not previously been applied to

the RRH). A more recent extension to cascade-correlation — FlexNet — provides a framework

for varying certain aspects of the constructive scheme in cascade-correlation and would be an

interesting tool for extending the work presented in chapters 5 and 6.

4.3 The promise of cascade-correlation as a model of RR

The relevance of using cascade-correlation in the construction of models of qualitative change

during cognitive development is attested to by the results reported in Shultz and Schmidt (1991),

Mareschal and Shultz (1993), Shultz (1991), Shultz, Buckingham, and Oshima-Takane (1994),

Buckingham and Shultz (1994), Shultz et al. (1995). The relevance of these studies to modelling

RR is discussed in more detail in section 4.3.2.

4.3.1 Cascade-correlation as a model of RR

Cascade-correlation has also been proposed (Brook (1993, 1995), Shultz (1994)) as a possible

connectionist model of representational redescription. In support of this, both authors cite the

fact that it is an example of an incremental learning scheme, which makes it a suitable can-

didate for developmental modelling in general, and that in unit-recruitment it incorporates a

natural mechanism for supporting qualitative change. More specifically to cascade-correlation,

the changes in performance it passes through are both conservative and hierarchical, and involve

alternations between phases of differently focused types of learning. The transitions between

these phases are also prompted by the net’s achievement of a stable state. These aspects are

considered in turn in the sections that follow.

Karmiloff-Smith (1994, p. 739) has responded that cascade-correlation ‘seems to capture

the first level of redescription in ways that are very close to the intuitions underlying RR’ (al-

though she does not elaborate on this perceived correspondence), and also comments that she

finds illuminating the ‘notion that cascaded hidden units afford the construction of increasingly

powerful knowledge representations that were not available to developmentally earlier instantia-

tions of the network’ (p. 738). She also now agrees that it is possible for such models to provide a

framework for studying developmental principles at a level more general than that of individual

tasks.

Conservative changes in qualitative performance

Cascade-correlation preserves both previous structure and (partial) solutions in the frozen in-

coming weights to the hidden units. This gives the network the potential to return to previous

solution states at least over the immediately succeeding unit recruitments. Shultz and Schmidt

(1991) report that in their model of the balance-scale (torque-difference) task, around the time

of a qualitative change in behaviour the network tended to go through a period where it would

alternate between strategies.

The cascade architecture also resembles the hierarchical nature of the representations pro-

posed by the RRH and means that any new learning which takes place must happen with respect

to all earlier, frozen, hidden structure.

Incorporation of alternating learning modes

Central to the RR model is the idea that learning within phases has a different focus to the pro-

cess which moves the learner between phases. Specifically, learning within phases is driven by the

need to make quantitative performance improvements, while the (redescriptive) process which

brings about phase transitions is not directly error-driven and acts to bring about greater flex-

ibility and explicitness. Cascade-correlation also incorporates two alternating learning modes,

and like RR, one is error-driven and acts directly to try and improve performance while the other

is indirect, occurs off-line, and is associated with biasing a (microscopic) quantitative change in

processing power in the form of the recruitment of a new one-unit hidden layer. Each learning-

mode change is also prompted by the net’s having reached a stable state in the previous mode,
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and this can be seen as corresponding to the stable states of (at least partial) task-mastery re-

quired for redescription in the RRH.

To the extent that the motivations for redescription are open to question, cascade-correlation

can provide a framework within which to investigate such issues.

Incremental learning and developmental modelling

Incremental learning (in the context of developmental modelling) is a broad term which refers

in connectionist theory to the idea that learning a task is best (or only) achieved through the

‘staging’ of learning, usually through manipulation of resources (or resource phasing). These

resources may either be internal to the network, such as number of internal nodes or length

of attentional window in recurrent nets (Elman, 1990b, 1991), or external, such as ordering or

constituency of training set. Resource-phasing works to facilitate the learning of complex tasks

by making use of the fact that the initial inability of the network to deal with complexities, such

as long-range dependencies for instance, can allow it to focus on the simpler aspects of the same

problem. Thus resource-phasing may act to produce a conservative problem decomposition

(Clark & Thornton, 1993), the simpler aspects of the problem acting as building blocks on

which subsequent, more complete, solutions may depend (Clark, 1993b) (see 3.5 for further

discussion).

Incremental learning also appeals to modellers more interested in capturing the path or tra-

jectory through the process of learning of a task than in eventual successful performance in

itself. For instance, resource manipulation allows the trajectory through the learning process

to be actively shaped using general means without the need to resort to hand-crafted or syn-

chronic modelling, and thus to move away from the emergent dynamics of a network model.

The hidden-unit-recruitment strategy of cascade-correlation is an example of resource-phasing,

each step serving to increase the power of an initially very limited network.

Fahlman and Lebiere (1990) refer to the process of hidden-unit recruitment as adding ‘higher-

order feature detectors to the network’. The idea of a hierarchy of feature detectors is central to

the general approach to problem decomposition presented in Clark and Thornton (1993). The

question of whether, and under what conditions these two ideas of feature detectors are to be

distinguished from each other, remains to be explored.

Clark and Thornton (1993) also claim that:

More generally : : : any cascade of processors in which the upstream devices sort, fil-

ter or recode incoming data holds out the promise of promoting successful learning

(Clark & Thornton, 1993, p. 40)

by guiding the network towards the kind of early learning which reduces the statistical complex-

ity of the task. Clark and Thornton give the following list of recoding strategies used in recent

incremental learning models: evolved pre-processors, acquired, training management, initial

short-term memory limitation, and modular decomposition techniques. Cascade-correlation

inherently implements initial short-term memory limitations in in that its architecture starts off

with minimal power — in the recurrent version for instance, the initial lack of hidden units

means that the net begins with no recurrent elements at all. In its building of a hierarchy of

feature detectors, CC can be also be said to implement acquired recodings. Training manage-

ment is not inherent to CC, but is compatible with it and has been used by Fahlman (1991) in

the Morse-code learning example with RCC. It would also be possible to install hard-wired unit

structure to play the role of innate or evolved pre-processors. Recurrence may also be seen as a

domain-general constraint on processing (Karmiloff-Smith, 1992c).

Although Clark and Thornton do not commit themselves to whether the cascade of recod-

ings or filters in cascade-correlation are likely to perform the right kind of reductions in com-

plexity to allow relational tasks to be learnt, they note both that single networks rely on decom-

positions of a single task to constitute a trajectory (p. 38) (i.e., tend to be confined to learning
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tasks which have a conservative incremental solution). They also consider (p. 22) that even if

sophisticated learning algorithms such as cascade-correlation are able to solve ‘hard’ problems

such as parity, these inevitably introduce restrictive assumptions about the nature of hard prob-

lems in terms of which recodings are possible.

However, unlike single-network schemes such as backpropagation or SRN’s, central to cascade-

correlation is the preservation of the results of previous learning in the form of the frozen input–

hidden and hidden–hidden weight structure. Although use of this mechanism does not avoid the

problem of interference between tasks learned in sequence by a single network, it does suggest

at least the possibility of building early feature detectors via training on other tasks, rather than

necessarily restricting training to subsets of a single task. The experiments on transfer of simple

counting-related knowledge in chapter 6 provide a partial investigation of the use of scaffolding

on structurally related tasks in conjunction with cascade-correlation.

In incorporating a standard error-driven learning algorithm, cascade-correlation inherently

shares some of the general qualities which are considered by Karmiloff-Smith to make connec-

tionist systems appropriate models for redescription, in particular at the initial I level. These

include gradualistic, distributed representations, and adjunction of representations (see 3.2.3 for

discussion).

However, Karmiloff-Smith (1994) expresses several reservations concerning cascade-correlation.

One of these is that she sees the fact that the move from stagnated error-driven learning to

correlation-driven learning is automatic as implying that behavioural mastery is sufficient for

redescription in addition to being necessary, as Karmiloff-Smith often claims. Karmiloff-Smith

(1994) thus seems to view both kinds of learning in cascade-correlation as taking place within

the input–output mapping, preferring to consider redescription to be something which acts in-

dependently of this.

4.3.2 Previous developmental models using cascade-correlation

As noted above, a number of previous developmental models have been constructed by Shultz

and his collaborators, although none of these has dealt explicitly with capturing the RR model.

Shultz et al. (1995) provides a survey of this work, while the following sections focus on two

models particularly relevant to the work presented in chapters 5 and 6.

Seriation

As mentioned in chapter 3, Mareschal and Shultz (1993) used cascade-correlation to construct

a model of development on the seriation task (Inhelder & Piaget, 1969). Their model involved

a modular arrangement consisting of two networks, dealing separately with the tasks of which

stick to move next and where to move it. The network was trained to perform according to

the operational method (i.e., select the smallest, as yet unordered element and move it into its

correct position in the series).

This model was able to capture the progression through a series of strategies associated with

this task. Analysis of the representations formed during learning using Hinton diagrams re-

vealed further that the network had achieved the correct, staged, solution in a gradualistic man-

ner which contrasted with the solutions formed in previous cascade-correlation models such as

that of Shultz and Schmidt (1991). This leads Mareschal and Shultz to comment that in gen-

eral ‘[s]ome representational changes appear to require qualitative changes in representational

power, whereas others do not.’ (p. 5).

Seriation is also cited by Karmiloff-Smith (1992b) as a canonical example of a sequence-

learning domain in the sense addressed by the RRH, (although a detailed account within the RR

framework is not presented). This model exhibits the pattern of ends-inwards success associated

with sequence learning by the RRH. As Mareschal and Shultz (1993) note,

The Hinton diagrams also revealed that the building of a representational structure

in the network began by adjusting weights leading to those dealing with the short
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end of the series and was progressively extended along the length of the series until

finally appropriate weights were found for those units coding the larger end of the

sequence. This is consistent with [the] suggestion that children build a linear order

mental representation of the seriation task by proceeding from the ends of the series

inwards.

(Mareschal & Shultz, 1993, p. 5)

Children’s acquisition of first- and second-person pronouns in English

Shultz et al. (1994) used cascade-correlation to model the acquisition of first- and second-person

pronouns in English. The phenomena to be modelled included the so-called reversal errors

temporarily made by some children. These errors involve treating the pronouns ‘you’ and ‘me’

as if they were names and thus always had the same referent, with the consequence that others

are addressed as ‘me’, and self as ‘you’.

Their model made use of training-set phasing in conjunction with cascade-correlation in

order to investigate the roles of directly addressed and overheard speech. The study also in-

volved an investigation of the effects of changes to the composition of the training set on further

learning (something they termed. ‘second-phase’ training). These changes involved a change in

token-frequencies and the proportion of child-addressed speech.

This study has direct relevance to the RRH in that the phenomenon modelled is cited by

(Karmiloff-Smith, 1992b) as an example of the effects of explicitised representations on be-

haviour as well as having some simlarities to the study presented in chapter 5, particularly the

simpler form discussed in section 5.4. Shultz et al.’s model is the only previous study of cascade-

correlation in simulating a psycholinguistic phenomenon known to the author.

Shultz and Schmidt (1991) also used cascade-correlation to model the balance-scale (Mc-

Clelland, (1989), see also section 3.3.1), capturing all four of the strategies involved, including

the minor regressions observed in the task.

Shultz et al.’s models and Piaget

Shultz et al. (1995) also compares the alternation of the two types of learning process in cascade-

correlation to Piaget’s ideas of assimilation and accommodation, arguing that it is thus possible

to view cascade-correlation as a model of equilibration. Despite this direct relation of the archi-

tecture to Piagetian terminology, there is nothing inherent in it which implies that the qualitative

shifts it exhibits should be seen as age-related stages for instance, and it is not thereby compro-

mised as a potential model of RR.

4.4 Summary

This chapter has presented the cascade-correlation architecture in more detail, surveying its

practical strengths and weaknesses and comparing it briefly with similar constructive network

architectures. It was argued that cascade-correlation is promising as a model of representational

redescription as it provides conservative qualitative change, alternating learning modes, and

supports incremental learning. It also incorporates the qualities of standard (error-driven) con-

nectionist learning such as gradual change, graded and distributed representations and the rep-

resentational adjunction characteristic of level I of the RR model. Previous cascade-correlation

models of qualitative developmental change in the domains of child language acquisition and

the Piagetian balance-scale and seriation tasks were surveyed and presented as evidence that

cascade-correlation is well-suited to capturing qualitative developmental change.



Chapter 5

Cascade-correlation as a model of RR in

plurifunctionality tasks

5.1 Introduction

This chapter describes experiments carried out using cascade-correlation to model redescriptive

effects in the comprehension of the French article system (Karmiloff-Smith, 1979a, 1992b). In

this setting redescription involves the formation of a linguistic subsystem relating the common

features of the articles, from an initial state in which representations are stored individually.

This micro-domain was chosen as it provides a good example of a situation conforming to the

three-phase RR model.

5.1.1 The playroom experiments — comprehension of the article system

The following simulation is based on a series of experiments originally designed to test chil-

dren’s understanding of the article system in French (Karmiloff-Smith, 1979a, p. 171 ff.) but also

put forward by Karmiloff-Smith (1986, 1992b) as an example of how knowledge of articles is

redescribed into a linguistic subsystem of which the children show increasing awareness.

The experiments involved an array consisting of two playrooms, in which a boy and girl doll

were placed — see figure 5.1.

In each playroom a selection of one or more of several kinds of common object was placed.

The child taking part in the experiment is told that the dolls will be given groups of toys to play

with (which will be changed after a few games). The task is to guess whether the experimenter is

speaking to the boy or the girl doll each time they ask ‘Lend me a/the X’, based on the contents

of each doll’s playroom. The expected response is to choose the playroom containing a single

X when ‘the’ is used and more than one X when the article is ‘a’. For example in figure 5.1 the

question ‘Lend me a W’ would most naturally be addressed to the boy doll, while ‘Lend me the

W’ would be addressed to the girl doll, because there is only one W in the right-hand playroom

and several in the left-hand playroom.

Karmiloff-Smith (1979a) found that children of all ages successfully chose the room contain-

ing a single instance of a particular object when the definite article was used. For the indefinite

article however, while the youngest children studied (3-year olds) gave the appropriate response

in 90 percent of cases, this had dropped by age 5 to as little as 29 percent, and it was only by the

age of 8 that performance started to approach its original high level. Figure 5.2 shows the results

of the original experiment.

Associated with these three phases are symptomatic qualitative changes in the way in which

the children justify their choice of addressee: younger children justify their answers (often erro-

neously) with reference to real-life situations, middle-age children refer to the situation in the

array, while older children are able to discuss the linguistic conventions at work and emphasise
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Figure 5.1: The experimental array used in the playroom experiment (after Karmiloff-Smith

(1979a, p. 65))
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Figure 5.2: Percentage misclassifications on the playroom comprehension task. The drop in per-

formance on the indefinite article (corresponding to the rise to 70% error here) in the middle age

group is striking, while performance on the definite article remains relatively good throughout.

(From data on Karmiloff-Smith (1979a, p. 175))
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the article used by the experimenter (because, in the terms of the RR model, they now have

explicit conscious access to the linguistic subsystem underlying their performance).

The decline in performance in the middle group is thought by Karmiloff-Smith to be due to

the fact that in French the word-form indefinite article (un/une) also functions as the numeral

one. While the indefinite article usually has a non-specific function (corresponding to the usage

of ‘a’ or ‘any’ in English), its numeral function is more specific and there is thus a potential

conflict between the two functions. The subjects’ interpretation of the definite article appears

to remain correct throughout, although, as the RRH would predict, it has a different status

according to the age of the children.

The changes in interpretation of the indefinite article are accounted for as follows by Karmiloff-

Smith:

With regard to the indefinite article, it is suggested that the youngest children inter-

pret it correctly because of the absence of a focus of attention (which the definite

article implies for them). The interpretation of the 5 to 7 year olds seems to stem

from concentrating on a new function conferred on the indefinite article: that of

being a numeral. : : : From 7 years, conflicts between the numeral function and the

non-specific function of the indefinite article became apparent. [through the addi-

tion of markers in production] Over 8 years olds interpreted the indefinite article as

a non-specific reference [and epilinguistic data they produced suggested] an under-

standing of non-specific reference.

(Karmiloff-Smith, 1979a, p. 184)

So the basic behavioural pattern to be modelled is a U-shaped curve in performance on

comprehension of the indefinite article (particularly in its non-specific function). In terms of re-

descriptive effects we would expect this to be accompanied by, and symptomatic of, an increasing

systematicity in the underlying representations.

5.1.2 The changing status of articles — from unifunctionality to plurifunctionality

The U-shaped behavioural curve observed in the playroom experiments is explained by Karmiloff-

Smith (1979b) by the idea that the underlying representations of the article–function associations

undergo qualitative change — specifically they become more systematic. Although the youngest

children exhibit apparently adult usage and comprehension, associating the same article form

with different functions, this is in fact comprised of the use of a collection of distinct article-

form–function pairs (termed by Karmiloff-Smith ‘unifunctional homonyms’) produced by sep-

arate procedures conforming to a one-form–one-function constraint.

Karmiloff-Smith (1979b) claims that this change in the status of meaningful units from uni-

functional to plurifunctional is an example of the kinds of spontaneous qualitative changes

which occur as part of representational redescription.

The corresponding overmarking of the determiner and partitive functions of a word like

‘un’ (used in its non-specific sense) observed in the productions of middle-age children points

to a new awareness of the dual functions of such items and the (temporary) perceived need to

mark functions explicitly using separate words. The eventual return to adult comprehension and

production reflects the fact that it is now possible for one form to serve more than one function,

i.e., the form now has plurifunctional status for the child.

5.1.3 Plurifunctionality, the playroom experiment and RR

In terms of the RR model the explanation of this macro-developmental progression runs as fol-

lows (Karmiloff-Smith, 1992b, p. 57). The initial behavioural mastery exhibited by the youngest

children calls on two independently stored level-I procedures which map phonological forms

onto specific functional contexts. Although able correctly to produce and interpret articles in
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this deictic context, what they do not ‘know’, claims Karmiloff-Smith, is that there is a func-

tional relationship between these efficiently functioning procedures; nowhere is there an explicit

(E1) representation of the functional links between the articles. After this initial behavioural

mastery has been achieved, representational redescription acts on the separate procedures pro-

ducing the unifunctional homonyms, (which remain intact and able to be called upon for certain

purposes) to give explicit E1-level representations. This makes it possible to link the common

phonological form across the two form–function pairs. This newly formed representational link

explains the appearance of errors in the 5-year-olds’ production and comprehension. In produc-

tion these appear in the form of the overmarking of separate functions and in comprehension in

the form of mistakes concerning which of the two functions of an article is intended. Finally, the

differing ways in which children justify their responses verbally also supports an RR interpreta-

tion — only the oldest children could account for their correct performance by making reference

directly to the linguistic subsystem at work. This would suggest that they were representing the

micro-domain in E3 format.

The experiments reported here are concerned with modelling the comprehension errors and

performance which appear at level E1, as well as capturing the overall U-shaped curve in perfor-

mance.

5.2 Modelling the playroom experiment using cascade-correlation

5.2.1 Input representation

Input data are of the following form. The inputs are divided into three banks representing the

array (the two playrooms), the object asked for, the article associated with that object in the

question, and the function of the article.

The array is represented such that there can be either 0, 1 or ‘more than one’ (indicated by

M) of each object for each addressee. Each object-type is thus associated with a pair of values,

the first corresponding to the number of objects in the left-hand playroom (the boy doll’s) and

the second to that in the right-hand (the girl doll’s). In the question-object bank a 1 indicates

that that object is the one requested using a one-of-n1 encoding. A 1 on the article unit indicates

the indefinite article, –1 the definite article. The function bank again uses a one-of-n encoding

over three units to give orthogonal encodings for the non-specific sense of the indefinite article

(‘a’), the definite article and the specific sense of the indefinite article (‘one’).

Using this encoding scheme the vector

(M;1)
| {z }

W

(1;0)
| {z }

X

(0;1)
| {z }

Y

(1;M)

| {z }

Z
| {z }

array

1 0 0 0
| {z }

question objects

1
|{z}

article

specific
| {z }

function

would represent the situation shown in figure 5.1, with the experimenter asking about the ques-

tion ‘Lend me a W’. The appropriate response is to say that the experimenter is addressing the

boy doll, since it is the left-hand playroom which contains more than one W.

The encoding for the array was adapted from the experimental setup used by Karmiloff-

Smith (1979a, pp. 171–2). In her experiment, children were asked a total of 16 questions relating

to four contexts (p. 171) comprising differing arrangements of objects within the two playrooms.

In each context four different kinds of objects were used, two of which appeared in differing

quantities in each playroom, while the others appeared in one playroom only. In terms of the

encoding used above, each arrangement of objects would be represented by a permutation of the

multiset

f(M,1),(1,M),(1,0),(0,1),(0,0) : : : (0,0)
| {z }

11

g

1a scheme in which each possible distinct data-item is represented by activating a single unit of n possible units

(hence one-of-n), giving a set of orthogonal vectors
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corresponding to the fact that there are 15 possible objects, 4 of which are used in any given

context during the experiment.

A pilot study using an array containing all fifteen different input object-types had shown

that there was a large overhead due to the network’s having to learn the associations between

the banks of inputs conveying information about objects, and that this became prohibitive as the

number of distinct objects increased. Since the intention in the original experiment was that the

objects chosen should already be familiar to the children, it was decided that this overhead of

object recognition could be reduced without affecting the essence of the experiment. The fifteen

different objects used in Karmiloff-Smith’s experiment were thus collapsed into four, with each

object appearing in a different ‘role’ (i.e., appearing in both playrooms or only one, or appearing

more than once in a particular playroom).

The original experiment also controlled for differences (or lack of them) between individual

objects within a group (e.g., colour), and these differences were also elided for simplicity of

encoding.

Although the encoding is presented in its above form here for clarity, in practice, for each

of the object-type pairs in the array bank and also the article function, a one-of-n vector was

generated. This transformed representation was intended to avoid making any information in

the inputs unnecessarily explicit. A more compact representation, in which the values shown

as 0, 1 or M above were mapped directly onto the values –0.5, 0 and 0.5 respectively, was used

in some pilot studies, but was rejected in that it rendered certain important relationships in the

data explicit before training had even begun. The 0 targets also made Hinton diagrams difficult

to interpret. 2

5.2.2 Composition of training data

The network was trained to associate situations in which an object is asked for using the definite

article with the playroom which contained exactly one instance of that kind of object. In the

case of the indefinite article, the network had to learn to associate the single form with two

different functions. The specific case required the same response as that for the definite article,

i.e., the singleton object, while the non-specific case requires that the addressee selected should

have more than one of the kind of object being requested.

Object configurations in training data were produced by initially selecting four pairs ran-

domly with replacement from the set f(1,M),(M,1),(1,0),(0,1),(0,0),(M,0),(0,M)g, subject to the

constraint that at least one of the pairs was not (0,0), i.e., that there was at least one object in

the whole array. An article was then chosen randomly, and, if indefinite, a random choice of the

specific (‘one’) or non-specific (‘a’) function was also made, while definite articles always took

the same function value. Once the article/function had been chosen the array was then checked

against it to see whether it contained at least one of the object-type pairs appropriate to the

article–function pair. For instance, the indefinite article and non-specific function pair applies

to situations in which one playroom contains more than one of a given object, i.e., is represented

by one of the pairs (M,1) or (M,0) (or the reversed versions). If the randomly generated array

contains more than one applicable object-type pair then one of these is chosen at random.

Certain situations are excluded, in particular the ambiguous situations in which both ad-

dressees have one or more than one of a certain object (this restriction was also made in the

experimental setup in Karmiloff-Smith (1979a)). With these situations excluded, it is possible to

determine the expected addressee in each case, and this is used as the target data at the output

— a 1 on the output unit means that a sentence of the form represented by the inputs would

usually be addressed to the girl and vice versa.

2Although clearly if two variables are used to represent data which can be represented using only one then their

values will be anti-correlated, the resulting representation (of the whole input vector) be less inherently systematic

than that formed using a single variable.
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Article Ambiguity Array Question Response

objects

definite unambiguous ((0,1),(M,1),(1,M),(1,0)) (0,0,0,1) room with 1 (left)

definite ambiguous ((1,M),(0,1),(M,1),(1,0)) (0,0,1,0) room with 1 (right)

indefinite ambiguous ((M,1),(1,0),(1,M),(0,1)) (1,0,0,0) room with M (left)

Figure 5.3: The three test situations in Karmiloff-Smith (1979a)

Training in this way with the intended function made explicit in every case was intended as

pretraining corresponding in a broad sense to the previous linguistic experience of children in

this microdomain. Karmiloff-Smith (1979b) notes that in daily discourse ‘such ambiguity rarely

exists due to contextual clues’ (p. 95) and the explicit functions were intended to indicate such

context.

Using a method similar to that used by Plunkett and Marchman (1993), weight matrices were

saved after each phase of output-side learning,3 giving one matrix for each hidden-unit configu-

ration of the network, and tested on a data set not used in training to investigate the progressive

systematicity of the representations formed within the network as well as generalisation.

5.2.3 Test data

In order to test the generalisation of the learning of the different semantics for the indefinite

article over the course of learning, the experimental arrays and questions were again adapted

from Karmiloff-Smith (1979a, pp. 171–2). In the experiment, children were asked a total of 16

questions relating to four contexts (p. 171) comprising differing arrangements of objects within

the two playrooms. In each context four different objects were used, two of which appeared in

differing quantities in each playroom, while the others appeared in one playroom only.

The experimental items in the original experiment were spoken with normal intonation,

which implies the non-specific sense for the indefinite article. The test set thus also used the

non-specific function for the indefinite article.

Again following Karmiloff-Smith (1979a), the three situations represented in the test data

were: definite article with a type of object which was present in only one playroom (unambigu-

ous), definite article with a type of object present in different quantities in each playroom (am-

biguous), and indefinite article with an ambiguous array as in the definite-article case. Figure 5.3

summarises these categories, which will be referred to throughout. The role of the unambigu-

ous situation in the simulations was slightly different to that in the original experiments — there

definite unambiguous cases were presented first to test children’s understanding of the experi-

mental setup, whereas here they serve as a test of the pretraining on both object recognition and

article–function mapping.4 All 144 possible such exemplars were generated and used as the test

set with the additional condition that none of these should appear in the training set.

3In fact, networks were restricted to recruiting one unit per trial and the defeated networks reloaded until the

network reached criterial performance (or ‘victory’ in the context of cascade-correlation). Since the output-side

weights are randomised after each recruitment, the network sometimes continued output-side training for some

epochs after reloading. The numbers of output-side epochs immediately after recruitment tended to be small and

both the overall epoch-numbers as well as the number of hidden-units recruited were comparable with a control

network which was trained continuously (i.e., without saving and reloading of weight matrices).
4In hindsight, it would have been desirable to add unambiguous indefinite-article cases as an indication of baseline

performance on the difficult indefinite non-specific category.
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5.2.4 Overview of method

Network configuration

The networks used in these experiments were non-recurrent cascade-correlation networks with

32 binary inputs and one binary output unit5. In all of the experiments presented in this chapter

exemplars were trained in batch, i.e., weights were only updated after the entire training set had

been presented to the network. This is the usual mode of training for cascade-correlation many

of whose control parameters are epoch-based. In each case the size and constituency of the

training set were kept constant throughout training. Training continued until the training-set

error reached 0 bits.

The parameter settings were either arrived at by hand during preliminary investigations or

based on based on defaults given by Fahlman (personal communication, 1995). Experimental

manipulations involving variations to certain parameters are discussed below.

Causes of qualitative change

Internal causes of change Cascade-correlation includes many parameters and this study fo-

cused on a small number of these which were considered particularly relevant to the production

of qualitative change, in particular those shifts in representational style associated with RR.

This study focuses on two of these parameters: patience and candidate-pool size. Patience

controls the number of epochs the network waits before giving up while improvement is propor-

tionally small. This controls the timing of the point termed stagnation, at which a given phase

of input- or output-side learning ends.

Varying the size of the pool of candidate units corresponds to increasing the space searched

for possible feature-detectors based on the features of both the raw input as well as the recodings

of hiddens downstream. A large pool size allows large changes in the magnitude of the corre-

lation between the incoming weights to a newly recruited hidden and the residual error at the

output unit(s). These weights in turn have a strong mediating influence on the outputs and thus

the overall behaviour. During the experiments reported here it was found that weights between

hidden and output units tended to be relatively high.

External causes of change Biases in the frequencies of certain types of exemplar in training

data are acknowledged as contributing to the modelling of stagelike qualitative transitions in

networks trained using supervised learning schemes (Plunkett & Marchman, 1993; Shultz et al.,

1995; McClelland, 1995). Variations in the proportions of different classes of article–function

pairs were thus investigated.

Analysis of behaviour

The main index of behaviour during training was the proportion of misclassifications on differ-

ent categories of inputs (e.g., definite article, unambiguous situation) on both training and test

sets as in Karmiloff-Smith (1979a). It was thus also assumed that a classification error implied

a choice of the opposite case, e.g., for the indefinite article in the test set a misclassification im-

plied that the specific (or numerical) rather than the non-specific function was intended — as

Karmiloff-Smith (1979a, p. 176) notes ‘it is the fact that the definite article is not used that is a

clue to the more appropriate response’.

Analysis of representations

Hinton diagrams were used as the main means of examining internal representations directly.

The limitations of this method are noted by Shultz and Elman (1994). In particular, such analy-

ses can be difficult to compare even between different runs of the same network, and also do not

take into account the sign or magnitude of the corresponding input signal.

As Shultz and Elman (1994, p. 1118) note, because the cross-connections in architectures

such as cascade-correlation carry so much of the workload, applying statistical techniques such

as principal components analysis (PCA) (often applied to the hidden layer of backpropagation

5except in one variant in which a simplified input encoding was used — see section 5.4
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or simple-recurrent networks) to hidden-unit activations provides, at best, only a partial picture

of the solution formed in the network. The main alternative method of analysis which has

been proposed for cascade-correlation is contribution analysis (Shultz & Elman, 1994; Shultz

& Oshima-Takane, 1994). This can provide an analogue to PCA for cross-connected networks

such as cascade-correlation. However as Shultz and Elman (1994) note, it is unsuitable for use

with binary input values such as those used here, which were chosen since the use of multi-valued

input units was considered to be too representationally biased, as well as making weight-values

difficult to interpret directly.

Training-set biases

The frequency with which children hear utterances using each form–function pair was not

known. 6 Datasets containing differing proportions of exemplars were thus generated according

to several kinds of scheme. Tables 5.1(a), 5.1(b), and 5.1(c) give the different configurations ac-

cording to which the training sets were generated. Configuration A simply balanced the propor-

tions of indefinite and definite article exemplars, balancing proportions of each sense and then

situation (or ambiguity) within these. Configuration B had equal proportions of definite, in-

definite non-specific and indefinite specific exemplars, again with situations equally represented

within these. Configuration C was mainly intended to provide a bias towards the definite article,

in the interests of investigating whether this would address the surprisingly poor performance

on this category which had been observed in pilot studies.

5.3 Results

The main set of experiments used the input representation given in section 5.2.1. In order for the

network to learn the correspondences between the two banks of units representing object-type

information in the playroom arrays. Pilot studies had shown that several thousand exemplars

were needed and the training sets in this section each consisted of 2000 unique exemplars.

5.3.1 Basic performance

The basic performance of cascade-correlation on the three dataset configurations is summarised

in table 5.2. These results show that using input data restricted to four object-types the network

was able to learn the basic task including that of matching object identities between the array

and question-object banks.

5.3.2 Misclassifications

As noted above, misclassifications on different categories provide the main (behavioural) means

of diagnosing qualitative change. The proportions of misclassified exemplars from the training

and test sets were recorded each time a hidden unit was recruited.

Misclassifications on training set Figure 5.4 shows the misclassifications across the different

categories of exemplars over the course of training for networks of each of the three configura-

tions.

Fluctuations in the relative numbers of misclassifications in each category correspond to

shifts in attention to the specific or non-specific function, or to groupings of objects, which

are evident from Hinton plots of the same networks. For instance, the abrupt levelling off of

proportional error observed between the recruitment of the second and fourth hidden units in

6This is presumably a result of the difficulty of collecting the appropriate data, which would need to record not

only the frequency of article use in child-directed and child-overheard speech for a language in which the indefi-

nite article had both non-specific/numeral function, but also the intonation or other linguistic markers which serve

to indicate function. Although longitudinal studies exist which record parents’ and caregivers’ speech for French-

speaking children (e.g., as part of the CHILDES project (MacWhinney, 1991)), to the author’s knowledge no analysis

of article-function frequency has been performed on such data.
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Definite article 50% ambiguous 25%

unambiguous 25%

Indefinite article 50% non-specific ambiguous 25%

specific unambiguous 12.5%

ambiguous 12.5%

(a) Training set balanced between definite and indefinite articles (Configura-

tion A)

Definite article 33% ambiguous 16.5%

unambiguous 16.5%

Indefinite article 67% non-specific ambiguous 33.5%

specific unambiguous 16.75%

ambiguous 16.75%

(b) Training set balanced between definite, indefinite article (non-specific

sense) and indefinite article (specific sense) (Configuration B)

Definite article 67% ambiguous 33.5%

unambiguous 33.5%

Indefinite article 33% non-specific ambiguous 16.5%

specific unambiguous 8.25%

ambiguous 8.25%

(c) Training set biased towards definite article (Configuration C)

Table 5.1: Configurations of proportions of different categories used in training data
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Input Epochs Output Epochs Average Hiddens Average Epochs Min/Max

150 150 7.5 (6/8) 999 705/1276

100 100 7.3 (6/8) 898 660/1028

100 50 7.2 (5/9) 732 523/911

50 100 7.5 (6/9) 896 709/1074

50 50 7.5 (6/9) 710 570/826

20 20 9.8 (9/9.8) 415 372/430 y

10 20 defeated – –

10 10 defeated – –

(a) Configuration A

Input Epochs Output Epochs Average Hiddens Average Epochs Min/Max

150 150 3.4 (3/4) 509 (403/615)

100 100 3.3 (3/5) 444 (369/637)

100 50 3.8 (3/5) 396 (319/495)

50 100 3.6 (3/4) 466 (388/525)

50 50 3.5 (3/5) 349 (288/480)

20 20 6.1 (5/9) 257 (209/374)

10 20 defeated – –

10 10 defeated – –

(b) Configuration B

Input Epochs Output Epochs Average Hiddens Average Epochs Min/Max

150 150 7.4 (6/10) 957 (739/1230)

100 100 7.3 (6/8) 920 (789/1091)

100 50 7.8 (6/10) 796 (575/1019)

50 100 7.5 (6/9) 890 (773/1079)

50 50 7.5 (5/9) 733 (522/895)

20 20 10.4 (9/13) 436 (374/538)

10 20 defeated – –

10 10 defeated – –

(c) Configuration C

Table 5.2: Results of training averaged over 10 runs. Networks were defined as ‘defeated’ if they

had failed to converge after recruiting 20 hidden units. y50% of trials failed. The leftmost two

columns give the hard upper limits on input- and output-epochs. The figures in parentheses in

both the average hiddens and average epochs columns indicate minimum and maximum values

for each respectively
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(c) Configuration C

Figure 5.4: Training-set misclassifications on the six situations represented in the training data for each configuration
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figure 5.4(c) corresponds to the relatively large magnitude and change in sign of the weight from

the ‘non-specific’ input to the hidden units H2, H3, and H4.

Misclassifications on novel exemplars Qualitative performance was also measured by testing

the extent of the network’s generalisation to novel exemplars, again measured in terms of mis-

classifications in each category. This data was collected using the weight matrix saved after each

unit recruitment in conjunction and tested using a test set as described above with the default

non-specific semantics given for the indefinite article as during training.

Figure 5.5(a) shows the test-set misclassifications over the course of training for data sets of

configuration A.

5.3.3 Analysis of internal representations

Figure 5.6 shows the final Hinton diagrams for the cases shown in figures 5.4 and 5.5. Several

main features of the solutions formed by cascade-correlation are apparent from these diagrams.

Firstly, relatively little attention is given to particular fine-grained features of the array itself, and

where attention to these features is stronger, as in figure 5.6(a) for instance, it lessens over the

course of training due to the usual effects of superposition of connectionist representations, as

shown in the weights from the array inputs to the later-recruited hiddens. Each new hidden unit

also attends to different patterns of question-objects.

In a network such as figure 5.6(b), very little attention is ever paid to the article itself (except

by unit H4). In the other two configurations attention is initially divided more equally between

the article and (all) the units in the function bank, although attention to the article itself subse-

quently decreases.

The sign of the weight from the ‘non-specific’ input also changes after every two or three

recruitments. Such shifts correspond to fluctuations in the numbers of misclassifications. For

instance, in configuration B, the rise in test-set misclassifications on the definite ambiguous and

indefinite non-specific ambiguous categories corresponds to the recruitment of hidden unit H4

in diagram 5.6(b) which has a relatively small weight from the ‘non-specific’ input, but larger

weights units from the definite and specific inputs than previous hidden units. In all configu-

rations it was observed that hidden units tended to have same-signed weights from the definite

and specific functions, which is what would be expected, given that both functions are used in

situations where the question-object refers to a type of object of which there is only one example

in that playroom.

Examination of Hinton diagrams also showed that the results could be divided into a set

of broad classes according to which kinds of features which the hidden units initially and sub-

sequently focused on. These shifts in focus also corresponded to fluctuations and temporary

increases in test-set misclassification rate shown in figures 5.5 as well as smaller changes on the

training set. For instance the network shown in figure 5.6(c) began by recruiting hiddens which

attended to the article unit and function bank with comparable strength, subsequently focusing

on the non-specific function unit more strongly. This shift in attention is also apparent in the

corresponding graphs of the misclassification rates on the training (figure 5.4(c)) and test sets

(figure 5.5(c)) respectively. The point at which the attentional focus changes — at the point at

which unit H3 is recruited — corresponds to a slight increase in training-set error on the definite

unambiguous category and levelling off on the definite ambiguous category, with a decrease in

error on the indefinite specific ambiguous category. In the test set, this shift corresponds to the

more dramatic temporary increase in error (a micro-U-shaped curve) on the definite ambiguous

category.

For configurations A and B, by contrast, the initial focus is strongly on the non-specific

function unit with groups of successive recruits having same-signed weights to that unit. These

shifts in sign again correspond to fluctuations in the misclassification graphs. For instance,

figure 5.5(b) shows that error on the definite unambiguous class rises as the newly recruited
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Figure 5.5: Test-set misclassifications on the definite article in ambiguous (M,1) and unambiguous (1,0) situations, and indefinite article with the (default)

non-specific (‘a’) function and ambiguous situation.
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B 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M W X Y Z A ns def sp H1 H2 H3 H4 H5 H6
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articlearray
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(a) Configuration A
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(c) Configuration C

Figure 5.6: Hinton diagrams corresponding to the networks in figure 5.5. White squares correspond

to negative weights, black squares to positive ones. Figure 5.6(a) provides a key to the diagrams in this

chapter — each row represents the incoming weights to each successive hidden unit, with the last row

representing those to the output unit. At the input, ‘B’ indicates the bias unit, within each object-type

bank in the array the two ‘0 1 M’ groupings correspond to the left and right playrooms respectively.

Within the function bank, ‘ns’ and ‘sp’ denote the non-specific and specific senses of the indefinite article

respectively. In most of the diagrams which follow, discussion will centre on the rightmost four input

units, i.e., the article and function units as well as on the hidden units.
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H1

H2

H3

H4

H5

O1

B 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M 0 1 M W X Y Z A ns def sp H1 H2 H3 H4 H5

Figure 5.7: Example of the effects of training without input patience (Configuration C)

second hidden has a strong negative weight from the non-specific function unit while the first

unit had a strong positive one.

5.3.4 Manipulation of internal parameters over the course of learning

As the preceding discussion suggests, configurations of category-frequency was not a strong de-

terminant of the the patterns of shifts in focus of groups of successive hidden units which seemed

to underlie the kinds of qualitative change required. In an attempt to gain more control over the

nature of the feature detectors formed, as well as to investigate ways of utilising the internal

resource-phasing which is characteristic of cascade-correlation, further experiments were de-

vised using the same basic setup, but which varied internal parameters, specifically patience and

pool size.

Patience

The intuitions behind varying the patience depend on the idea of overfitting and the poor gener-

alisation which results from this. This can be linked with the ideas from the RRH of an initial

phase in which representations are closely tied to perceptual features and generalisation (or sys-

tematicity) is poor.

Cascade-correlation has separate patience parameters which control input- and output-side

learning. Since the weights trained by output-side learning are discarded after each recruitment

phase, it was decided to focus on varying the input patience, as this has a direct impact on

the weight-strength of the incoming connections to the hidden units which survive to mediate

further learning.

Eliminating the effect of input patience (i.e., allowing training to continue either until victory

or until the epoch-limit is reached) produced patterns of weight-strengths such as that shown in

figure 5.7. The most obvious effects are the relatively strong weights from the non-specific input

(compare figure 5.6(c) for instance).

Most significant of these effects is the strong positive weights formed between particular

hidden units and those recruited one and two rounds before; this indicates that earlier hidden

units have a stronger mediating effect on later ones than in networks trained with low, default,

patience values. Several exponential decay functions on the number of hidden units were inves-

tigated as ways of decreasing the input patience over the course of training.

Pool size

Varying the pool size controls the space of possible feature detectors which is searched for the

next hidden unit to recruit. A gradient ascent search is used to find the candidate unit having the

highest correlation with the error at the output units. Large values of pool-size can thus lead to

sharp increases in the correlation level at each recruitment round.

The conjecture that this parameter could provide a means of controlling RR-like change

proceeds from a similar intuition to that in the case of patience. A wider search space and the

resulting, rather localised, optimisation of performance could lead to a kind of overfitting to

the feature which is currently the most salient in the inputs. The mediation of the hierarchy of

previous hiddens may even reinforce the effect over small numbers of recruitment rounds.

Training a large number of candidate units is also reminiscent of the suggestions of Bechtel

(1993) concerning the production and selection of particular redescriptions of a particular task.
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(a) Net trained with candidate pool of 500 units
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(b) Net trained with a single candidate unit

Figure 5.8: Weights formed in networks trained with large and small candidate pools

Bechtel speculates that the process of redescription might involve the generation of a number of

potential redescriptions, one or some of which are then redeployed.

Varying pool size over the course of training The following experiments investigated the effects

of different pool sizes on the same dataset, using both values which were held constant during

the course of training and those which were varied according to some function.

Although there was no way to eliminate the effect of pool size completely, it was possible

to examine relatively large and small values. Figures 5.8(a) and 5.8(b) show the effect on the

pattern of weight-strengths of using candidate pools of 500 units (a relatively high value) and a

single unit respectively. In the 500-unit case the weight pattern resembled that obtained when

training without input patience.

It was conjectured that a large initial pool size would promote a kind of overfitting to the

most salient features in the input. This would correspond broadly to the initial phase of RR,

in which representations are disjoint and non-systematic. In order to capture the subsequent

phases of RR, characterised by generalisation and the formation of feature-detectors encoding

higher-level and structural aspects of the task, as well as the symptomatic U-shaped behavioural

profile associated with it here, it was reasoned that the the search space should be progressively

reduced by decreasing the pool size. Two schemes for reducing the pool size over the course of

training were investigated.

Simple exponential decay This involved halving the number of candidates before each

phase of input-side learning (i.e., at the point when the network resulting from previous train-

ing was reloaded). Figure 5.9(b) shows the pattern of test-set misclassifications and figure 5.9(a)

shows how the pool size varied with the number of hidden units.

Decay given by a function of the number of hidden units As discussed in section 5.3.3 it

was observed that over the course of the first few unit recruitments the network focused on in-

put values, with weights from downstream hiddens being relatively small. After this point the

network changed its focus, giving previous hiddens equal or greater weight than inputs. On the

basis of this observation a pattern of pool-size decay was investigated in which the value de-
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creased gradually at first, and more rapidly towards the end of training. The following function

was found to have this general profile:

f(h) =

�

1; if f(h)6 0

(1� eh+offset1
+offset2)=scaling otherwise

where offset1, offset2 and scaling were values needed to bring the appropriate part of the underly-

ing graph into a suitable range for pool-size values. After a hand-search these values were taken

to be 6, 20000 and 400, which compensates for the fact that the function itself takes negative

values in the range of h considered (approximately 0–10 hidden units — see table 5.2). Fig-

ure 5.10(a) shows the function and figure 5.10(b) the test-set misclassifications recorded during

the course of training for a typical network.

There is a drop in pool size as the point where values of the function intercepted the x-axis

and the number of candidate units was taken to be a constant (here the default 8) for the rest

of the training. This drop is reflected in the profile of test-set misclassifications shown in fig-

ure 5.10(b). It is these results which come closest to those obtained in the original experiment.

In particular the generalisation performance on the two definite-article categories was, and re-

mained, consistently lower than that on the indefinite category. Misclassification rates on the

indefinite category also tended to rise (i.e., correct performance dropped) temporarily as in the

experiment (see figure 5.2).

5.4 Further experiments: Investigating the effects of object-recognition

It is clear from the results presented in section 5.3 above that even with the simplifications to the

original experiment discussed in section 5.2.1, such as reducing the number of distinct objects,

the task of learning the mapping between the object information in the array and question-object

banks constituted a significant part of the overall task. Two approaches were tried to investigate

the effect of this subtask.

Training with more exemplars

The first approach involved simply increasing the number of exemplars in the training set. A

network of configuration A (i.e., 50% definite-, 50% indefinite-article exemplars) was trained

with 4000 unique exemplars (twice the number used for the majority of the experiments reported

above). As would be expected, increasing the number of exemplars improved both the speed of

convergence on the training set and the rate at which generalisation errors decreased. However

for both the training and test sets, there were far fewer fluctuations in the error profiles and the

rates of test-set error on the definite article categories were consistently higher than those for the

indefinite article. On these last two grounds it was decided that this approach was not worth

investigating further.

Omitting the recognition component

The other variant involved omitting the recognition component of the experiment altogether,

equivalent to restricting the arrays to containing objects of only one type in varying numbers.

With this restriction in place, the mapping to be learned consists of just the ten associations

shown in table 5.3.

In solving this simplified task the network consistently recruits a single hidden unit, doing

so even when epoch limits are made very large (300 epochs) and output patience is also set at a

high value (e.g., 200) to control for the possibility that in time the net could come to find a linear

solution.

A typical network produced the patterns of weights shown in figure 5.11. The pattern of

misclassifications on the training set was as follows. During the initial phase, (i.e., before any

hidden units were recruited), the two indefinite non-specific exemplars were consistently misclas-

sified, and with the addition of the hidden unit there were no misclassifications. Thus the basic
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Object Article Function Addressee

(1,M) indefinite specific 7�! boy

(M,1) indefinite specific 7�! girl

(M,1) indefinite non-specific 7�! boy

(1,M) indefinite non-specific 7�! girl

(1,0) indefinite specific 7�! boy

(0,1) indefinite specific 7�! girl

(M,1) definite definite 7�! girl

(1,M) definite definite 7�! boy

(1,0) definite definite 7�! boy

(0,1) definite definite 7�! girl

Table 5.3: Complete mapping for playroom experiment using a single object type

O1

B 0 1 M 0 1 M A ns def sp

(a) Before recruiting any hiddens

H1

O1

B 0 1 M 0 1 M A ns def sp H1

(b) After recruiting one hidden

Figure 5.11: Hinton diagrams for network trained on single object-type task with input- and

output-epoch limits of 300 and output patience 200

progression here involves a partial solution covering all but the difficult indefinite non-specific

cases, which require extra representational power.

This experiment has two main implications for the experiments involving object recognition

presented above. The first is that it confirms that the underlying task requires the non-linearity

provided by a multi-layer network even without the object-recognition component. The second

is that the fact this version of task requires only two phases of training also seems to imply that

it is the object-recognition component which must provide some of the conflicting mappings

which give rise to the fluctuations seen in rates of misclassification by category.

5.5 Discussion

5.5.1 Basic performance

As we have seen, a cascade-correlation network was able to learn the basic mapping, recruiting

between three and ten hidden units in the version of the task requiring object-recognition, and

one in the simplified version.
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Network performance compared with experimental data

The aim of these experiments was to capture the U-shaped behavioural pattern on the task

of learning to map articles to functions in comprehension of French. A parallel aim was to

assess whether the underlying representational progression in cascade-correlation could be said

to reflect the interpretation given to these experimental results as an example of the RR model.

Before the performance of cascade-correlation can be assessed there are several obvious dis-

crepancies between the real and simulated scenarios which should be noted. Firstly, (except in

the simplified case) the network had to learn the mapping between different sources of infor-

mation about particular kinds of objects, whereas children were already familiar with the kinds

of objects used and were thus able to ignore the redundant information in the array with rel-

ative ease. The initial period of the network training therefore does not correspond to any in

figure 5.2. Another discrepancy is the fact that in most networks, errors rates on the definite

article categories were higher than those in the indefinite categories, even in configuration C,

which was explicitly biased towards definite exemplars in an attempt to counter this effect.

Although we should be cautious about proposing any direct mapping between number of

hidden units and the age groups of children in the original study, the following basic pattern

seems to appear in general. For instance with default parameter settings, figure 5.5 shows two

phases — an initial period where error decreases monotonically across all categories is followed

by a period where error fluctuates. The transition between these error profiles tends to come

after around a third of the total number of hidden units has been recruited.

One quantitative aspect in which network error profiles differed greatly from those obtained

from children is the extent to which error rates rise during the U-shaped behavioural on the

indefinite article. Even in the cases where parameter variation gave a similar overall profile to

that in figure 5.2, fluctuations in network error were never as great as the rapid increase from

10% to 70% observed there, and in general network errors remained below 50% throughout.

5.5.2 The RR Model

The RR account of the comprehension performance on the playroom experiment (see section 5.1.3)

conforms to the overall pattern of the RR model: in this case the phases are I, E1, at which the

symptomatic comprehension errors appear, and E3, since we saw above that the children in-

volved came to be able to express verbally their knowledge of the principles at work. Assessing

such verbalisability is considered to be beyond the scope of these experiments. Discussion there-

fore focuses on levels I and E1, and on the overall dynamics of the whole progression.

The main innate constraints on the model are the cascade-correlation architecture itself and

its initial restriction to a linear network, and the proportions of different categories of exem-

plars in the training set, which was controlled for by using three different configurations. In the

parameter-variation experiments, the initial high values of pool size or patience can also be seen

as acting as constraints on early performance and learning.

Timing of redescription

It was observed that the number of misclassified patterns in each of the three main situations

considered (definite ambiguous/non-ambiguous, and indefinite non-specific ambiguous) tended

to fluctuate over the course of several unit recruitments.

These effects seem to be similar to those reported by Plunkett and Marchman (1993) in

that performance on inputs of similar type exhibits micro-U-shaped curves due to conflicts in

mappings, here that between the form of the indefinite article in French and its two functions.

In order to interpret this kind of performance as evidence for redescriptive effects we need

to consider the timing of particular qualitative shifts in behaviour in the context of those set out

by the RRH.
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Level I: Behavioural mastery

The RRH states that behavioural mastery of all or part of a task is a prerequisite for repre-

sentational change through redescription. In the case of the playroom simulation, in terms of

performance on the training set alone, since cascade-correlation is a supervised learning scheme,

(criterial) mastery would seem to be the stopping condition.

Karmiloff-Smith allows that partial task mastery can lead to redescription in some domains,

and here, for instance, generalisation performance on particular categories of exemplars is seen

to improve before others — in particular the definite article is grasped before the indefinite. In

some sense then, the network exhibits a partial mastery of the task before some stages of non-

error-driven learning take place.

There are however several important differences between the timing of mastery in the net-

work and in the children in the original experiment. In particular, Karmiloff-Smith (1979a)

reports that the youngest children were already successful at the basic experimental task (i.e.,

comprehension alone), and this is something which cannot be claimed for the networks, whose

partial solutions involve correct behaviour on subsets of categories — something which the sim-

ple (non-recognition) network brings out particularly clearly.

Level E1: Increase in systematicity

The systematicity of representations here is tested, as in Plunkett and Marchman (1993), through

analysis of classifications on novel data, in this case, data in which the semantics of the indefinite

article are not marked.

The RRH proposes the following progression in underlying representational structure: arti-

cles are initially represented as unifunctional homonyms, and the process of redescription acts

to produce a unified and plurifunctional representation. In the simulations, there is less evidence

for such a representational profile. Reasons for this include the fact that early feature detectors

are sensitive to the frequencies of specific perceptual patterns as we would expect, particularly as

the majority of the networks examined had to learn the mapping from array to question object

at the same time as the article–function task. There is also the difficulty of designing an input

encoding such that the same article is represented separately in both contexts as well as that of

implementing the early one form–one function constraint believed to be pervasive in early lan-

guage acquisition and to characterise the early, unifunctional forms here. The investigation of

how cascade-correlation-specific parameters may be used to control overfitting was intended to

model this early lack of generalisation with a degree of success.

Another characteristic of this phase is that attention shifts from perceptual input to focus

on internal representations. In some cases the weights formed by cascade-correlation conform

to this pattern. For instance in figure 5.6(b) the greatest incoming weights to the first five hidden

units come from the input, while after this point, weights to the input are have smaller or com-

parable magnitudes to those from previously recruited hidden units. The output units also tend

to pay rather more attention to the hidden units than to the inputs (see figures 5.6(a) and 5.6(c).

Level E3: Eventual reconciliation

As well as verbalisability and inter-domain accessibility of knowledge, the RR model states that

at this level the conflicts between mappings which caused the behavioural errors symptomatic

of E1 in some domains are now resolved. Most networks showed an eventual mastery of the

entire task, although in some cases test-set error rates on particular categories actually rose at

the final phase, and the micro-U-shaped curves which appeared after the initial sharp drop in

error tended to persist right up until the point where criterial performance was reached.

Representational format

It is assumed here that basic connectionist properties such as the distributed representations

formed at the hidden layers correspond to the initial implicit level of the RR model.

For the knowledge represented in the network to be considered to be at level E1 it must dis-

play a basic systematicity and generalisation to structurally similar cases. This was the case with
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most of the networks discussed above, as the graphs of generalisation performance (figure 5.5)

indicate.

Karmiloff-Smith (1992b) does not discuss whether knowledge of this task becomes accessible

to processes from other domains, and thus it not possible to design experiments to assess this.

Whether the knowledge reaches level E3 in terms of verbal expressibility as it eventually does in

children, is considered to be outside the scope of this model in principle.

The role of cascade-correlation

Timing of qualitative change It was found to be difficult to make a precise mapping between

the timing of individual hidden-unit recruitments and the shifts towards correct generalisation to

novel exemplars in each of the three categories in the test set. However it was found to be possible

to manipulate this using cascade-correlation parameters controlling the degree of (over)fitting

to the particular situation presented by the inputs and the previously recruited hidden units at

each stage. In particular, a large change in the size of the candidate pool could bring about a

shift in test-set error rates.

These results seem to contradict the suggestions of Shultz (1994) that single unit-recruitments

in cascade-correlation necessarily correspond to all three phases of the RR model.

Formation of feature detectors The kinds of feature detector formed early in training had a

strong influence on whether the behavioural profile of the network exhibited the necessary kinds

of qualitative change.

As noted in chapter 4, the representations formed by cascade-correlation are inherently con-

servative and hierarchical. Of the hidden units it is the units furthest downstream which have the

greatest number of connections to other units upstream. Weightings from hidden units to the

output unit tend to decrease with the recency of their recruitment reflecting the fact that early

hiddens become feature detectors for the most salient features in the dataset — see figures 5.6(c)

and 5.6(b) for instance.

Mechanisms of qualitative change Qualitative change is seen to be caused by shifts in atten-

tional focus during learning. In cascade-correlation these shifts are frozen into the incoming

weights to the hidden units and their influence thus persists to the extent that later hidden units

and output units develop large weights to them. The output unit here developed such strong

connections in all cases, while the strength of hidden–hidden connections varied, with a few

general patterns of weight strength corresponding to differing behavioural profiles.

Cascade-correlation and backpropagation — error-driven mechanisms and qualitative change

Cascade-correlation, in being an entirely supervised scheme, seems to share the capability of

backpropagation to capitalise on residual error in exhibiting qualitative change. Plunkett (1993)

suggests this could make backpropagation suitable for modelling such changes in RR. How-

ever there is an important difference between the way this affects backpropagation and cascade-

correlation. In backpropagation the tendency to shift in focus between different mappings is

what both causes qualitative behavioural change but is also identified (e.g., Fahlman (1988)) as

a cause of slow learning performance as the hidden units ‘herd’ to try and capture the error-

sources associated with each mapping. Cascade-correlation’s freezing and single-unit recruit-

ment mechanisms are designed explicitly to alleviate this problem by restricting and fixing the

target mapping seen by the network at each stage. Thus in cascade-correlation the small rises in

classification error observed are more likely to be due to the need to integrate the results of units

downstream.

Thus cascade-correlation uses both residual error and its generative architecture in produc-

ing the characteristic micro-U-shaped curves.

Cascade-correlation as a model of micro-redescription It is suggested instead that the redescrip-

tions it exhibits should be seen as micro-redescriptions which accumulate to produce larger-scale

qualitative change.
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In terms of the RR process, if we are to claim that individual unit-recruitments correspond

even to micro-redescriptions then it must be possible to relate the strong mediation of the in-

coming signal to the candidate hiddens by the previous recruits to the idea in the RRH of the

appropriation of the products of previous learning. The ideas discussed in Clark and Thornton

(1993) provide a bridge between these two ideas of hierarchical knowledge representations via

the notion of a series of feature detectors each of which recodes its incoming signal in terms of

higher-order features.

The strength of hidden–hidden weights showed that previously recruited hidden structure

had a mediating influence on new structure, while the strength of the final hidden–output weights

shows that this structure is made use of by the outputs. This process of mediation can be seen

as corresponding to the process by which the results of previous learning are appropriated in

subsequent learning in the RRH.

5.6 Summary

This chapter has presented a model of redescriptive effects during the learning of the French

article system, using cascade-correlation.

Some success was achieved in capturing the U-shaped curve exhibited by children in their

mapping of the dual functions of the indefinite article (un/une).

Variation of the patience and candidate-pool-size parameters, which are specific to the con-

structive part of the cascade-correlation algorithm, was investigated as an internal means of

directing incremental learning by controlling overfitting. This idea was apparently particularly

well-suited to this scenario, whose initial period is guided by a one-form–one-function con-

straint.

It suggested that cascade-correlation gives rise to micro-U-shaped curves in a similar manner

to backpropagation. Both are error-driven schemes and thus react to take advantage of residual

error, but shifts in the behaviour of backpropagation are due to hidden-unit herding whereas in

cascade-correlation (which is designed explicitly to avoid this effect) such shifts are due to the

mediation of previous frozen structure.

The accessibility of the representations formed was not investigated here, as Karmiloff-Smith

(1979a) gives no indication that the representations formed during the task become available for

use by other processes either within or outside the domain. The following chapter focuses on a

domain in which RR is associated with progressive accessibility of knowledge in human learners.

Network transfer is investigated as a way of operationalising a test for this accessibility as well

as for exploring possible constraints on the order in which the hierarchy of representational

formats develops.



Chapter 6

Cascade correlation as a model of RR in

sequence-learning domains

6.1 Introduction

This chapter reports results of two sets of experiments performed using the recurrent cascade-

correlation architecture (Fahlman, 1991) in modelling sequence learning. These experiments

explore a range of RR scenarios which complements the work on the article system presented

in Chapter 5 in several ways. The addition of recurrence constitutes a difference in domain-

general constraints on the network in the terms of Karmiloff-Smith (1992c, 1992a), although the

incremental learning mechanism remains unaltered providing a basis for comparison between

the two models. The use of the recurrent version of cascade-correlation is motivated by the

focus on the learning of temporal sequences (see section 6.1.1).

The first set of experiments aims to investigate the ways in which redescription manifests

itself in the increasing individuation and independence of the sequential context of sequence

elements during counting.

An important distinction between the number domain and the article-function task is that

Karmiloff-Smith (1992b) provides information on knowledge transfer within the number do-

main. It is thus possible to use task transfer between networks as a criterion for redescription

in modelling this domain. The second set of experiments uses learning and structural transfer

between regular grammars as a control for the influence of perceptual similarity on transfer in

the counting domain.

6.1.1 Sequence learning and the RRH

Karmiloff-Smith (1990) identifies a subset of redescriptive effects which are observed across a

range of domains involving sequence learning, e.g., learning to count, grasping musical struc-

ture, producing spoken language (Karmiloff-Smith, 1992b, p. 162), seriation (p. 163), and the

production of written notations, as well as the learning of sequences of actions in general.

The sequential aspect to these tasks or domains is assumed to act as an initial constraint

on the learning. For instance, in counting, Karmiloff-Smith (1992b) notes two properties which

may act as potentiating constraints on learning: sense of one-to-one correspondence and sense

of ordering. As in non-sequential domains, the RRH predicts that these constraints survive

in some form in the mature version of the acquired knowledge. This is seen in the counting

domain for these two constraints, for example, in the abstract idea of ordering and in relational

operators.

Moving beyond innate constraints, the RRH posits that, over the course of learning, the

underlying sequential representations which begin as procedural, uninterruptable wholes subse-

quently undergo a process of redescription. In these domains, the increased accessibility of the
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redescribed knowledge manifests itself as an increased access to, or individuation of, elements

of the sequence, while flexibility is seen in the ease with which sequences can be interrupted,

reversed and added to, and the ease with which elements from one sequence may be introduced

into another.

The diagnostic symptoms of such redescription thus centre around the ability to manipulate

sequential information; in particular, its components.

Sequence learning and external notations

A further qualitative division between sequence-learning domains can be made according to

whether external notations are involved. For instance, in her account of children’s progressive

abilities to interrupt and modify drawing sequences (Karmiloff-Smith, 1992b), Karmiloff-Smith

observes that even at the initial stage, it was not the case that the drawing procedure was an

uninterruptable whole as the RR model would predict. In part, she accounts for this lack of fit

to the model thus:

Drawing and all forms of external notation leave a trace. They also take far more

time to execute, compared to the milliseconds of spoken language output, percep-

tion, and so forth. An interruption in an ongoing drawing leaves a trace of where

the drawing was cut off, and it acts as a potent cue about where to continue.

(Karmiloff-Smith, 1992b, p. 162)

and suggests that domains not involving external representations may provide better fits:

I nonetheless remain convinced that representational change does exhibit initial se-

quential constraints, but that one may need to explore them in areas (such as count-

ing, music, and spoken language) where no external notation is involved.

(Karmiloff-Smith, 1992b, p. 162)

The work reported here thus concentrates on sequence-learning of this latter type, for which

production is not assumed to involve the use of notations or other concrete external representa-

tions.

Granularity of change in sequence learning

As discussed in Chapter 2, Karmiloff-Smith (1992b) makes a distinction between the RR process

and the RR model in terms of the overall progression through phases. The examples of sequence

learning put forward by Karmiloff-Smith (1992b) such as counting and musical performance do

not seem to follow the basic three-phase pattern of the RR model shown in figure 2.1 but rather

exhibit an overall pattern of progressive explicitation which recurs over a number of phases.

For instance, in the mathematical domain, awareness of number is said to proceed from con-

straints on ordering and correspondence, through awareness of numerosity and explicit counting

using some sort of external markers, to awareness of the link between counting and the cardi-

nality of the counted set, to a grasp of relationships such as ‘less-than’ and ‘greater-than’, and

so on, until the most generic concepts, such as that of ‘+1’ are grasped. There is no discussion

of a particular point at which this knowledge becomes verbalisable, but rather an emphasis on

the increasing systematicity of the representations and the fact that the learner can increasingly

reflect on that system. Again, in the rather briefer discussion given to knowledge of how to

perform a musical piece, the talk is of an initially procedural whole becoming gradually more

amenable to manipulation according to its components.

There are several contrasts between this pattern of redescriptive effects and that in the do-

main of spoken language, for instance. There the intermediate level is often marked by late-

occurring errors and spontaneous self-repairs (i.e., a U-shaped behavioural curve is exhibited),

and, in most cases, an eventual ability to reflect on the component structures is reported.
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Sequence-learning domains

Counting According to Karmiloff-Smith (1992b), the progressive awareness of the number do-

main in children can be seen as an example of representational redescription. An initial mastery

of counting, in which the sequence has become a routine, is followed by an awareness of proper-

ties such as one-to-one correspondence, ordinality and cardinality, which require manipulation

of the components of (initially procedural) count sequences.

Gelman and Gallistel (1978, pp. 77–82) put forward a set of principles upon which counting

is based and which they consider to be innate. Briefly, these are:

� The one–one principle. This involves the ticking off of items to be counted with distinct

tags such that there is a one-to-one correspondence between ticks and items.

� The stable-order principle. The tags chosen to correspond to counted items must be de-

ployed in a stable (repeatable) order.

� The order-irrelevance principle. The order in which counting is performed, i.e., which

item receives which tag, is irrelevant.

� The abstraction principle. This states that the preceding three principles can be applied to

any collection of entities.

� The cardinal principle. This says that the final tag in the series has a special significance

as the cardinal number of the set of items as a whole.

Karmiloff-Smith is in general agreement with these principles, in particular the first three —

referred to by Gelman and Gallistel (1978) as the ‘how-to-count’ principles — but is less sure

that the cardinal principle in particular should be accorded innate status:

It is possible that the principle of cardinality is not innately specified, as Gelman

and Gallistel presuppose, but grows out of the coordination of simpler principles

(such as stable order and one-to-one mapping) once these have become explicitly

represented.

(Karmiloff-Smith, 1992b, p. 103)

Within the RR framework, concepts such as cardinality and ordering relations are regarded

as being implicit in, and redescribed from, earlier, sequential representations.

One of the general characteristics of redescribed sequences is that the increase in accessi-

bility tends to proceed from the ends of the sequence inwards. Redescription of the counting

sequence is also seen as conforming to this; in particular, the fact that the association between

the final count word and the number representing the cardinality of a set precedes an awareness

of concepts such as greater-than and less-than which also relate to the interior of the sequence

(Karmiloff-Smith, 1992b, p. 104).

6.1.2 Connectionist models of sequence learning

Much work has been devoted to the learning of sequences of stimuli and behaviours using neu-

ral networks. Sequence learning tasks are to be distinguished from the problem of sequential

learning, i.e., the problem of learning two or more tasks (which may be of any kind) in series

in a connectionist network (although the latter also has obvious relevance to knowledge re-use

and thus to connectionist models of RR). Although it is possible to apply non-recurrent net-

works to this task in some cases, many workers have used recurrent networks of some kind,

i.e., networks whose underlying graphs contain cycles and which utilise these structures to make

use of information about previous state, either synchronously as in discrete, locally recurrent

network systems (e.g., Jordan (1986), Elman (1990a), Servan-Schreiber, Cleeremans, and Mc-

Clelland (1991)) or asynchronously as in dynamical, fully recurrent systems (e.g., Yamauchi and

Beer (1994), Omlin and Giles (1994)).
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Counting

Several connectionist investigations of counting exist. Broadbent, Church, Meck, and Rakitin

(1993) aim to capture particular quantitative as well as qualitative psychological effects. Wiles

and Elman (1995) investigate the dynamics of the activation landscape of an abstract task re-

quiring counting. In their study, a network was trained using the backpropagation-through-time

scheme to predict the next token in strings from the context-free grammar anbn. This is a count-

ing task in that in order to perform correctly the network is required to count the number of

successive a’s presented before the first b appears and then to use this information to predict the

next input as each of each the n b’s is presented.

The models presented in this chapter differ from the above schemes in their use of incremen-

tal learning techniques, in particular the generative cascade-correlation architecture. Also, none

of these previous models has examined network transfer in the context of number skills.

6.2 RCC as a model for the RR account of sequence learning

The RRH has it that the initial learning of sequences is subject to sequential constraints (such

as ordering in particular) and that over the course of further learning and redescription these

are relaxed so as to render the components of the sequence progressively more accessible to

processing outside the original task. The particular way in which this occurs in sequences is that

elements at the ends of the sequence become available before those in its interior.

So, under RR, sequences of actions, musical notes, number-words and so on go from being

holistically represented and uninterruptable to being manipulable entities whose components are

accessible to other processes and with which non-sequential concepts can be associated. This

chapter examines how well a model using RCC could be said to fit this account.

The sections that follow present simulations of a simple task intended to relate number-sense

to counting using explicit markers.

Network transfer as measure of accessibility

The RR model (see section 2.2) makes a link between the progressive explicitness of knowledge

and the accessibility of that knowledge, first within and then outside its domain. Although tech-

niques such as principal components analysis of hidden-unit activations or the localist feature-

extraction technique of Greco and Cangelosi (1996b) might seem to provide evidence of the for-

mation of structured internal representations, we also need some way of showing that network

representations are structured such that they (and their components) are accessible to learning

in other networks. This consideration leads directly to the idea of network transfer as suggested

by Clark and Karmiloff-Smith (1993) and Clark (1993a).

However, positive network transfer cannot always be assumed to correspond to increased

accessibility, since, if two tasks are perceptually similar, it may be possible for a network to learn

the second simply by adjusting the positions of the decision hyperplanes defined by its weights.

By contrast, the accessibility in the RR model is accessibility of the abstracted structure of the

domain. This kind of transfer has been referred to in the connectionist literature as adaptive gen-

eralisation (Sharkey & Sharkey, 1993) or structure-transforming generalisation (Clark, 1993a).

Structure-transforming generalisation is defined as involving ‘the systematic adaptation of the

original problem-solving capacity to fit a new kind of case.’ (Clark, 1993a, p. 73).

Classifying transfer in networks Pratt (1994) makes a distinction between two general classes of

network transfer. The first, the related problem class, involves transferring an entire network to

a related problem on which it may already display correct performance. This kind of transfer is

investigated by Pratt (1993) and Sharkey and Sharkey (1993). In the second class — subnetwork

! target network — the source network constitutes a correct solution to a subset of the target

problem, whose inputs are often a superset of those of the source network.

Which kind of transfer is required for a model of RR? Transfer in the first class relies on a

combination of the proximity of the hyperplanes in the solution space and the strength of the



86 Chapter 6. RCC and sequence learning

weights. The difficult task for subsequent learning is to move these into the positions required

by the new solution. This kind of transfer does not seem to correspond well to the notion in the

RRH of the transfer of structural information, since what constitutes a suitable transfer source

here is determined directly by the perceptual structure of the domain.

Pratt (1994, p. 526) divides subnetwork transfer into a further two classes, corresponding

to vertical and horizontal decompositions of the target network. Horizontal transfer divides

networks between layers, while in vertical transfer, subnetworks span multiple layers.

The studies presented here were predominantly conducted as horizontal transfers, since the

recruitment mechanism of cascade-correlation corresponds naturally to horizontal decompo-

sition, although the transfer between counting and comparative cardinality can be seen as an

example of vertical decomposition since the input and output representations were extended in

the target task.

Quantifying transfer in networks There are several approaches to measuring the success of

network transfer. Where the aim of transfer is to accelerate learning, one approach is to compare

the number of epochs required to learn a particular task with and without the initial biasing

from transferred network structure. Sharkey and Sharkey (1993) formalise this measure as

τ =
(β�ρ)
(β+ρ)

where β is the number of cycles required to train on a particular task from random initial con-

ditions and ρ is the number needed to train the same task from initial conditions pre-structured

through previous training, i.e., using a previously trained net. The sign of this expression corre-

sponds to the type of transfer which takes place — where β > ρ, τ is positive, while it is negative

where ρ > β, i.e., transfer has had a detrimental effect on performance. This measure allows the

extent of transfer in different networks to be compared and has also been applied more recently

to simple recurrent networks (Jackson & Sharkey, 1995).

Although measures such as these can give a basic impression of the extent of transfer in

cascade-correlation models, the degree to which the network needs to recruit further structure

and the features to which that structure attends are likely to be better indicators of positive

transfer of structural information than a simple count of the number of extra epochs required.

For instance, it would at least be expected that the output-side of the network would need to be

retrained if the output encoding had changed, even if the structure of the knowledge were similar.

Sharkey and Sharkey’s scheme was thus adapted for use with cascade-correlation by calculating

two values — τe and τh — which corresponded to the τ measure taken separately for epochs and

hidden units respectively. While τe is a purely quantitative measure corresponding directly to the

original τ, the value of τh is closer to an indicator of qualitative change as it shows the extent

to which the amount of internal structure in the source network facilitates the learning of the

second task.

In a short study of the role of pretraining of input–hidden (IH) weights on transfer of learn-

ing in standard backpropagation networks, Pratt (1994, p. 532) found that the best transfer

results were obtained when IH weights were preset in the correct positions and weight magni-

tudes were raised to ensure that the hyperplanes they defined did not move out of position. The

relative magnitudes of the IH and output–hidden (OH) weights were also important, but less so

than the absolute magnitude of the IH weights.

These results suggest that the constructive learning mechanism of cascade-correlation al-

ready acts to preserve the half of the network which has most effect on subsequent learning.

Although cascade-correlation thus embodies some of the ideas of horizontal decomposition

subnetwork transfer it differs from Pratt’s simple horizontal transfer networks in several ways.

Firstly the IH weights of source networks were not frozen as in cascade-correlation. Secondly,

in cascade-correlation, OH weights are not transferred since these weights are randomised and

retrained after each phase of input-side learning. Finally, its intermediate configurations do
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not capture subsets of the space of inputs as might subnetworks learning parts of a hand-

decomposed problem, but rather act as a filters whose combined effect, in conjunction with

the output-side weights, is to learn the task.

6.3 Counting temporal stimuli with and without explicit markers

The aim of this set of experiments was to investigate the way in which awareness of cardinality

might arise through the redescription of the explicit counting sequence. It was expected that

the representational change symptomatic of redescription would act ends-inwards as Karmiloff-

Smith (1992b) suggests.

Since accounts of this domain within the RR framework (e.g., in particular Karmiloff-Smith

(1992b)) include examples of knowledge transfer between tasks in the domain (e.g., counting

knowledge becoming accessible to processes which assess cardinality), task transfer was chosen

as the first indicator of redescriptive effects. We thus assume that transfer acts as a direct measure

of the accessibility of the conceptualisation made by the first task to the learning of the second

task.

6.3.1 Setup

The recurrent version of cascade-correlation was used to model these effects. This is essentially

identical to that presented in chapter 4, except that each hidden unit has a self-connection which

feeds its activation at the previous time-step back into it as an extra input. In these experiments,

RCC was trained to count the number of uniform stimuli presented sequentially at a single input

unit by producing the correct pattern at the output layer. The appropriate output patterns were

drawn from a set of patterns representing number tags. These were encoded using a simple

localist scheme which placed an inherent limit on the maximum number of items which could

be counted.

Training data

Variants on marking of sequence boundaries The input used a symmetric sigmoid function,

and items to be counted were represented by positive values (0.5). The end of a sequence of

items was marked by resetting the state of the recurrent part of the network. This was done

at the start of each count sequence as in the morse-code examples in Fahlman (1991). In most

cases the end of a sequence was also marked by a negative value (–0.5) at the input unit. The

output, representing the numerons (counting words), was represented using a localist one-of-n

encoding.

Three training-data configurations were investigated for the counting with explicit markers

tasks. These differed in the extent to which the association between count-ends and the marking

of cardinality was made explicit in the input and output encodings — see figures 6.1 and 6.4. The

formulation of the input and output encodings are an important source of explicit information

about task structure and conceptualisation to the network, as Plunkett (1993) notes, and it was

thus desirable to control for this to some extent.

Composition of training set The balanced training sets consisted of 10 sets of permutations of

the set f1, : : : , 5g. The set was permuted so that the network (which was trained in batch) would

not be able to learn the task simply from the presentation-order of the sequences. These were

then transformed into partial sets of sequential training data containing as many steps as the

numeral, e.g., 3 in the original data set would be represented as three patterns to be presented

at successive time steps in configuration A. Each permuted set thus becomes either 20 patterns

in configurations B and C which included an extra input after the count sequence itself, or 15

patterns in configuration A. Fifty such sets were used in each case, giving a training set with a

total of either 1000 (configurations B and C) or 750 patterns (configuration A).

There is a tradeoff between the proportions of different sequences and the proportions of

different individual count words represented in any training set. For example, a training set
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A B C

time input output input output input output

t0 � 1 � 1 � 1

t1 � 2 � 2 � 2

t2 � 3 � 3 � 3

t3 � 1 – 3 – –

t4 � 2 � 1 � 1
...

...
...

...
...

...
...

Figure 6.1: Schematic of example use of input–output configurations for the counting with ex-

plicit output markers task. � denotes a positive input representing an item to be counted, � an

item presented simultaneously with a reset. – denotes a negative input value, or, in the output

column, the output given by setting every unit to the value –0.5, a pattern which is not used to

represent any numeron.

might consist of just the count sequences for the cardinal numbers from one to five. The set

thus contains equal proportions of each cardinal and count sequence. However, the proportions

of individual digits would be heavily biased towards the lower digits, since these are included

in most sequences. In general for a set containing an equal number of each of the sequences

from 1 to n, the proportion of each digit k is given by the expression (n� (k�1))=∑n
i=1

i. In the

setup used here, this means that while 33% of digits are 1s, only 7% are 5s. The tradeoff is that

balancing the proportions of each digit represented in set would require every sequence to be

1–5. However although the relative frequencies at which children are asked to count particular

numbers are not known, it seems likely that smaller numbers are inevitably more often counted

through in the way that the balanced set embodies.

Test data

Test data consisted of input sequences of the same kind used in training. Due to the fixed one-

of-n encoding used at the output layer it was not possible to use novel exemplars in the test set

since the the relationships between different digits at the outputs were essentially rote-learnt.

The test set consisted simply of the sequences for the number 1–5, presented in ascending order

for ease of analysis.

6.3.2 Counting with explicitly marked targets

This experiment involved counting sequentially presented stimuli, using digits as explicit target-

data at the output at each step. Several patterns of biasing were used in generating the training

sets. Some were balanced equally between different cardinal numerals, while other sets were

comprised of differing numbers of each numeral. The encoding variants for these experiments

were as shown in figure 6.1.

Configuration A makes no use of input values to mark sequence boundaries and has the new

count starting at the time-step immediately after the end of the previous one. Configurations B

and C both have an extra step between count sequences. In configuration B, this step involves

repetition at the output of the cardinal number of the count (i.e., the last number activated),

while in configuration C a null (all negative) output is required. Configurations A and C both

correspond to counting ‘simply’ (i.e., without regard to cardinal number), while configuration

B reflects an intermediate state identified by Fuson (1992, 1988) in which awareness of the link

between cardinality and the counting sequence is preceded by the repetition of the last element

of the count (in the absence of awareness of the link between that and the cardinality of the set

just counted).
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Figure 6.2: Average errors against numbers of hidden units in the counting with explicit markers

task.

Performance

The basic performance on this task is shown in table 6.1. It is unsurprising that configuration

C proves easiest to learn since input strobes are always associated with the same (all negative)

response. Initially more surprising is the fact that networks in configuration B proved more diffi-

cult to learn than those in configuration A, even though in configuration B, sequence boundaries

are indicated explicitly by a negative input. The similarity in performance between configura-

tions A and C presumably relates to the fact that both networks are required only to perform

the sequential counting aspect of the task, i.e., to activate the next right-most unit (and turn off

the previously activated unit) in response to each positive input. The task in configuration B,

however, also requires the network to activate the same unit as it did on the previous time-step

in response to the negative input, which is clearly more difficult than the constant association

made in configuration C. Figure 6.2 shows how the average number of bits of error changes with

the number of hidden units for 20 networks of configuration A.

Analysis of representations

Figure 6.3 shows Hinton diagrams for networks trained on the task of counting with explicit

markers in the target data. As the diagrams show, output-side weights change after each unit

recruitment (this is in marked contrast with the situation in the playroom experiments reported

in Chapter 5 in which the pattern and even the strength of output-side weights only changed

significantly after the recruitment of the first hidden unit, i.e., when the network passed from

a two-layer configuration comprising only the output-side connections to one having hidden

structure).

The Hinton diagrams show that the recurrent self-connections to the hidden units all have

relatively large weights associated with them and this indicates the importance of temporal or

sequential information in learning the task. The first hidden unit has a large negative self-weight

which causes the unit’s activation to oscillate unless forced not to by the inputs. During presen-

tation of the counting stimuli the activation of the hidden unit takes one value, switching to a

value of opposing sign when the input changes at the sequence boundary. This unit thus be-

comes a feature detector for the only salient input feature, which is the end-of-sequence marker.

Subsequent hidden units have positive weights to groupings of output units. For instance in

figure 6.3, weights between H2 and output units corresponding to numbers less than three are
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Input Epochs Output Epochs Average Hiddens Average Epochs

200 100 3.2 (2/4) 332 (121/536)

100 100 3.3 (3/4) 334 (215/536)

100 50 3.5 (3/5) 257 (200/387)

50 50 3.4 (3/4) 246 (198/309)

20 20 3.3 (3/4) 139 (126/165)

10 10 8.0 (4/11) 172 (90/231)

(a) Configuration A

Input Epochs Output Epochs Average Hiddens Average Epochs

200 200 4.5 (4/6) 505 (439/596)

200 100 4.1 (4/5) 407 (357/484)

100 100 4.1 (4/5) 434 (363/546)

100 50 4.7 (4/6) 379 (327/445)

50 50 4.5 (4/5) 346 (292/410)

20 20 6.7 (5/11) 277 (218/435)

10 10 defeated defeated

(b) Configuration B

Input Epochs Output Epochs Average Hiddens Average Epochs

200 200 3.1 (3/4) 396 (214/723)

200 100 3.0 (3/3) 291 (260/312)

100 100 3.1 (3/4) 295 (260/345)

100 50 3.2 (3/4) 246 (213/299)

50 50 3.3 (3/4) 250 (210/322)

20 20 3.6 (3/5) 152 (131/205)

10 10 11.1 (5/20) 237 (107/430) y

(c) Configuration C

Table 6.1: Basic performance of RCC on the counting-with-markers task. The leftmost two

columns refer to the hard upper limits on the number of input- and output-side epochs. Num-

bers of hidden units and epochs in brackets indicate maximum and minimum values observed.

Networks were permitted to recruit up to 20 hidden units. y20% of trials failed
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Figure 6.3: Weights formed at each recruitment by a recurrent cascade-correlation network trained on the task of counting with explicitly marked targets

(configuration B)
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time input output

t0 � –

t1 � –

t2 � –

t3 – 3

t4 � –
...

...
...

Figure 6.4: Schematic of example use of input–output configuration (B/C) for the counting with-

out explicit output markers task.

strongly positive, while those to outputs corresponding to higher numbers are strongly negative.

Weights on direct input–output connections are relatively small, which is what would be

expected since input stimuli are identical within sequences and it is only their position in the

sequence which carries any information. It is also common for the recurrent weights on the

hidden units to alternate in sign (as shown in figure 6.3) or magnitude from one recruitment

phase to the next.

6.3.3 Counting without explicitly marked targets

In this experiment RCC was trained to count temporal stimuli with only a final number tag

as a target. The basic encoding was the same as in the previous experiment. The experiment

was aimed at investigating whether an RCC network could learn a mapping between sets of

temporally presented stimuli and a representation of the cardinal number of that set, presented

only at the final time-step.

In contrast with the counting experiments there was only one practicable schedule for mark-

ing of sequence ends. which was to indicate the end of sequence at the input and to have the

network output the total number of stimuli at the next step. The equivalent of Configuration

A, in which sequence ends are indicated only by a network reset could not be used in this case

since in order to output the count concurrently with the presentation of the final stimulus, the

network would need to anticipate the end of sequence. The first configuration was thus used

throughout, and is referred to as Configuration ‘B/C’ for comparison with the two configura-

tions using similar timings in the counting with markers task (see figure 6.1). Figure 6.4 shows

this configuration.

Performance

This task is clearly more difficult than the version in which intermediate targets are marked

explicitly, as the network is forced to keep track of serial position internally, without any external

prompts.

As in the counting with markers experiments, all the networks in these experiments had an

output layer consisting of five units. Pilot studies showed that the number of hidden units needed

to solve larger versions of the task increased dramatically with the highest cardinal number used,

with networks unable to learn a 20-output-unit version of the task even using higher than usual

hard epoch limits and parameter settings. Table 6.2 shows the basic performance on this task.

As the table shows, the performance was at its best when input and output epoch limits were

set at larger equal values, e.g., 100 or 200 epochs. This suggests that input- and output-side

structure are of comparable importance in solving this task (in the experiments with explicitly

marked targets best performance was obtained when the input-epoch limit was greater than the

output-epoch limit, in particular when these values were 200 and 100).

The profile of error in bits against number of hidden units for the counting without explicit
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Input Epochs Output Epochs Average Hiddens Average Epochs

200 200 3.7 (3/5) 362 (198/605)

200 100 4.4 (3/6) 325 (227/440)

100 100 5.3 (3/7) 387 (222/597)

100 50 5.1 (3/7) 332 (251/462)

50 50 5.0 (3/9) 369 (204/578)

20 20 6.0 (4/10) 247 (166/420) y

10 10 defeated defeated

Table 6.2: Basic performance on the counting without explicit markers task, with end of count

marked in input data as well as by network reset. Networks were considered to have failed if

they had not converged after recruiting 10 hidden units. y10% of trials failed.

H1

H2

H3

H4

H5

H6

H7

O1

O2

O3

O4

O5

B I/P H1 H2 H3 H4 H5 H6 H7

Figure 6.5: Hinton diagram of network converged on the counting without explicit markers task

markers task with marked resets (configuration B/C) is identical to that for configuration C in

the counting with marked targets task (figure 6.2(c)). This shows that the recruitment of the first

hidden unit makes the most difference to the error, which is to be expected, since the recruitment

mechanism of cascade-correlation focuses on the largest sources of error first.

Analysis of representations

Figure 6.5 shows a Hinton diagram of a typical network which had converged on this version of

the task. As the diagram shows, the overall pattern of weight magnitudes was similar to that for

the final network in the counting with markers task — in particular, direct input–output connec-

tions are not heavily weighted especially relative to hidden–output connections. The first hidden

unit also had a large negative recurrent weight since the input representations were the same

in both setups. However, on this task networks were less likely to develop large self-recurrent

weights on all of their hidden units (compare figure 6.3).

6.3.4 Transfer from counting with explicit markers to counting without explicit markers

In these experiments the weights from successful runs of the explicitly marked counting task

were used as a starting point for learning on the non-explicitly marked counting. The RRH
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Source: configuration A

369.0 3.5 84.25 (200/100) 0.42 0.63 0.79

75.42 (100/100) 0.42 0.67 0.79

92.84 (50/50) 0.67 0.60 0.68

97.75 (20/20) 1.50 0.58 0.40

Source: configuration B

369.0 3.5 19.50 (200/200) 0.00 0.90 1.00

19.50 (100/100) 0.00 0.90 1.00

29.59 (50/50) 0.25 0.85 0.87

33.67 (20/20) 0.25 0.83 0.87

Source: configuration C

369.0 3.5 137.33 (200/200) 2.17 0.46 0.24

163.67 (100/100) 1.50 0.39 0.40

140.59 (50/50) 1.67 0.45 0.36

108.99 (20/20) 2.00 0.54 0.27

Table 6.3: Measures of extent of transfer for cardinal-counting networks trained from scratch,

and using the saved weights from a network trained on the counting with explicit markers task

has it that redescription should make the representations formed during counting accessible to

the processes involved assessing cardinality, and we would thus predict positive transfer between

these tasks.

Setup

Saved weights from networks which had converged on the explicitly marked counting task were

used to provide the starting point for training on the cardinal counting task. Since the input and

output representations were the same for both tasks, the same training sets could simply be used

to train the networks on the transfer task.

Performance of target networks Table 6.3 shows the basic performance characteristics for the

transfer between explicit and cardinal counting. For these experiments, source networks were

chosen which had recruited relatively small numbers of hidden units (see table 6.1 for average

values).

The intuition behind this choice was that since the proportion of the total variation ac-

counted for by each successive hidden unit decreases over the course of learning, the representa-

tions in these networks were less likely to be overfitted to the particular source data-set used to

train them. Later-recruited units also attend to relatively unimportant aspects of the problem.

Relationship of representations formed in the target and source networks As noted in sec-

tion 6.1 above, transfer in cascade-correlation can be measured both in terms of the number of

new hidden units recruited during training after transfer (and their relationship to previously

recruited structure), as well as the number of extra epochs needed to train the task.

Figure 6.6 shows the effect of transfer on network representations. Figure 6.6(a) shows the

source network whose weights are used to bias training in the target network, figure 6.6(b) the

weights in the target network after the completion of training on the transfer task. Pilot studies

had also shown that the effect of minor variations in the number of hidden units in the source

network did not significantly affect results in this case.

Figure 6.6(b) shows that the hidden unit recruited after transfer has a negative recurrent

weight, indicating that it reinforces situations in which the input changes from one step to the
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H1

H2

H3

O1

O2

O3

O4

O5

B I/P H1 H2 H3

(a) Source network trained on

counting with explicit targets (con-

figuration A)

H1

H2

H3

H4

O1

O2

O3

O4

O5

B I/P H1 H2 H3 H4

(b) After training on transfer task of

cardinal counting (without explicitly

marked targets; configuration B/C)

Figure 6.6: Effect on representations of transfer from counting with explicit intermediate targets

to counting without. Unit H4 in figure 6.6(b) has been added during training on the transfer

task.

next, i.e., here, sequence boundaries, which are salient to the task of producing cardinal values.

However, what the diagram also shows is that the magnitudes of the weights from H4 to the

output units are very small in comparison to those from all the hidden units recruited during

previous training. What has more impact on the network’s behaviour is the other output-side

weights, some of which have changed sign or magnitude. In particular, the pattern of signs or

magnitudes in the weights from each input or hidden unit reflects groupings of adjacent digits.

For instance, there are large negative weights from the input to the first two hidden units, while

for the bias unit, the larger weights are those to the last two outputs. This suggests that the direct

input–output connections are used to code for position in the case where explicit intermediate

targets are not given in the input.

Transfer from cardinal counting to explicitly marked counting

As a control on the effectiveness of the transfer from explicit counting to awareness of cardinality,

transfer in the reverse direction was also examined. The results are shown in table 6.4. The

transfer-profiles from these experiments differed from those in the counting–cardinality runs;

transfer to configuration A was the most positive, transfer to configuration C was also possible

without recruitment of any further hidden structure, while transfer to configuration B tended to

require the recruitment of at least one hidden unit.

Performance of target networks

Relationship of representations formed in the target and source networks Transfer in this di-

rection was not found to play a significant role in reducing learning time on the transfer task,

with the explicit counting task recruiting as many hidden units as a network trained on that task

from scratch.
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Target: configuration A

332.0 3.2 18.0 (200/100) 0.0 0.90 1.0

18.0 (100/100) 0.0 0.90 1.0

18.0 (50/50) 0.0 0.90 1.0

18.0 (20/20) 0.0 0.90 1.0

Target: configuration B

407.0 4.1 408.33 (200/100) 0.67 0.00 0.72

412.00 (100/100) 0.99 0.02 0.61

364.33 (50/50) 0.99 0.06 0.61

198.67 (20/20) 1.33 0.34 0.51

Target: configuration C

291.0 3.0 23.00 (200/100) 0.0 0.85 1.0

23.00 (100/100) 0.0 0.85 1.0

23.00 (50/50) 0.0 0.85 1.0

46.67 (20/20) 1.0 0.72 0.5

Table 6.4: Extent of benefit of reverse transfer (cardinality to counting) on performance. Source

networks contained 5 hidden units in each case.

6.4 Learning comparative relations on counts and quantities

In a third set of experiments, RCC was trained to capture comparative relationships between

consecutively presented pairs of sequences of counted stimuli. The single binary relation greater-

than (>)1 was used to investigate this. The ability to capture such relationships also provides

an indication of the extent to which the network has formed a representation which reflects

the ordinal aspect of the counting or cardinal numbers it has learned. The RRH predicts that

awareness of such relations will appear later than awareness of the link between counting and

cardinality, since they require elements anywhere in a sequence to be accessible, rather than just

those at the ends.

6.4.1 Setup

In these experiments an extra unit was added to both input and output layers to encode infor-

mation about relations. At the input the extra unit simply encoded whether or not a response

was required at that particular time step, while at the output it is used to encode whether the

relation is true or false of the two preceding count sequences.

The count input data were presented as in counting configuration B (see figure 6.1) with the

ends of sequences explicitly marked by a negative input stimulus. At the output, the network

was required to produce a negative value on the relation unit, except when the relation unit at

the output was activated when it had to produce a value corresponding to the truth value of the

relation applied to the two preceding count sequences. Figure 6.7 shows the organisation of the

training data in the case 3 > 2 7! true.

Clearly, this task requires the network to make use of information from up to twice as many

previous time-steps as in the counting and cardinality experiments presented above. Preliminary

studies confirmed that the network was unable to learn the task if the recurrent state was reset

at the end of every sequence of counting inputs. With resets only after both sequences had been

1Ability to learn this relation also implies ability to capture the less-than relation since the output values are

anti-correlated.
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time input output
z }| { z }| {

item > count truth value

t0 � – 1 –

t1 � – 2 –

t2 � – 3 –

t3 – – 3 –

t4 � – 1 –

t5 � – 2 –

t6 – ? 2 true

t7 � – 1 –
...

...
...

...
...

Figure 6.7: Schematic of example use of input–output configurations for the counting and re-

lations task on the example 3 > 2. Figure 6.1 provides a key to the symbols used. ? denotes

a positive input on the relation unit, indicating to the network that a true/false response is ex-

pected at the output unit.

presented the network was able to learn the task. The training set contained equal proportions

of every pair of non-equal numbers between 1 and 5.

6.4.2 Results

Table 6.5 shows the average epochs required to learn the task when the training set contained

comparisons between all possible pairs of non-equal digits in the set. Table 6.5(a) shows that

when every such comparison was included in the training set, networks required approximately

twice as many hidden units to learn this task as they did in the original counting task, while,

as table 6.5(b) shows, the number of units required increased when the network was required to

learn the task from an incomplete training set.

Network behaviour Examination of activations at each output unit during presentation of

the test set showed that the learning of the count sequence and that of the relations occurred

concurrently over the course of training. Initially the activation of the truth-value output-unit

corresponded directly to the end of every counting sequence (marked by input strobes). This

behaviour was gradually suppressed until the unit was activated only in the case that the first

sequence was longer than the second, as it should.

Analysis of representations Figure 6.8 shows the weight-values developed at intervals over the

course of training on this task. As in the previous experiments, the first hidden unit acts as

a feature-detector for sequence-boundaries. The first five hidden units all had relatively large

negative recurrent weights indicating, as in previous tasks, attention to the change of sign at

the input indicating the end of sequence. As figures 6.8(c) and 6.8(d) show, hidden units 6-10

and 13 have large positive recurrent weights indicating that they reinforce similarity in inputs

at successive steps. This division indicates that the network initially forms feature detectors for

sequence-ends and progressively focuses on their interiors. However, table 6.8(d) shows that hid-

den units 9–13 are not attended to by the outputs to anything like the same extent as previously

recruited hidden units.

6.4.3 Generalisation and systematicity

In order to test the generalisation (and thus the systematicity) of the representations formed

during the learning of this task, a subset of the 20 possible relations was removed from the

training set for use as a test set. The test set consisted of either 8 or 4 ordered pairs of digits, half
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Figure 6.8: Weights developed over the course of training on the relation task
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Input Epochs Output Epochs Average Hiddens Average Epochs

200 100 7.3 (7/8) 665 (644/688)

100 100 7.3 (7/8) 708 (657/752)

50 50 6.0 (5/8) 481 (410/616)

20 20 9.3 (8/11) 386 (328/462)

(a) Training set containing all 20 exemplars of > relations on digits in the set f1 : : :

5g

Input Epochs Output Epochs Average Hiddens Average Epochs

200 100 10.0 (8/13) 1040 (875/1275)

100 100 12.0 (9/16) 994 (836/1177)

50 50 10.2 (6/17) 821 (488/1269)

20 20 15.0 (13/18) 614 (543/722)

(b) Training set of 16 relations

Table 6.5: Basic performance on the task of learning >-relations on different training sets

of which were positive cases, half of which were negative. Each half of the test set contained one

example of each of the possible inter-number differences in order to control for these differences

as indicators of the structure of the domain.

Figure 6.9 shows the training and generalisation error over the course of training. The graph

shows that generalisation error is consistently higher than training-set error as would be ex-

pected, and also that it improves more quickly as the network recruits more hidden units, thus

fitting it more closely to the particular exemplars in that set. However the graph also shows that

it also takes comparable values throughout and eventually reaches zero which suggests that the

representation of the relations formed is relatively systematic.

Initial intuitions were that relations between smaller numbers would be learned most eas-

ily, since these involved counting shorter total sequences (the total length of the sequence to be

considered is given by the sum of the two numbers to be compared plus two steps at which the

network is required to make a further judgement of firstly cardinality and, finally, comparative

magnitude). In practice, it was found that generalisation was best on relation pairs whose dif-

ference was greatest, with classification errors (i.e., associating the wrong truth value with the

inequality) only occurring in cases where the difference between the two numbers was 1. This is

in some sense unsurprising since the basic mechanisms at work are quantitative. Mareschal and

Shultz (1993) also reported that in their model of seriation, inputs with large differences were

found to produce a qualitative improvement in performance and this reflected psychological data

on that task.

It should also be possible to use hidden-unit numbers as a a further indicator of the system-

aticity of the representations formed during the learning of this task. For instance if the number

of hidden units were close to the number of exemplars then this would imply that the network

had overfitted, or effectively rote-learnt, the data. If we assume that exemplars in this case corre-

spond to pairs of sequences to be compared, then the relationship between hidden-unit numbers

and exemplars can be investigated as follows.

Data sets were generated for restricted versions of the task which used the same input and

output configurations as those considered above, but which contained only greater-than rela-

tions using numbers less than highest cardinal numbers which were smaller than the usual 5. In

this way, it was possible to see how the number of hidden units recruited varied with the number
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Maximum Number of Lowest average Lowest average

digit >-relations hidden units hidden units

(relations) (counting)

2 2 2.0 2.0

3 6 4.3 3.1

4 12 6.0 3.2

5 20 8.2 4.1

Table 6.6: Variation in number of hidden units recruited with increases in the number of rela-

tions to be learnt.

of relations to be learnt, and thus to assess the extent to which recurrent cascade-correlation

might simply be using its ability to recruit new hidden units to rote learn the set of relations (in

a similar manner to a standard backpropagation network with excessively many hidden units).

The number of relations for a given upper limit n is given by 2�
�

n
2

�

, since two non-equal

arguments must be chosen and these may appear in either order. The expression
�

n
2

�

is given by

n(n� 1)=2!, so the whole expression simplifies to n(n� 1). Table 6.6 shows how the amount of

hidden structure varies with the number of relations to be learnt.

Again, assuming the correspondence between final comparisons and exemplars, these fig-

ures, along with the results obtained on the within-task generalisation above, suggest that the

network is evidently not simply recruiting sufficient hidden units to rote-learn the set of rela-

tions. However, comparison with the number of hidden units needed for the counting-with-

markers task shows that by maximum cardinalities of 4 or 5, the number of hidden units needed

for the relational task is around double that needed for counting. The next section further

examines the relationship between the counting and relations tasks through assessing network

transfer.

6.5 Transfer from counting to relations

Although the networks were able to learn the comparison of cardinalities task, it seems unlikely

that children learn this task before they are able to produce simple counting sequences or assess
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Source: configuration A

481.0 6.0 677.17 (200/100) 5.34 -0.17 0.06

1461.67 (100/100) 5.67 -0.50 0.03

597.50 (50/50) 5.17 -0.11 0.07

880.67 (20/20) 15.17 -0.29 -0.43

Source: configuration B

481.0 6.0 873.67 (200/100) 5.00 -0.29 0.09

799.84 (100/100) 4.67 -0.25 0.13

606.17 (50/50) 4.34 -0.12 0.16

552.17 (20/20) 9.17 -0.07 -0.02

Source: configuration C

481.0 6.0 876.50 (200/100) 5.50 -0.29 0.04

852.83 (100/100) 5.84 -0.28 0.01

655.34 (50/50) 5.33 -0.15 0.06

718.00 (20/20) 11.83 -0.20 -0.33

Table 6.7: Transfer from counting with explicitly marked targets to >-relation

the cardinality of individual sets. The following transfer experiments were therefore designed

to investigate whether prior training on counting or cardinality tasks facilitated the learning of

the comparison task, and thus to what extent the representations of order and quantity formed

during the original training were accessible to further learning on related concepts.

For this experiment, networks with the same extended input and output configuration as the

relation networks were first trained on the counting with explicit markers task. As we would

expect, results on this task were found to be essentially similar to those in the original version,

since the extra units were held at constant values and thus conveyed no extra information to the

network.

Table 6.7 shows the basic results for the transfer from these counting with markers networks

to those learning relations. Unlike the counting–cardinality results, in this case although τe is

negative, τh is positive in the majority of cases. This means that on average although the network

requires more training epochs to learn the task after transfer than it would given a random

starting point, transfer reduces the amount of hidden structure needed to capture the task. This

result is unsurprising in some ways since marked counting can be seen as a major subtask of the

> task. The positive transfer between these tasks suggests that information about the cardinality

of counts is represented during learning of the counting with markers task, and indeed, transfer

from configuration B, in which the network was required to repeat the last count word, was

slightly more positive than transfer from the other two configurations in which cardinality was

not explicitly re-marked.

6.6 Transfer from cardinality to relations

Table 6.8 shows the basic performance characteristics for the transfer from the counting without

explicit markers task to the comparison task. This was the only case in which both τe and τh

took negative values, indicating that new hidden-unit structure was needed to ‘compensate’ the

target network for having started from a network trained on the source task. The difficulty

experienced by networks in this transfer task is in some ways unsurprising since, as the results

in table 6.4 show, the trained cardinal network weights did not seem to facilitate learning of
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Source: configuration B/C

481.0 6.0 880.17 (200/100) 5.50 -0.29 0.04

1024.84 (100/100) 7.50 -0.36 -0.11

899.67 (50/50) 7.17 -0.30 -0.09

682.34 (20/20) 11.50 -0.17 -0.31

Table 6.8: Transfer from counting without explicitly marked targets to >-relation

Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Target: configuration A

262.0 3.0 19.50 (200/100) 0.0 0.86 1.00

19.50 (100/100) 0.0 0.86 1.00

19.50 (50/50) 0.0 0.86 1.00

28.00 (20/20) 0.0 0.81 0.71

Target: configuration B

262.0 3.0 150.67 (200/100) 1.17 0.30 0.44

141.00 (100/100) 0.84 0.30 0.56

152.33 (50/50) 1.67 0.26 0.29

57.17 (20/20) 1.00 0.64 0.50

Target: configuration C

262.0 3.0 98.50 (200/100) 1.00 0.45 0.50

91.67 (100/100) 1.00 0.48 0.50

111.67 (50/50) 1.17 0.40 0.44

31.00 (20/20) 0.50 0.79 0.71

Table 6.9: Transfer from >-relation to counting with explicit markers

explicitly marked counting, and this constituted a large part of the target task.

6.7 Transfer from relations to counting and cardinality

For completeness, the reverse transfers from the relation task to counting and cardinality were

also performed. Tables 6.9 and 6.10 show the results for the transfers to counting and cardinality

respectively. As the table shows, τe and τh are positive in both cases.

This may initially seem surprising in the light of the predictions made by the RRH, which

would predict that ability to make comparisons between counted quantities would require initial

mastery of counting. However we also need to take into account the fact that the comparison

network must learn to count in order to succeed when trained from a random starting point.

Thus information is available which is relevant to the transfer task of counting with markers.
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Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Target: configuration B/C

239.0 3.2 46.84 (200/100) 0.50 0.67 0.73

46.00 (100/100) 0.50 0.68 0.73

49.00 (50/50) 0.50 0.66 0.73

129.17 (20/20) 1.17 0.30 0.47

Table 6.10: Transfer from >-relation to counting without explicit markers

6.8 Discussion

6.8.1 Comparison between performance of RCC and the RR account

Innate constraints

As Karmiloff-Smith (1992a) points out (and as discussed in section 3.4.1), the recurrent archi-

tecture can be seen as constituting a weak domain-general constraint on network learning. It

also inherently provides the model with the more domain-specific constraints of one-to-one cor-

respondence between items and count-terms. The design of the input encoding also enforces

constraints of item- and order-indifference (Gelman & Gallistel, 1978), (although the fact that

all items to be counted are identical differs slightly from the idea of item irrelevance, which sug-

gests abstraction of the numerical properties away from a possibly heterogenous set of items).

But it is also possible that discrete recurrent network architectures embody rather too many

constraints. For instance, it could be argued that a recurrent network already embodies the con-

cept of a generic ‘+1’ operator, and indeed Wiles and Bloesch (1992) compare discrete recurrent

networks to such ‘curried’, or partially applied, functions.

Another concern is the discreteness of the steps themselves. Although the stepping seems to

guarantee that the one–one principle holds, it is more difficult to see how the process of indi-

viduation of components in a sequence predicted by the RRH could be captured by a network

which begins with components already intrinsically isolated and independent.

However, it should be noted that the previous connectionist models of counting discussed in

section 6.1.2 above all used discrete recurrent networks (Broadbent et al., 1993; Wiles & Elman,

1995). Although Wickelgren (1993) also proposed the use of discrete recurrent networks, these

were not restricted to being locally recurrent and thus the maximum representable cardinality

was not limited as in the present study.

Subsequent learning

As noted in section 6.1.1, the pattern of explicitation in the number domain is not presented

in the form of the three-phase RR model. The discussion here will thus be divided instead

according to the three tasks investigated since these are assumed to require increasingly explicit

representations.

Counting (with explicit markers) Networks were able to learn this task for cardinal numbers

in the range 1–5, recruiting between 2 and 6 hidden units (when hard-epoch limits were set at

above 50 epochs). Training sets of configuration B required a higher number of hidden units

(at least 4) than those of the other two configurations. This configuration required the network

to respond to the end-of-sequence signal at the input by repeating the cardinal digit at the next

output step, and this required more information than simply restarting the sequence for the next

count as in the other two configurations.

The RRH suggests that initial mastery at counting is underlain by a procedural representa-

tion. This is run off as a sequence which can neither be interrupted nor otherwise manipulated

according to its components. In the case of the network, there was a basic sense in which the
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count sequence was not interruptable in that it would be impossible to ask the network to count

from any point but the beginning, and this was partly due to the fact that stimuli were identical

and presented temporally. There was thus no direct way to provoke the output ‘3’, say, without

presenting three counting stimuli.

From counting to cardinality (counting without explicit markers) The RRH predicts that aware-

ness of the cardinality of a set arises from redescription of the previously mastered counting pro-

cedure, specifically through the increased accessibility of the final element of the count sequence.

In a network model we would thus expect positive transfer from counting with to counting with-

out explicitly marked intermediate targets. As tables 6.10 and 6.3 show, transfer was positive for

all source configurations. The most positive was configuration B, in which final the count was

repeated, followed by configuration A, which required no response apart from the basic count

sequence. This results lend support to the suggestion above that the required repetition of the

final count tag requires some information about cardinality to be deployed. Fuson (1988) also

identifies repetition of the last count word as a stage in the progression from rote counting to

awareness of cardinality. Although it is the external emphasis on the last token which makes

the cardinal number in configuration B more salient and thus a better source for transfer to the

cardinal task, it should also be noted that transfer was positive in the other cases also.

Comparisons between count sequences Performance at this task was perhaps surprisingly good,

considering that a locally (limited-memory) recurrent architecture was used and the network

needed to deal with sequences which were over twice as long as those in the previous two ex-

periments. In part this is accounted for by the fact that cascade-correlation is able to recruit an

amount of hidden structure proportional to the number of digits involved (see table 6.6).

Since this task involves relationships between cardinal values which may be as much as four

steps apart, it would seem that access to more than just the representation of the final elements is

required in order to succeed at this task. As table 6.6 shows, the network did not learn the task

simply by recruiting enough hidden units to represent all the possible relation-pairs explicitly,

although the number of hidden units required did increase with the maximum digit used.

The RRH predicts that the accessibility of sequence elements proceeds ends-inwards. Thus

in this case the development of representations underlying cardinality would precede that from

comparisons, since cardinality involves only the final element. In the network model we might

thus expect transfer from counting and cardinality to comparisons to be positive, and for the

latter to be more positive since awareness of cardinalities would seem to be necessary for success

on the comparative task. However, as figure 6.10 shows, transfer between cardinality networks

and comparative networks is actually the least successful of the transfers, while transfer from

counting to cardinality is positive in terms of structure (measure τh), but negative in terms of

training time (measure τe).

As suggested in the analysis of section 6.6 the negativity of the cardinal–comparative trans-

fer was due to the fact that explicit counting was a subtask of the comparative task and previous

training on the cardinality task did not particularly facilitate this. This result also has impli-

cations for the accessibility of the representation of cardinality to the comparison task since,

although the latter must learn the explicit counting part of that task, it should also be able to

appropriate the representation of cardinality from the cardinal network to some extent, rather

than being hindered by it. The result might also be taken to imply that the mechanism used by

the comparative network represents cardinality in a way which is not divorced from the count

sequence as it is in the cardinality task.

The positivity of transfers in the reverse direction also points to the similarity between the

counting and comparative tasks, as transfers from comparative networks to both counting and

cardinal networks are positive. These results also imply that some of the staging of learning

in the comparative task is due to the cascade-correlation architecture alone. As the analysis

of the activation patterns showed, the network learned the counting and comparison subtasks

concurrently and its problem decomposition thus differs from that which was hand-engineered
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Initial training

Counting Cardinality >-relation

Transfer Counting – τe +, τh + τe +, τh +

training Cardinality τe +, τh + – τe +, τh +

>-relation τe –, τh + τe –, τh – –

Figure 6.10: Overview of results of transfer between counting, cardinality and relation experi-

ments with RCC

through network–network transfer.

Correspondence between RR and recurrent cascade-correlation Servan-Schreiber et al. (1991)

and Cleeremans (1993) describe a representational and behavioural progression in simple recur-

rent networks, which begins with the correct treatment of individual elements, then bigrams

(pairs of elements), and finally whole sequences or paths through the idealised machine. This

progression seems to correspond better to the process of proceduralisation. In some ways pro-

ceduralisation is to be regarded as a complementary and opposing process to RR (Karmiloff-

Smith, 1992b, p. 17), although it could also be seen as corresponding to the initial progress

towards behavioural mastery in domains, such as piano playing and drawing (Karmiloff-Smith,

1992b, 1990), in which fluent sequences must be composed from initially distinct elements.

However the results presented above suggest that the RCC architecture is able to capture

some of the effects on sequence learning described by the RRH. In particular the ability to learn

comparisons between different cardinalities is an example of the progressive differentiation of

elements inwards from the boundaries of sequences over the course of learning.

6.9 Learning structured sequences with RCC

As noted above, two of the constraints on counting put forward by Gelman and Gallistel (1978)

are those of order-invariance and item-invariance, which state respectively that neither the order

nor the identity of items to be counted should affect the result. The latter was embodied in the

input encoding chosen for the preceding experiments. The item-identity property was enforced

in the decision to make all count items identical. Thus, as a complementary study to that pre-

sented above, the behaviour of recurrent cascade-correlation during both learning and transfer

was also investigated for structured sequences, defined as those in which both item identity and

serial order are relevant to the task.

These effects were investigated in the context of the learning of regular grammars. Although

this is not a domain which has been explicitly linked to the RRH, the finite-grammar framework

has been used to investigate abstract navigation tasks (Basye, Dean, & Kaelbing, 1995; Mozer &

Bachrach, 1991; Chrisley, 1993; Chrisley & Holland, 1994). One of these — the Connectionist

Navigational Map (Chrisley, 1993; Chrisley & Holland, 1994) — was also devised as a setting

for the investigation of the development of objectivity and systematicity in networks. Also of

interest here are those studies which have used discrete, locally recurrent networks to capture the

effects of implicit grammar learning in human subjects (Cleeremans, 1993; Dienes et al., 1995).

Another motivation for this study was to provide some comparison with previous work on

the representations of such grammars formed in discrete recurrent networks (Servan-Schreiber

et al., 1991; Cleeremans, 1993), and also on the structural transfer of such knowledge (Dienes

et al., 1995; Jackson & Sharkey, 1995; Dienes et al., submitted) (although these latter studies

have been conducted using simple recurrent networks (Elman, 1990a), not recurrent cascade-

correlation as in the present study).
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Figure 6.11: The finite-state machine accepting the Reber grammar

6.9.1 Structural transfer between isomorphic machines

This experiment was intended to assess the extent to which RCC forms representations which

are independent of particular perceptual inputs. The task requires the network to transfer the

ability to predict the next machine state using a particular finite-state grammar, to exemplars of

another grammar which is isomorphic to the first but uses a different input language. In terms of

the machine diagram associated with the grammar, the transfer is to a machine whose underlying

graph has the same structure but whose arcs have been relabelled. This task is inspired by that

used by Dienes et al. (1995, submitted) and can also be related to the work of Jackson and

Sharkey (1995). The aim of the present experiment was to determine both whether RCC was

capable of forming feature-detectors for structural rather than perceptual elements of the state-

machine, and whether it did so spontaneously. This was assessed, as in the counting experiments

above, by the extent to which these feature detectors could be re-used for solving tasks with the

same structure but which were perceptually dissimilar.

Setup

A standard RCC network was used to learn the Reber grammar, as in Fahlman (1991) and us-

ing the parameters given by Fahlman (personal communication, 1995). The Reber grammar is

shown in figure 6.11. This grammar is considered to be particularly challenging to locally recur-

rent networks as it contains both cycles (between states 3, 2 and 4) and star-closures2 (on nodes

1 and 2).

The basic input encoding was as in Servan-Schreiber et al. (1991) and Cleeremans (1993),

with tokens of the input alphabet fB,S,T,V,P,Xg represented in a localist (one-of-n) manner at the

input layer. The input ‘B’ indicates the beginning of a sequence and is accompanied by a reset of

the recurrent part of the network as in the counting experiments reported above. At the output

layer a localist encoding was used to represent the six states of the machine recognising the

grammar, giving six units in each layer (excluding the input bias unit). The symmetric sigmoid

function was again used, giving binary values of �0.5.

As in the study by Fahlman (1991), a training set of 128 unique patterns was used without

any length restrictions being placed on strings (Fahlman, personal communication, 1995).

These studies differed from those of Dienes et al. (1995) and Jackson and Sharkey (1995) in

that rather than requiring the network to predict the next state — a task which for grammars

such as the Reber grammar is not deterministic since there are several possible next states in

each case — it was required to give an output corresponding to that state. This is essentially

2Defined as an indefinite number of repetitions of the symbol labelling the self-connected arc.
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Input Epochs Output Epochs Average Hiddens Average Epochs

400 400 3.0 (2/4) 415 (265/591)

200 200 4.4 (3/6) 471 (317/599)

200 100 4.4 (3/6) 471 (317/599)

100 100 4.8 (2/6) 427 (172/591)

50 50 3.8 (3/4) 335 (257/376)

20 20 13.0 (10/18) 273 (210/378)

10 10 14.4 (10/21) 304 (210/445)

Table 6.11: Basic performance on the Reber grammar

the scheme used in Chrisley and Holland (1994), in which an agent must learn to output the

description of its current location. A finite-state machine extended in this way to include a

function from states to a set of output symbols is known as a Moore machine3 (see Hopcroft

and Ullman (1979) for instance). Basye et al. (1995) also present their model of navigation in

terms of Moore machines.

This task differs from the predictive task in several ways. Although the net must still use

the sequential information associated with legal successors in the grammar (since the input data

remains the same), the output task is now the simpler (and non-ambiguous) one of ‘responding’

with the output pattern corresponding to the correct symbol of the output alphabet of the no-

tional Moore machine induced by the network. Since only one response was legal at each step,

error-tolerance measures could now be used to assess convergence.

6.9.2 Method

In the following experiments networks were trained to induce Moore machines based on the

grammar recognised by the machine in figure 6.11. In the basic version of the task the output

alphabet was given simply by the identity function on the state-labels in the machine diagram.

These were then encoded using a one-of-n scheme.

Basic results

Table 6.11 gives the basic performance for the Moore-machine version of the Reber grammar

task. On the predictive version of this task, Fahlman (1991, p. 5) found that recurrent cascade-

correlation converged in all cases, after recruiting an average of 2.1 hidden units and after an

average of 195.5 epochs’ training. This suggests that the Moore machine version of the task

is somewhat harder for the network than the predictive one, presumably since explicit, unique

targets are provided at each step.

Encoding functions in data generation

In order to explore the effects of varying mappings, the work of generating training data from

the abstract symbols associated with the grammar was divided between two functions:

� Preprocess function This maps symbols in the input alphabet, Σ, onto input patterns.

� Output function This maps states in the machine (considered as encoded by the input–

hidden connections) to output symbols. This function is just the λ function in the corre-

sponding Moore machine or, in the Chrisley and Holland (1994) scheme, the description

function.

3More formally, a Moore machine is a 7-tuple (Σ,q0,Q,δ,F ,λ,∆), with the usual finite-state machine transition

function δ : Σ�Q! Q, and an output function λ : Q! ∆, which maps states in Q onto symbols in the output

alphabet ∆.
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λ (output) function

δ (transition) function

pre-process function

Figure 6.12: Correspondence between network resources and machine functions in recurrent

networks. The central layer of those shown in black is intended to represent some mechanism of

local recurrence, such as the layers of self-connected hidden units in RCC.

Epochs from Hidden units Epochs after Hidden units

random start from random transfer after transfer τe τh

(βe) start (βh) (ρe) (ρh)

Transfer between output functions

173.833 (78/334) 1.733 (1/5) 52.000 0.000 0.539 1.000

Transfer between pre-process functions

81.933 (41/148) 2.107 (1/5) 392.444 3.056 –0.655 –0.140

Table 6.12: Extent of transfer between networks with different input- or output encodings

Figure 6.12 shows these functions in the context of a generic locally recurrent multi-layer ar-

chitecture such as RCC or an SRN. This division was inspired by Dienes et al. (submitted), whose

network includes a preliminary layer of what are referred to as ‘mapping’ weights intended to

complement the encoding role of the hidden–output weights. In our models, the (external) pre-

process function has the same role as mapping weights.

Transfer between encodings

To simplify the input and output encodings, sets of possible states were permuted to give transfer

tasks. Transfer between isomorphic but perceptually distinct machines was investigated in two

different situations. In the first, the transfer task involved outputting different output symbols

for each state (formally equivalent to permuting the order of elements in the co-domain of the

output function of the Moore machine). The second involved using different input symbols.

This was achieved in practice by permuting the co-domain of the pre-process function which

mapped input symbols to their representations as input vectors. Another way of viewing these

two variants is that the first has the effect of permuting the labels on states, while the second

permutes labels on transitions.

6.9.3 Results

The τ measure of Sharkey and Sharkey (1993) was again used as a way of quantifying the extent

of transfer. Table 6.12 shows the results for the transfer between different input and output

encodings.

In terms of structural transfer, measured by τh, it is obvious that while no new structure

is needed to learn a new output function, transfer between networks with differently labelled

transitions is consistently negative. Networks in this case recruited at least as many hidden units

after transfer as before, implying that they could not make any use of the machine structure

already encoded by the source network. In terms of extra training time in epochs, the values

of the measure τe again indicate that while some retraining was necessary in the output case,
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negative transfer in the input case is even more pronounced than for the structural measure.

These results are consistent with those obtained for SRN’s trained on the predictive version

of this task (Cleeremans, 1993; Jackson & Sharkey, 1995; Dienes et al., 1995) — new output

encodings are easily learnt simply by retraining the hidden–output weights, whereas new input

encodings require a new transition structure to be learnt from scratch by the recurrent input–

hidden part of the network.

The reason for this difference is made clear by considering a correspondence between net-

work resources and machine functions analogous to that made by Chrisley and Holland (1994)

for the SRN’s in their study. In terms of Moore machines, the hidden–output connections com-

pute the λ (output) function while the input–hidden connections are seen as computing the δ
(transition) function as in the predictive model. For recurrent cascade-correlation, the corre-

spondence is similar, but it is the whole of the (multilayer) input-side structure which implements

the transition function.

Dienes et al. (1995) successfully compensated for this asymmetry between network resources

and machine functions by extending an SRN with an extra layer of weights preceding the usual

input layer. The network was then able to use this extra layer to process changes in input map-

pings in the same way as the hidden–output weights did at the output. The results of the current

study imply that the multilayer architecture of cascade-correlation does not come to act like the

preliminary layer in Dienes et al.’s model (partly because of freezing), and that in this way the ar-

chitecture is just as bound by perceptual cues in transfer as more conventional backpropagation-

based models such as the SRN.

6.10 Summary

The effects of redescription on knowledge of sequential information appear in a variety of do-

mains and tasks including seriation, counting and musical performance. In some cases, although

the redescriptive process appears to act to give progressively more accessible representations, the

three-phase pattern of the RR model is not observed. This chapter has presented a study of

the use of (recurrent) cascade-correlation to model redescriptive effects in domains involving se-

quential data, specifically in the domain of number. The use of the locally recurrent version of

cascade-correlation provided an additional domain-general architectural constraint in the way

suggested by Karmiloff-Smith (1992c).

In the domain of temporal counting, networks were trained on three related tasks of increas-

ing difficulty: counting with intermediate counts explicitly marked at the target, counting with-

out these intermediate markers and with only the end token (representing the cardinal value)

marked, and counting pairs of sequences then classifying the pairs according to whether the car-

dinality of the first sequence was greater than that of the second. The last of these could also be

viewed as the learning of the ordinal relationships between numbers.

Karmiloff-Smith (1992b) claims that the representations formed in simple counting are made

accessible to those assessing cardinality through redescription. The general properties of re-

description on sequences suggest that relational properties between numbers in the middle of

sequences would become accessible only after properties such as cardinality, which involve only

the end-point of the count.

Accessibility of representations to processes associated with different tasks was measured

directly through task transfer. It was assumed that the positive transfer of task structure provided

an indication that task structure was in a suitable form for re-use by structurally related tasks.

Sharkey and Sharkey (1993)’s measure of transfer was used and also applied to the amount of

new structure added by cascade-correlation after transfer.

Results indicated that counting with explicit markers transferred postively to counting with-

out such markers, particularly in the case where the last element of the count was repeated.

Transfer was also positive (in terms of amount of hidden structure) between counting with mark-

ers and comparative counting. However, previous training on the cardinality task was actually
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detrimental to learning on the comparisons task.

The reverse transfers from cardinality to counting and from comparisons to cardinality and

counting were perhaps surprising in that previous training on comparisons facilitated learning

of both counting and cardinality. This was thought to be due to the fact that the counting is a

major subtask of the comparison task. The staged learning inherent in the cascade-correlation

scheme evidently forms intermediate representations of the count in this task which are usable

during subsequent learning on a counting task alone.

Some concerns remained about the burden placed on innate constraints in the model, in

particular the fact that inputs were pre-segmented. Others of these constraints however corre-

sponded to those put forward by Gelman and Gallistel (1978), such as one-to-one correspon-

dence and item- and order-irrelevance.

As a control for the perceptual similarity of stimuli in the counting tasks, a complementary

study was performed involving transfer of structure between sequences in which the order and

identity of items was important. The Reber grammar was used in experiments to test the extent

of transfer between different mappings from perceptual labels to an isomorphic structure.

These experiments were less successful, with networks exhibiting strong negative structural

transfer. It seems apparent from these experiments that the input–hidden structure acts as the

transition function of the state-machine, but does not also perform the re-encoding of inputs

of the initial layer in the model of Dienes et al. (submitted), and is thus not able to transfer the

function positively to isomorphic tasks without adding a comparable amount of new structure.

These results suggest that cascade-correlation does not tend to develop representations which

are suitable for structural transfer in the general case.
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Skeletonisation as a model of representational redescription

Introduction

In Clark and Karmiloff-Smith (1993), skeletonisation of networks was proposed as a promis-

ing technique for capturing redescriptive effects, in particular the idea that redescription results

in reduced representations which preserve the relevant features of the original learning, as dis-

cussed in section 3.8.1. Despite the criticisms presented there, skeletonisation still exhibits an

interesting set of incremental learning techniques which both intersect and complement those

of cascade-correlation. In particular, although it is also based on an error-driven scheme (back-

propagation) and involves phasing of internal structural resources, there are other features which

correspond more closely with aspects of the RR model. For instance, skeletonisation explicitly

acts only after the error-driven network has converged and the process of relevance assessment

acts off-line and is not directly related to error during training.

7.1 Skeletonisation and RR

Skeletonisation (Mozer & Smolensky, 1989a, 1989b), is a scheme in which units are pruned from

either the hidden or input layers of a network trained using backpropagation, according to their

relevance to the reduction of the overall error.

Three claims are made for the potential usefulness of such a technique. Firstly, it is claimed

that by reducing the number of hidden units the network will be constrained to produce better

generalisations, secondly, since learning is fast with larger numbers of hidden units, the tech-

nique should accelerate learning by allowing the initial phase to produce many possible gen-

eralisations while the later phase constrains those generalisations, thirdly, it should be possible

to gain a better understanding of a skeleton network, since although the process may result in

a decline in the percentage of correct answers, it may become possible to analyse the resulting

network in terms of a small number of rules.

The first and third of these claims are particularly relevant to aspects of the redescription pro-

cess. As Clark and Karmiloff-Smith (1993) note, redescription seems to produce improvements

in generalisation at the expense of accuracy in performance, and speculate that this is because

the resulting representations are in some way ‘reduced’ by the process. The idea that such net-

works should be easier to interpret in terms of rules can also be thought of as corresponding

to an increase in explicitness of the network’s internal representation. Finally skeletonisation

acts only after error-driven learning has succeeded, and this seems to correspond to the idea that

redescription acts only after behavioural mastery has been achieved.

Mozer and Smolensky (1989b) provide several examples in support of these claims of im-

proved learning and improved intelligibility. For instance, in a stimulus-sorting task the skele-

tonisation procedure correctly trims away all the inputs surplus to the network’s ability to sort
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stimuli into two classes. Other examples (the four-bit multiplexor and random mapping prob-

lems) show that the network is better to learn a particular mapping than a standard backprop-

agation network forced to work throughout its training with only the same number of hidden

units as the final skeleton network. According Mozer and Smolensky this is due to the initial

over-provision of resources in the skeletonised network.

7.1.1 Skeletonisation and other pruning techniques

Pruning (of connections or units) is an established technique in connectionist engineering – see

Reed (1993) for a survey of pruning techniques. Mozer and Smolensky (1989b) relate relevance

to other measures such as contributions (Sanger, 1989) as well as to the analysis of internal

patterns of representation using cluster or principal components analysis.

An alternative approach is to use some sort of cost term related to the complexity of the

network such as the size of the weights, the number of connections, hidden units or hidden

layers, or the symmetries of the network .

The idea of an initial overprovision of resources followed by a pruning procedure also cor-

responds to ideas about cortical maturation which have recently been related to developmental

phenomena. For instance Johnson and Karmiloff-Smith (1992) discuss the application of princi-

ples derived from the study of selective neuronal loss during development to aspects of cognitive

development and language acquisition.

7.2 The skeletonisation procedure

7.2.1 Calculating relevance

The relevance of a particular unit is an approximation to the difference between the overall

network error on a particular training set with that unit installed, and the overall error with it

removed. Since computing this value for every unit would involve a separate pass through the

entire training set (if indeed such a fixed training set exists) a computationally less expensive

measure is used.

In the experiments which follow, expressions for relevance were derived, as described in

Mozer and Smolensky (1989a), in a similar manner to standard backpropagation. As suggested

there, the linear error measure

E l
= ∑

p
∑

j

jtp j�op jj ;

is used in preference to the quadratic measure normally used in backpropagation, since the

derivative of the latter tends to zero as the total error decreases.

The additional information was noted (Mozer, personal communication, April 1994) that,

using the linear error measure the expression for δi at the output layer is given by

δi = f 0

i(neti)νi;

where νi = –1 if oi > ti and +1 otherwise. Relevances at the hidden or input layers are then given

by

�

∂E

∂α j

=

�

∑δkwk j

�

oi

where k is an index over the units in the layer above. In this implementation, linear errors are

computed at each presentation to give the δis at each layer.
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7.2.2 Which layer to skeletonise?

It is possible to apply the skeletonisation procedure to the input or hidden layers of a backprop-

agation network, as discussed by Mozer and Smolensky (1989a, 1989b). It was considered inap-

propriate to delete units from the input layer, especially since, when using a localist input/output

representation as in the data used with cascade-correlation in chapters 5 and 6, after the deletion

of a number of input units, some previously distinct patterns would effectively be represented by

the same (null) pattern. This would constitute changing the task to be learned rather than just

the structure of the representation underlying the network’s solution. Thus in the experiments

that follow, skeletonisation was performed on the hidden layer in the interests of manipulating

internal representations.

7.3 Choice of experimental tasks

The study presented here was intended primarily to complement the work with cascade-correlation

presented in previous chapters. The original aim had thus been to re-use the experimental data

used with cascade-correlation. However the sequence-learning tasks were considered unsuitable

for use with skeletonisation for two reasons. Firstly, the ability of cascade-correlation networks

to learn the counting task depends in part on the constructive aspect of that architecture. Sec-

ondly, the skeletonisation method was devised to act on non-recurrent backpropagation net-

works. Although recurrent architectures exist which are based directly on backpropagation

(e.g., the SRN), it is unclear how the method for calculating relevance values would need to

be adapted. In particular, in SRN’s it is usually necessary to update weight-values after the pre-

sentation of each pattern, whereas relevance is calculated only every epoch. The experimental

work in this chapter therefore focuses on the article-function experiment presented in chapter 5.

Pilot studies showed that the full version of this task was difficult for the underlying backpropa-

gation network to learn. The restricted version omitting the object-recognition component was

thus used instead (see table 5.3).

7.4 Method

7.4.1 Training schedules and granularity

Two main approaches to scheduling incremental learning were examined. Mozer and Smolen-

sky’s original cyclic training and pruning schedule, which resembles cascade-correlation in the

sense that a single unit is deleted at each phase, is compared with schedules in which the mech-

anisms used at each phase can be tailored in an attempt to give a closer fit to the profiles of the

experimental data. These two sets of experiments also complemented each other in terms of

the level of granularity at which phases of incremental learning could be said to correspond to

phases in the RR model.

Mozer and Smolensky (1989b)’s training schedule consisted simply of a cycle through the

following steps:

1. Train the underlying network using backpropagation, calculating relevance values at each

unit

2. Delete the unit with the lowest relevance

3. Re-train the network on the same task using backpropagation

The number of times this cycle was repeated had to be pre-determined by the experimenter,

although Mozer and Smolensky suggest that it would be possible to devise a stopping condition

based on relevance values themselves (rather than simply an ordering on them).
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7.4.2 Initial task training

Some difficulty was experienced in training the backpropagation network on even the restricted

form of the task chosen. Variations in the parameters of backpropagation were first tried, but the

network failed to converge even with learning rate and momentum set to very small values (e.g.,

0.01) and even with a large maximum-epoch limit. Provision of large numbers of hidden units

(e.g., 20 — recall that the data-set contained only 10 patterns) also failed to result in criterial

performance.

These initial pilot studies showed that the network found particular patterns — those repre-

senting the two indefinite non-specific ambiguous cases — especially difficult to learn, and typ-

ically converged in as little as between 10 and 20 epochs when these were removed from the set.

This observation prompted further pilot studies using training-set phasing to try to direct the

network’s learning towards correct performance on the original data-set. However, conservative

incremental methods based on progressive increases in training-set size were also unsuccessful,

regardless of the point at which the problematic patterns were introduced into the set. It was

possible to obtain correct performance on these patterns if they were added relatively early, but

only at the cost of performance on other classes of exemplar.

Finally an extended incremental training scheme was used, i.e., one in which training on a

task which is not a subtask of the original task (as above) is used to stage learning of that task.

It turned out that in this case such a task could be obtained by simply doubling the number of

indefinite non-specific ambiguous exemplars from two to four to form a superset of the original

data-set. The network was able to learn this twelve-pattern task in an average of 31.2 epochs.

Retraining on the original ten-pattern dataset then rapidly converged (typically in only one fur-

ther epoch). The effect of the extended set was simply that of increasing the statistical salience

of the problematic class of cases. It is somewhat unfortunate that such engineering was neces-

sary, as it changes the statistical profile of the task in ways not underlain by the empirical data in

Karmiloff-Smith (1979a) (although frequency of each of these cases in everyday discourse is not

discussed there — see note in section 5.2.1). In the studies which follow, preliminary training on

the extended set preceded all phases of incremental training using skeletonisation.

7.4.3 Using Mozer and Smolensky’s incremental training schedule

In these experiments the train–prune–retrain cycle was applied to both a network with three

hidden units initially (which had been found during pilot studies to be the minimum number of

hidden units needed to learn the task), as well as to a network with 6 hidden units. The second

network was expected to form a redundant representation initially which would then become

generalised through the action of skeletonisation as Mozer and Smolensky (1989b) describe.

Basic performance

Training to mastery on the ten-pattern set required an average of 41.73 epochs (including pre-

liminary training) in the networks initialised with three units, and an average of 19.55 epochs in

networks initialised with six hidden units. The use of a larger number of hidden units than was

needed to learn the task resulted in faster initial training as Mozer and Smolensky (1989b) note.

Skeletonisation according to the relevance measure After this initial training phase, the skele-

tonisation procedure was applied to networks with both sizes of hidden layer. In each case the

unit with the lowest relevance at the end of each training phase was deleted. The stopping con-

dition was that there must be at least one non-bias node remaining in order for it to remain a

trainable three-layer network. The bias unit was also excluded from consideration for deletion.

Figures 7.1(a) and 7.1(b) show how the proportion of misclassifications in each class of exemplar

varied with successive rounds of relevance-based deletion.

As these figures show, the basic skeletonisation procedure does not result in U-shapes or

fluctuations in the misclassification rate. Rather performance on particular classes of exemplars

simply degrades as deletion progresses. However the pattern of misclassifications does resemble
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Figure 7.1: Proportions of misclassifications on each class of exemplar for networks initialised

with either (the minimum) 3 hidden units or 6 hidden units.
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that in the empirical data in that misclassification rates on indefinite exemplars are consistently

higher than those on the definite article.

Skeletonisation based on random selection of hidden units In the interests of investigating

the effectiveness of the relevance measure as a means of selecting units for deletion, the above

experiments were repeated using random selection of units to delete (again, excluding the bias

unit and stopping with one non-bias unit remaining). Figure 7.2 shows how the proportions of

misclassifications in each class varied with number of random deletions.

These figures indicate that the use of the relevance measure does have a significant guiding

effect on incremental training beyond simply coalescing representations by reducing the dimen-

sionality of the internal representational space, and acts to preserve correct performance whilst

reducing network size as Mozer and Smolensky (1989b) intend. On the smaller network random

deletion results in degradations in performance across the board (although the problematic in-

definite non-specific ambiguous cases exhibit a peak in error reminiscent of the empirical data).

The effect on the larger network appears more selective — performance on all three indefinite

classes degrades (again monotonically) while performance on definite classes is spared.

To sum up, although this simple training schedule seemed to capture the decline in perfor-

mance on the indefinite article it did not result in the subsequent improvement in performance

associated with the U-shaped behavioural curve in this task. Mozer and Smolensky (1989b, p.

15) acknowledge that on some more complex tasks repeated skeletonisation may simply result

in monotonically decreasing performance and it may be that the restricted form of the playroom

experiment is an example of such a task.

7.4.4 Augmenting the basic skeletonisation scheme

In the light of the above results, the following studies were devoted to investigating whether aug-

menting the basic procedure with copying (as suggested by Clark and Karmiloff-Smith (1993))

and weight-freezing provided a better fit to the dynamics of the task.

There are clearly a variety of possible copying strategies. For instance, it would be possible to

use a vertical scheme in which extra layers were added after the original output layer or between

the original hidden and output layers. In the experiments which follow, the decision was made to

use a horizontal strategy in which the hidden layer was extended with extra units, with trainable

connection to and from the output and input layers respectively. This arrangement allowed the

network to select between forming a new task representation and making use of the previously

learned one, rather than, as in the purely vertical case, having older structure bias all subsequent

learning. The freezing procedure involved simply freezing the weights of a trained network.

Freezing is motivated both by the desire to avoid catastrophic in subsequent training and also by

the hypothesised conservatism of the redescriptive process.

Basic performance

After the initial training phase, a network initialised with six hidden units was subjected to an

augmentmented skeletonisation procedure. In this procedure, units were deleted according to

relevance at the end of each training phase as before. The remainder of the network’s trained

weight structure was then frozen and either one, two or three new trainable hidden units added.

The net was then retrained and the process repeated. For comparison, the process was repeated

the same number of times as in the previous experiments, i.e., one less than the number of (non-

bias) hidden units.

Figures 7.3(a), 7.3(b) and 7.3(c) show the misclassification rates by class for the three different

rates of re-resourcing tried.

It had been hoped that by providing the network with additional trainable structure after

deletion, that the drop in performance on the indefinite class could be reversed, giving a U-

shaped behavioural curve as the data requires. However, as the figures show, re-resourcing the

network did nothing to change the monotonic profile of the misclassification rates — as in the
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Figure 7.2: Proportions of misclassifications on each class of exemplar for networks initialised

with either (the minimum) 3 hidden units or 6 hidden units and deleting hidden units randomly.
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Figure 7.3: Effect on misclassification rates of repeatedly adding different amounts of new train-

able structure after network freezing
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(a) Weights from a successful network
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(b) Relevances from a successful network

Figure 7.4: Weight and relevance patterns for a backpropagation network trained successfully

on the playroom task without object recognition

basic skeletonisation scheme, networks still either correctly classified exemplars from all classes

throughout the training schedule, or else after deletion had given rise to misclassifications on

particular classes, performance on this classes decreased monotonically as before.

Further pilot studies investigated the possibility that deletion could capture some of the ef-

fects of redescription after behaviourial mastery, while re-resourcing without further deletion

might be better suited to promoting the subsequent improvement in performance at the tran-

sition to E2/3. However, no such schedule was found to exhibit patterns of performance other

than the ‘always-converge’ and ‘fail-after-initial-convergence’ patterns seen in the studies above.

Analysis of representations

For the sake of comparison with the work on cascade-correlation, Hinton diagrams were plotted

of the weights before and after deletion. Figures 7.4(a) and 7.4(b) show the patterns of weights

and relevances (associated with units) for a three-hidden-unit network after convergence on the

ten-pattern data-set, while figures 7.5(a) and 7.5(b) show the same network after hidden unit H3

has been deleted due to its having the lowest relevance.

These figures indicate that relevance-based deletion eliminates units responsible for correct

performance on smaller, or less typical classes of exemplars, such as the indefinite non-specific

ambiguous class.
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H1

H2

O1

B 0 1 M 0 1 M A ns def sp

(a) Weights after unit-deletion and re-training

I

0 1 M 0 1 M A ns def sp

(b) Relevances after unit-deletion and re-training

Figure 7.5: Weight and relevance patterns for a network which had started to misclassify indef-

inite non-specific exemplars after retraining following the deletion of the hidden unit with the

lowest relevance value
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7.5 Statistical analysis

Unlike cascade-correlation, since skeletonisation is performed on backpropagation networks

which have a ‘flat’ hidden layer structure, it is possible to use statistical techniques such as prin-

cipal components analysis (PCA) and hierarchical cluster analysis (see Everitt and Dunn (1991)

for instance) to examine the internal representations formed.

7.5.1 Cluster analysis

Figures 7.6 and 7.7 show the results of applying cluster analysis to the values of the hidden units

after the network had converged on the ten-pattern data-set and after deletion of the unit with

the lowest relevance.

The groupings in figure 7.6 strongly suggest that (for eight of the ten examples) the task rep-

resentation formed in the network does not correspond to the conception of the task as being

classified primarily according to article and secondarily according to function. Rather there is a

basic division between exemplars with ambiguous and unambiguous arrays (i.e., cases in which

there is at least one object of a particular type in each playroom versus cases in which an object

of that type appears only in one playroom respectively), although even this is violated by the two
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indefinite unambiguous specific exemplars. It seems that the groupings formed in the network’s

representation depend primarily on the quantity of an object and which playroom it appears

in. It is interesting that the two indefinite non-specific ambiguous cases which necessitated the

extended incremental training schedule constitute an exception to this pattern in that they ap-

pear close together in the diagram. The structure of figure 7.7 provides further evidence that the

solutions found by error-driven learning centre around cues from the perceptual structure. This

analysis shows that after the deletion of the unit supporting correct performance on the excep-

tional cases, the structure of the task representation is simplified and now depends in a simple

manner on perceptual similarities.

7.6 Comparison with cascade-correlation

The difficulties encountered with training a backpropagation network to perform the playroom

task without object recognition prompted a re-evaluation of the solution formed by cascade-

correlation (see figure 5.11).

Examination of the pattern of weights formed by cascade-correlation suggested that per-

formance on the first phase, in which all but the problematic indefinite non-specific ambiguous

cases were correctly classified, was in fact underlain by a simple rule based on the pattern in

the array alone (the weights from the article and function inputs were comparatively low). The

role of the hidden unit was then to deal with the problematic cases, which constitute execep-

tions to the rule and for which article and function information must be attended to. Similar

patterns of weights were to be observed in figure 7.4(a) suggesting that the backpropagation /

skeletonisation scheme had developed a similar representation.

The pattern of repeated convergence followed by repeated failure without subsequent re-

covery over the course of skeletonisation is consistent with the effect of skeletonisation on the

‘rule-plus-exception’ example presented in Mozer and Smolensky (1989b, pp. 9–10). In this ex-

ample a network with two hidden units is trained on 15 patterns which conform to a rule and

a single exception. According to Mozer and Smolensky, the ‘logical first candidate’ for dele-

tion is the hidden unit which has learned to treat the exceptional case. Although this behaviour

is in keeping with the RRH in that it leads to greater generalisation with a possible loss in

performance, and supports Mozer and Smolensky’s claim that skeletonisation facilitates (exper-

imenter) interpretation of network representations in terms of rules, it seems that the relevance

measure here gives emphasis to essentially the same features as the statistical mechanisms of the

underlying error-driven learning. Thus, in this case at least, the claims for relevance as a means

of identifying non-statistical features of task structure seem somewhat weak.

7.7 Summary

This chapter has presented a small comparative study which examines the skeletonisation pro-

cedure applied to backpropagation networks as the basis for a model of representational re-

description. Due to the comparative power of backpropagation and cascade-correlation and the

lack of a version of skeletonisation adapted for recurrent networks the experiments focused on

the form of the playroom experiment (chapter 5) omitting the object-recognition component.

Two main incremental training schedules were investigated. The first was simply to use the

train–prune–re-train cycles used by Mozer and Smolensky (1989b). This was found to result in

one of two behavioural profiles — networks either reconverged after every deletion without ever

exhibiting a drop in performance, or else failed to converge after an initial run of successes and

continued to fail thereafter.

For the second set of experiments, the basic skeletonisation scheme was augmented with

two additional resource-phasing mechanisms — freezing of previously trained weight structure

and addition of new trainable hidden units. The results of this second set of experiments were

disappointing in that the addition of new structure did not facilitate a recovery in performance.
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In conclusion, these studies suggest that unit deletion alone does not provide as good a

fit to the experimental data as cascade-correlation, since although deletion was successful in

causing the drop in performance on some indefinite-article exemplars, the network was never

able to recover its performance on the exceptional indefinite non-specific ambiguous cases. Thus

deletion alone seems unable to capture the redescriptive process at every phase of the RR model.

As we saw above, the relevance measure may also not be as independent of statistical profiles as

a model of the RRH would require in cases where the frequencies of significant exceptions are

low.



Chapter 8

Discussion

This chapter summarises the experimental work presented in this thesis, discussing it in the

context of the claims about connectionism which motivated it, as well as comparing it with

related work. Possible directions for further work are than discussed as well as the general

prospects for a connectionist model of representational redescription. Finally, conclusions are

drawn from this project and its contribution summarised.

8.1 Summary of experimental work

8.1.1 Modelling plurifunctionality using cascade-correlation

The experiments presented in chapter 5 were designed to investigate whether cascade-correlation

could be used to model the progression from individual procedural representations of the func-

tions of the French article system to a systematic representation in which articles were repre-

sented plurifunctionally. The progression from unifunctional to plurifunctional representation

is hypothesised to involve redescription of the representations of the article forms initially im-

plicit in the separate unifunctional representations.

Karmiloff-Smith (1979a) tested children’s comprehension of article-function using a setup

in which, given a question, they had to use the article to determine to which of two dolls it

was addressed when each doll was associated with a different configuration of objects. The

simulation used a single (non-recurrent) cascade-correlation network, trained, as in the original

experimental setup, to classify the utterances represented at the input layer according to which

of the two dolls they would normally be addressed. In the test phase novel exemplars within the

same setup were presented.

Network performance was measured using training-set error and generalisation using test-

set error, both categorised according to the number of misclassifications on the particular com-

bination of article, function and situation.

Results showed that although the network could learn the task, learning the association

between the banks of input representations conveying object-types in the array and the object-

information in the question had a significant effect on learning (although without this compo-

nent the network converged after only one phase of input-side learning).

The aim that the network capture the overall behavioural profile (in particular the U-shaped

curve on misclassifications of the indefinite article with the default non-specific function) was

achieved, with an initial drop in errors across all categories on both training and test sets as

the networks concentrated on learning the object-type mapping mentioned above, followed by

some fluctuations in the proportion of misclassifications on different categories. This latter ef-

fect corresponded to the recruitment of individual (or small groups of) hidden units focused

on correcting errors in each of the different categories. A simplified version of the experiment,
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which omitted the object-recognition subtask, showed that the increase in representational ca-

pacity obtained through unit-recruitment was essential for correct performance on the indefinite

article case.

Variation of internal parameters controlling the size of the search space (candidate pool size)

and the duration of training in each phase (patience) was also investigated. It was found that

training runs in which a large initial patience value was reduced according to the profile in fig-

ure 5.10(a) were most likely to exhibit an error profile resembling that of the original experiment,

i.e., misclassification error on definite-article cases was consistently lower than that on indefinite

cases, and the latter exhibited relatively large fluctuations in error (albeit never as great as those

observed in children).

8.1.2 Modelling sequence learning using recurrent cascade-correlation

In this set of experiments, recurrent cascade-correlation was used to model redescriptive effects

in sequence-learning domains. The RRH predicts several effects which apply across a range of

such domains. In particular, redescription acts to individuate the components of sequences, and

this effect begins with the ends of the sequence, progressing inwards as redescription takes place.

The experiments focused on a series of simple temporal counting tasks: counting with ex-

plicit markers, counting without explicit markers, which involved giving only the cardinality of

the sequence as output, and a‘comparative counting’, task which required the network to count

two successive sequences and then respond with ‘true’ if the first was longer than the second and

vice-versa.

This set of tasks was used to investigate both the suitability of cascade-correlation for mod-

elling redescription as well as the relationship between incremental learning and transferability

of learning.

Although recurrent cascade-correlation networks were able to learn all three tasks, it was

found that the extent to which sequence-boundaries were marked, and the timing of the required

response, affected learning. The simulations captured several aspects of the RRH account of

sequence-learning domains, in particular the fact that redescription proceeds from the ends of

the sequence inwards and that the representations formed are initially sequential and become

progressively less so. These progressions are seen both in the learning of a single network as

well as over the course of training and transfer between series of tasks which require attention

to increasingly non-sequential features.

Although transfer between the counting task and both the cardinal and comparative tasks

was found to be positive, contrary to the predictions of the RRH, transfer from cardinality to

the comparison task was negative.

As a complementary study to the counting experiments above, transfer between recurrent

cascade-correlation networks was also investigated in the context of artificial grammar learning.

Networks were trained to induce a finite-state machine and then required to transfer to another

machine with identical structure. The aim of these experiments was to assess the extent to

which cascade-correlation was bound by the perceptual structure of its input. Two transfer

conditions were tried, corresponding to a relabelling of states and a relabelling of transitions. It

was found that although transfer in the first condition did not require any new structure, in the

second, transfer was uniformly negative, implying that the transfer task could make no use of

the representations of the transitions embedded in the source.

8.1.3 Skeletonisation of backpropagation networks on article-function tasks

This complementary study investigated whether a selectionist resource-phasing scheme, such

as the unit-pruning skeletonisation procedure could capture redescriptive effects. Two main

incremental training schedules were tried, applied to the restricted form of the article-function

task. The first was simply to use the train–prune–re-train cycles used by Mozer and Smolensky
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(1989b), while the second augmented this with weight-freezing and the addition of new trainable

hidden-unit structure.

The results of these experiments were particularly disappointing. Although the relevance

measure was found to act selectively to preserve performance on the definite article cases, while

producing a drop in performance on the indefinite article, it was found that, even using the

augmented scheme, the network was not able to capture the subsequent increase in performance

characterising the later part of the U-shaped behavioural curve in this micro-domain.

8.2 Cascade-correlation as a model of representational redescription

8.2.1 Cascade-correlation and the RR model

This section surveys the correspondence between cascade-correlation and the formats and phases

of the RR model (as presented in section 2.2).

Innate constraints

Domain-general constraints As Karmiloff-Smith (1992a) argues, choice of connectionist archi-

tecture alone constitutes a basic kind of domain-general constraint. Thus the cascade architec-

ture, and in particular its initial limitedness, are considered to act as domain-general constraints,

as is the recurrent mechanism in the case of RCC.

Domain-specific constraints In the counting domain, the use of a discrete recurrent network

was taken to be equivalent to the constraints of one-to-one correspondence, and item- and order-

irrelevance. Parameter variation in the article-function experiments was also used to try to sim-

ulate the effects of early one-form–one-function constraints by controlling overfitting, with a

degree of success. However in designing the input data format for the playroom experiment, a

deliberate attempt was made not to bias the network towards forming a systematic representa-

tion of the articles and their functions.

The implicit level

As discussed in chapter 3, there is relative consensus among most commentators on the RRH

that the implicit level of the RR model at least is relatively well captured by connectionist net-

works1. In forming distributed internal representations, cascade-correlation clearly exhibits the

semantic opacity typical of connectionist models. However other aspects of level-I representa-

tions are not necessarily so naturally captured by cascade-correlation (or networks in general).

For instance, one of the characteristics of level-I representations identified by Karmiloff-Smith

is that at this level representations are added to the domain individually and without their com-

monalities being marked. Even though, as Plunkett and Marchman (1993) note, associative

learning in conjunction with limited representational resources can lead to the rote-learning of a

small number of representations, as the differences in misclassification by category in chapter 5

show. However the results of the parameter-variation studies suggest that it is difficult to enforce

or control this kind of one-form–one-function constraint, as the experimental manipulations in

the plurifunctionality study showed (chapter 5).

Counting tasks The initial phase of training in the counting domain resulted in a representa-

tion of number which was sequential and could not be interrupted, in that there was no way

for a count to be started at any point but the beginning. This is consistent with the account of

implicit-level representations of sequence-learning tasks.

Article-function task In the article-function task the implicit level was characterised by lack of

systematicity (specifically ‘unifunctionality’). Analysis of misclassifications provided evidence

of such qualitative differences in the representation of items from different categories.

1Again, apart from the caveats made by Karmiloff-Smith (1992c, 1992a) regarding the tendency of connectionist

models to ignore the innate constraints on the acquisition of such knowledge.
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The E1 level

Article-function task Here level E1 was marked externally by a rise in misclassifications on the

indefinite article. This effect was not reliably observed in the majority of the networks used,

regardless of the proportions of definite and indefinite exemplars used. However, manipulation

of candidate-pool size was found to produce such a profile with greater regularity.

Counting tasks Although, as noted in chapter 6, the counting tasks are not presented in terms

of the three-phase RR model, the accessibility of representations formed during the counting

with explicit markers task to the cardinality task would suggest that these representations are at

level E1, since transfer is between tasks belonging to the same domain. Transfer between count-

ing and cardinality was found to be positive in both time (number of epochs) and structure (num-

ber of hidden units). However the results on the complementary structured sequence-learning

task suggested that this positive result relied upon the perceptual similarity of the tasks.

The E2/3 level

Many of the aspects of this level were not addressed by the simulations. In particular, the acces-

sibility of representations to tasks in other domains was not investigated, and verbalisability was

also considered to be outside the scope of this modelling effort. However, in the article-function

tasks the E3 level is also characterised by a reconciliation of the conflicting article–function

mappings which caused the rise in misclassification errors at level E1. At this general level, some

cascade-correlation networks both reconciled the mappings (which was necessary for conver-

gence) and captured the overall U-shaped behavioural profile.

Phase 1 (I–E1 transition)

One of the characteristics of this transition is a shift in the focus of attention from external

inputs to internal representations. In the article-function experiments such a shift was to be

observed in the relative strengths of weights from inputs to hidden units; initially the hidden

units attended more strongly to the inputs, while subsequently recruited units attended more

strongly to previously recruited hidden units. The drop in classification performance on the

indefinite article tended to correspond to large shifts in the attention paid to different sources of

information.

Phase 2 (E1–E2/3 transition)

On the article-function task the transition from level E1 to E3 is characterised behaviourally by

a recovery in performance on the indefinite article. Corresponding to the shift in attention from

input to internal representations, this transition is considered to involve renewed attention to

external information in an attempt to reconcile this with the results of redescription during the

previous phase. In the article-function experiments, although U-shaped curves are observed in

some cases, no corresponding shift in attention is evident in the strengths of the weights into

hidden units.

Although output-side training is designed to reconcile the structure newly added through

input-side training, the results of the present studies did not seem to confirm the claims of

Shultz (1994) regarding the correspondence between cascade-correlation and the RR model.

The essence of his claim is that the initial error-driven learning phase corresponds to the initial

learning to behavioural mastery in the RR model, the subsequent phase of correlation-driven

learning to the shift in attention to internal information, and the eventual error-driven phase

to the reconciliation of external and internal mappings in RR. Although aspects of this corre-

spondence are borne out by some of the studies here, it is debatable whether in general single

recruitment phases can be said to correspond to the RR model in this way. In almost all the

cases considered here, several hidden units were recruited during each period which could be

marked out as a qualitatively distinct behavioural phase. This finding is in keeping with those of

Mareschal and Shultz (1993) who note that, in their cascade-correlation simulation of the bal-

ance scale, many of the unit-recruitments did not map directly onto more macroscopic strategy

changes in network behaviour.
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8.2.2 Roles of elements of cascade-correlation in modelling redescription

As we saw in chapter 4, there are general structural, procedural and behavioural similarities be-

tween cascade-correlation and both the RR process and model. The algorithm’s hierarchical and

conservative structure and its alternation of learning methods were the features given particular

emphasis. This section surveys which of the features of cascade-correlation contribute most to

its success at capturing RR. In the light of the experiments presented in chapters 5 and 6, the fol-

lowing conclusions can be drawn about the contribution of these aspects to cascade-correlation

as a model of redescription, as well as other factors such as parameter manipulation.

Hierarchical structure

As expected, the hierarchical structure of the network architecture was found to give rise to

effects on sequences similar to those required by the RRH (chapter 6). In particular, examination

of weight-patterns showed that the features attended to by hidden units were initially sequential

and became progressively less so, as more recently recruited hidden units attended to the lower-

order results of previous learning. The ability to reuse the older feature-detectors upstream also

manifested itself in the fact that an initial focus on the ends of sequences gave way to attention

to groupings of interior elements.

Conservation of representations through weight-freezing

Clearly the preservation of previous learning through the freezing of input-side (input–hidden)

weights also plays a role in producing the above effects. However, in section 2.6.2 doubts were

raised concerning the domain-general status of such preservation of behaviours from previous

stages — in particular it did not seem clear that it would be possible to elicit earlier behaviour

in every domain associated with the RRH.

The freezing strategy of cascade-correlation also acted to give the fluctuations in misclassifi-

cation error associated with the article-function mapping task in chapter 5. But as the studies of

Squires and Shavlik (1991) and Mohraz and Protzel (1996) suggest, on some tasks freezing can

be detrimental to both learning and generalisation performance, and it seems likely that freezing

is partly responsible for the poor performance of the architecture on structural transfer tasks.

Learning mechanisms and granularity

Alternation of focus between error-driven and correlation-driven learning was found to act at

too low a level of granularity to correspond to the macroscopic phase-progressions of the RR

model. In all but the simplest cases (in particular the model of article–function mapping without

object-recognition of section 5.4) several unit recruitments tended to correspond to a focus on

a particular set of features or a trend in training or generalisation error. These findings run

counter to the suggestion of Shultz (1994) that a single round of cascade-correlation learning

(i.e., a phase of output-side learning, followed by a phase of correlation-driven learning and a

second phase of error-driven learning) might correspond to the progression from I to E1 to E2/3

in the RR model. Rather, it seems that individual unit recruitments correspond to the view of

the redescriptive process as something which acts recurrently at a microlevel.

Varying patience and candidate-pool size

The article–function mapping experiments of chapter 5 also investigated the effects of variations

in two of the internal parameters of cascade-correlation — patience and candidate-pool size. In

particular these parameters controlled the degree of overfitting of solutions and thus seemed to

be useful in capturing both early constraints on the system such as the bias towards one-form–

one-function mappings, as well as the tendency towards formation of separate and unsystematic

representations of individual mappings characteristic of level I representations.

Correlation-driven learning

Although the correlation-driven (input-side) learning phase of cascade-correlation is neither di-

rectly error-driven nor directly within the network’s input–output mapping, indirectly it is both
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of these since it is driven by a function of the error which in turn relates to the input–output

mapping being learned.

8.3 Exploring constraints on RR

8.3.1 Timing of redescription

Choosing to model redescription in the context of a supervised learning scheme, such as cascade-

correlation or backpropagation, immediately raises the issue of whether redescription can occur

before behavioural mastery, since in the terms of Clark and Karmiloff-Smith (1993) redescription

is something assumed to succeed the characteristic error-driven learning of standard (first-order)

networks.

Karmiloff-Smith (1994) is critical of what she sees as the assumption implicit in cascade-

correlation that mastery is sufficient for redescription, implying that mastery is necessary but

not sufficient. However, as we saw in Chapter 3, there is evidence that such reorganisations can

occur before mastery (Goldin-Meadow & Alibali, 1994). Gentner et al. (1995) also focus on

associative–relational change before mastery. Karmiloff-Smith (1992b) also sometimes talks of

partial mastery or mastery of part of a task or domain. The idea of representational adjunction

associated with level I makes it easier to imagine how parts of a particular task can be mastered

piecemeal, their representations contributing incrementally to the stock which is eventually re-

described and systematised.

To the extent that cascade-correlation can be considered to capture redescriptive effects, it

suggests a picture of recurrent micro-redescriptions which accumulate to give the larger quali-

tative shifts in representation and behaviour associated with phase boundaries. It also suggests

a redescriptive process which interpenetrates learning and is triggered by stability (success at

subproblems) rather than requiring behavioural mastery.

8.3.2 Causes of redescription

There is some debate (e.g., Scutt and O’Hara (1993)) concerning whether representations formed

in mastered tasks are spontaneously redescribed as Karmiloff-Smith claims or whether external

factors such as pressure to improve overall performance or pressure to improve performance

on new tasks are also involved. In cascade-correlation networks we know that any positive

transfer must occur primarily without the influence of subsequent learning. This is because the

input–hidden structure formed during the original training is frozen, and, as Pratt (1994) and

Sharkey and Sharkey (1993) observe, these weights are significantly more important in transfer

than the hidden–output weights, which are retrained with respect to the new mapping. (As

noted elsewhere this also explains why transfer is poor in cases such as the grammar-learning

experiments where the network cannot rely on changes in the hidden–output weights.)

8.3.3 Ordering of representational formats

The RR model proposes that knowledge passes through a series of representational formats in

order of increasing explicitness and accessibility. The experiments in the number domain (chap-

ter 6) investigated this ordering — transfer was carried out in both directions between tasks

hypothesised to require degrees of explicitness. The results of these experiments were in agree-

ment with the RRH that counting facilitated awareness of cardinality. However, transfer from

cardinality to (ordinal) relations was uniformly negative, suggesting that the relations task did

not rely on first forming an awareness of cardinality in this way, to the extent that it was unable

to use the transferred representations (although it is possible that the incremental mechanisms

in cascade-correlation give rise to a representation of cardinality which is then used in making

comparative judgements).
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8.4 Testing for RR

In general, it has been assumed here that what characterises redescribed knowledge is, at level E1,

greater systematicity within the (micro-)domain, and, at higher levels, accessibility to processes

associated with other domains. In practice the first of these was assessed via standard tests

for generalisation, in particular performance on novel exemplars. Categorical misclassifications

were also used as an index of systematicity in the article-function task. The assessment of the

wider accessibility of representations to other tasks was restricted in practice by the domain-

specific information available about transfer. Specifically, accessibility of knowledge of number

could be investigated via transferability on a structural basis (or adaptive generalisation (Sharkey

& Sharkey, 1993)) between the three tasks examined in chapter 6. However, for the article-

function experiment, no data was available concerning the re-use of knowledge in subsequent

learning on tasks even within the domain of language acquisition.

8.5 Cascade-correlation: conclusions

We are now in a position to assess how well cascade-correlation can be said to fulfill the specific

requirements for a model of RR put forward in section 3.7:

� the model should treat its own representations as objects of manipulation

� do so independently of prompting by continued training inputs

� retain copies of the original networks

� form new structured representations of its own knowledge which can be manipulated,

recombined and accessed by other computational processes.

As chapter 2 argues, the freezing strategy of cascade-correlation can be regarded as a way

of preserving original learning. The question of whether it treats its own representations as

objects of manipulation is more difficult to assess. Since connections are formed between each

hidden layer and every previous hidden layer, subsequent learning is heavily mediated by pre-

vious learning, and it seems that it should also be possible for the network to select which of

the frozen feature detectors to apply to the solution. However, as the results of the structured

sequence learning experiments show, this selection mechanism is not powerful enough to extract

structural information from a solution in such a way as to facilitate transfer to an isomorphic

task. Thus, although it makes use of the results of previous training, it does not do so in such as

way as to render them accessible and manipulable by other processes as the fourth requirement

states.

8.6 Comparison of different schemes

8.6.1 Cascade-correlation and backpropagation

Cascade-correlation resembles backpropagation in the context of this discussion in being a mul-

tilayer, supervised learning scheme. The main differences between the two schemes are that

backpropagation uses a single learning algorithm, is neither constructive nor preserves the re-

sults of previous training, and has both multi-unit hidden layer(s) and no cross connections.

The mechanisms giving rise to qualitative change in the two schemes are similar in being

sensitive to training-set bias as Shultz et al. (1995) point out. Cascade-correlation’s two-mode

learning and constructive architecture does result directly in small qualitative changes, with er-

ror rising slightly after each unit recruitment as the error-driven output-side of the network

accommodates to the new structure.

In the sequence-learning experiments the phasing of network resources led directly to the

perceptual effects relating to sequence ends. In the plurifunctionality experiments the initial
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limitedness of the network meant that performance again improved fastest on the most salient

feature.

8.6.2 Cascade-correlation and skeletonisation

Although cascade-correlation is a constructive and skeletonisation a selectionist scheme, they

cannot be regarded as directly complementary to each other. The main reasons for this relate

to the differences discussed above between the cascade-correlation architecture and backpropa-

gation. Other differences include the kind of off-line processing involved in each model. While

cascade-correlation involves correlation-driven learning mediated by previous structure, skele-

tonisation works directly on the trained weights. In the terms of the discussion in Clark and

Karmiloff-Smith (1993) and Bechtel (1993), cascade-correlation redescribes representations at

the units, while skeletonisation acts on the procedure itself embodied by the weights, although

there is some overlap in these procedures since skeletonisation deletes units rather than connec-

tions, and the new unit structure recruited by cascade-correlation is affected by the previously

trained weights. Quartz and Sejnowski (forthcoming) also present recent evidence for the ar-

gument in favour of neural constructivism over selectionism as the predominant mechanism

underlying representational change during cortical maturation.

8.6.3 Comparison with other work on explicitation

Greco and Cangelosi’s redescription model

Although their model (see section 3.9.1) appears to capture the idea of a redescription process

which acts entirely off-line to the usual error-driven input–output mapping, there are several

aspects of the RR model omitted by Greco and Cangelosi (1996b) and which the present study

addresses. Firstly, they assume that the explicitness of representations can be assessed through

inspection of the results of unsupervised learning of categories from the hidden-layer represen-

tation of a backpropagation network. Accessibility of the resulting representations to other

processes is not addressed in practice. Their work does not attempt to model tasks cited by

Karmiloff-Smith, unlike the present study, and nor does it investigate the dynamics of change

over a number of phases as this study does.

Similarities between this model and the cascade-correlation models include the freezing of

the network structure embodying knowledge of the original task and the error-driven method

used in the initial learning phase.

Thornton’s explicitation model

Like the above model, this model incorporates non-error-driven learning, but, in its use of scaf-

folding through training-set change, inherently addresses knowledge reuse. The explicitation

model differs from those presented here in that it is intended to investigate how incremental

learning (as well as methods for detecting signs that a relational solution might be required)

might be used to bring so-called ‘hard problems’ within the reach of statistical learners such

as conventional neural networks. The present study is focused instead on investigating the

use of incremental learning to capture redescriptive effects and overall dynamics in specific mi-

crodomains, rather than attempting to address whether or not these tasks could be learnt using

a non-incremental scheme such as backpropagation.

8.7 Directions for further work

Although there are a number of specific extensions which could be made to each of the play-

room and counting models, the suggestions below apply more generally to the modelling of the

RRH using the incremental schemes covered here. The key motivations behind these suggestions

continue to be improving the correspondence between the timing and granularity of qualitative

change in the RRH and the network schemes, and the use of these schemes to explore possible
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formal constraints on the RR process such as initial configurations and the relative influence of

external and internal factors in causing change.

8.7.1 Variants on the cascade-correlation architecture

Extending the study of variation of internal parameters

Chapter 5 presented the results of an investigation into controlling qualitative behavioural and

representational change through variation of the internal parameters of cascade-correlation,

specifically patience and candidate-pool size, which affect the onset of changes between phases

of differently directed kinds of learning and the extent to which representations are generalised

respectively. The study of these parameters could be extended to consider their interaction, their

effect in the context of other tasks and the effect they have on the transferability of representa-

tions.

It would also be possible to apply parameter-variation techniques to skeletonisation. For

instance, in the skeletonisation scheme presented in chapter 7 the number of hidden units pro-

vided at each phase can be thought of as corresponding to the size of the candidate pool in

cascade-correlation and could be manipulated in a similar way.

Using a more flexible unit-recruitment scheme

As we saw in chapters 5 and 6, qualitative shifts in behaviour often took place over the course

of several unit-recruitments (see figure 5.6(b) for instance). It is possible that using a more flex-

ible version of cascade-correlation such as Mohraz and Protzel (1996)’s FlexNet architecture,

in which multiple recruitments may be made simultaneously into a single layer or into several

new or existing layers, correlation-driven phases could be made to correspond more naturally to

qualitative changes in the task to be modelled.

Combining aspects of cascade-correlation and skeletonisation

Although in the results presented in chapter 7 skeletonisation and copying of backpropagation

networks appeared to be less powerful in general, there are aspects of that scheme which can be

seen as closer to the spirit of the RRH than is cascade-correlation. For instance the skeletonisa-

tion scheme requires the network to reach behavioural mastery, and once this point is reached,

acts off-line and using a method unrelated to the reduction of error. The pruned networks re-

sulting from skeletonisation also capture the idea of reduced representations in a way in which

cascade-correlation does not, except perhaps in the fact that the hidden–output mapping formed

at earlier stages, and which adjusts performance to minor details, is subsequently lost.

It would be possible to incorporate certain aspects of the skeletonisation procedure in a

model built in the cascade-correlation framework. In particular, pruning at each recruitment

stage could be used to capture the idea of reduced representations. Skeletonisation itself does

not seem to be directly applicable to the hidden-unit structure formed in cascade-correlation

networks, since it involves deleting units, and cascade-correlation is already restricted to adding

single-unit layers. However it would be possible to apply a pruning scheme to the layers of input–

hidden connections after each round of input-side training. Wehrfritz (1994) presents a scheme

based on cascade-correlation in which layers of input–hidden connections are pruned and which

could form the basis of such a model.

Improving adaptive generalisation

It is clear from the grammar-learning experiments presented in chapter 6 that cascade-correlation

performs poorly on transfer tasks when the perceptual aspects of the task are changed. In this

specific case it would clearly be possible to address this by extending the network with an extra

initial layer as in Dienes et al. (submitted). It is not clear that this approach would address the

problems of adaptive generalisation in the general case.

An important extension to the current work would be the use of transfer to investigate ac-

cessibility of representations outside the original domain, i.e., in the terms of the RRH, level

E2/3 representations.
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The work of French (1995) and O’Reilly and McClelland (1994) has explored the use of twin-

network schemes inspired by the hippocampus and neocortex to avoid catastrophic interference

between sequentially learned concepts. It is possible that some of the techniques from these mod-

els could be incorporated in an improved model of transfer. However any further investigation

of RR and transfer would also need to address the issue of whether transferable representations

can be formed in a network trained on one domain and transferred to another domain without

information from the second domain being used in any way to inform the design or training of

the first network.

Extending the comparative study of error-driven models

Comparison with backpropagation It would be interesting to compare the performance of

standard backpropagation with cascade-correlation on the training- and test-sets used here.

This would substantiate the conjectures made above that the two algorithms capture similar

qualitative-change phenomena via different means, i.e., via herding in backpropagation and

freezing in cascade-correlation.

8.8 Contributions of this thesis

This thesis presents the first study dedicated to investigating the claims that connectionist archi-

tectures can provide models for the RRH in the context of particular domains discussed as ev-

idence for RR effects by Karmiloff-Smith, specifically sequence-learning (exemplified by count-

ing) and language acquisition. In particular it investigates whether a class of such architectures

— those which are both incremental and error-driven — are particularly suited to this modelling

effort. It is also the first practical investigation of network transfer as the operationalisation of

the progressive accessibility characteristics of the RRH.

The playroom experiment extends the range of incremental learning techniques which have

been used in developmental models based on cascade-correlation. Specifically, the patience and

candidate pool-size parameters were varied over the course of training in an attempt to con-

trol the timing and nature of qualitative representational and behavioural change as well as to

capture the early one-form–one-function constraint.

The study of counting, cardinality and comparisons was the first use of recurrent cascade-

correlation in constructing a developmental model of temporal behaviour. The application of

cascade-correlation to structural transfer between isomorphic but re-labelled finite-state ma-

chines was also novel.

The short study using skeletonisation was the first application of this technique in an at-

tempt to model the RRH. The augmentation of the technique with weight freezing and network

copying was a novel extension to skeletonisation.

8.9 Conclusions

There are several important reasons for concluding that cascade-correlation architecture as it

stands does not constitute a model of representational redescription. In particular, experiments

with task transfer have shown that although the networks are able to generalise adaptively to re-

lated tasks, the generalisations they develop cannot be considered to be structure transforming

generalisations as Clark (1993a) requires. The algorithm’s capability to model external indi-

cators of redescription such as U-shaped behavioural curves was found to be similar to that

of wholly error-driven methods such as backpropagation, despite being underlain by different

mechanisms such as weight-freezing. The studies also confirm some of the doubts about primar-

ily error-driven methods, even in conjunction with indirectly-driven methods such as maximising

correlations.

Despite these negative general results, the modelling effort has also confirmed that the in-

cremental scheme itself, as well as the variation of the patience and pool-size parameters, was

useful in capturing domain-specific effects in the counting and article-function mapping tasks.
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The results of the sequence-learning experiment also suggested that cascade-correlation was

better placed to capture a more gradualistic RR model in which unit-recruitments correspond to

micro-redescriptions and learning and redescription interpenetrate each other.
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