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Summary

It is well known that the task of automatic face recognition in dynamic environments is very hard.

The key problem is that everyday influences, such as lighting, head pose and expression, can lead

to greater variation between images of the same person than between images of different people.

However, there must be some essential invariant set of features that allow us to recognise familiar

faces. Automated face recognition systems must be robust with respect to everyday variability and

capture essential similarities to identify individuals.

This thesis investigates the task of real-time face recognition within a small known group of

people, using an example-based probabilistic learning scheme to learn and recognise individuals.

The artificial neural network model used, the radial basis function (RBF) network, is an excep-

tionally fast classifier, both in training and subsequent classification phases. In addition, it provides

a level of confidence in its output which allows ambiguous data to be discarded. Comparisons with

other techniques using a standard database indicate the suitability of our approach.

Methods for view-based face representation are discussed and analysed, with emphasis on nor-

malisation and preprocessing techniques. We then investigate how variations, such as pose and

resolution, in face images affect recognition performance with RBF networks and explore the gen-

eralisation properties of the RBF network, looking specifically at pose, scale and shift invariance.

We present experimental work using a novel variant of the RBF network, the ‘Face Unit’

network, which learns to identify one particular individual. We then apply the RBF network to

image sequences taken from a less ‘constrained’ environment to assess the suitability of the proposed

approach for real-life applications. Finally, we look at the temporal learning abilities of a Time-

Delay variant of the RBF network, focusing on simple behaviours based on head rotation,
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Chapter 1

Introduction

This thesis investigates the task of automatic recognition of human faces in dynamic environments.

By concentrating on face recognition, our work will cover only one of a larger set of techniques

connected with the identification of people. The term ‘biometrics’ has come to be used for the

study of automated methods for the identification or authorization of individuals using physiological

or behavioral characteristics. Techniques such as speech recognition, iris scanning, hand geometry,

fingerprint scanning and signature verification, as well as face recognition, can be combined to

produce useful applications. In comparison to the other techniques, however, face recognition has

the major advantage of being non-intrusive and requiring very little cooperation or modification of

normal behaviour on the part of the subjects in order to collect useful data.

The real-life problems to be tackled here concern identifying individuals and their intentions in

everyday settings, such as offices or living-rooms. The dynamic, noisy data involved in this type of

task is very different to that used in typical computer vision research, where specific constraints are

used to limit variation. Historically, such limitations have been essential in order to limit the com-

putational resources required to process, store and reason about the visual data. However, enormous

improvements in computers in terms of speed of processing and size of storage media, accompanied

by progress in statistical techniques and neurobiology, now allow more efficient handling of such

data.

The development of intelligent environments has been highlighted recently by the ‘Smart

Rooms’ projects (Pentland, 1996) at the MIT Media Lab, which enable novel forms of interac-

tive control for computer systems. Our particular focus within such an area is the role of adaptive

learning techniques in recognising the individuals and simple movement-based gestures like head

rotation. Unfortunately, the relatively unconstrained appearance of faces of individuals in video

scenes makes this a particularly difficult problem.

There is great commercial interest in logging and interpretation of activity within domestic

or commercial environments. Applications include access control and personalisation of domestic

appliances such as computers, telephones and televisions. Burglar alarms could be improved so that

they not only identify when unidentified people are in the house, but also record their activities for

evidence. In addition, the logging of shoppers’ interest and behaviour patterns in shops would be

of interest to marketing and consumer research groups. Although this latter task does not require

explicit identification of individuals, short-term memory of what individuals in a room look like

could be used to connect what a particular person does for the time they remain there.

This chapter introduces the general concepts concerning our face recognition task. We first

outline relevant computational approaches, then go on to discuss the particular process of recognis-

ing faces. The final section describes the specific structure of the thesis, with details of each chapter

and appendix.
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1.1 Computational Approaches

Many vision researchers, following Marr (1982), believed that the ultimate product of any visual

system was some type of three-dimensional reconstruction of its environment. Although the lower

levels of Marr’s visual ‘pipeline’ scheme were clearly defined, the specific detail for higher-level

processes, such as visual recognition of 3-D objects, were quite vague. This was mainly due to lack

of evidence, as the computational effort required to implement full object recognition schemes was

not available at that time. Once such systems using full 3-D models of objects were used to carry out

useful recognition tasks, it became clear that representations simpler than full 3-D reconstruction

may be more appropriate and make the task more computationally tractable.

The common tool of computer vision research is the video camera, which will only ever give

a two-dimensional view of the world. As the input data is already 2-D, a direct technique for object

recognition that takes advantage of this is to take a view-based approach, allowing the system to learn

the task through experience. This type of recognition of 3-D objects is still difficult, as their

appearance, when seen as 2-D views, will vary greatly when seen from different angles, especially

when self-occlusion obscures characteristic features, or in different lighting conditions. However,

it has been established that the combination of a low number of such views can be sufficient for

3-D object recognition (Ullman & Basri, 1991). Occlusion from other objects in the field of view

can also add to the potential range of variation. Such view-based recognition schemes are at odds

with traditional computer vision, which strive for the most accurate general techniques. We take

the view that both representation and reasoning need to be tailored to the needs of a real-life task

to obtain a flexibility and robustness that allow it to work in chaotic and unpredictable situations.

The view-based approach represents all potential variations in object appearance in example

views within a view-sphere (see next chapter) sufficiently that test views are able to be matched to

example views of the same object. If we combine view-based representations with connectionist

approaches to learning, the example views can be used to train a neural network. If treated as

preclassified, the training examples allow a classification to be learnt directly by the system. This

type of supervised, adaptive learning can be characterised as function approximation. The trained

neural network can then generalise to previously unseen test data to classify these examples too.

1.2 Recognising Faces

Recognising people in day-to-day life is generally effortless and unconscious. The ease with which

humans manipulate such visual data makes it easy to underestimate the difficulty and complexity

of such processing. The problem of automatic face recognition has stimulated lively debate and

research in computer vision for many years, but it is only recently that techniques have become

sufficiently robust to allow useful application systems to be developed. This is because, in reality,

recognising a face poses several severe tests for any visual system, such as the high degree of similarity

between different faces, the great extent to which lighting conditions and expressions can alter the

face, and the large number of different views from which a face can be seen. Indeed, variations

in facial appearance due to lighting, pose and expression can be greater than those due to identity

(Moses et al., 1994).

As we discussed in the last section, a major distinction in object recognition is between 3-D

and 2-D representations. The former, being object-centred, try to represent the object structure from

all views, whilst the latter (which encompass the view-based representations and photometric ap-

proaches), being viewer-centred, try to establish characteristic or canonical views. Two-dimensional

representations have been particularly popular for face representation, as faces can be treated as being

approximately flat, although this severely restricts the usable pose range. It might seem more natural

to form 3-D, rather than 2-D, object representations based on our apparent ability to mentally

visualise 3-D manipulations of objects, but this may be a confusion of cognitive levels. Psychophys-

ical experiments (Bülthoff & Edelman, 1992; Bülthoff et al., 1995) suggest that generalisation in

recognition of unfamiliar views relies on interpolation between stored views. Although we may be
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capable of some high-level mental manipulation and visualisation, it may well be that our everyday

visual processing of objects is done using simpler representations and reasoning.

The issue of invariance has to be considered carefully for any task, though this rarely needs to

be an absolute invariance. However closely in time two images of the same person are taken, there

will always be some differences between them. The goal of any face recognition system, natural or

artificial, is to associate some previously learnt identity with a previously encountered appearance of

that same identity. The representation and similarity metric chosen, therefore, must be sufficiently

invariant to changes between two images of the same person that they look more ‘similar’ to each

other than to one of another individual. Prior knowledge about image variations likely to be

useful for a task allows these variations to be explicitly highlighted within the representation during

preprocessing and those that are not useful to be suppressed. Specific examples of this are shown in

the requirements for our task in the next chapter.

Dynamic information is very important for biological vision, but is lost when single face images

are used, although the consensus is that static images alone are sufficient for face recognition. The

use of image sequences allows movement information to be extracted for gesture recognition. In

addition, the use of image sequences as a data source permits a low false-positive/high discard

strategy, where a large proportion of classifications are discarded to leave only those in which the

system has a high level of confidence. This could be extremely helpful in chaotic or unpredictable

environments, where there are likely to be ambiguous test images. For instance, in normal activity,

a person may move to a variety of positions and poses, not all of which will be facing the camera.

It has to be accepted that there will be instances where useful information about an individual’s

identity simply will not be available, and that it has to be assumed that, as a tracked body moves

from an identifiable pose to an unidentifiable one, identity will maintain a coherence as long as the

physical body does. In other words, that a person will not transform identity as they turn away from

the camera.

Most research in automatic face recognition has been concerned with comparisons of single

‘snap-shot’ images. Although we are capable of recognising people in photographs, it is obvious

that everyday human recognition is not carried out in this way, as it often takes a few seconds

for someone coming into a room to be recognised. For applications monitoring an environment,

techniques which take advantage of the abundance of information contained in sequences of images

could be used to enhance face recognition performance.

An important influence in human face recognition is context (Young et al., 1985). Cues such

as ‘Who do I expect to see in the office at this time of day?’ will limit the range of people we

expect to recognise and their voice, posture, height, gait and how they are dressed will also greatly

affect our judgement. For instance, we may not recognise someone we see every day at work if we

encounter them in an unfamiliar situation, even though their facial appearance is exactly as it always

is. Humans do not constantly monitor other people to assess their identity – spatial constraints in our

‘world knowledge’ will prevent us expecting people to swap identities. An automatic system which

monitored and tracked individuals could use such prior knowledge to minimise the complexity of

a recognition task and allow recognition over the whole time they are present.

1.3 Outline of the Thesis

In this thesis, the practicalities of computer-based human face recognition in domestic environ-

ments are explored. Artificial neural networks are used to learn and recognise individuals using

an example-based learning scheme. Thus, wherever ‘neural networks’ are mentioned, it should be

assumed that this refers to artificial neural networks, not any type of natural or biological neural

network.

The thesis focuses on recognition techniques with segmented face images and image sequences,

but prior tracking and localisation is required to create suitable input data (Appendix A describes

how this has been done for the experimental data used here).
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Chapter 2 describes the task of face recognition in unconstrained environments in detail and

draws up specific requirements to fulfill it. Previous work on face recognition is then examined,

looking at computational models and psychological and psychophysical evidence about face recog-

nition in biological vision systems. This is followed with discussion on how task requirements affect

the suitability of techniques and a direct comparison of performance and generalisation in several

approaches using the same face database, using published research results and our own experimental

data.

Chapters 3 to 7 give details of the five main experimental areas of research. Chapter 3 introduces

our pose-varying Sussex database and discusses methods for face representation, normalisation and

preprocessing techniques. Variations in face images are also studied to analyse how they affect

recognition performance, with particular reference to the Euclidean distance measure for image

comparisons. The contribution of the radial basis function (RBF) network is also analysed and

compared with related classifiers.

Chapter 4 explores the generalisation properties of the RBF network, looking specifically at

pose, scale and shift invariance. This is important, as it determines the accuracy of face segmenta-

tions required for data to be learnt or recognised.

Chapter 5 presents experimental work using a novel variant of the RBF network, the ‘Face

Unit’ network, which learns to identify one particular individual only. This is useful for future

applications as it gives an alternative, parallel method of learning tasks which can then be used as

additional evidence for identity.

Chapter 6 explains how the RBF network can be applied to image sequences. The data used

here was much taken from a much less ‘constrained’ environment than the other face recognition

databases, so that the suitability of the proposed approach to real-life applications could be assessed.

Chapter 7 explores the temporal learning abilities of the RBF network. We focus on simple

behaviours, based on head rotation, using a Time-Delay variant of the network to give a fast and

effective classification over time within image sequences.

Chapter 8 concludes the thesis, summarising contributions to the field of automatic face recog-

nition, and discussing directions and issues for future work.

In addition, there are three appendices, giving technical details to support the experimental

work. Appendix A describes the face databases and image sequences used for the experimental

sections. In addition to data collected specifically to answer questions raised in our research, we

have also tested with standard data from other research groups for comparison of our approach to

other previously published techniques.

Appendix B describes the specific implementation of standard RBF network used for the ex-

periments. Details of the Face Unit and Time-Delay RBF models are included in Chapters 5 and

7 respectively.

Appendix C describes the specific implementation of the two preprocessing techniques used

for tests in the thesis: single-scale Difference of Gaussians and multi-scale and orientation Gabor

wavelet filtering.



Chapter 2

Background

This chapter first outlines our task requirements. We then go on to survey general theories of object

recognition, including a review of psychological evidence, and computational research within face

recognition from the perspective of acquisition, representation and reasoning. The final section

will apply our proposed face recognition scheme to a standard database, giving comparisons with

published results for other approaches.

The particular face recognition task considered here concerns a known group of people in an

indoor environment such as a domestic living-room. Within such a task, it cannot be assumed

that there will be clear frontal views of faces at all times. Therefore, it is important not to lose

such vital information, which may only be present for a split-second if the subject is moving fast.

To effectively tackle such a task requires the combination of three real-time processes: tracking of

individuals as they move around the room, detection and localisation of their faces, and recognition

of the final, segmented face information. Each of these three processes currently occupies a large

area of research within computer vision. It is very difficult to consider an overall solution, and this

thesis is mainly confined to the process of face recognition from video images, with the assumption

that other processes, eg. McKenna et al. (1996), Gong et al. (1996), McKenna and Gong (1996),

will provide suitable segmented face images and image sequences from our target environment.

In order for the system to be suitable for domestic environments, it needs to be as automatic

and robust as possible. It cannot rely on monitoring or tuning from technical staff, nor should

it constrain or require any particular actions from people in that environment. Any information

collected should be from normal everyday behaviour. This is in contrast to security access control

systems using face recognition, where the users are often required to stand in front of the system

for several seconds in controlled lighting and pose after giving an ID card for verification. The

uncontrollable nature of our potential subjects means that the system needs to be able to collect

and process data as quickly as possible (close to frame rate), and make reasonable ‘guesses’ where

information is confusing or missing.

Applications suitable for mass-market domestic use require economical solutions. Computa-

tional techniques have to be simple enough to be accomplished on standard serial processors (such

as used in PCs). Data collected with a simple, fixed camera system with low-cost frame grabber

must be sufficient for the recognition process. This data may need to be monochrome at present,

although colour could soon be cheap enough to be used instead.

In terms of how many people the system should cope with, the maximum number distinguished

does not have to be particularly high, as most family groups contain no more than 15 individuals,

even including relatives. A face recognition system that could effectively discriminate a moderate

number of individuals, for example around 40–50, could also be useful for monitoring other small

groups, such as offices or small factories. If people are expected to stay in a room for at least a

minute, for instance, a frame capture rate of 25 frames per second will provide 1500 test images for
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identification purposes during that minute. It is not required that all of these are correctly classified:

if we can accurately discard 1499 of them which the system finds ambiguous and correctly identify

the one remaining frame, that will be sufficient data for logging the activity of that person (assuming

that occlusion or multiple people do not undermine identity constancy). If the person stays longer

than a minute, then hypotheses about identity can be confirmed and confidence increased.

Limiting expectations as to how many people can be expected to be recognised makes explicit

how different this low precision, high discard task is to high precision, low discard tasks, such as police

records analysis. The former type of task is expected to distinguish a small number of people from

a large amount of potentially ambiguous data, most of which it is allowed to throw away (if a clear

classification cannot be made), whereas the latter require hundreds of thousands or even millions

of people to be distinguished unequivocally, using very small amounts of image data (usually single

frontal and/or profile views). However, such an application would be able to take advantage of

the highly constrained nature of the face images (each having fixed pose and lighting) and almost

unlimited computing time (in comparison to the inter-frame period required here).

A major difficulty in tackling identification of individuals in dynamic, real-life environments is

that it is not known exactly how many people there will be in the picture or whether they will be

standing, sitting, etc. Additionally, even if a person can be tracked and their head localised, their

face could be facing in any direction. If a simple, single fixed camera system is being used, a high-

resolution wide-angle view of an average domestic room, when heads have been localised, will

provide fairly low-resolution data (certainly under 100�100 pixels, and generally around 50�50),

but, as we will show, this is sufficient for identification of familiar individuals.

The lighting in normal, everyday environments is obviously less controlled than that encoun-

tered in laboratory conditions (the standard for most current research face recognition systems).

Not only will the number of light sources be variable (often varying from one moment to next),

but they will be of different types, such as natural light from a window (varying from direct sunlight

to overcast diffuse light) and spotlights, and shadows and illumination will change due to reflections

and people moving around the room.

There are many types of variations in facial appearance that can occur: some arise out of the

location itself, such as variable direction and contrast in lighting, and occlusion from objects and

other people. Variation due to pose will occur as the subjects are free to stand in whatever position

relative to the camera that they like. Day-to-day changes will be encountered after the system has

learnt a person’s appearance, as details such as hair styles, beards or stubble, makeup and jewellery

will all vary for each individual. In addition, if daylight is present, the lighting due to this will vary

according to weather and time of day. Longer-term changes will also have to be tolerated by the

system (or at least the system would have to ‘relearn’ people periodically). These include ageing,

weight change and facial changes, such as scars.

An important characteristic of the output is that it should be accompanied by a level of ‘confi-

dence’ in that output, as it is essential to be aware of possible confusion in the classification process.

‘Forced’ classification, where a decision is given regardless of confidence, would not be appropriate

or useful for our task, and the statistical validity of the approach is important so that classifications

can be analysed effectively. This means that ‘black box’ solutions do not fare well as engineering

solutions, since performance parameters will not be available, and it will not be known under what

circumstances the system will be able to work.

In addition, the system ought to be capable of detecting if a viewed person is not from the group

that it has learnt to identify. Such ‘strangers’ could then be monitored with temporary identities

(to allow more than one at a time to be distinguished) which could then be assigned permanent

titles if they needed to be ‘remembered’ for more than a short time (as determined by the user’s

requirements). Of course, deciding that someone is ‘unknown’ is a very much more difficult

task than identification within a known group, where all classes will have explicit examples, as the

system is trying to identify (as a member of a general group of classes, not as an individual) an almost

infinite number of face classes that it has not previously seen. In a full system, a higher-level process



2.1. Task Requirements 7

would be required to monitor day-to-day events and allow some behavioural reasoning to help with

ambiguous data. This could allow expectations of who is likely to be present at a particular time of

day, and to assess the likelihood of encountering unknown people and conduct re-learning of the

database of distinct individuals (known and unknown) as required.

2.1 Task Requirements

The requirements for a useful, commercial face recognition and identity logging system for small

groups of known individuals in busy, unconstrained environments, such as domestic living-rooms or

offices, can be split into groups: there are general requirements that need to be satisfied by all parts of

the system, acquisition requirements concerned with monitoring and extraction of useful information,

face recognition requirements for the recognition stage and identity requirements which are concerned

with how the recognition information is used.

1. General Requirements:

(a) Computation involved possible on low-cost standard serial processor.

(b) Robust performance with noisy, real-life data.

2. Acquisition Requirements:

(a) Real-time tracking of individuals, with the ability to deal with multiple identities and

occlusion.

(b) Real-time detection and localisation of faces.

3. Face Recognition Requirements:

(a) Fast learning and real-time recognition of faces, with a minimum of tunable parameters,

of a moderate number of individuals (under 50).

(b) Ability to work with low-resolution (under 50�50 pixels) face images, segmented from

a single, wide-angle view.

(c) Invariance to typical variations in images in such an environment, including:

i. Minor variation in shifted position and scale of class information (in this case, faces)

in the segmented image (dependant on accuracy of Requirement 2b).

ii. Moderate variation in lighting direction, contrast, brightness and spectral compo-

sition.

iii. Minor occlusion by another object (self-occlusion is addressed in Requirement 3(d)ii).

iv. Any variation in background areas of image.

(d) Invariance to typical facial variations in such an environment, including:

i. Moderate expression variation. This would include changes due to talking, eating

or chewing, etc. but not extreme facial contortions.

ii. Head pose orientation, within a range of angles that allow some facial area to still

be seen in image (for example, not the back of the head). Note that this will need

to accommodate self-occlusion.

iii. Day-to-day facial differences due to glasses, makeup, skin tones, facial hair and

head hair style. Note that this too may create some self-occlusion.

iv. Long-term, permanent facial changes due to ageing, weight change, scars, etc.
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(e) Level of confidence in output available to allow discard of erratic or ambiguous data.

Note this should be able to reduce ‘false positive’ results without creating a large pro-

portion of ‘false negatives’.

(f) Ability to detect, but not recognise, unknown individuals (that is, people from outside

the learned group).

4. Identity Requirements:

Ability to adapt the known group of individuals (the new information coming from a mech-

anism to handling ‘strangers’), including:

(a) Learning a new individual.

(b) Forgetting a currently known individual.

(c) Learning the new appearance of a currently known individual.

(d) Identifying different types of ‘strangers’ (people not previously encountered):

i. Authorized strangers, who are subsequently added to the known group and require

an ID label from the user.

ii. Authorized temporary strangers, who are, for instance, recognised for set period

of time, such as the rest of the day, and then forgotten.

iii. Unauthorized strangers, who have not been given permission to be in area.

This thesis will be primarily concerned with satisfying the requirements from Groups 1 and 3,

as it will be assumed that those in Group 2 have been previously fulfilled, and suitable data provided

to our system. Note that some collaborative work to establish the compatibility of the approach to

state of the art tracking and localisation has taken place (McKenna & Gong, 1996, 1997). In the

final chapter, techniques for tackling the Group 4 requirements will be outlined for future work.

2.2 Object Recognition

There are a number of introductions and surveys to the theoretical background of object recogni-

tion, such as Bruce and Humphreys (1994) and Ullman (1996), so it is not necessary, nor within

the scope of the thesis, to reproduce such information here. We will summarise the basic common

categories that have developed to describe different approaches.

First, it has to be noted that there are several levels at which an object can be ‘recognised’.

The most specific would be identifying a unique instance of an object, such as ‘my diary’, whereas

the same object could also be categorised simultaneously as a type, ‘a diary’, and a more general

category, ‘a book’. Animals are often grouped into general categories based on their subparts, for

instance their number of legs, but can also be seen as mammals, reptiles, etc., and this process

can be carried out even if we do not know the exact species the animal belongs to. For face

recognition, specifically, identification of the face object class is generally termed ‘face detection’

(see Section 2.3.4), whereas what is termed ‘face recognition’ is the discrimination of subordinate

identity classes within the general face class.

Recognition will always be dependant on context and expectations, and our division of the

scene into individual parts can be subjective. For instance, whether we choose to see the apple tree

as a tree or a source of apples depends on whether we wish simply to navigate around it or if we are

hungry.

2.2.1 Approaches

This section will examine how computational object recognition can be tackled, and the contri-

bution different approaches can make to a successful system. It should be appreciated that faces are

a fairly specific subset of all possible objects, and that the task we are tackling is not of category
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Figure 2.1: Illustration of view-sphere, demonstrating training view ranges and interpolating, ex-

trapolation and orthogonal regions for test images in view-based recognition methods.

Adapted from Bülthoff & Edelman (1992) with permission.

classification (is it a chair or a table?), but of distinguishing very similar non-rigid, self-occluding

objects (albeit from a smaller range of angles than is possible for most 3-D objects, as the face cannot

be seen from the back of the head). It is assumed that all recognition requires a model which is

matched to some form of representation, although this representation can be highly distributed or

implicit.

Ullman (1989, 1996) divides approaches to object recognition into three broad areas: invariant

properties, use of parts and structural descriptions, and alignment-based methods. The first two

we will only be mentioning in passing. The use of invariant properties is based on the assumption

that objects will have invariant properties that are common to all views of them, and was found

to be useful for constrained recognition of flat, unoccluded objects. It is difficult to extend such

an approach to more general applications, as it is unclear how invariant properties would be ex-

tracted from complex 3-D objects. Moses and Ullman (1992) argued that even approximate metric

invariants do not exist in the general case for 3-D recognition.

The use of parts and structural descriptions allows a pose invariance through the use of 3-D struc-

tural graphs based on generic parts and relationships, for instance, in hierarchical arrangements of

generalised cylinders (Marr & Nishihara, 1978) or geometric ‘geon’ primitives (‘recognition by

components’) (Biederman, 1987). This approach is discussed in depth in Marr (1982). The use

of parts is more useful for distinguishing general object classes than faces, for instance, as different

facial identities will be constructed from same basic parts. A disadvantage of this approach is that it

is difficult to construct 3-D models from the information present in 2-D images, due to the ambi-

guity of occluded surfaces. Visual systems incorporating 3-D models should exhibit complete pose

invariance as any view is equally possible to compute, but this is not supported by psychophysical

studies (Bülthoff & Edelman, 1992; Bülthoff et al., 1995).
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Alignment-based Methods

Alignment can be approached in two distinct ways, first, there is an explicit 3-D alignment of pictorial

feature descriptions, where potential 3-D object models are transformed to maximise the degree of

match between the image generated by the transformed model and the image of the input object.

The calculation of appropriate transformations is dependant on establishing correspondence be-

tween the model and the image, often using edge-based features (Ullman, 1989). The disadvantage

of this approach is the difficulty of selecting features common for all views of an object (which

remain unique to that object): its reliability depends on extracting sufficient features for matching.

The second alignment approach, alignment through the combination of views, uses a combination

of 2-D views of the object as the model. Ullman and Basri (1991) were able to show that the

linear combination of a small number of views was sufficient to express a wide range of views of

object transformations, such as 3-D rotation, translation and scaling. The modes of variation have

to be expressed though variations shown in example views, as the approach has little tolerance to

orthogonal variation (see Figure 2.1). This is a view-based approach which relies on geometric

relationships between the object, the image and the transformations between the two, using 2-D

structural information, such as x;y coordinates and segment lengths and angles.

The general group of view-based methods encompasses other approaches that deal with photo-

metric representations which are computed directly from image intensity values rather than trying

to extract explicit structural information, although some approximate correspondences will be often

established for normalisation of the image. Breuel (1992) gives an overview of the advantages of

view-based recognition of 3-D objects from 2-D images over 3-D model-based approaches, citing

robustness and efficiency as major issues.

Two major concepts in view-based approaches are: 1) the canonical view, Palmer et al. (1981)

found that certain characteristic ‘canonical views’ allowed viewers to name an object much faster

than other ‘non-canonical views’ and view-based methods can take advantage of such views to

improve the efficiency of recognition, and 2) the view-sphere, which is the range of views from

which the object can be seen (see Figure 2.1). A general 3-D object will have a view-sphere

covering 360� movement in x-, y- and z-axes, although prior knowledge can allow this to be

reduced. This is especially clear in the case of faces, as facial information is only visible on a

human head from (roughly) the front �120� of x- and y-axis movement, and z-axis movement

is physiologically constrained to around �20� (when standing or sitting). For example, Beymer

(1994) covered a facial view sphere of �20� x-axis and �30� y-axis with 15 example views.

Appearance-based Methods

Another major approach that can be distinguished is what we have called appearance-based meth-

ods. This seeks to capture separately the essential visual characteristics of each object class to be

recognised, and aims to create a viewpoint-independent representation. The appearance-based ap-

proach treats generalisation across views as a function approximation problem (Poggio & Girosi,

1990a, 1990b). If an assumption of smoothness is made on the function, non-linear interpolation

within example views (Poggio & Edelman, 1990; Brunelli & Poggio, 1991) can be used. Partially

viewpoint-invariant representations of object classes can be formed by training an RBF network to

interpolate a function in the space of all possible views of the objects (Poggio & Edelman, 1990).

Such representations can be seen as ‘grandmother cells’ (dismissed by Marr (1982) and reinstated by

Edelman and Poggio (1992)!).

2.2.2 Psychological Evidence

We review psychological and psychophysical results here not to construct a ‘biologically plausible’

model of face recognition, but to look at issues central for ‘engineering’ a solution for our particular

task.

Cognitive studies of the way human faces are perceived (Bruce & Young, 1986; Ellis & Young,

1989; Hay & Young, 1982; Hay et al., 1991) have contributed to our understanding of the prob-

lems for automating face processing. Psychological theories on the processing and recognition of



2.2. Object Recognition 11

objects and faces seem to point to different strategies for each; for a review, see Bruce (1988),

Bruce and Humphreys (1994). They suggest that the general level of object recognition may use

edge-based (intensity discontinuity) information, whereas face recognition may use surface-based

(texture, shading) ‘holistic’ information. However, if all visual recognition is seen as a spectrum

from the most general to the most specific, this division can be seen as a consequence of comparing

tasks from opposite ends of such a spectrum rather than some inherent difference in the nature of

the recognition process. It is clear that the task of recognising radically different general categories

of object, such as trees and houses, requires different techniques than distinguishing those categories

that are structurally very similar, such as faces from members of a family. Within familiar face recog-

nition, there is evidence that we may use a kind of ‘face recognition unit’ mechanism, where each

is tuned to recognising a known individual (Bruce & Young, 1986; Bruce, 1988).

The disproportionate effect on face recognition of inversion (making the photographic image

negative) has been taken as support for special mechanisms in face processing (Hay & Young, 1982;

Bruce & Young, 1986) separate from other other types of object. The inversion effect may be

due to the type of object processing required for the task. The conclusion is that it is failure of

the first-order feature information to distinguish class members that leads to use of second-order

configural data, and it is the latter that is susceptible to inversion interference. However, Diamond

and Carey (1986) showed that this may be the effect of ‘expertise’, rather than something unique

to human face processing, in that dog breeders who are good at identifying particular breeds of dog

are more adversely affected by inversion than dog ‘novices’.

The ‘caricature advantage’, where a face is recognised more efficiently from a caricature than

from a veridical (undistorted) representation (noted in computer-generated line images (Rhodes &

McLean, 1990) and computer-generated photographic quality images (Benson & Perrett, 1994))

also points to configural processing. In addition, Bruce and Green (1990) point out that elements

of composite faces are recognised more easily in tests if misaligned than if they are correctly aligned,

which suggests that when two different halves are exactly lined up, a new facial ‘configuration’ is

created which is difficult to decompose into elements.

Within face processing research, there is also support for treating face classification as a task sep-

arate from others using facial information, such as expression interpretation. Ellis and Young (1989)

describe evidence for separate mechanisms being present in human vision for facial recognition and

facial expression recognition. This is shown most clearly in people with cognitive disorders such as

prosopagnosia, where they cannot distinguish individual faces, but can usually still ‘read’ emotional

states from expressions. Bruce and Young (1986) surveys neuropsychological disorders that indicate

that familiar and unfamiliar face recognition also proceeds separately. In addition, PET brain scans

(Sergent et al., 1994) have provided further evidence for independent processing.

Psychophysical studies with monkeys (Logothetis et al., 1994) suggest that they use interpolation

between 2-D, viewer-centred representations for object recognition. There is some psychophysical

support for the appearance-based approach (Poggio & Edelman, 1990; Bülthoff & Edelman, 1992;

Sinha & Poggio, 1996), since the results suggest that only partial view-invariance over the restricted

view-sphere is found for pose in human vision. In contrast, 3-D models and linear combination of

views predict full view invariance over either a full or restricted view-sphere respectively.

Bachmann (1991) has been able to establish the minimum resolution required for humans to

recognise facial identity in a image at around 18 pixels horizontally and 24 pixels vertically. This ex-

tremely low level of spatial information indicates that local feature processing is not being used. This

confirms that there is sufficient information in low-resolution face images for effective recognition.

Several researchers have found that different frequencies of facial information can be informative

for different tasks. Hancock et al. (1995) found that finer scales of facial information, were related

to familiarity, whilst coarser ones were related to distinctiveness. Lando and Edelman (1995) used

high-frequency receptive fields for detecting viewing conditions, such as illumination and pose, and

low-frequency receptive fields for face identification.

Hancock et al. (1997) has compared eigenface and graph-based systems against human re-
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sponses. Whilst finding that both approaches match the human results very closely, they concluded

that graph matching was closer to face processing, as PCA was affected more by image variations,

such as lighting.

In summary, three main points stand out from the psychological evidence, 1) a division of

strategies for entry- (general object classification) and subordinate-level (face discrimination) object

recognition, 2) that appearance-based methods are likely for human vision in at least some vision

tasks, and 3) that a quite coarse image resolution is adequate for familiar face recognition.

2.2.3 Discussion

Ullman (1996, pp. 34-35) stresses two important points about object recognition. First, practical

research will not in general be heavily committed to specific abstract philosophies, as hybrid schemes

can frequently be more effective. Secondly, the relative merits of techniques will be different

depending on the target application, in other words, no single approach can be a general solution

to object recognition.

We will now go on, in Sections 2.3–2.5, to isolate the important issues in face recognition and

explore how they have been dealt with in previous research projects. Acquisition – what are the

important factors in the way face information is collected? Representation – what is it in a face that

can allow a face recognition system to remember it when it sees it again and distinguish from others?

Reasoning – how can a face recognition system compare faces most effectively? This is followed, in

Section 2.6, by a practical evaluation of some of these techniques to determine their suitability for

our task requirements, as described in Section 2.1.

We will not be presenting an exhaustive discussion of all current face recognition research, as

that is outside the scope of the thesis. The field of face recognition has developed quickly and even

recent surveys (Samal & Iyengar, 1992; Valentin et al., 1994; Chellappa et al., 1995) are perhaps

already out of date. A more representative view of current research can be found in Bichsel (1995),

Essa (1996) and the Face Recognition Home Page (Kruizinga, 1995).

2.3 Face Acquisition

This section looks at how the original data is acquired before the issue of representation is raised.

How many and what type of face images are needed? How much and what kind of variation should

be present in the images? As we are assuming our face images are pre-segmented (Requirement 2b

has been fulfilled), we are treating face detection as an acquisition issue.

2.3.1 Design of Face Databases

The environment and manner in which a database of face images is collected is vital to the success of

any face recognition system in which it is used. Almost without exception, face recognition research

has been carried out with highly constrained data (Robertson & Craw, 1994), with variations due

to lighting, expression and pose either fixed or within unrealistic limits (if compared to variations

encountered in real-life data). Many variations important to long-term applications, such as how

aging will affect recognition over months and years, are not allowed for in the system design. There

are some exceptions, for instance, Bouattour et al. (1992) make a conscious effort to make their

data more varied, with large rotations and occlusions due to hands in front of faces. Despite these

limitations, we need to use standard databases to obtain comparative results.

Two UK databases are of note. First, the Olivetti Research Laboratory (ORL) face database

(Samaria & Harter, 1994) is a small database of 40 people (400 images) showing some pose, lighting

and expression variation, see Section A.1 in Appendix A for more details. The usefulness of the

ORL database lies in having a large number of comparative results from different groups, discussed

in Section 2.6. Second, the Manchester face database (Lanitis et al., 1995a) is larger (30 people, with

690 images). The training and test data have been deliberately kept separate to prevent systems using
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spurious environmental details, such as lighting or background features, to classify individuals, and

have at least 3 weeks between their collection for each person to introduce more realistic variability

into the data. The training images have fairly constrained lighting, whereas the test images are more

variable. Two levels of difficulty of test data are present, with different levels of variability. The

first is fairly easy as the images are quite similar to the training images, only allowing changes to

hairstyle, background and the wearing of glasses. The second is much harder, featuring occlusion

with hands, dark glasses and covered hair. Although the Manchester database tests face recognition

methods more thoroughly than the ORL database, it does not have so many published comparative

results.

The largest collection of face images to date is the FERET database (Phillips et al., 1996,

1997), currently still under development by the US Army Research Laboratory. This has made

great advances in constructing a standard by which competing face recognition systems can be

compared, and conducting independent testing of leading algorithms. They have allowed pose

movements from frontal to profile and limited lighting variations within the group of images for

each person, and have required that data is collected over a period of time to allow changes in the

person’s appearance, clothing and lighting. The database evolves from year to year, but at present,

no attempt has been made to collect data as image sequences or with sound/vocal information. Its

major disadvantage is its unavailability to non-US institutions.

In summary, the ORL is the most useful standard database for our purposes, due to large

amounts of comparative results. However, aspects of task requirements will remain that are not

covered by such tests and where this is the case, it will be necessary to design and construct our

own specific databases.

2.3.2 Multi-Modal Facial Information

Cues other than facial appearance play a part in human face recognition and could prove useful for

automatic techniques. Speech patterns, body shape/height and posture/gait are all characteristic

and easily collected alongside facial information (Brunelli & Falavigna, 1995).

The ATR Human Information Processing Research Laboratories in Japan are constructing a

joint face and speech database of 60 people (ATR, 1996), however, the main face views are taken as

still images rather than as continuous sequences. The European M2VTS multimodal face database

(Pigeon & Vandendorpe, 1997) has been set up to test multimodal person verification strategies

(Duc et al., 1997; Kittler et al., 1997). At present, the database contains 35 people with several

image sequences of each. Synchronised speech is provided with at least one sequence for each

person.

2.3.3 Space-Variant Sampling

Most view-based approaches have used the rectangular aspect provided by standard video cameras,

although this does not necessarily provide the most useful representation. There has been inter-

est in space-variant pixel arrangements, such as radial, logarithmically sampled (Young, 1987) or

‘foveal’ representations (Tistarelli, 1994), where pixels are concentrated at the centre, and cover a

progressively larger area as they spread out, as this gives a natural rotation invariance. Rao and Bal-

lard (1995) used a foveal grid arrangement for their iconic representation scheme, centred within a

rough face boundary. It is not clear how useful such an approach is, as no comparisons were made

with other sampling arrangements.

The disadvantages of spatially variant representations are 1) the extra computation required to

remap pixels (unless dedicated hardware is used), and 2) that peripheral detail is sacrificed (although

angular extent of the field of view can be increased). This can be useful for areas of vision such as

autonomous robots, for example, Cliff and Bullock (1993), where a constant level of detail is not

required over the whole visual field. In the context of our particular face recognition task, however,

this loss of detail is more of a problem, as the face is already localised and uniform sampling within

this region seems to have very little disadvantage.
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2.3.4 Face Detection and Segmentation

Detection of faces using specific facial features will not be possible for our task, due to the low

resolution of the data, see Section 2.4.1. An alternative is to use the whole face pattern as a

holistic representation, such as with eigenface information (Turk & Pentland, 1991; Moghaddam

& Pentland, 1995). A successful neural network face detector has been developed by Rowley

et al. (1996), which also used receptive fields to give some translation and scale invariance. A

bootstrapping algorithm is used to get around the problem of finding suitable ‘non-faces’ (negative

examples) to train with by incorporating initial false-positives as subsequent training data. This

use of only the most confusable near-face examples, rather than a potentially huge range from the

whole spectrum of ‘non-faces’, can substantially reduce the size of training set required for good

performance compared to earlier approaches.

Face detection in image sequences is very much easier, due to motion cues, than for single

images and can be integrated into tracking techniques. Once a face been found in a frame, temporal

correlations greatly reduce the search space in subsequent frames, for instance, McKenna and Gong

(1997) were able to combine motion detection by spatio-temporal filtering with face detection

with a neural network based on Rowley et al. (1996). More recently, they have been able to use

colour to further reduce computation and give greater invariance to rotations in depth and partial

occlusions (McKenna et al., 1997a).

Face detection not only includes finding a face in an image, but also determines how much

of the face and background is actually segmented for further testing. The approach taken to face

segmentation is important when assessing performance, as transitory details, such as hair style and

background details, if included in training data, may be used as the most effective distinguishing

detail. For instance, if one person stands next to a plant for a picture, whilst another does not, it is

very much easier to check for the presence of the plant rather than to compare subtle facial details.

Some groups, such as Craw et al. (1995), ignore higher performance of experiments conducted

with face images with hair included, as this face representation is not seen as being sufficiently

general for images taken over time, and prefer to cite poorer results for hair-free data. There is

some psychological evidence that person-specific details such as hair may be used by humans for

unfamiliar face recognition (Hancock et al., 1997), however, so the visual features that are used for

recognition may well be dependent on the task.

In contrast, non-person-specific details such as background are more obviously spurious for

recognition. Turk and Pentland (1991) acknowledged that the background surrounding the faces

in their database was a significant part of the image data used to classify the faces. Of course,

this must severely limit generalisation of such an approach when it is trained with data against one

background and tested with data containing a different background.

2.3.5 Normalisation and Vectorisation of Images

Once a face has been localised and segmented within an image, the image itself must be standard-

ised or normalised prior to further processing to improve the efficiency of matching. Sometimes

such normalisation is just an adjustment of grey-level intensity values, but here we are considering

adjustments to the image shape. This could be as simple as a rescaling to some standard size, or as

complex as remapping each pixel.

The normalisation and vectorisation of an image are approximately similar processes. Image

normalisation is generally taken to be a process of adjusting to allow particular areas in different

images to line up when any two images are matched together. For example, face images are very

commonly normalised via affine transform on the basis of the positioning of both eyes (and some-

times mouth or nose position). This can be taken further via the ‘morphing’ the face texture on the

basis of a larger number of standard facial landmark positions. ‘Dense correspondence’ is the ulti-

mate correspondence, where all elements of the image vector correspond to pixel information from

the same object feature in scene, in other words, the process creates a feature-based representation

from the pixel information (in the most abstract meaning of ‘feature’).
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Two approaches have been taken to establish the required correspondence to a reference image

for image vectorisation. 1) approximate correspondence, either using a low number, often two or three,

anchor points as features (Craw et al., 1995) or an intermediate number contained in an active shape

model (Cootes & Taylor, 1992; Cootes et al., 1993; Lanitis et al., 1995a) and 2) dense correspondence,

where each pixel is a feature point, which can be solved through optical flow algorithms (Beymer

& Poggio, 1995).

The vectorised representation contains two vectors: shape and texture. The shape vector contains

the feature coordinates, either in absolute terms (widely used, for instance (Poggio & Edelman,

1990; Ullman & Basri, 1991; Craw & Cameron, 1991; Cootes & Taylor, 1992)) or relative to a

standard reference shape (Craw et al., 1995; Beymer, 1995). The texture vector can be the original

image, geometrically normalised or warped to the standard reference shape (Craw & Cameron,

1991; Bichsel & Pentland, 1994; Craw et al., 1995; Beymer, 1995) or local texture areas (Lanitis

et al., 1995a).

The disadvantage of these approaches to the normalisation of images is that they cannot be ap-

plied under wide variations in pose, and can be computationally expensive. Task Requirement 3(d)ii

will not be satisfied through the use of simple 2-D affine transforms, as they treat as 2-D approx-

imately, and anchor points will not be available at all views over large pose ranges. In addition,

it is not clear how one would go about normalising a profile view to match a frontal view. Our

approach to tackling such problems is to use a ‘nose-centering’ technique, where the face images

are centred on the tip of the nose, so that visible features on profiles, for instance, should be in

roughly similar locations to those in frontal views of the same person.

2.3.6 Discussion

The publically available standard face databases are too constrained to be useful for testing real-life

applications, and comparisons between techniques are therefore unreliable due to wide variations

in databases used in published results. Therefore, we will start off our experimental work by

testing our proposed approach with the standard ORL database (in Section 2.6), but then in the

following chapters, go on to construct our own databases to specifically test pose variations and

image sequence data.

As mentioned earlier, we will be using manually located faces for our initial studies, but will be

taking advantage of state of the art tracking and localisation techniques (McKenna & Gong, 1996,

1997) for our work with image sequences. Segmentation and normalisation over large pose ranges

is still an open issue, and we will investigate this later.

2.4 Face Representation

For a face recognition system to perform effectively, it is important to isolate and extract the salient

features in the input data to represent the face in the most efficient way. The abstract elements

of such a representation can be made up in a variety of ways, and it depends on the task which

approach will be appropriate.

One of the main problems in computer vision, especially in face recognition, is dimensionality

reduction to remove much of the redundant information in the original images. Simple mecha-

nisms, such as sub-sampling, may give a rough reduction, but use of more specific prior knowledge

to apply more sophisticated preprocessing techniques to an image is still required for the best results.

2.4.1 Simple Feature- and Template-Based Approaches

The feature-based approach requires the detection and measurement of salient facial points (see

Samal and Iyengar (1992) for a survey). Kanade (1973) used geometrical distances and angles be-

tween primary facial features such as eyes, nose and mouth to classify faces using an economic

representation of the face where the elements are based on their relative positions and sizes. A
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disadvantage of such picture-plane measurements is that it is not obvious which features and con-

figural information will categorise a face efficiently and accurately (especially if shape and texture

variations are considered as part of a useful facial feature set), and so important data may be lost.

Automatic feature finding algorithms (Bennett & Craw, 1991; Craw et al., 1992; Brunelli &

Poggio, 1992a, 1993) have been developed to locate facial ‘key points’. However, this information

has been more usefully used for normalisation through transformations prior to recognition (Craw

& Cameron, 1991, 1992) than for identification itself. A problem in using such techniques for our

task is that the low resolution data which will be available would make the accurate identification

and positioning of small facial areas very difficult, if not impossible.

Template matching, involves the use of pixel intensity information, either as original grey-level

or processed to highlight specific aspects of the data. The templates can either be the entire face

or regions corresponding to general feature locations, such as eyes or mouth. Cross-correlation of

test images with all training images is used to identify the best match. Brunelli and Poggio (1993)

compared feature and template-based methods directly with the same database of frontal face views.

Their template-matching strategy was based on the earlier work of Baron (1981), except that they

automatically detected and used feature-based templates of the mouth, eyes and nose, in addition to

whole face templates. These additional feature templates as well as the whole face image were used

to give better performance. Geometrical alignment of the eyes to match test images with model

views allows shift, scale and rotation normalisation prior to the recognition process itself.

The use of raw pixel intensity values will make the representation very intolerant to lighting

conditions and variability, so Brunelli and Poggio (1993) compared several preprocessing techniques:

none (plain grey-level values), intensity normalisation (using a neighbourhood average value) and

the use of a gradient norm operator, which he found gave the highest recognition performance.

In summary, the simple use of templates or features will not be enough for real-life applications,

but additional processes such as alignment (Beymer, 1994; Lando & Edelman, 1995) or filtering

may be able to improve on this (see Section 2.5.1).

2.4.2 Deformable Templates and Active Shape Models

A priori knowledge of face variations and the expected shape of geometric features can be used

to construct deformable (flexible) templates (Yuille, 1991; Yuille et al., 1992) to guide feature

detection process. Size and shape parameters in such templates can be translated, rotated and

deformed to fit the best representation of their shape present in the image and these variations give

a feature description, allowing both detection and representation. Unfortunately, such approaches

are critically dependant on appropriate starting positions for the template, and computationally

expensive (5–10 minutes of Sun 4 CPU time to match one image was quoted). This use of

hand-crafted templates, individually tailored for specific tasks, has been replaced by flexible shape

models using a Point Distribution Model (PDM) (Cootes et al., 1992, 1993) which are learnt from

examples. This, in turn, can be used together with a shape-free grey-level model, obtained by

deforming and aligning each training face to the mean face, to give a combined face encoding

scheme (Lanitis et al., 1995b).

Statistical methods are useful for modelling shape and grey-level appearance of images, as they

can give a compact encoding of permitted variability (Lanitis et al., 1995a; Vetter & Poggio, 1996).

Models containing prior structural knowledge of faces are learnt from a database of prototypical

images. Such models can build flexible object representations (active shape models) (Lanitis et al.,

1995b, 1997) through a linear combination of labelled examples, which can then be iteratively

deformed to match image data. This requires under 100 parameters to describe each image with

expression, lighting and limited pose (�15�) invariance to produce the PDM representation, and

has been used for tracking in image sequences (Edwards et al., 1996, 1997).

In summary, the deformable templates are computationally expensive and not robust to everyday

variation. Both they and the simpler active shape models will have problems establishing matches

for model points on low resolution images, such as provided in our task requirements.
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2.4.3 Principal Components Analysis and ‘Eigenfaces’

Principal components analysis (PCA), is a simple statistical dimensionality reducing technique that

has perhaps become the most popular for face recognition. PCA, via the Kahunen-Loève transform,

can extract the most statistically significant information for a set of images as a set of eigenvectors

(Kirby & Sirovich, 1990) (usually called ‘eigenfaces’ (Turk & Pentland, 1991) when applied to faces),

which can be used both to recognise and reconstruct face images. Eigenvectors can be regarded as

a set of generalised features which characterise the image variations in the database. Once the face

images are normalised for eye position, they can be treated as 1-D arrays of pixel values. Each image

has an exact representation via a linear combination of these eigenvectors and an arbitrarily close

approximation using the most significant eigenvectors (that is, those with the highest eigenvalues).

The number of eigenvectors chosen determines the dimensionality of ‘face space’, and new images

can be classified by a projection onto that face space. For example, Kirby and Sirovich (1990)

chose the 50 most significant eigenvectors. Cottrell et al. (1987) and Fleming and Cottrell (1990)

compressed face images using a simple neural network, the weights and hidden unit activations

representing eigenvectors and eigenvalues, and moderate success was made in recognising novel

images.

Comparisons can be made between pure image-based coding, which is effectively template

matching with position and scale differences eliminated, and more extensive normalisations in

which more shape variability was removed. Craw and Cameron (1991) morphed faces to an av-

erage shape before applying PCA, as the ‘shape-free’ images give a more linear space for analysis.

Such normalisation of faces before extraction of eigenfaces is based on an assumption that faces

lie within a low-dimensional manifold, linearly approximated by independent shape and shape-free

texture. An eigenface coding of shape-free texture with manually coded landmarks has been found

to be more effective for automatic recognition than correctly shaped faces, giving a higher-quality

representation of the images in terms of facial variation (Craw et al., 1995). Although earlier work

concentrated only on frontal views, Pentland et al. (1994) extended this to encode wide pose ranges,

both parametrically (Murase & Nayar, 1995) (PCA calculated for all views together) and as mod-

ular view-spaces (PCA calculated separately for each view). Pentland et al. (1994) found a slight

advantage for the latter approach. Assumptions have to be made about the suitability of the data

before PCA is applied, hence the emphasis on normalisation. Akamatsu et al. (1992) used data in

the Fourier domain to gain shift invariance in subsequent PCA. Oriented Difference of Gaussians

convolution (Hancock et al., 1995) and Gabor wavelet transform (McKenna et al., 1996) have also

been performed before PCA to provide a greater level of invariance than found using grey-level

pixel information.

In summary, PCA is a very efficient signal encoder, and designed specifically to characterise

and encode variations rather than ignore them. Thus, it may find the optimal low-dimensional

representation, but this may be more useful for reconstruction rather than recognition (O’Toole

et al., 1993). In addition, the eigenface method is not invariant to image transformations such as

scaling, shift or rotation in its original form and requires complete re-learning of the training data to

add new individuals to the database. Instead, we prefer to overcome both image variation and the

problem of picking out important information using receptive field functions and adaptive learning.

2.4.4 Receptive Field-Based Approaches

The receptive field (RF) of a visual neuron is the area of the visual field (image) where the stimulus

can influence its response. For the different classes of these neurons, a receptive field function f (x;y)

can be defined. Precomputed filters can simulate such fields when applied to locations across the

image. This type of preprocessing is more biologically motivated than simple edge detectors or

intensity normalisation, as there is psychophysical and physiological evidence for orientation and

spatial frequency specific channels in biological visual systems (Daugman, 1988).
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Gaussian Receptive Fields

A simple dimensionality reduction strategy is to use receptive field (RF) responses. Edelman et al.

(1992) used the responses of 75 asymmetrically-positioned oriented Gaussian RFs arranged around

the image as input for the RBF classifier system which learnt from examples. Lando and Edelman

(1995) were able to use a similar arrangement to generalise from a single view of a face, using high-

frequency RFs for detecting viewing conditions, such as illumination and pose, and low-frequency

RFs for face identification. However, such simplistic filtering may not be making the input repre-

sentation explicit enough. A Gaussian function will smooth the image at a given frequency, so it is

good for removing noise. However, the disadvantages inherent to using raw pixel values will apply

here, such as low tolerance to lighting conditions.

Natural Basis Functions

Rao and Ballard (1995) used the dimensionality reducing properties of PCA via a fixed set of learned

basis functions extracted from natural scenes, which appear to match V1 simple cell responses quite

closely. Earlier, Hancock et al. (1992) had found that the eigenvectors of patches of real-world

images were close approximations of derivative of Gaussian filters. These filters can be applied

at different orientations and scales to provide feature jets, similar to Gabor jets (see below). The

advantage of this approach over simple PCA on the dataset itself is that the basis functions do not

need to be recalculated to accommodate new faces.

Laplacian/Difference of Gaussians

Retinal ganglion cells and lateral geniculate cells, early in biological visual processing, have receptive

fields very similar to the Laplacian operator. This can be implemented as Difference of Gaussian

(DoG) filters (Marr & Hildreth, 1980) which combine edge boundary detection with Gaussian

smoothing. The output of this process is then in a suitable form for detecting zero-crossings – loca-

tions where the second derivative of the intensity values in the image undergo a sign change, such

as used in the primal sketch representation (Marr, 1982), which can be useful for object segmenta-

tion. The idea of DoG-style valley-detecting convolution, where the ‘width’ scale is adjusted to be

sensitive to face-sized features, has been proposed by Bruce (1988) as being particularly useful for

face processing. Scales and orientations can be introduced into the filtering process; for example,

the Cresceptron network (Weng et al., 1993) used 8 directions of oriented zero-crossings at 2 scales

for input representation.

The idea of edge information as a basic object representation is common, either unoriented

as DoG filters, or oriented (Ballard & Rao, 1994) (steerable filters) to give more specific informa-

tion. Kanade (1973) applied a Laplacian to binarize the grey-scale values, but then used projection

analysis to extract feature information. However, specific positions of ‘edges’ may be too precise

for generalisation, as matching will be ‘brittle’. Edelman et al. (1992) found edge magnitude values

from standard edge detection algorithms, such as the Canny operator, actually reduced performance

when distinguishing faces. They thought such precise operations made generalisation under pose

and lighting variation difficult, and found a directional derivative more useful than either raw inten-

sity values or intensity gradient magnitudes. For this reason, we use binarised gradient information

rather than zero-crossings contours in our work (see Section C.1.3 for details).

Gabor Wavelets

The receptive fields of the simple cells in the primary visual cortex (V1) of mammals are oriented

and have characteristic spatial frequencies. Daugman (1988) proposed that these could be modelled

as complex 2-D Gabor filters, which have been found to be efficient in reducing image redundancy

and robust to noise (Bossomaier, 1989). Such filters can be either either convolved (Petkov et al.,

1993) or applied to a limited range of positions, such as for ‘jets’ (Daugman, 1988; Manjunath et al.,

1992; Würtz, 1994; Konen & Schulze-Krüger, 1995), where a region around a pixel is described

by the responses of a set of Gabor filters of different frequencies and orientations, all centred on that

pixel position.

Petkov et al. (1993) implemented a face recognition scheme based on Gabor wavelet input
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representations to imitate the human vision system. Unlike most preprocessing techniques which

try to reduce the amount of input data, the full convolution of the face image with a set of 64 Gabor

functions (8 orientations and 8 scales) gives a very much larger representation than the original grey-

level image. No learning algorithm was used to train the system: the test for recognition was based

on simple comparisons of each image with all of the other images in the database. A successful match

was where the closest (in terms of Gabor coefficients) to the test image was of the same person as

the test image. The calculation of the Gabor coefficients as a complete convolution (rather than

sparse sampling) of the image was reported as extremely computationally expensive, processing of

the 64 Gabor functions for a single image taking about half an hour on a fast workstation. The

approach was extended to use a Kohonen-style self-organising network used as classifier (Petkov,

1995). Gabor coefficients can, in addition, be used as data for PCA to provide a greater level of

illumination invariance than found using grey-level pixel information (McKenna et al., 1996).

Summary

Filter-based preprocessing of the images is an important intermediate step in image-based tech-

niques, as the input representation contributes a great deal to the learnability of the task. It is

important to highlight relevant parts of the information (leading to reduction in the dimensionality

of input) and provide moderate invariance to normal environmental illumination (Marr & Hildreth,

1980). This is in contrast to tackling strong, incidental lighting, which is very much more difficult

(Moses et al., 1994), but luckily not expected in domestic environments. The approach can both

suppress variation that is not important for the task, such as illumination variability, and highlight

those variations that are useful, via, for example, orientations and scales used for Gabor filters.

2.4.5 Dynamic Link Graphs

The dynamic link approach to object recognition can be seen in two lights. First, as a theoretical

model of biological vision (Lades et al., 1993; Wiskott & von der Malsburg, 1996), and second, as

an algorithmic form which has been shown to perform extremely well on the standard databases

(Wiskott et al., 1997). The important features of the approach are labelled graphs containing

layers of Gabor feature jets and the dynamic links within the graphs that establish the image/model

correspondence match. The process can be extremely computationally expensive, taking 10-15

minutes of SPARC 10 CPU time to recognise one face from a gallery of 111 models (Wiskott &

von der Malsburg, 1996).

Objects can be described by both shape and texture information using elastic graphs (Manju-

nath et al., 1992; Würtz, 1994; Konen & Schulze-Krüger, 1995) of local features. This process uses

a rectangular graph laid over the training images, the graph edges represent the distances between

features (the geometric data), and the graph vertices hold coefficients from Gabor ‘jets’ (see Sec-

tion 2.4.4) applied to the image at the feature locations. An alternative to the rectangular grid is

to use manually constructed ‘face bunch graphs’ that are specific to faces, using fiducial landmarks,

such as eyes, mouth, etc. (Wiskott et al., 1997). A coarse match of the graph onto the test im-

age is made first with fixed parameters, followed by finer matching using a cost function to offset

graph distortion against object distortion. This approach has some similarities to flexible templates

(Section 2.4.2), as the matching algorithm is in terms of geometrical deformation and similarity of

Gabor coefficients.

Some pose invariance for the elastic graph models can be gained by global transformations

to the feature jets to account for changes in view (Maurer & von der Malsburg, 1995a, 1995b).

This accounted for rotation up to half-profile (45�), but separate, manually-designed face grids and

graphs have to be used to cope with self-occlusion at greater pose ranges (Krüger et al., 1996;

Wiskott et al., 1997). Matching times for a single image for this type of approach was reported as

15–20 seconds (Maurer & von der Malsburg, 1995a).

However, these highly specialised representations clearly illustrate that the boundary between

representational issues and reasoning issues is hard to define. They seem too committed and com-

putationally expensive for our purposes.
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2.4.6 Discussion

In general, approaches relying on simple templates or features alone will not be sufficiently robust

under pose and lighting variations for our requirements, especially as the extraction of common

features under all poses will be hindered by self-occlusion. This means that a photometric view-

based or appearance-based representation is likely to be the most useful for our task.

Methods that rely on locating specific facial features, either for classification or normalisation,

may turn out not to be efficient when applied to low resolution images. As mentioned earlier,

although standardising face images (especially to an average shape) can be an extremely efficient

representation for frontal views, it is not clear how such a process could be carried out for large

pose variations, as there are no common features for all facial views.

PCA is an efficient way of reducing dimensionality, but has the drawback of being more sensitive

to image variations than to facial characteristics. Its performance is dependent on the accuracy of

normalisation, and the process has no inherent invariance to translation, scale or rotation. Lighting

can severely disrupt matching (Hancock et al., 1997), and although pose can be dealt with, it cannot

be accommodated easily.

Other representations approaches to improving generalisation through learning other aspects

of the task are possible, such as low-dimensional object representations from examples (Edelman &

Intrator, 1997), class-based image transformations (Lando & Edelman, 1995), or specific invariances

(Simard et al., 1992), but their computational expense made them unattractive for our specific task.

The way representations are devised is primarily led by the need to reduce dimensionality to

reduce complexity and computation. There is an implicit assumption that much of image data is

redundant or irrelevant. Obviously, the dimensions discarded should be from this category in order

to emphasise the useful data left over. This is the major reason for using filter-based representations,

as one can specify the nature of feature that should be extracted. This has been observed in bio-

logical systems, where parallel processes can deal with different aspects of the images which were

specifically extracted at at an early stage.

We will take a filter-based approach, which is fast and yet fairly general. We regard this filtering

as an early stage of representation for identity, which we will develop further using adaptive learning

in the next section about reasoning. Finally, in Section 2.6 we provide a comparison of other

techniques to our proposed approach with a standard database.

2.5 Face Reasoning

Once a database has been collected and a representation decided upon for the images, the method

of comparison between exemplar and test faces has to be determined. This reasoning can be simple

matching if the representation extracted is extremely face specific or can be be very adaptive if a

more generalised representation (not very discriminable) is chosen. It can be seen that the type of

representation has determined a ‘face-space’ in which distance comparisons can be made. Standard

distance metrics, such as Euclidean or Mahalanobis (for eigenvector spaces) (Craw et al., 1995), can

be used for matching, whereas simple weighted sums may be more suitable for internal ‘hidden’

representations.

Learning is an important factor in any useful application, to avoid the ‘brittleness’ commonly

found in manually extracted rule systems. Even simple vision tasks are of such complexity that

original assumptions in manual systems turn out not to be valid or only partially valid in certain

circumstances. In addition, such an approach is neither scalable nor modifiable in day-to-day op-

eration. For example, if the task changes from the original specification due to different people

or rooms being involved, the system should be able to automatically relearn the task, rather than

require an operator to reprogram new rules to cover the changed circumstances.
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2.5.1 Matching Techniques

Traditionally, matching has been found very useful in low-level vision for localising and identifying

patterns, based on simple correlation of the image vectors. Such simple approaches were discussed

in Section 2.4.1.

A different approach to matching is taken by Beymer (1994) who uses examples of faces in

varying pose to learn a pose-invariant face description in terms of shape and texture vectors. This

is essentially an alignment-based extension to traditional template-matching approaches (Baron,

1981; Brunelli & Poggio, 1993), but the model can solve the correspondence problem between

face images in different poses, which can be used both for face image analysis and synthesis. Two

methods were developed, an interpolating multiple view recogniser, and a virtual views approach.

For the latter, Beymer and Poggio (1995) described how such synthetic views could complete a

view-sphere for example-based learning where insufficient real views were available. Affine trans-

form and optical flow were used to bring image templates into registration (they termed this process

‘vectorisation’), and normalised correlation determined the best match. Despite good results, this

approach is fairly slow and can take several seconds of processing time per test image.

Beymer (1994) used simple normalised correlation with example templates of eyes, nose and

mouth, following a two-stage geometrical registration step. This was originally done with 15

example views of each person to be recognised, but this was adapted to work with virtual views.

This ‘analysis through synthesis’ approach, recognising faces from one original and several, synthetic

views (Beymer & Poggio, 1995; Ezzat & Poggio, 1996) is extremely useful where data is very

sparse. This is, however, extremely intensive computationally, taking up to half an hour to analyse

one image, and therefore not applicable to our task. This low data, high computation is quite the

opposite to our high data, low computation task requirements.

2.5.2 Early Connectionist Approaches

Neural networks have a long history of being used for face recognition, though computational

limitations of the time seem to have restricted the amount of testing that was possible.

The Kohonen associative networks (Kohonen et al., 1981; Kohonen, 1989) were able to

demonstrate quite early on one of the main advantages of the distributed processing in neural net-

works, which is a tolerance to noisy or incomplete test data. They could classify grey-level images

of faces when a forcing stimulus (the desired output activity) was provided along with the stimulus

pattern (the input data). These values were clamped until a steady state of activations was reached.

The idea was that, when unclamped, the network would converge when given the original input

to give the desired output values. It could also generalise in classifying new views of learnt faces by

interpolating within the range of angles already seen, but could not extrapolate to images outside

this area. Millward and O’Toole (1986) used a Kohonen memory model to encode zero-crossing

edge segments rather than grey-level values. The results, though better, are difficult to assess, as

a greater pixel area was used to extract edge segments than was used for the pixel intensity values

(Bruce, 1988, p. 107).

WISARD is a pattern classifier system that uses a neural network-like approach. It has a single

layer local adaptive network with an n-tuple selection mechanism which is used to recognise human

faces and expressions, and is able to distinguish between smiling and frowning faces (Stonham,

1986). WISARD was trained with many binary exemplar images of each face, input to the system

from real-time video until a sufficiently high recall was achieved. This gave reasonable results,

although it was intolerant to scale, 3-D rotation, and lighting or background variation. WISARD

was not a distributed model, as trained concepts (individual faces) were held locally. The output for a

particular image was a numerical representation of the detector responses, rather than a classification

against trained input. This could form a personal identification code, either for confirmation of

known faces or for matching instances of unknown faces. This approach has been used again for

face recognition recently (Lucas, 1997), see Section 2.6.
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Multi-layer Perceptrons and Associative Networks

The Multi-layer Perceptron (MLP), commonly trained using gradient descent with error back-

propagation, is capable of good generalisation for difficult problems, but is notoriously difficult to

ensure global convergence under all training runs, as the non-linearity of the hidden units and the

nature of the input-output mapping lead to a large number of local minima, and training times

can typically be long. Cottrell et al. (1987), Fleming and Cottrell (1990) used multi-layer networks

with target output equal to input (auto-association) in order to compress photographic images. The

network was trained on random patches of image. The compressed signal could be taken from the

hidden layer of units (these values were effectively eigenvalues, the eigenvectors, called ‘holons’

here, being contained in the weight values between the unit layers), and these values could, in turn,

be put back in to decode or uncompress the original image as output values.

Cottrell et al. (1987) found that the non-linear arrangement of their multi-layer network did

not actually improve the compression of images when compared to networks using linear units. For

this reason, all following networks used for PCA, such as Turk and Pentland (1991) for instance,

have used simpler linear associative networks. However, Valentin et al. (1994) suggests that while

linear associative networks and MLPs using back-propagation which calculate PCA can be effective

for single-viewed classification tasks, they may not be as effective as HyperBF networks (Poggio &

Edelman, 1990; Brunelli & Poggio, 1991) in a nonlinear mapping task, for example the classification

of people with varying head pose (see Section 2.5.4).

2.5.3 Hierarchical Neural Networks

The Cognitron (Fukushima, 1975) and Neocognitron (Fukushima, 1988) were biologically-inspired

self-organising hierarchical approach to object recognition. The neural network structure had suc-

cessive layers of cells of increasingly large receptive fields with a cascaded grouping of features, which

allowed it to become invariant to scale, rotation, and translation. The recognition of analogue input

has been developed by Ting and Chuang (1993), but training still requires binary patterns, and the

approach has only been used on 2-D objects, such as numerals and digits, so it is not known how

such an approach would behave with 3-D variations.

The Cresceptron (Weng et al., 1993) had a similar retinotopic structure to the Neocognitron,

but differed in that its configuration could be automatically determined during learning. The

higher-level layers of units can be regarded as increasingly complex receptive fields, in that they

become more and more specific to the training objects. Information can be ‘grown’ incrementally,

with new network units being added as new concepts are detected. It was trained on complex

images containing faces from TV news programs, and appeared quite robust to expression and

minor pose variation (greater pose ranges could be explicitly learnt as different instances of the

same object). However, the approach is computationally expensive and has not been tested with

large numbers of objects or under large image variations, such as illumination.

Neurophysiological evidence has come from Perrett et al. (1989) for image-based coding in

face-sensitive neurons in the macaque STS area of the brain, showing a viewer-based, rather than

object-based, representation for faces. The view-invariance seen in some of the face cells has been

supported by work on high order cortical sensory areas by Rolls (1994). Wallis and Rolls (1997)

have also created a neural network simulation, ‘VisNet’, for learning spatio-temporally invariant

object representations based on observed responses of temporal cortical visual neurons. Hierarchi-

cal layers of competitive networks are used, with short range mutual inhibition within each layer.

This multi-stage feed-forward architecture was able to learn invariant representations of objects,

including faces. A wide range of invariances have been observed, including spatial-temporal, trans-

lation and view, using a modified Hebb-style training rule incorporating a temporal ‘trace’ of each

cell’s previous activity (Wallis et al., 1993). This approach is useful for simulation purposes, but its

complexity would not make it suitable currently for real-time applications.

The hierarchical style of network structure has had considerable success in overcoming rotation

and scale differences, but this type of processing requires considerable computational effort even
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to train with small amounts of data, due to the large numbers of layers the information has to

passed through. It is clear that 3-D objects can be invariantly represented in such structures (Rolls,

1995; Wallis & Rolls, 1997), but at present the computational load precludes them from real-time

applications. They would be suitable for a parallel process, but the specialised hardware required

would exclude them from task suitability this time through cost (Task Requirement 1a).

2.5.4 Radial Basis Function Networks

One can implicitly model a view-based recognition task using linear combinations of 2-D views

(Ullman & Basri, 1991) to represent any 2-D view of an object. A simpler approach is for the system

to use view interpolation techniques (Poggio & Edelman, 1990; Brunelli & Poggio, 1991) to learn

the task explicitly. Radial basis function (RBF) neural networks have been identified as valuable

adaptive learning model by a wide range of researchers (Moody & Darken, 1988; Broomhead

& Lowe, 1988; Poggio & Girosi, 1990b; Musavi et al., 1992; Ahmad & Tresp, 1993; Bishop,

1995) for such tasks. Their main advantages are computational simplicity, supported by well-

developed mathematical theory, and robust generalisation, powerful enough for real-time real-life

tasks (Pomerleau, 1989; Rosenblum & Davis, 1996). They are seen as ideal for practical vision

applications by Girosi (1992) as they are good at handling sparse, high-dimensional data and because

they use approximation to handle noisy, real-life data. The nonlinear decision boundaries of the

RBF network make it better in general for function approximation than the hyperplanes created by

the multi-layer perceptron (MLP) with sigmoid units (Poggio & Girosi, 1990b), and they provide a

guaranteed, globally optimal solution via simple, linear optimisation. The RBF network is a poor

extrapolator (compared to the MLP) and this behaviour can give it useful low false-positive rates in

classification problems. This is because its basis functions cover only small localised regions, unlike

sigmoidal basis functions which are nonzero over an infinitely large region of the input space.

Regularisation Networks are based on mathematical regularisation theory and include RBF and

HyperBF (HBF) networks in configurations where the networks have an equal number of hidden

units and training examples (Girosi et al., 1995). They can be seen as performing generalisation

through non-linear view approximation (Bülthoff & Edelman, 1992), which has the advantage over

linear interpolation (linear combination of views) (Ullman & Basri, 1991) in that it is less affected

by variation orthogonal to learnt variation, see Figure 2.1. The RBF network can be considered as

a special case of the more general HBF network (Poggio & Girosi, 1990b).

Once training examples have been collected as input-output pairs, that is, with the target class

attached to each image, tasks can be simply learnt directly by the system. This type of supervised

learning can be seen in mathematical terms as approximating a multivariate function, so that esti-

mations of function values can be made for previously unseen test data where actual values are not

known. This process can be undertaken by the RBF network using a linear combination of basis

functions, one for every training example, because of the smoothness of the manifold formed by

the example views of objects in a space of all possible views of that object (Poggio & Edelman,

1990).

Although Brunelli and Poggio (1992a) used a simple nearest neighbour classifier to discriminate

feature vectors, their success with their HBF networks for object recognition (Brunelli & Poggio,

1991) led them to conclude that an HBF network would be a more effective solution to their

template matching scheme (Brunelli & Poggio, 1993) for face recognition. Template matching is

related to RBF and HBF Network schemes, with the difference that Gaussian, non-linear functions

are applied to the correlation coefficients. The HBF network allows the use of non-radial basis

functions and may find a more optimal solution than the RBF (Brunelli & Poggio, 1991), as

more precision is available in the choice of basis function. They are less attractive for real-time

applications, however, as the calculations for the higher-order centre functions are computationally

more intensive than the simple Gaussian function used by the RBF network. The ability of such

networks to train according to very specific tasks is shown by Brunelli and Poggio (1992b), where

the HyperBF architecture was used to identity gender information from geometrical descriptions
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very similar to those used in Brunelli and Poggio (1991).

Ahmad and Tresp (1993) trained a variety of nets to recognise stationary hand gestures from

computer-generated 2-D polar coordinates of fingertips (not actual images). They achieved good

generalisation in 3-D orientation and their system was able to cope well even when much of the data

was missing. Their standard test data was best handled by a back-propagation net, but this performed

badly with missing or uncertain (noisy) features, suffering a serious fall-off in performance as more

elements were lost. They show, however, that a Gaussian RBF net can cope well with this type of

data, with a success rate over 90% even with 50% of the features missing. This indicates that the

RBF network would be suitable for learning the 3-D transformations and occlusion found in faces

under large variations in head pose.

Lando and Edelman (1995) used RBF networks in two separate stages, to capture pose and

lighting parameters (using high-frequency filters) and to classify individuals (using low-frequency

filters). In between the two networks, a face class specific transformation was applied to the original

image (using parameters from the first network) to align the test image with a single standard view

for all trained identities (discriminated by the second network). This is related to the analysis by

synthesis approach (Beymer & Poggio, 1995), in that there is only one training prototype of each

class. The difference is that the method attempts to transform the test image to the single canonical

view, rather than relying on interpolation between several views. Of course, this is not using the

valuable view interpolation ability of the RBF network, and it is not clear how intensive such

transformation are computationally.

A major advantage of the RBF over other network models, such as the MLP, is that a direct level

of confidence is reflected in the level of each output unit. This is because regions in input space that

are far from training vectors are always mapped to low values due to the local nature of the hidden

units receptive fields, so that ‘novel’ input will give a low activation. This is in contrast to the

global function approximation of the sigmoidal hidden units in the MLP, which can have spurious

high output in similar regions of input space, allowing high confidence output. In addition, the

normalisation of RBF hidden unit activities allow their output to represent probability values for

the presence of their class (Moody & Darken, 1989). In light of the probabilistic nature of the

RBF network’s output, we will be using a discard measure in our work to exclude low-confidence

output and reduce false positives.

2.5.5 Committees and Ensemble-based Networks

Committees of networks can be used to give a consensus opinion where each network is trained

with different parameters or data examples. The combination of results from all the networks may

be better than the use of the one that works best on test data, which may not generalise most

efficiently (Bishop, 1995).

An ensemble network scheme was used by Edelman et al. (1992), who had a series of RBF

networks, one for each person each trained on several images, with single output units. Output

from each network was combined and used as input for a second stage ensemble RBF network

which coordinated a final ‘winner take all’ classification. Each network only had one output,

which signified the strength of classification for a particular individual.

An ensemble of RBF networks was used by Gutta et al. (1995) to identify faces, each net-

work in the ensemble using different numbers of clusters and amounts of overlap. The number

of hidden units was not related to training examples, so training is more computationally intensive

than approaches using one unit per example, as extra effort is required to cluster the centre vec-

tors. However, subsequent classification may be less intensive, as the system will have fewer hidden

units. Although the FERET database used for testing includes a wide range of different pose views,

only results for the frontal views were presented. The system has been updated (Gutta & Wechsler,

1997) to use a decision tree to coordinate the output from the ensemble for a contents-based image

retrieval task. The decision tree component improved performance, but it is possible that a coor-

dinating RBF network (such as used by Edelman et al. (1992)) could achieve similar results more
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efficiently.

The interactive activation and competition (IAC) network model (McClelland & Rumelhart,

1981; Rumelhart & McClelland, 1982) has an ensemble style of organisation which can be used to

account for psychological phenomena in face recognition (Burton, Bruce, & Johnston, 1990), based

on the Bruce and Young (1986) face recognition perceptual framework model. ‘Pools’ of units,

representing face recognition units (FRUs), person identity nodes (PINs) and semantic information

units (SIUs), have inhibitory connections between their constituent units. These units then have

excitatory links with specific units in other pools to allow the activation in a FRU, for instance,

to activate that individuals PIN, to signal familiarity, and SIU, to allow more specific information

about that person. The FRUs are view-independent, so that the unit can become active from any

view of a particular face. This has been developed into interactive activation and competition with

learning (IACL) (Burton, 1994) to allow unknown faces to learn their own FRUs. The model was

not intended to be used as a functional system, but as a tool to confirm theoretical expectations.

Use of Negative Examples

Ensembles of networks, such as used by Edelman et al. (1992), rely on a second stage network to

utilise implicit negative knowledge, where if one input has a large value it will act as a negative

influence on all the other input units, because only one class can be present at any one time. This

approach may be made more accurate if explicit negative (non-class) examples are learnt alongside

the positive class examples. This technique has been shown to be of critical importance in building

robust face detection systems (Sung & Poggio, 1994; Moghaddam & Pentland, 1995; Rowley

et al., 1996). The selection of prototypical non-face training examples can be very difficult, as

they have to represent the entire class space of non-face images, which is considerably larger than

the class space of face images. Most successfully so far, Rowley et al. (1996) has trained networks

with a ‘bootstrapping’ algorithm which adds previous false detections to the training set as the

training progresses, which reduces the number of negative examples required. This shows that prior

knowledge of confusion in the distinction of classes can be used to guide the choice of appropriate

training examples. This issue is developed in Chapter 5, where we introduce the ‘Face Unit’ RBF

network model, which uses this type of positive and negative evidence to signal the presence of one

particular class.

2.5.6 Temporal Networks

Representations and reasoning only concerned with data from single points in time are ignoring

potentially useful information occurring through time, including significant temporal correlations

in image sequences. Study of the statistical properties of static images (Field, 1987; Hancock et al.,

1992) has shown some regularities, see Section 2.4.4. This has been extended to image sequences

(Dong & Atick, 1995) to show a high level of spatio-temporal correlation, showing that natural

time-varying images do not change randomly over space or time. If our data source provides

information over time, we would do well to take advantage of this.

Recognising simple temporal behaviours is an important capability in computer vision applica-

tions such as visual surveillance (Buxton & Gong, 1995b) and biomedical sequence understanding

(Psarrou & Buxton, 1993). Dynamic neural networks for such tasks can be constructed by adding

recurrent connections to form a contextual memory for prediction in time (Jordan, 1989; Elman,

1990; Mozer, 1994). These partially recurrent neural networks (RNNs) can be trained using back-

propagation but there may be problems with stability and very long training times when using

dynamic representations.

A limited alternative is to use a simple Time Delay structure which can provide fast, robust

solutions. The Time-Delay Neural Network (TDNN) model (for an introduction, see Hertz et al.

(1991)), incorporates the concept of time-delays in order to process temporal context, and has been

successfully applied to speech and handwriting recognition tasks (Waibel et al., 1989). Its structured

design allows it to specialise on spatio-temporal tasks, but, as in weight-sharing networks, the

reduction of trainable parameters can increase generalisation (Le Cun et al., 1989) and give some
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shift invariance when used as convolutional networks (CN) (Lawrence et al., 1997). A time delay

variant of the RBF network, the TDRBF network, has more recently been developed for speech

recognition (Berthold, 1994). This has the benefits of ordinary RBF networks over other models,

such as low numbers of tunable parameters and fast training times.

An even simpler approach than Time-Delays for processing image sequences was used by

Rosenblum et al. (1996) to create an ensemble of single emotion RBF networks. A decay constant

was applied to encode temporal facial optical flow information from several frames into a single

frame, so that earlier frames had less value than later ones when summed into the composite input

frame. Although this reduces the representation size. it creates ambiguities between spatial and

temporal changes as both have to be shown in the same space.

The capacity of temporal cortex for making associations (Stryker, 1991) has led research into

using temporal relationships in patterns for learning, for instance, different face views (Bartlett &

Sejnowski, 1996, 1997), using competitive Hebbian learning with a temporal ‘trace rule’ originally

proposed by Földiák (1991). In contrast to previous models, these temporal learning rules use dif-

ferences over time, rather than simple time windows, to directly learn those temporal relationships

required for specific tasks.

2.5.7 Discussion

The limitations imposed by the requirements for the face recognition task prevents most of the

computationally-intensive techniques from being used here. In particular, the most ‘biologically-

plausible’ approaches, such as the VisNet network model (Wallis & Rolls, 1997), IAC model (Bur-

ton, 1994) and the full Gabor processing of Petkov et al. (1993), are the slowest in operation.

An example-based view interpolation learning approach using Regularisation Networks, espe-

cially RBF networks, is very attractive as a face recognition technique, due to its simplicity and ease

of training. In addition, they provide fast and robust operation. We noted that there is evidence

that we use some kind of ‘face recognition unit’ to recognise familiar faces (Bruce & Young, 1986;

Bruce, 1988). In addition, primate vision systems seem to use some kind of view-based represen-

tations for recognition (Perrett et al., 1989; Perrett & Oram, 1993; Logothetis et al., 1994). These

ideas are partially captured by the RBF network where the first layer of the network maps the

inputs with a hidden unit devoted to each view of the face to be classified. The second layer is then

trained to combine the views so that a single output unit corresponds to the individual person. If

we regarded filter-based preprocessing as an early stage of representation of identity, we can now

regard hidden unit output from an RBF network as a later stage of that representation, which has

been transformed into a space of considerably fewer dimensions.

Up until this point, we have deliberately left out specific performance figures from our discus-

sion of face recognition research, as it is extremely difficult to compare work from different groups

when each chooses their own recognition task. Even current ‘state of the art’ tests, such as the

FERET database, can be seen as too easy if their test images are compared to those encountered in

realistic situations. Without dealing with expression, pose and lighting as confounding variables, a

system can appear to work well, but turn out not to be useful in a practical application. As discussed

in Section 2.1, truly robust systems would need to account for many other non-trivial aspects, such

as temporal behaviours, occlusion and speech-related facial changes.

We believe that the best approach to satisfying our specific task requirements is to learn face

classes over a wide range of poses with an RBF network. A preliminary test of the suitability of our

approach is given in the following section, where we compare our results directly with published

experimental results for other approaches using a common database.

2.6 Comparing Face Recognition Techniques

In the earlier sections of this chapter, we suggested that RBF network view interpolation with

filtering preprocessing was a good way forward to meet our task requirements. The RBF network
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Group Technique Images per Person Processing Time

1 2 3 4 5 Training Classification

Samaria HMM ? ? ? ? 87 ? ?

& Harter pseudo 2-D HMM ? ? ? ? 95 ? 4min

Lawrence Eigenfaces 61 79 82 85 89 ? ?

et al. PCA + MLP ? ? ? ? 59 ? ?

SOM + MLP ? ? ? ? 60 ? ?

PCA + CN 66 83 87 88 92 ? ?

SOM + CN 70 83 88 93 96 4hr <0.5sec

Lin et al. PDBNN ? ? ? ? 96 20min <0.1sec

Lucas n-tuple 54 68 75 78 81 0.9sec 0.025sec

cont n-tuple 73 84 90 93 95 0.9sec 0.33sec

1-NN ? ? ? ? 97 0sec 1sec

Howell RBF before discard 49 65 72 80 86 8sec 0.01sec

& Buxton after discard 84 90 91 95 95 8sec 0.01sec

Table 2.1: Test generalisation (% correct) and processing times for various face recognition tech-

niques used by various researchers using ORL Face Database of 40 people, averaged over several

selections.

has been shown to provide robust classification even where data is noisy or partially missing (Ahmad

& Tresp, 1993). Our original question (Howell & Buxton, 1995) was whether this ability can be

used with complex 3-D objects such as faces, where the data varies in lighting, expression and pose.

Here, we compare the RBF techniques with other methods using a standard database.

It is particularly important to establish that the RBF network is able to distinguish a useful

number of face classes, as this will indicate its potential as a practical technique for future applica-

tions. A suitable source of data to test this is the Olivetti Research Laboratory (ORL) database of

faces. This contains 400 images of 40 people, which is sufficient to satisfy Task Requirement 3a

(see Section 2.1). Details of the database are in Section A.1 in Appendix A. It should be noted

that comparisons with these separately published results is a quick and simple compromise, as the

test results presented here were collected on different systems and under different testing regimes.

However, they give a rough indication of comparative performance and suitability for our task

requirements.

2.6.1 Results

Table 2.1 summarises the results from several published papers, plus our own tests. Test generali-

sation performance for systems with differing numbers of training images are given, together with

times for the train and test (classification) stages (where available).

Hidden Markov Models

Samaria and Harter (1994) initially developed and experimented with the ORL database, using

conventional Hidden Markov Models (HMMs) as a graphical probabilistic approach to encoding

feature information. This approach used several subjective parameter selections, and gave a top

performance around 87% for a system trained with 200 images. Further work using pseudo 2-D

HMMs (Samaria, 1994) was able to improve this to 95%, but the computational complexity of this

approach seems to count this out as a useful real-time technique, as 4 minutes is a long time to wait

for a classification.
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Eigenfaces

Both Samaria and Harter (1994) and Lawrence et al. (1997) tested the ORL database with the

‘eigenface’ (Kirby & Sirovich, 1990; Turk & Pentland, 1991) approach. Both report performance of

around 90%, though the latter found that they could only get this by using separate training vectors

for each image. This is in contrast to Turk and Pentland (1991), who averaged the eigenfaces for all

images of each person in their tests. When tested with ORL data, this latter approach gave 74% for

5 training images per person (Lawrence et al., 1997). That this is much lower than the MIT results

(where results over 90% are common) would seem to indicate that the ORL database represents a

much harder task than the MIT face database (assuming the implementations were equivalent).

Convolutional Networks

Lawrence et al. (1997) used a self-organising map (SOM) to reduce the dimensions of the input

representation, and a five-layer convolutional network (CN) to give translation and deformation

invariance. This was faster than the previous HMM approach and performed equally well, but still

required several hours training time.

They compared the dimensionality-reducing abilities of the SOM with principal components

analysis (PCA), and the CN with a multi-layer perceptron (MLP). This latter approach gave very

poor results, especially when several hidden layers were used. It should be noted that the figures for

these approaches in Table 2.1 show the single best results from all combinations (which came from

a MLP with one hidden layer) rather than average results (which are given for the other approaches

from other groups).

Probabilistic Decision-Based Neural Networks

Lin et al. (1997) used a probabilistic, decision-based neural network (PDBNN) a modular network

structure with non-linear basis functions (each sub-network similar to a HyperBF (HBF) network

(Poggio & Girosi, 1990b)) that was able to train and classify much faster than the CN approach of

Lawrence et al. (1997), while reaching a similar level of performance.

Continuous n-tuple Classifiers

The continuous n-tuple classifier (Lucas, 1997) is an updated version of earlier n-tuple classifiers,

such as WISARD (see Section 2.5.2). The updating refers to speed and storage efficiency, so it

is likely that this technique would suffer the same problems with image variations such as pose or

lighting in real-world tests. However, the approach does train and classify quickly and provide a

high level of performance.

The figures shown are for tests with 200 3-tuples (600 values) per image. Using 500 4-tuples

(2000 values) per image improved recognition to 86% and 97% for the n-tuple and continuous

n-tuple classifier respectively.

Nearest Neighbour Classifiers

Lucas (1997) was also able to achieve very high performance using a simple 1-nearest-neighbour (1-

NN) classifier using a City-Block distance measure. The success of simple matching indicates how

constrained the database is in terms of lighting and pose, as such techniques will not be invariant to

such factors.

RBF Networks

To use the ORL data with the RBF network, we subsampled each image to 25�25 and applied

‘A3’ Gabor filter preprocessing (see Chapter 3 and Appendix C for more details). A simple discard

measure, based on the relative magnitudes of the output units, was used to remove low confidence

classifications (these being those where the highest output value was less than a certain ratio below

the next highest). Each training example was used as a centre vector for a hidden unit.

The RBF network approach was fast in training and the fastest in classification of all the pub-

lished techniques. Our experiments were conducted on a moderately fast Sun SPARC 20 work-

station. Test generalisation before discard was fairly poor in comparison to the other approaches,

though the results were well above random (2.5%). For 5 training examples per person, discarding
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39% of results allowed performance to be improved from 84% to 95%, which was comparable with

the best of the other techniques. The results after discard for the RBF network were especially

good where lower numbers of training examples per person were provided.

2.6.2 Discussion

Table 2.1 shows that although, in pure generalisation terms, our RBF network approach is not the

overall top performer, it does have a sufficient level of performance (95% after discard) for our target

application where it will have to deal with image sequences. In this type of application, training

data is relatively sparse (compared to the large range of variation in real-life images) and test data is

abundant. The success of the RBF discard measure, which makes it the top performer where low

numbers of training examples are available, highlights its efficiency in interpolating between even

small number of views for reliable classification. Although discarding does reduce the number of

useful classifications, a significant amount of data will remain when such techniques are used with

image sequences. This issue is taken up in Chapter 6, where the RBF network is applied to real-life

image sequences.

The ORL database is a highly constrained database and not designed to meet our task require-

ments. Thus, success in recognising the ORL faces does not necessarily indicate a suitability for our

less constrained face recognition task. For example, the constant lighting conditions do not require

an invariance to illumination to be developed, and thus no consideration has been made by the

other approaches to the issue of preprocessing. We are not able to know how the other techniques

would perform in the presence of variable lighting, but we believe that real-life applications would

require some type of preprocessing to overcome this kind of variability.

A particularly important point is that all the other face recognition techniques gave processing

times which are very much slower than the RBF network in classification of the ORL data. It is

apparent that the RBF network provides a solution which can process test images in inter-frame

periods on low-cost processors (Task Requirement 1a).

2.7 General Discussion

This chapter started by introducing our face recognition task and establishing its requirements.

This was followed by a discussion of previous face recognition approaches, in terms of acquisition,

representation and reasoning. We have evaluated a wide variety of general approaches with respect

to our specific task requirements. It is perhaps not surprising that many of the approaches to face

recognition discussed in this chapter do not fulfill these task requirements for the simple reason that

they were not designed with such an application in mind. We stress that success of an application

will be determined by relevance of the approach to the task.

The combination of Task Requirements 1a and 1b to be robust in the face of noisy and variable

data, and yet fast enough to give results in inter-frame periods with standard processors is demand-

ing, but not impossible. Simple filter-based preprocessing can give some invariance for the input

representation, and RBF networks will give speed and robust performance for the recognition itself.

The suitability of the RBF network approach for handling occlusion, covered by Task Require-

ments 3(c)iii and 3(d)ii, has been shown by results in Edelman and Poggio (1992) and Ahmad and

Tresp (1993).

In summary, we can see that our proposed filter-based RBF view interpolation scheme appears

to be very suitable for our target task: it combines fast training and testing times with the ability to

cope with complex 3-D transformations. Results using the ORL standard database indicate that the

network can discriminate useful numbers of face classes. We will establish further detailed evidence

of requirement fulfillment in the following chapters.

The rest of the thesis will be concerned with how to apply this network to our target application

of identity recognition in unconstrained domestic environments. The next chapter, in particular,

will look at the Euclidean distance measure and how variations in the images, such as resolution,
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pose and filter-based preprocessing methods, affect the distances between face identity classes. In

particular, we will concentrate on how such distances are modified with pose variations, as this is

crucial for our task. In addition, the reasoning component of the RBF network will be analysed

and compared with related classification methods.



Chapter 3

Representations of Pose-Varying Faces

The previous chapter has shown the suitability of our proposed approach to the main task of

face recognition, using a computationally efficient approach based on RBF networks with simple,

receptive field-based preprocessing. This chapter will introduce our main test database, the ‘Sussex

database’, which allows testing of face recognition techniques over moderate pose ranges. The

database contains images of ten people in ten different pose positions from face-on to profile, 100

images in all (see Section A.2 in Appendix A for specific details).

The task requirements specify a tolerance of large pose variation (Task Requirement 3(d)ii), and

it was necessary for us to create this specific database, as there is no other publically available data

that systematically varies pose over a useful range for all individuals. Generally, it is desirable to have

more widely-tested data, such as the ORL database (used in Section 2.6 of the previous chapter),

so that comparable results are available.

The first section of the chapter investigates how the image data varies over pose for each in-

dividual, specifically, in relation to Euclidean distance comparisons between images of the same

and other identity classes. We will be establishing how distinct such face-classes are under pose

change. This will provide a context for the second section, which is concerned with analysing the

individual classification components of the RBF network to see how (and whether) it can provide

superior performance to simple, non-learning classification methods, such as ‘nearest neighbour’.

The third section looks in depth at how preprocessing helps the learning and generalisation process

through modification of the face representation, using two specific receptive field function-based

techniques – Difference of Gaussian filtering and Gabor wavelet analysis.

3.1 Euclidean Distances for Faces

With the Sussex database as a source of suitable data, we now want to establish how difficult it is to

distinguish the individuals over varying pose. To do this, we can compare the Euclidean distances

(defined in Equation B.3 in Appendix B) of reference images to all other images in the database (the

test images), distinguishing two types of class distance:

Intra-class Distance The Euclidean distance between the reference image and a test image, where

both are of the same identity class.

Inter-class Distance The Euclidean distance between the reference image and a test image, where

both are different identity classes.

Obviously, if the former are less than the latter in all cases, the classification problem is solved,

as perfect discrimination between the identity classes will be possible based on simple comparison

alone. We do not expect this to be the case in practice, as real-life images are noisy and faces vary

enormously over pose, expression and lighting.
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We first look at the fundamental similarity mechanism we use for image-based face class dis-

crimination, the Euclidean distance measure. This is applied to vectors of our basic representational

‘feature’, the pixel or pixel-based coefficient. The simpler ‘City-Block’ distance metric is tested

later in Section 3.2.4.

3.1.1 Varying Face Resolution

It is important to first determine how the resolution of the data affects identity class discrimination

through changes in relative intra- and inter-class Euclidean distances, so that a useful standard image

size can be established for future tests. The original 100�100 window region is sub-sampled, using

averaging, to a range of resolutions between 100�100 and 6�6, see Figure A.4 in Appendix A.

Preprocessing

We consider that preprocessing will be an important part of any real-life application, where light-

ing variation will be expected, and therefore needs to be included even in initial studies of the

recognition process. Difference of Gaussians (DoG) filtering gives a useful level of invariance to

lighting, which helps with Task Requirement 3(c)ii. Although Section 3.3 will deal with the ef-

fects of preprocessing in detail, for these initial tests we will use DoG convolution with a single scale

factor (this will vary according to image resolution, see Table C.1 in Appendix C). The convolved

values are thresholded to give binary information which emphasises the zero-crossing boundaries

(see Section C.1.3 for specific details).

The representational ability of the smallest image resolution (6�6), which contains just 16 bi-

nary values after preprocessing, is obviously very limited, and we will not expect high generalisation

performance when using this data. In comparison, the full resolution (100�100) will contain very

much more information, but this may be more than is needed for the task, increasing computational

complexity needlessly and even losing generalisation through a dependence on finer pixel-wise reg-

istration for image matching.

Results

Figure A.8 in Appendix A shows how the Euclidean distances vary through resolution for one

specific image, pose 40� for one particular class (0). This one image is compared to all 100 images

in the Sussex database, the zero value corresponding to where it is compared to itself, where the

Euclidean distance is nil. It can be seen that there is a clear division between the same-class (shown

by the thick line) and the other-class distances, but this is clearest only for the frontal range (0�–45�)

of views. Interestingly, the resolution does not appear to greatly affect this degree of separability of

the other images of the same identity class from those of the other classes, apart from the lowest

resolution (6�6).

However, this intra-/inter-class distance distinction will vary according to the individual face-

class. For example, Figure A.9 shows similar comparisons as for Figure A.8, except with pose 50� of

a different class (5), and it is clear that there is much more inter-class confusion here than for the

earlier example. Indeed, very few of the intra-class distances are lower than the corresponding inter-

class distances, even at the highest resolution. Obviously, this indicates that some individuals will

be harder to distinguish than others, but also, more importantly, that while a simplistic, ‘winner-

take-all’ approach might work for one image (pose 40� of class 0), it cannot be assumed to work

for other poses and other identity classes.

Table C.1 in Appendix C shows that the resolution of the face image has a great effect on the

amount of data used to represent that image after preprocessing. Although the lower resolutions

offer extremely compact representations, Figures A.8 and A.9 show that they may not be as robust

in distinguishing individual classes as the higher resolutions. The 25�25 resolution is a good com-

promise between size and clarity of representation, having only 6% (5% after DoG preprocessing)

of the data values of the 100�100 resolution, with only minimal loss in information.

In summary, the 25�25 resolution of face image has been found to be a useful compromise be-

tween a compact and a comprehensive representation for specific images. Section 3.2 will demon-
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strate practically how the resolution affects the entire database when used to train a variety of

classifiers.

3.1.2 Varying Face View

The pose view of the person is another factor, besides resolution, that affects the inter-class dis-

tinction. This is illustrated by Figure A.12 in Appendix A, which shows all Euclidean distances for

six individual images at the 25�25 resolution from the Sussex Database, three each from classes 0

and 1 using pose angles of 0� (frontal), 40� and (a) 90� (profile). As in Figures A.8 and A.9, all 100

distances are shown on the graphs, connected by lines according to class, and the zero value can be

seen where the image is compared to itself.

Results

The extreme profile view (90�) is less distinct than the centre views in Figure A.12 in Appendix A,

and this will add to the problem of lack of interpolative data when we come to use these images

with the RBF network, which largely relies on data interpolation. Because of this, we can expect

that performance for the RBF networks using profile information will be significantly lower than

for the central views and also lower than for the frontal (0�) view, where the intra-class views remain

distinct for a greater range of views.

Intra-class Euclidean distances have been shown to be less, for some specific images in the

Sussex database at least, than for inter-class comparisons for small pose angle ranges. This shows

the potential of using such comparisons for recognition, especially where training examples can be

provided at regular pose intervals.

Figure A.12 shows some bias in intra-/inter-class distinction for the frontal range (0–45�) over

the profile range (45–90�). This may help to explain experimental results in unfamiliar face recog-

nition, such as O’Toole et al. (1995), where no advantage was found for ‘3/4’ views over frontal

views (instead both were equivalent and much faster to match than profile views). Bruce (1988)

took such results as supporting the view that 3/4 views were not serving as ‘canonical’ represen-

tations for recognition and that full-face and profile view might be separately represented. The

mid-pose views used in Figures A.8, A.9, A.12(b)(i) and (ii) all show that same-class frontal views

can quite often be discriminated from other-class views simply on the basis of Euclidean distance

alone. This can be contrasted to Figures A.12(c)(i) and (ii), which show that class distinction is

much lower when the extreme frontal or profile views are used as the reference.

3.1.3 Centralisation of Faces

The tests so far in this chapter have used face data which is centralised on the nose tip. This is

based on an intuitive assumption that keeping such a facial feature fixed in the image would make

comparisons over varying pose easier. This section is to check how our centering technique has

affected the representation by comparing it with face data where pose has not been taken into

account, using a simple framing of the head.

To create this alternate data set, we reprocessed the Sussex database images, adjusting the cen-

tering during face localisation to fit as much of the face onto the image, regardless of pose. This we

term face-centred data, in contrast to the original nose-centred data, and is illustrated in Figure A.7 in

Appendix A.

Results

Figure A.10 shows how the Euclidean distances vary through resolution for one specific image

using the face-centering algorithm. This can be compared to Figure A.8, where the identical

reference image was used, but with nose-centering. The face-centering appears to create smaller

inter-class and greater intra-class distances, which indicate that the class distinction is not as effective

as for nose-centering. An anomaly appeared in the face-centered 6�6 resolution graph, where the

representation is so coarse that a neighbouring image (50�) is actually identical, and so has a zero

Euclidean distance to the 40� image.
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The nose-centering technique we have employed here is not a rigorous, mathematical vec-

torisation of the image, such as used by Beymer (1995), but the hand-alignment of facial features,

such as the left eye and nose, over pose is shown to improve general class distinction (in terms of

Euclidean distance). We will also be able to show later that the nose-centered representation can

improve generalisation and reduce discard rates with RBF networks (see Table 3.2).

3.1.4 Discussion

This section has investigated how image resolution and face pose variations affect the distinction

between Euclidean distances for images compared with others within its class and with those from

other classes. We have been able to show that Euclidean distance comparisons can be used to

distinguish between images from same and other classes within the Sussex database, at least for a

few pose steps (each step is roughly 10�) closest to the pose angle of the reference image.

To see how different these distances are over the entire Sussex database, Figure 3.1 shows the

overall average value for all intra- and inter-class distances, on a pose-by-pose basis. In (i), one

image from a class (pose 40�) is compared to all others in the database. For clarity, the distances for

the other classes are averaged for each pose position (examples of specific values for these classes can

be seen in Figures A.8(c), A.12(b)(i), A.12(b)(ii) and A.13(b)) to provide a single line on the graph.

For (ii), the same process is carried out for five images from one class, and the lowest distance value

to those five images for each class at each pose position is then used as before (inter-class distances

averaged before plotting). A clear division can be seen between the two lines in (i), indicating

that the two types of distances can, in principle, be distinguished for most pose angles with a single

reference image. As has been shown earlier, however, there are specific images where the distinction

is unclear (for example, see Figure A.8(c)), and so contextual classification methods may be needed

to disambiguate such data. The 5-example graphs (ii), which use five examples of each class as

reference images, show a wider gap between the two average distance lines, indicating that the

increased class knowledge will improve classification.

The next section will go on to show how pose and resolution differences affect the learnability

of face classes by classifiers.
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Figure 3.1: Average Euclidean distances for 25�25 face images from Sussex database, with different

preprocessing, between same and other classes whilst varying pose angle (i) compared to one pose

angle, (ii) compared to 5 pose angles (using the lowest distance over the five).
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3.2 Learning Identity

The previous section established that the intra-class Euclidean distances were shorter than the inter-

class distances, but that this only was true on average. There will be individual images, perhaps

even a majority, where this is not true, and so to take a simplistic, ‘winner-take-all’ approach to

classification will be suboptimal.

We have identified the radial basis function (RBF) network as a suitable learning element for

our task in Section 2.6 in the previous chapter. In this section, we will concentrate on investigating

the individual parts of the RBF model. We can assess the contribution of 1) the Euclidean distance

comparisons with simple ‘nearest neighbour’ (NN) classifiers, 2) the non-linear Gaussian centre

function with Gaussian probabilistic neural networks (PNNs), and 3) the adaptive weight layer

using a standard RBF network. Appendix B gives specific details on the implementation of the

RBF network model used for the experiments.

We will be expecting a general improvement in generalisation performance as we progress

through the three stages to the full RBF network. These tests will all use a ‘50/50’ training

configuration, with 50 images (5 for each class, taken from alternate pose positions) from the

Sussex database being used for training and the other 50 for testing generalisation.

3.2.1 Nearest Neighbour (NN) Classification

The nearest neighbour (NN) classifier uses Euclidean distance comparisons to a set of ‘training’

reference examples to classify the test images. There is no training, except in the selection of five

reference examples for each class.

The NN classifier is implemented via the basic RBF network structure, having altered its

hidden-to-output unit weight layer. All the weights are set to 1 or 0 according to class. Weights

connecting hidden units to the output unit of their class are set to 1, all others 0. The Euclidean

distance is calculated by the hidden units, but no Gaussian is applied to these values.

Two types of NN classifier were used:

Winner-takes-all (WTA) Classifier This uses the single lowest Euclidean distance from the test

image to all 50 reference examples to give a classification. This is implemented by setting the

output of the winning hidden unit to 1, all others to 0.

Class-based Classifier This sums all Euclidean distance values for all 50 training images for each

class, classifying on the basis of overall value for each class. As this combines evidence from

several images for each person, we might expect it to outperform WTA.

Results

Table 3.1 shows the results for the two 5-example NN classifiers. The WTA arrangement gave

better performance than the Class-based arrangement. The WTA had all hidden unit outputs,

apart from the winning one, set to 0. This effectively removed any cooperative or undermining

influences from the other hidden unit values. The lack of a trained weight layer may well mean that

such contextual information is more confusing than helpful.

It can also be seen in Table 3.1 that generalisation performance is best at the highest resolu-

tions and tails off as the resolution is reduced. This confirms the expectations about general class

distinction trends arising from the Euclidean distance graphs seen earlier (such as Figure A.8 in

Appendix A). For comparison, Table 3.4 shows how 1-example NN classifiers (trained with one

example per class) were able to generalise with the same data. Obviously, the WTA and Class-based

NN schemes are equivalent in the 1-example configuration.

In summary, the WTA and Class-based NN classifiers were able to classify the Sussex database

to a reasonable level of performance without any learning. The simplest arrangement, WTA,

performed best.
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Resolution % Correct

NN (WTA) NN (Class-based) PNN

100�100 88 78 70

50�50 86 76 80

25�25 84 70 70

12�12 78 70 74

6�6 48 42 54

Table 3.1: Test generalisation for 5-example simple nearest neighbour (NN) classifiers and prob-

abilistic neural networks (PNNs) using DoG preprocessed images at varying resolutions (nose-

centred).

WTA NN classification takes the closest Euclidean distance from the test image to the training

examples to assign a class value. Class-based NN classification sums all distance values for all training

images for each class, classifying on the basis of overall value for each class.

3.2.2 Probabilistic Neural Networks (PNNs)

To assess the contribution made by the Gaussian centre function (see Section B.1 in Appendix B for

more details), we can use a radial Gaussian form of a probabilistic neural network (PNN) (Specht,

1990). As for the Class-based NN classifier, a network is implemented by using the RBF network

model structure. This time, the only difference between the RBF network and the PNN is that

the hidden-to-output layer of weights for the latter are all fixed at 1 or 0 according to class. The

PNN separates all the hidden units (pattern units) for each class, their activations being fed to a

summation unit, again separated by class.

Results

Table 3.1 shows the results for the PNN. The structure of the PNN is very similar to the Class-based

NN classifier, apart from the non-linear process of applying the Gaussian to the Euclidean distance

comparisons. Not surprisingly, therefore, the results are quite similar, showing an improvement

(over the Class-based NN classifier) in all resolutions except the highest (100�100). They are not

identical though, indicating that the Gaussian function has modified the group totals, and that this

generally will lead to an improvement in generalisation.

In summary, the Gaussian function used by the PNN is still not sufficient to allow it to out-

perform the simplest model, the WTA NN classifier, except at the lowest resolution (6�6) of data.

This may be due to the hidden unit activations being summed by class. This summing of all views

for each class may ‘blur’ class distinctions, preventing effective generalisation.

3.2.3 Radial Basis Function (RBF) Networks

To assess classification of the face images with a full RBF network model, we use two sets of

data, one nose-centred and one face-centred (for example, compare Figures A.5 and A.7). The

main difference between the RBF and the Gaussian PNN used previously is that the RBF has an

adaptive hidden-to-output weight layer (see Section B.2 in Appendix B for more details). This will

allow a greater influence of ‘context’ from hidden units of same and other classes.

We can test the RBF network with all the resolutions of face data from the Sussex database used

in Section 3.1 to check our initial predictions on the learnability of those representations which had

been made on the basis of Euclidean distance comparisons alone. We can also check the hypothesis

that the nose-centered data is a better representation for our task than the face-centered data.

Results

The results for the RBF network in Table 3.2 show that performance using nose-centred data is

generally better than when using face-centred data for all resolutions apart from the lowest (6�6),
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Resolution Centering Initial % % Discarded % After Discard

100�100 Nose 76 50 100

Face 72 66 100

50�50 Nose 82 42 100

Face 70 58 95

25�25 Nose 78 52 100

Face 62 64 100

12�12 Nose 72 46 96

Face 70 60 90

6�6 Nose 46 40 63

Face 64 40 87

Table 3.2: Test generalisation for 5-example RBF network using DoG preprocessed images at

varying resolutions and with nose- or face-centering.

which gives much poorer generalisation. These results match the relative class distinctiveness of

each resolution shown in the Euclidean distance graphs in Figure A.8.

Table 3.2 shows how the nose-centered face data is a more efficient representation than the

face-centered data, both for generalisation and for the proportion of low-confidence classifications.

The curious exception to this is for the 6�6 data where the use of the face-centered data get better

results than for the nose-centered data. Section 3.1.3 explains that this is due more to the coarse

granularity of the representation, rather than some useful invariance, so it is unlikely that this type

of data would be useful for any practical application.

Confidence Measure

As mentioned in Chapter 2, a useful feature of RBF networks is the availability of a level of

confidence in the output. This can be derived from the relative values of the highest and second

highest output units. The ratio between the two reflects how much contrast there is between the

successful output units and the others, and so the larger this is, the more ‘confident’ we can say that

the network is that the classification is correct.

The setting of a threshold on this ratio, below which the classification is discarded, allows greatly

enhanced test generalisation performance. Table 3.2 shows the performance for RBF networks

before and after discarding low-confidence classifications, using a threshold value of 1.8. The fairly

large percentage discarded is in line with our task requirements, which favour a low precision, high

discard approach.

This threshold value of 1.8 has been found to be a good compromise in practise, but it can be

tailored to Task Requirements. Figure 3.2 shows how varying the ratio as a threshold to discard low

confidence classifications affects the final generalisation performance, and indicates the suitability of

a threshold between 1.5 and 2.0.
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Figure 3.2: Effect on test generalisation (after discard) of changing the ‘low confidence’ threshold

for 50/50 RBF networks trained with DoG preprocessed 25�25 faces images from Sussex database.

The low confidence threshold is based on the ratio between highest and second highest output

units, and a value of 1.8 has been found to be useful in practise.
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Resolution Pose Initial % % After

Accuracy % Discarded Discard

25�25 �5� 34 84 38

�15� 70 84 88

Table 3.3: Test generalisation for 5-example RBF network trained on pose classes using DoG

preprocessed images.

The network is trained on all 10 poses for 5 people (5 examples of each pose) and tested on all

10 poses from the other 5 people in the Sussex database. An accuracy of �5� requires the exact

10� pose position in the image to be identified, whereas �15� allows pose positions to either side

of target as correct also.

3.2.4 City-Block vs. Euclidean Distances

The simpler ‘City-Block’ distance metric was also tried alongside Euclidean distance for compari-

son. This uses the summed total of the distances, but without the squaring used for the Euclidean

metric (compare with Equation B.3 in Appendix B):

dCB(i;c) =
N

∑
x=1

jix� cxj (3.1)

(notation defined in Appendix B). See Kohonen et al. (1981, Chapter 2) for more details of the

mathematical background and relationship between the two metrics.

Results

Unlike reports where the City-Block metric has been found to be much better than the Euclidean

for face classification, such as Lucas (1997), we found little difference in generalisation between the

two. Table 3.4 shows an example comparison for all classifiers used in this section.

One reason for this difference in the relative performance of the two metrics may be that we are

using binarised data values (where City-Block becomes equivalent to Hamming distance). City-

Block distances will be more different from Euclidean distances with grey-level values than with

binary, as the greater numerical range of values will be accentuated by the squaring done by the

Euclidean measure. This might give some extra generalisation whilst using grey-level information

in fairly constrained situations, but it is not clear that this would carry over into the more profound

variation encountered in real-life images, where preprocessing can be helpful.

3.2.5 Learning Pose

Next, we investigated whether pose classes can be found within the data. We train the RBF network

as before, with 5 examples of each class, and test with the other 5 images.

The 50/50 selection of alternate images in database means that the RBF network is trained on

all 10 poses from 5 of the people in Sussex database, and tested on the other 5 people, who were

therefore unseen during training.

Results

Figure A.11 shows that the intra- and inter-class Euclidean distances are much less well defined for

pose than for identity (for instance, Figure A.8). We can predict from this that specifying an exact

10� pose position will be harder than specifying an exact identity. However, since the poses are

linked, we might be able to improve recognition by asking for a less exact pose estimation, such as

�15�, which would require the identification of the pose within a 3-step range. Table 3.3 shows

that the RBF network performs rather poorly when asked to give the exact 10� pose position, but

this improves greatly for the lower precision task (�1 pose position).
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Classifier Distance Initial % % After

Metric % Discarded Discard

NN (WTA) City-Block 43 - -

Euclidean 43 - -

NN (Class-based) City-Block 43 - -

Euclidean 43 - -

PNN City-Block 32 - -

Euclidean 39 - -

RBF City-Block 39 83 80

Euclidean 39 90 100

Table 3.4: Test generalisation for 1-example classifiers using City-Block and Euclidean distance

measures trained with DoG preprocessed 25�25 faces images from Sussex database.

In summary, it was not as easy to distinguish pose classes as it was for identity classes. This

suggests that, for this database at least, images of different identity are further apart in Euclidean

space than images of different pose. We can say that the use of learning by examples distinguished

by Euclidean distances is therefore especially appropriate for face recognition in the presence of

large pose changes, as the distances are affected more by identity than pose.

3.2.6 Discussion

This section has presented generalisation performance from a variety of kernel-based classifiers

trained with the Sussex database. These show that it is possible to distinguish face classes using simple

classifiers moderately well even under fairly large pose ranges, but that the confidence measure from

the RBF network allows it to outperform the simpler methods.

Figure 3.3 clearly indicates that there is little advantage to using the higher resolution repre-

sentations for recognition, as good generalisation performance can be achieved with a fraction of

the data size of the 100�100 images (for example 5% for 25�25, 1% for 12�12, see Table C.1,

Appendix C). In addition, data storage and computational load can both be greatly reduced using

one of the lower resolutions.

We did not find the expected incremental improvement in performance through the three

classifiers, indeed, if one ignores the values after discard, the simplest classifier of all, WTA NN,

performed best. However, although the NN classifier and the PNN are both able to discriminate

the face classes fairly efficiently, the RBF network has the great advantage of providing a confidence

measure through a combination of the graded response from its hidden units and the learnt hidden

to output layer weights, which fulfills Task Requirement 3e (see Section 2.1). The success of the

WTA NN classifier shows that if your measure of similarity cannot be linked contextually with

evidence from the same and other classes, it is better to ignore it altogether. However, the success

of the RBF discard measure illustrates that such short-term approaches will not ultimately be able

to provide the best classification or generalisation.

Figure 3.4 shows a comparison of the ratios between highest and second highest output value

for each test image for PNNs and RBF networks. The PNN sums activations of only those hidden

units for the class, and so does not allow ‘contextual’ influence from other classes. In contrast, the

negative influence allowed in the RBF network weight layer gives it better performance than the

PNN. This mechanism is illustrated by Figure 3.5, which shows exactly how the weights from the

hidden units of one particular class vary according to which output unit they are connected to.

Obviously, the largest values occur when connected to the output unit for their particular class,

but besides that, there is quite a variety of values, even some positive ones, for the output units of

other classes. This demonstrates how the RBF network provides contextual ‘negative’ or non-class

information, unlike the NN classifier or PNN.
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Figure 3.3: Effect of changing the number of input data values on test generalisation for 50/50

classifiers with five training examples per class. This number is varied via the original image reso-

lution of face images from Sussex database before DoG preprocessing, see Table C.1, Appendix C,

for details.

Discarding is only shown for RBF, as the nearest neighbour (NN) classifiers and probabilistic neural

network (PNN) do not provide enough differentiation between output units to enable a discard

measure, see Figure 3.4.
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Figure 3.4: Confidence of network output represented as the ratio between highest and next highest

output units for specific test images from the Sussex database for 50/50 Gaussian probabilistic neural

networks (PNNs) and Gaussian radial basis function (RBF) networks.

The ‘Confidence Threshold’ level of 1.8:1 represents the discard threshold below which output

classifications are deemed to be low-confidence. In this case, 70% of all PNN classifications were

correct (none were high-confidence) and 78% of all RBF classifications were correct (100% of the

high-confidence classifications were correct).
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Figure 3.5: Values for hidden-to-output layer weights for a 50/50 RBF network, for hidden units

0-4 (corresponding to the 5 assigned training examples for class 0).

It can be seen that some non-class weights (those not connecting to output unit 0, in this example)

are positive, which is unexpected. It is this flexibility in RBF network weight values that gives it

superior generalisation performance over Gaussian probabilistic neural networks.

Worse generalisation performance (after discard) and lower discard efficiency was found using

the City-Block metric together with the RBF network, for example, see Table 3.4. This, combined

with little or no improvement in generalisation over the Euclidean metric, led us to retain the latter

for our tests, despite its greater computational load.

We have only used DoG preprocessing up to this point in this chapter. The next section will

present more detail about how different types of preprocessing affect representation and distinctive-

ness of face-classes.



44 Chapter 3. Representations of Pose-Varying Faces

3.3 Receptive Field Functions for Face Recognition

This section investigates types of image preprocessing that mimic the effects of receptive field func-

tions found at various stages of the human vision system. We compare how the face representations

they create affect learning and generalisation for the RBF network.

One of the main problems in computer vision, especially in face recognition, is dimensionality

reduction to remove much of the redundant information in the original images. Simple mecha-

nisms, such as sub-sampling, may give a rough reduction, but use of more specific prior knowledge

to apply more sophisticated preprocessing techniques to an image is still required for the best re-

sults. Specifically, appropriate preprocessing of input representations for a face recognition scheme

can overcome some of the problems of lighting and scale variations. Performance results here can be

assessed alongside the number of sampled values used per image to give a measure of the usefulness,

in the context of representation dimensionality, of a particular preprocessing technique.

One way of thinking about these input representations and mapping them onto our RBF

networks is to use the analogy with visual neurons. The receptive field of such a neuron is the

area of the visual field (image) where the stimulus can influence its response. For the different

classes of these neurons, a receptive field function f (x;y) can be defined. For example, retinal

ganglion cells and lateral geniculate cells early in the visual processing have receptive fields which

can be implemented as Difference of Gaussian filters (Marr & Hildreth, 1980). Later, the receptive

fields of the simple cells in the primary visual cortex are oriented and have characteristic spatial

frequencies. Daugman (1988) proposed that these could be modelled as complex 2-D Gabor filters.

Lades et al. (1993) and Petkov et al. (1993) successfully implemented face recognition schemes

based on Gabor wavelet input representations to imitate the human vision system, although they

were extremely computationally expensive.

This section contrasts the use of Difference of Gaussian (DoG) filtering and Gabor wavelet

analysis at a range of scales for our face recognition task. The question we want to ask here is

whether these later stages of processing make more information explicit than the earlier DoG filters

for our face recognition task.

3.3.1 Difference of Gaussians (DoG) Preprocessing

This section presents experimental results using RBF networks with the Sussex database of pose-

varying faces with Difference of Gaussians (DoG) preprocessing. Section C.1 in Appendix C gives

specific details on the DoG filters preprocessing technique.

Varying DoG Scale

The DoG scale parameter has a profound effect on the extracted image information, small values

focussing on high-frequency details with little blurring, large values concentrating on the low-

frequency features left after a high level of blurring, see Figure C.2. For example, the DoG scale

of 0.4 was used in Section 3.1 for the 25�25 data as a rough, mid-way value, having a 5�5 mask

which does not blur detail too much (see Figure C.2(b)). To explore how varying this scale value

affected the learnability of the Sussex face data, we trained 50/50 standard RBF networks with

several sets of data preprocessed at a range of DoG scales.

Results

Figure 3.6 shows that the scale has a clear effect on test generalisation, and confirms that the original

value of 0.4 is a good choice for future experiments, especially after discard. Task Requirement 3e

specifies that performance after discard will be of more interest than that before, as it reflects the

success (or otherwise) of removing false positive classifications.

Other DoG Parameters

Other aspects of DoG preprocessing besides the scale can be altered. For instance, the sampled

values can thresholded, or binarised, to give zero-crossing information, or left to give continuous

gradient values, see Section C.1.3, Appendix C, for more details.
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Figure 3.6: Effect on test generalisation for 50/50 RBF networks of changing DoG scale for the

preprocessing of 25�25 faces images from Sussex database, before and after discard.

Changes in DoG scale will affect the mask size and, therefore, the amount of data remaining after

convolution, see Figure C.2.

Number of Samples Thres- Grey-Level Initial % % After

Scales per Image holding Range % Discarded Discard

1 441 No Full 52 66 71

Yes Full 78 52 100

Reduced 90 22 100

4 1556 Yes Full 86 40 100

Table 3.5: Test generalisation for 5-example 50/50 RBF networks using non-thresholded (gradient)

and thresholded (zero-crossings) DoG preprocessing, with one and four DoG scales.

The single-scale DoG preprocessing used a scale value of 0.4, the four-scale preprocessing used scale

values of 0.15, 0.4, 0.8 and 1.3.
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Results

Table 3.5 shows the results with all these variations in the preprocessing stage. Training with ‘zero-

crossings’ thresholded data gave better generalisation compared to the non-thresholded ‘gradient’

data. The use of multiple DoG scales gave a modest improvement in performance, but required

four times as much data than for one scale.

The use of data with a reduced range of grey-levels gave a great increased generalisation com-

pared to tests using the full range of grey-levels, but it is an ad hoc heuristic at present, taking

advantage of the constrained conditions of the Sussex database, and it is unclear how to generalise

such a technique to all lighting conditions.

In summary, varying a wide range of parameters in the DoG preprocessing did not seem to

affect the results very much, and even using a multi-scale DoG representation did not significantly

improve performance. The improvement demonstrated by the use of a reduced range of grey-levels

(see Section C.1.2 for details) in the images prior to preprocessing indicates that further benefits

may be found by compressing the lower and upper ranges of the grey-level in order to emphasise

the central range. More generally, it may be that such incorporation of ‘prior knowledge’, in this

case highlighting detail in skin tones, is an important way of improving the face representation.

3.3.2 Gabor Filter Preprocessing

The second preprocessing technique we are looking at is based on Gabor wavelet analysis (Daug-

man, 1988). This differs from DoG preprocessing, which only had a scale parameter, by being able

to specify both scales and orientations of interest. The face representation we use is then made up

of the combination of all the filter coefficients, which means that the number of sampled values

used for each image will be greater than for DoG preprocessing. We will reduce the number of

sampled values by using a sparse sampling scheme, similar to Gabor ‘jets’ (see Section 2.4.4), instead

of performing a full convolution with the filters.

Section C.2 in Appendix C gives specific details on the mathematical basis of Gabor filters pre-

processing, and Section C.2.2 describes the sampling arrangements used for the different schemes,

although the main details are presented in Table C.2 and Figure C.5.

Gabor wavelets have been used previously for face recognition (Petkov et al., 1993; Würtz,

1994; Wiskott et al., 1997; McKenna et al., 1997b) but their use can be extremely computationally

expensive for sequential machines. The use of sparse sampling with Gabor filter masks offers a

simpler and less expensive method of preprocessing.

The Effect of Gabor Orientations

The oriented nature of the Gabor filters is what distinguishes them most from DoG filters. Fig-

ure 3.7 shows how the angle used for different single orientation Gabor preprocessing schemes

affects test generalisation. It can be seen that performance varies according to angle. Previously ,

the 90� orientation has been found to give some y-axis pose invariance (McKenna et al., 1996).

However, if one anticipates more general pose variation (in other words, over other axes), it may

not be appropriate to use Gabor preprocessing with only one orientation.

Results

Figure 3.8 shows how varying the number of orientations for the representation affected test gen-

eralisation and discarding of low-confidence classifications. Although the anticipated improvement

in performance was found moving from one to multiple orientations, little advantage was found for

using more than three orientation angles for the training data.

Table 3.6 shows the generalisation performance for RBF networks for the different 3-orientation

Gabor sampling schemes. The ‘A’ scheme proved to be the most successful arrangement, but un-

fortunately the 3�3 masks are too small to be considered proper Gabor masks (see Section 3.3.3 for

details). Binarisation (thresholding) of the coefficients was found to increase test generalisation for

all sampling schemes. All schemes used a full range of grey-levels in the images before preprocessing
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Figure 3.7: Effect of changing the angle of orientation in single orientation Gabor preprocessing on

test generalisation after discard for 50/50 RBF networks using 25�25 face images from the Sussex

database (see Section C.2, Appendix C, for details of sampling schemes).
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Figure 3.8: Effect of changing number of orientations on test generalisation and discard rates, using

Gabor ‘Bx’ preprocessing of 25�25 faces images from the Sussex database.
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Scheme Coefficients Thres- Initial % % After

per Image holding % Discarded Discard

A3 510 No 88 30 97

Yes 96 20 98

A3R 510 Yes 94 16 98

A3 (Sine only) 255 Yes 94 20 98

A3 (Cosine only) 255 Yes 48 42 72

B3 510 No 84 44 94

Yes 96 32 97

B3 (Sine only) 255 Yes 96 28 97

B3 (Cosine only) 255 Yes 66 56 77

C3 510 No 82 40 97

Yes 90 28 97

D3 420 No 70 46 89

Yes 82 42 97

E3 126 Yes 92 48 100

Table 3.6: Effect on test generalisation for standard 50/50 RBF networks of different 3-orientation

Gabor preprocessing schemes (described in Table C.2 in Appendix C).

except A3R. Interestingly, the advantage found using a reduced range of grey-levels in images for

DoG preprocessing (see Table 3.5) was not found in tests with Gabor preprocessing.

The coarse nature of the masks at the 3�3 resolution of mask for the A scheme is illustrated by

Figure C.4(c), where the real (cosine) masks at different orientations look very similar. Table 3.6

shows the effect of that when the individual masks were separated: the data set with only sine

coefficients performs as well as the joint dataset, whilst the data set with only cosine coefficients

does not perform well. This is discussed further in Section 3.3.3.

The Effect of Gabor Scales

Tests with individual scales (see Table C.4 in Appendix C for specific details) were made to inves-

tigate the effect of individual scales on the overall performance of the network. Identification of

redundant scales could significantly reduce the number of coefficients, and therefore the computa-

tion required.

Results

Figure 3.9 shows that quite dramatic savings can be made in the amount of information sampled

from the images without a large loss of test generalisation or impractical increase in epochs for

training convergence. For example, the A3-421 (E3) scheme uses only 126 coefficients, just a

quarter of the 510 used for the standard A3, and shows minimal loss of performance. In addition,

the effect of the individual Gabor scales was not shown to be additive, so the the A3-8 and A3-421

schemes, for instance, perform similarly even though they contain no common scales or sampling

points.

The predicted advantage of overlapping receptive fields (such as for the ‘B’ and ‘C’ sampling

schemes) over non-overlapping (‘A’ and ‘E’) was not demonstrated. The circular sampling scheme

‘D’ was also found not to be useful, probably because the resolution of the data was not sufficient

to give a useful range of sampling positions.

3.3.3 Preprocessing of Low Resolution Images

Task Requirement 3b specifies that the face recognition process must be able to work with low

resolution data, and we have chosen to use 25�25 as our main experimental image size. This
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Figure 3.9: Effect on test generalisation and discard rates of changing number of Gabor coefficients

through selection of specific scales (see Table C.4, Appendix C, for details) for A3 preprocessing of

25�25 faces images from Sussex database.

decision puts constraints on the nature of the filter-based preprocessing that can be performed, as

the number and extent (determined by the filter mask size) of sampling positions within the image

will be restricted. This range will be reduced further if samples are required to be collected at

discrete, non-overlapping positions, such as in the Gabor ‘A’ sampling scheme. This limitation led

to our initial use of very small filter masks, such as the 3�3, which, as can be seen in Figure C.4(c),

are very similar even when the orientation is varied and do not look like conventional Gabor filters

(such as in Figure C.4(a)).

There are two reason for this problem: Firstly, the 3�3 mask is made from a Gabor function

of period 1. When sampling at unit intervals, the cosine curve with period 1 is everywhere equal

to 1, and the sine curve is everywhere 0, and so neither can be made into a significant filter mask.

The sine part also has a similar problem with a period of 2. A second problem is that for sampled

data, a period of T is the same as a period of 1=(1�1=T) by the aliasing theorem, so that periods

less than 2 look like periods greater than 2.

The result of this is the approximation of a Gabor function in a 3�3 array is too crude to be

called a meaningful Gabor function, and that 7�7 masks (from a period of 3) are the smallest size

mask from a proper Gabor function.

A similar problem exists for the smaller DoG masks, though not with the cutoff point en-

countered with the Gabor filters. The smaller the DoG sigma value becomes, the poorer the

approximation. This is because it becomes harder to represent the smooth theoretical shape of a

DoG. Figure 3.6 shows that for our task, we can get good performance with the 0.4 and 0.8 scales.

In summary, the low resolution of data has constrained the range of filtering schemes we can

use (for Gabor preprocessing, in particular), because only a small range of filter sizes will fit over the

25�25 data. Although our Gabor ‘A’ scheme was theoretically flawed (though producing useful

results in practice), we have been able to show that the substitute ‘E’ sampling scheme can be used

as an ultra-compact replacement.

3.3.4 Discussion

This section has presented results with DoG and Gabor preprocessing of images from the Sussex

database using RBF networks.
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The Gabor filter preprocessing has been shown to be a more effective representation for gen-

eralisation using RBF networks with the Sussex database than the DoG preprocessing, despite

limitations brought about through the sparse sampling of the low resolution data. The oriented

nature of the Gabor filters has been shown to be more important than the scales for generalisation

performance.

The separation of image preprocessing and network training does not have to be as obvious as

we have presented it. Both filter-based preprocessing schemes can be visualised alternatively as an

extra layer to our network arrangement, similar to a convolutional or a weight-sharing network

(Le Cun & Bengio, 1995), sharing between input and receptive field layers (Edelman, 1995).

Figure A.13 in Appendix A shows Euclidean distance graphs using Gabor preprocessing for the

same reference images as used for the the DoG preprocessing graphs in Figure A.12(ii). These show

a much greater level of class separation for the Gabor graphs than for the DoG graphs, and may

explain the superior performance of the RBF networks using Gabor preprocessing (Table 3.6) over

DoG (Table 3.2). It can be seen that the ‘same class’ line is generally well below the majority of

the ‘other class’ lines, which indicates that the Gabor filtering has been able to represent identity

through the varying poses more effectively than the DoG, and will therefore be a better choice for

our face recognition task.

3.4 General Discussion

This chapter has shown how different factors in the input representation for our face recognition

task affects generalisation.

The first section, 3.1, presented an analysis of the Sussex face database in terms of Euclidean

distance comparisons, showing how resolution and face pose affected intra- and inter-class distances.

This showed that the image resolution did not affect class distinction greatly, but that the extreme

pose angles (0� and 90�) were much less distinct than the mid-range images (around 45�).

Figure 3.1 shows the differences for Euclidean distances for images compared with other within

its class and with those from other classes. The distances to all the other classes are averaged and

also when distances from five different images (rather than just one) are averaged together. This

latter graph shows that extra examples of the class will widen the Euclidean distance distinction (on

average, at least) between intra- and inter-class images.

Section 3.2 showed how individual elements of the RBF network contribute to the recognition

process. The simplest classification arrangement, the winner-takes-all nearest neighbour (WTA

NN) classifier, unexpectedly had the highest performance of all the classifiers (if discard for the

RBF network is ignored). However, because it throws away information about the activities of all

but the winning hidden unit, it is not able to offer a level of confidence that the RBF network can,

nor does it have the trainable weight layer, which can give both positive and negative contextual

class information, as shown in Figure 3.5. These features in the RBF network combine to provide

more valuable classification performance in terms of our Task Requirements, and the RBF network

will therefore always be more attractive than the NN as a classifier for our task.

The results using the various classifiers confirms that little advantage is gained through using

the higher resolution data, as good generalisation performance can be achieved with a fraction of

the data size of 100�100 images. In addition to the benefits of dimensionality reduction in terms

of lowered complexity, data storage and computational load are both greatly reduced through using

one of the lower resolutions. Because of this, we use the 25�25 resolution as standard for the

following work.

We investigated the suitability of the City-Block distance metric for our face recognition task.

Although it is simpler computationally, our results using it with the RBF network showed poorer

generalisation and a lower discard efficiency than found with the Euclidean measure. In practice,

the extra computation has not been found to be excessive, and we have used the latter metric for

all following experiments.
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Reassigning the Sussex database image classes in order to classify them in terms of specific pose

classes rather than identity classes met with less success than the other way around, though a lower

precision pose could be extracted (�15�).

Finally, Section 3.3 investigated how two preprocessing techniques, Difference of Gaussian

(DoG) filtering and Gabor wavelet analysis at a range of scales, affected the face representation and

generalisation performance for the RBF network. Although the DoG preprocessing did provide a

reasonable level of performance, it was not as good as the Gabor filtering preprocessing. The Gabor

representation has been shown to provide good identity class separation, even over a wide range

of scales and sampling schemes, with good performance being provided with three equally-spaced

orientations. Thus, we are able to replace the flawed 4-scale ‘A’ scheme (which gave the best

generalisation) with the 3-scale ‘E’ scheme for little penalty in performance.

This chapter has been able to find solutions to Task Requirements 3b (use of low resolution im-

ages), 3(c)ii (moderate tolerance to lighting variations), 3(d)ii (recognition of pose-varying images)

and 3e (provision of output confidence level). We have touched on the issue of invariance in this

chapter in Sections 3.1 and 3.2. The next chapter will look at invariance more closely, focussing on

shift, scale and pose invariance in particular.
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Invariance Properties of the RBF Network

This chapter explores the invariance characteristics of the RBF network, looking at how tolerant it

is to particular forms of image variation, and how this is affected by the preprocessing of the input

data. It is important to know how robust our system is to the variation anticipated for the main

task, as this will determine the accuracy of face segmentation and preprocessing computational load

required for data to be learnt or recognised.

The experiments in the first half of the chapter are designed to show how well the RBF network

can learn identity and generalise to novel images with data where the pose varies. For instance, can

profile images, where eye information from the far side of the face is occluded, be generalised to

front views? This will determine over how wide a pose range the system will be effective, and the

optimal paving of pose examples in the face ‘view sphere’ (discussed in Section 2.2). The second

half of the chapter investigates how 2-D shift and scale variations in the image affect this process.

The property of ‘invariance’ can be seen at different processing stages. Not only can the data

representation be thought of as being invariant to various forms of image variation, but the process-

ing and reasoning performed on that representation can also give further invariance. For instance,

a ‘foveal’ space-variant representation, discussed in Section 2.3.3, can give rotational and scale in-

variance simply by the nature of the representation. In addition, a preprocessing stage, such as the

Gabor filtering stage, will give scale invariance, and a reasoning process, such as a weight-sharing or

convolutional network (see Section 2.5.6), can give shift (translation) and deformation invariance.

Each stage can be seen to be contributing different aspects of invariance, but it is not easy to isolate

the characteristics of these stages, as they need to be considered together to give a coherent view of

the entire scheme.

Two basic types of invariance to a particular parameter, such as illumination or head pose,

can be distinguished: an inherent invariance which is present in any representation, processing or

reasoning stage, and a learnt invariance which can be obtained during the learning stage by the use of

training with suitably varying example images. Inherent invariance can be observed if the network

is trained with images which do not exhibit variation in the parameter, whereas learnt invariance

requires training images with examples of the variation.

The basic ability gained from the RBF network is that of interpolation between examples.

Naturally, this technique will not be utilised in the inherent invariance tests that follow, as these use

unvarying data (one example per class) and so there is nothing to interpolate. Therefore, we do

not expect to see high performance from the network in these tests, as they will be extrapolating

from the single training example to the test images. From the learnt invariance tests, we will be

determining what intervals through the varying data being tested provide optimal interpolation

from the hidden units and therefore give the best invariance performance.
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4.1 Test Details

All the experiments in this chapter use the 100 image, 10 person ‘Sussex Database’, for details see

Section A.2, Appendix A. This database has been designed to test recognition abilities for faces over

a 90� range of poses from frontal to profile, see Figure A.5 for example. A pixel-based representation

of the 2-D image, used as a 1-D vector for input to the network, will not provide any particular

invariance to image variation by itself. It will be the preprocessing and reasoning stages that provide

the necessary invariance. To compare and contrast the effects of preprocessing without a large

number of results, most of the tests will concentrate on two applications of the DoG and Gabor

techniques discussed in Section 3.3 of the previous chapter:

Single-scale Difference of Gaussians (DoG) filtering This is performed as a convolution of

the image with a 2-D DoG filter mask of a single scale factor (0.4), with thresholding to give

binary zero-crossing information. Each processed image has 441 samples, corresponding to a

21�21 convolution of the original 25�25 image.

Gabor filtering This is 2-D Gabor wavelet analysis at four scales and three orientations (termed

‘A3’ in Section 3.3.2). Each processed image has 510 coefficients, corresponding to the

outputs of the different scaled and oriented filters at different positions.

4.2 Pose Invariance

Task Requirement 3(d)ii specifies an invariance to pose, and so it is important to test our system to

determine what limits it has in this respect. In our potential environment, the subjects are allowed

unrestricted movement around the room, and therefore will be visible at any pose angle towards the

camera that is physiologically possible for the head around the vertical (y-) axis. Obviously, views

such as the back of the head are not learnable, in terms of identity, especially as the requirements

specify an invariance to hair style (Task Requirement 3(d)iii).

A useful system in an unrestricted environment should be expected to cope with the full range

of views that contain facial information, which is roughly�120�, where 0� is the frontal view. Such

a wide pose range is in contrast to many face recognition systems which do not explicitly dealt with

pose, preferring to restrict data to face images with very slight pose variation (typically �15�),

which can be approximated as linear. RBF networks, in view of their interpolation properties,

should allow some pose invariance (given sufficiently close examples for effective interpolation),

but the extent of this will need to be determined empirically.

In this section, we will be testing the RBF network for two types of pose invariance by training

with two different arrangements of the data examples: the first searches for inherent invariance by

training with unvaried images (in other words, one fixed pose for all classes) and testing with varied

images only (all the other poses not seen during training), the second is looking for learnt invariance

by training with explicit examples of pose variation.

4.2.1 Inherent Pose Invariance

The pose invariance that we have termed ‘inherent’ in this section is the generalisation obtained

when the RBF network has been trained with images that have no pose variation (that is, they all

come from one fixed pose position), and is then tested with images of different pose to that used

for training.

When testing for inherent pose invariance with the Sussex database, where all images for each

class have a different pose angle, there can only be one image per class available for training. This

type of training will produce a 10/90 RBF network, with 10 training examples (one per class) and

90 test images.
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(b) Gabor preprocessing, average discard 65%

Figure 4.1: Inherent Pose Invariance: Test generalisation over face pose view with 10/90 (trained

with one image per class) extrapolating RBF networks, the training view varying over pose.

Results

Figure 4.1 shows how the specific pose angle used to train the 10/90 network affects the test

generalisation, and it can be seen that network performance is rather poor whatever the pose

angle used to train it. As discussed above, this network arrangement is effectively being tested

for pose extrapolation, as only one example of each class is available for learning. This kind of

extrapolation from data is not a particular strength of RBF networks, as they are much better suited

to interpolation. We expect performance for the interpolating RBF networks in the next section

to be significantly better than these extrapolating networks.

The chaotic nature of the graph lines for the ‘after discard’ values in Figure 4.1 reflects how

little information remains after extremely high discard levels. It is more informative here to compare

the ‘before discard’ performances, which are roughly similar in shape. The front to middle range

of poses, around 15–45�, appear best for generalisation. This corresponds to all the major facial

features being visible on the face, without being flattened or foreshortened as they are at more

oblique angles. This may have a similar basis to psychological findings on a 45� or ‘3/4 view

advantage’ in face recognition (Bruce et al., 1987), see Section 3.1.1 for further discussion.

A different view of the RBF network’s ability to extrapolate can be seen in Figure 4.2, which

shows how the numbers of correct classifications vary by pose angle of the test images for varying

pose angle in the images used to train the network. As could be expected, the 40� trained network

(c), where the test images span a �45� range relative to the trained image, does better than the 0� (a)

and 90� (b) trained networks, which have to generalise to test images up to 90� from the trained

image. The graphs clearly show how generalisation tails off as the angular difference between the

train and test image increases.

In addition, it can be seen in Figure 4.2 that the frontal views (0–40�) have an advantage, in

terms of generalisation, over the profile end of the pose range (50–90�) regardless of the training

pose angle. As mentioned above, such an advantage may be due to images in the former pose range

containing a greater area of facial information (more pixels representing part of the face) than those

in the latter range.

Finally, Figure 4.2 also shows how the discard measure removes a large proportion of the cor-

rect classifications in order to eliminate false classifications, especially in (b) (compare these to the

generalisation rates after discard in Figure 4.1). The lower the black bars are in comparison to the

shaded bars, the less of the original correct output is being retained. As discussed in Section 3.2.3

and shown in Figure 3.2, the ratio of lost true positives to discarded false positives can be adjusted

according to requirements. In general, we expect large amounts of data and can justify a fairly high

discard rate, but in this case, it is not clear there is enough useful data remaining after discard.
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(a) Trained with pose angle 0�
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(b) Trained with pose angle 90�
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(c) Trained with pose angle 40�

Figure 4.2: Inherent Pose Invariance: Number of correct classifications (out of 10) of test images at

specific training pose angles for 10/90 extrapolating RBF networks with DoG preprocessing.
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Network Number of Number Number of

Training examples per Class Test images

20/80 20 2 80

30/70 30 3 70

40/60 40 4 60

50/50 50 5 50

Table 4.1: The four different types of interpolating RBF networks, used to test learnt pose invari-

ance.

Pre- Network Training Training Pose Initial % % After

processing Examples Angles (�) % Discarded Discard

DoG 20/80 2 20,70 48 73 91

30/70 3 20,50,70 61 56 94

40/60 4 10,30,60,80 67 67 100

50/50 5 10,30,50,70,90 78 52 100

Gabor 20/80 2 20,70 71 51 95

30/70 3 20,50,70 80 39 98

40/60 4 10,30,60,80 88 35 97

50/50 5 10,30,50,70,90 96 20 98

Table 4.2: Learnt Pose Invariance: Effect on varying number of training examples on test general-

isation for interpolating RBF networks with DoG and Gabor preprocessing, both before and after

discarding of low-confidence classifications.

Summary

Although there does seem to be some inherent pose invariance in the RBF network, it does not

seem to be very controllable due to the low number of example training views. This means that the

extrapolating RBF networks we used in this section are only usefully invariant over a pose range of

about �20�.

It should be noted that greater pose invariance is expected if interpolation between trained

views is used. The next section will be testing this type of interpolating RBF network to confirm

this expectation.

4.2.2 Learnt Pose Invariance

This section presents experiments where the RBF network learns face-class information from more

than one example for each class. This will allow better generalisation than for the extrapolating

networks above, as these networks can interpolate between training views of the same person at

different pose angles.

The network configuration allowed for this type of test is much less constrained than for the

extrapolating networks in the previous section (they were confined to one network size due to

the nature of the Sussex database), and we are able to perform experiments with four types of

interpolating RBF networks, ranging from 2 to 5 training examples per class. The specific details

for these are in Table 4.1.

Results

Table 4.2 shows the results for the four types of interpolating RBF networks with fixed selections

of training pose angles. All configurations provided good levels of generalisation performance, es-

pecially after discard. This confirmed the expectation that interpolation between training examples

is crucial for effective use of the RBF hidden units for pose invariance.
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(a) 20/80 networks trained with pose angles
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(b) 50/50 network trained with pose angles

10�, 30�, 50�, 70�, and 90�.

Figure 4.3: Learnt Pose Invariance: Number of correct classifications (out of 10) of test images at

specific pose angles for interpolating RBF networks with DoG preprocessing.

This table also shows that the main advantage gained by adding more training examples per class

was in the reduction in number of classifications discarded through low confidence, rather than an

improvement in the generalisation rate (although there were more correct classifications made).

Although the 50/50 RBF network using DoG preprocessing has a slightly higher generalisation

rate after discard than the network using Gabor preprocessing, it has a much higher discard rate.

The result of this is that it gets 24 correct out of only 24 left after discard, rather than 39 out of

40 for the Gabor preprocessed data, so there was less useful information overall. A better, more

controllable, confidence measure is developed using these 50/50 networks in Section 5.2 of the

next chapter.

Figure 4.3 shows how the number of correct classifications for specific 20/80 and 50/50 net-

works vary according to the pose angle of the test images. It can be seen that there is slightly better

generalisation performance for images from the frontal views (0–40�) than for the profile end of the

pose range (50–90�).

This higher level of generalisation for the interpolating RBF networks with the frontal, rather

than profile, views is a similar response to that seen in the previous section (see Figure 4.2) with

the extrapolating RBF networks. However, the interpolating networks here are different in that

they were able to maintain some generalisation performance over all pose angles for test images,

whilst the extrapolating networks completely failed to recognise test images at some pose angles,

for instance 80� in Figures 4.2(a) and (c).

Influence of Training Selection in Learning Pose

To compare the interpolating RBF networks with the earlier extrapolating networks in a more

direct way, a range of two-example per class 20/80 and three-example 30/70 networks were tested,

having been trained with differing pose selections, similar to the tests done in Section 4.2.1 for

inherent pose invariance, from very widely spaced intervals to very close intervals between the

training examples.

It was immediately clear that the behaviour of these two networks, in Figure 4.4, with two and

three examples per class, was less erratic than the 10/90 (see Figure 4.1), which only had one per

class. In addition, these networks were able to give a more useful level of generalisation, especially

after discard.

Summary

We have been able to show learnt pose invariance in interpolating RBF networks, which have

several training examples (each of different pose) for each class. These networks were able to
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(ii) 30/70, average discard 68%.

(a) DoG preprocessing
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(i) 20/80, average discard 63%.
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(ii) 30/70, average discard 48%.

(b) Gabor preprocessing

Figure 4.4: Learnt Pose Invariance: Test generalisation with 20/80 (trained with two images per

class) and 30/70 (three per class) interpolating RBF networks, varying over selections of pose angles:

from left to right, widely to closely space intervals.
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(a) top left (b) top right (c) normal view (d) bottom left (e) bottom right

Figure 4.5: Example shifted versions of the original front view of one individual from the Sussex

database, used to test for shift invariance.

generalise effectively when tested with images with head pose that lies between that of at least two

of the training examples.

The increase in generalisation performance from the two- (20/80) to three-example (30/70)

networks indicates that a good level of pose invariance is provided by each RBF hidden unit over a

pose range of �20�, with �15� providing a high level of generalisation.

4.2.3 Discussion

The RBF network has a limited inherent pose invariance, due to its poor extrapolation ability, al-

though this can be improved via preprocessing (see Figure 4.1). The key to enhanced performance,

both in higher generalisation and lower discard rates, is in providing training examples within the

anticipated test pose range, using a suitably close interval between training pose angles, so that the

RBF network can interpolate effectively.

4.3 Shift and Scale Invariance

This section tests the RBF network with some image variations that are likely to be encountered

in real-life data, where automatic face localisation will not always be exact. Two type of errors may

occur in an automatic localisation stage of the processing of face images:

1. The face may be incorrectly centred.

2. The face size may be incorrectly determined.

These errors correspond to the two specific modes of image variation under which we will be

testing generalisation:

1. A translational shift of the face, so that the face is no longer centred compared to the standard

‘nose-centred’ face position determined for the Sussex database (we assume this original

position was correctly registered, see Section 3.1.3 for further details).

2. A scale variation of a normally centred face, so that the face is no longer the same size

compared to the standard face size determined for the Sussex database.

It is important to know, in each case. how much invariance can be expected from the RBF

network, so that trade-offs between explicit processing stages for specific types of invariance can be

made, and the bounds on localisation accuracy determined. Minor tolerance to these two variations

is task requirement 3(c)i from Chapter 2.

4.3.1 Shift- and Scale-Varying Data

In order that each specific mode of 2-D variation in the images could be studied separately, each

were isolated by creating two new data sets of 500 images each from the original 100-image Sussex

dataset:
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(a) +25%, 111�111 (b) +12.5%, 107�107(c) normal, 100�100 (d) –12.5%, 94�94 (e) –25%, 87�87

Figure 4.6: Example scaled versions of the original front view of one individual from the Sussex

database, used to test for scale invariance, with relative size to the normal sampling area, and size of

window grabbed from (in pixels).

Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 100/400 DoG 12 89 7

Gabor 35 82 47

Scale 100/400 DoG 48 76 76

Gabor 83 36 88

Table 4.3: Inherent Shift and Scale Invariance: Effect on test generalisation for the RBF network of

different variations in the dataset, both before and after discarding of low-confidence classifications:

networks trained with all ten non-varied versions of poses for each person and testing with varied

versions (100 training and 400 test images).

� A shift-varying data set with five copies of each image: one at the standard sampling ‘window’

position, and four others at the corners of a box where all x,y positions were �10 pixels from

the centre (see Figure 4.5).

� A scale-varying data set with five copies of each image: one at the standard sampling ‘window’

size of 100�100, and four re-scaled at �12.5% and �25% of its surface area, ranging from

87�87 to 111�111 (see Figure 4.6).

Similarly to the previous section, where we dealt with pose invariance, we experiment with the

RBF network with two different types of data examples: the first searches for inherent invariance by

training with original images only, the second is looking for learnt invariance by training with shift

and scale varying images.

4.3.2 Inherent Shift and Scale Invariance

The experiments in this section are testing for the inherent shift and scale invariance in the RBF

network using the Sussex database. Inherent invariance is the generalisation exhibited by the net-

work to test images of a particular type of variation, in the absence of exposure to that variation

through explicit training examples.

To test for this intrinsic shift or scale invariance, only the original image from each group of

five (see Figures 4.5 and 4.6) is used for training, the four varied ones being reserved for testing; see

Figures 4.7(a)(i) and (ii) for a diagram of how this is done. This means that for all experiments in

this section, there are 100 training and 400 test images.

Results

From the results in Table 4.3, it is immediately obvious that the RBF networks trained with no

shift or scale variations performed very differently when tested with the shift rather than with the

scale varying data.

In the absence of explicit training examples, there was a complete failure of generalisation in

the network using the shift-varying test data with DoG preprocessing, as performance after discard
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(a) Inherent invariance tests using original face images from all 10 pose angles: 10 training (black)
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(b) Learnt invariance tests with images from two pose angles: 10 training and 40 test images.
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(c) Learnt invariance tests with images from five pose angles: 25 training and 25 test images.

Figure 4.7: Selection of training and test data from the 50 images available for each person with the

(i) shift and (ii) scale varying data.
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Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 100/400 DoG 38 85 85

Gabor 69 60 89

250/250 DoG 52 71 92

Gabor 85 35 98

Scale 100/400 DoG 44 77 78

Gabor 64 55 88

250/250 DoG 66 57 94

Gabor 90 26 97

Table 4.4: Learnt Shift and Scale Invariance: Effect on test generalisation for the RBF network of

different variations in the dataset, both before and after discarding of low-confidence classifications:

networks trained with all five shift or scale-varied versions of two (100/400) or five (250/250)

equally spaced poses for each person.

(7%) being even lower than random (10%). The network using Gabor preprocessing was able to

give a low level of useful generalisation.

In contrast, the scale-varying test data appears to be much easier for the network to generalise

to, even without explicit training examples, and a useful level of performance was obtained with

both types of preprocessing. As before, the Gabor preprocessed training data was easier to learn and

generalise with compared to the DoG preprocessed data, and networks using the former were able

to give a high level of generalisation performance, even without discard.

Summary

This section has shown that the RBF network has a significant inherent invariance to scale differ-

ences with the Gabor preprocessed face data from the Sussex database, and a moderate invariance

with the DoG preprocessed data. In marked contrast, the shifted images were very much harder for

the network to generalise to with both preprocessing techniques.

Figures 4.8(a) and (b) show that these differences primarily arise out of the choice of prepro-

cessing, although the scale transformation also seems to alter the image vector less than the shift

transformation. This is shown by the ‘other class’ line for the Gabor scaled images, (b)(ii), being

noticeably further away from the ‘same class’ line than for the other combinations of transformation

and preprocessing.

4.3.3 Learnt Shift and Scale Invariance

The experiments in this section test for learnt shift and scale invariance. As before, they use a

fixed selection of pose positions for training examples, but this time use all five versions (4 varied,

1 unvaried) of each original image. This helps the network to learn about the shift and scale

image variation during training and thus develop a learnt invariance. The difference between the

generalisation performance found in the previous section (with inherent invariance) and in the tests

in this section will be due to this learnt invariance.

Two levels of training are used in this section, corresponding to the two- (Figures 4.7(b)(i)

and (ii)) and five-example (Figures 4.7(c)(i) and (ii)) networks for pose invariance in Section 4.2.2.

These use 10 and 25 training images for each class, creating 100/400 and 250/250 networks re-

spectively.

The first level of training is used to allow a direct comparison with the results from the previous

section, as it uses the same number of training examples. The second is used to establish whether

the same level of performance improvement seen in Section 4.2.2 for five-example pose invariance

networks over two-example networks (see Table 4.2) would be repeated for the shift and scale

invariance networks.
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Results

The results in Table 4.4 shows that not only can the RBF network learn identity in spite of pose

variations, but it can continue to be invariant to pose in the presence of other variations. In

addition, it can learn an invariance to scale variation more easily than shift as shown by both the

better classification performance and the lower discard rates.

Interestingly, the inherent invariance 100/400 network using Gabor preprocessed data, with a

generalisation rate of 83% before discard (shown in Table 4.3), was able to perform better than

the learnt invariance 100/400 network using Gabor preprocessed data, with only 69% before discard

(shown in Table 4.4).

The 5-pose example 250/250 networks gave high levels of generalisation with both types of

preprocessing.

Summary

These results suggest once more that the use of only two learnt pose views for training the RBF

network is not the most efficient arrangement for good pose generalisation, especially when this is

required in addition to scale invariance, and that three or more are required for robust performance.

This is backed up by the superior performance exhibited by the 5-pose example 250/250 networks,

which corresponds to the high performance obtained from the learnt pose invariance 50/50 net-

work (Table 4.2). This indicates that there are sufficient pose examples in the 250/250 networks to

interpolate efficiently.

It should be noted that this discussion of an absolute number of examples required for good

generalisation is only relevant within the specific context of the 90� pose range encountered in the

Sussex database, as other ranges in different data will obviously require differing amounts of training

views.

4.3.4 The Contribution of Multi-Scale Preprocessing

The Euclidean distances graphs in Figures 4.8(a) and (b) indicate that the Gabor preprocessing does

separate the within-class images from the other-class images more than the DoG preprocessing for

the shift and scale varying data, although the effects appear quite small.

To investigate further why there is such a big difference between the two preprocessing tech-

niques when using the shift and scale-varying data, further tests were made to determine if it was

the multi-scale nature of the Gabor preprocessed representation that gave its advantage, rather than

the design of the filters themselves. These used two variants on the DoG and Gabor preprocessing

schemes used previously:

Multi-scale DoG Preprocessing This used 4 scale factors (0.15, 0.4, 0.8 and 1.3) to give 1556

samples per image (compared to 441 for the normal single scale representation).

Gabor A6 Preprocessing This is the same as used in Chapter 3, having six orientations and four

scales, and has 1020 coefficients per image (the standard A3 Gabor preprocessing having 510,

see Table C.2). This was used simply as a control to compare to the multi-scale DoG method,

as it had similar numbers of data values per image.

Results

The results using the multi-scale version of the DoG preprocessing for the shift and scale-varying

data (Tables 4.5 and 4.6) are very similar to the original tests using the normal DoG and Gabor

schemes (Tables 4.3 and 4.4), bearing in mind that more data samples were provided, which should

have improved the learnability of the task. Of course, no amount of extra data will help if the

representation is not appropriate to the task.

If it is not the different scales in the representation which are improving generalisation, it must

be the oriented nature of the Gabor preprocessed data which is significant. There is a finite limit to

its usefulness, as shown by the results in Figure 3.8 in Section 3.3.2 and here. These indicate that

performance is not enhanced through the use of more than three orientations.
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(a) Single scale (normal) DoG preprocessing
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(b) Multi-scale (normal) Gabor preprocessing
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(c) Multi-scale DoG preprocessing

Figure 4.8: Euclidean distances for images from the Sussex database to same- and other-class images,

averaged over all classes, varying over specific shift and scale variations, (i) shift, (ii) scale, and

different types of preprocessing.
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Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 100/400 Multi-DoG 9 88 4

Gabor A6 37 82 58

Scale 100/400 Multi-DoG 57 66 77

Gabor A6 78 48 94

Table 4.5: Inherent Shift and Scale Invariance with extra data values: Generalisation rates for RBF

networks trained with all ten non-varied versions of poses for each person and testing with varied

versions (100 training and 400 test images).

Variation Network Pre-processing Initial % % Discarded % After Discard

Shift 250/250 Multi-DoG 67 62 97

Gabor A6 85 40 95

Scale 250/250 Multi-DoG 80 44 99

Gabor A6 87 31 99

Table 4.6: Learnt Shift and Scale Invariance with extra data values: Generalisation rates for RBF

networks trained with five shift or scale-varied versions of five equally spaced poses for each person

(250 training and 250 test images).

Summary

It was concluded that providing a range of scales in the DoG preprocessing stage will not, in itself,

provide the representation with the same generalisation power that the Gabor process did. This

is backed up by the similarity of the Euclidean distance values between the single and multi-scale

DoG preprocessed images in Figures 4.8(a) and (c).

In comparison, adding extra orientations to the Gabor preprocessing for the A6 data also did

not greatly improve performance over that already provided by three orientations in the A3 data.

This matches the results shown in Figure 3.8, where varying the number of Gabor orientations did

not dramatically affect the results.

4.3.5 Discussion

The RBF networks seem to have quite powerful inherent scale invariance, but no inherent shift

invariance. Both image variations could be learnt to give a high level of generalisation if given

suitable training examples.

Gabor preprocessing allows greater invariance to these transformations than the DoG prepro-

cessing. This effect is most pronounced with the scale variations, which is not surprising considering

the multi-scale nature of the data representation. However, we have discounted that it is this aspect

alone of the Gabor preprocessing which gives it its power, as the tests using a multi-scale DoG

representation showed that the explicit extra information at different scales gave no improvement in

network performance over that obtained with training without these data values. Indeed, the RBF

networks using the multi-scale DoG preprocessing were unable to improve on those using single

scale DoG preprocessed data.

It might be expected that it was the oriented nature of the Gabor preprocessed data which gave

it an advantage in learnability over the DoG preprocessed data. However, such an advantage can not

be controlled through varying the number of orientations, as Figure 3.8 shows that performance

remains fairly constant in such circumstances. This does not mean it is cannot be the oriented

nature of the data that gives the advantage, but that there is a limit to how much useful information

can be extracted with a single technique.
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4.4 General Discussion

Chapter 3 showed how the representation used for input data can have a profound effect on the

ability of the RBF network to generalise from a learnt task. This chapter has developed these ideas

to analyse how specific variations in the image will affect such generalisation.

The experiments in Section 4.2 looked at invariance to head pose, a complex 3-D image

transformation. The results show that this is not inherent to the RBF network over any wide pose

angle range, but that it can be effectively learnt if appropriate training examples are available to

give high levels of test generalisation. What this implies is that even if we cannot create an image

representation that is (inherently) pose-invariant over large angles, we can produce an RBF hidden

layer representation with useful (learnt) pose invariance.

Section 4.3 dealt with shift and scale transformations, both simple, 2-D image-plane variations.

The experiments show that both can be learnt and give high levels of generalisation performance.

The Gabor preprocessing appears to be more effective, as discard rates for networks using this are

much lower than those with DoG preprocessed data.

In marked contrast to its invariance to pose and shift variation, the RBF network has been

shown to have a useful inherent scale invariance for this kind of data, as the Euclidean distances

between intra-class and inter-class images are more distinct (Figures 4.8 and 3.1). This is clearly

indicated by the good generalisation (only slightly lower than the 5-example (250/250) learnt rates)

in conditions where the network completely failed with the shift-varying data. This means that

fewer training examples need to be explicitly used to teach the network about image scale variation.

In addition, although a rough approximation may be sufficient when localizing the face during

preprocessing, it is important to correctly register it so that the face region is accurately centralised

within the image.

The experiments in this chapter have been addressing the specific Task Requirements 1b, 3(c)i

and 3(d)ii from Chapter 2. It can been seen that for moderate levels of the variations expected in the

unconstrained identification task, such as in pose, scale and shift, the RBF networks can be trained

to provide very high levels of generalisation performance (sufficient to be capable of supporting

the main task). The Sussex database only has a 90� range of pose variation, but Chapter 6 will

show how greater pose ranges can be dealt with by the RBF network, in tests using real-life image

sequences. These image sequences will also contain some of the other variations not tested here,

such as lighting and expression.

The next chapter will be concerned with how variations in the structure of the RBF network

itself can enhance its performance and allow greater control over the discarding procedure.
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Face Unit RBF Networks

This chapter introduces a different way of learning the face recognition task through the reorgani-

sation of the standard RBF networks into a group of smaller ‘face recognition units’, each trained

to recognise a single person. This type of system organisation allows flexible scaling up which could

be used either by itself or in conjunction with a standard RBF network trained on all classes where

the combined decisions might give greater reliability.

The concept of face recognition units was suggested in the perceptual frameworks for human face

processing proposed by Hay and Young (1982) and Bruce and Young (1986). We are adopting

this face unit concept as a useful way of developing a modular, scalable architecture, creating fast

small RBF networks trained with examples of views of the person to be recognised. The face

unit network uses these views of the person to be recognised as positive evidence together with

selected confusable views of other people as the negative evidence, which are linked to just 2

outputs corresponding to ‘yes’ or ‘no’ decisions for the individual. This training using explicit

negative examples is in contrast to the HyperBF network scheme used by Edelman et al. (1992),

who preferred to use implicit negative evidence in their study (see Section 2.5.5).

For each individual, an RBF network is trained to discriminate between that person and others

selected from the data set. Rather than using all the data available from the other classes to train

the network against an individual, the strategy adopted was to use only negative data that was most

similar (using an Euclidean distance metric) to the positive data. This strategy is based on the

assumption that similarity leads to confusion, so the inclusion of this type of negative evidence in

the training should improve discrimination. This data would be the hardest to learn to discriminate

‘for’ and ‘against’ the individual, since it would be the most ambiguous.

The reduction in the size of the network using the face unit organisation plus the use of negative

knowledge should allow a more efficient coding of the information. Furthermore, people can be

added to the data set of a trained set of networks by the creation of a new ‘face unit’ network for

each new individual to be added without retraining the entire database, as the reorganised scheme is

completely modular. In the standard RBF network, a new individual means a complete retraining

with the expanded dataset.

5.1 The Face Unit Network Model

The face unit network is essentially a normal RBF network with two output units, see Figure 5.1,

which produces a positive signal only for the particular person it is trained to recognise. It differs

from the RBF networks used in previous chapters only in the selection of training data, the data for

the face unit network being manipulated to present a many-class problem as a two-class problem:

1) a particular class and 2) all others.

Unlike the standard RBF network used in Chapters 3 and 4, with positive output signals (one
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‘Pro’ Output Unit ‘Anti’ Output Unit

‘Pro’ RBF Units ‘Anti’ RBF Units

Figure 5.1: General structure for a ‘face unit’ RBF network. Although there can be a varying

number of and ratio between pro and anti hidden units, there are always two output units (for and

against the class learnt by the network). All hidden units are fully connected to both output units.

This can be compared with the standard RBF network model shown in Figure B.1, Appendix B.

per class) only, the face unit network has two output units, one positive, denoting ‘yes’ for the

current class and, and one negative, (‘no’) for all other classes. We use the term pro to denote

hidden units or evidence for the class, and anti for that against the class, the negative evidence. For

each individual, a face unit RBF network can be trained to discriminate between that person and

others selected from the data set, using this pro (supporting) and anti (differentiating) evidence for

and against the individual. The ratio between the two can be varied.

Although this approach increases complexity, as more networks need to be trained and and the

training data needs to be manipulated differently for each face unit, the splitting of the training

for individual classes into separate networks gives a modular structure that can potentially support

large numbers of classes, since network size and computational load for weight calculations for the

‘standard’ RBF model may become impractical as the number of classes increases.

5.1.1 Selection of Negative Evidence

The fundamental process in the face unit network is the splitting of the training data into two halves:

class and non-class. The small size of the network is due to the limited amount of non-class data

used for training, only those that are seen as hardest to distinguish with the class are included. This

selection of negative evidence was based on Euclidean vector distance comparisons of the class face

image with images of the same pose angle of non-class faces. In order to make the most efficient

arrangement of training examples, the ’anti’ evidence was taken from the class that was the closest

(in Euclidean distance terms) to the ‘pro’ class. As the RBF network’s hidden units response is

based on the same Euclidean distance comparison, it is important to distinguish the closest non-

class examples, as these will be the most ‘confusable’ for the network, and any other other non-class

images further away will then be automatically excluded.

5.1.2 Types of Face Unit Networks

To investigate the characteristics of the face unit network model, several different network config-

urations are devised. To assess how varying the pro/anti balance affected performance, two general

types of network layout are used:
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Network Training Examples per Class

1 5

Standard RBF network 10 50

Single anti Face Unit Network 2 10

Double anti Face Unit Network 3 15

Table 5.1: Numbers of hidden units used by different RBF networks for same task (when using the

Sussex database).

‘Single anti’ face unit network This uses equal numbers of pro and anti hidden units.

‘Double anti’ face unit network This uses two anti hidden units for every one pro.

The double anti face unit network is closer than the single anti arrangement to the full standard

RBF model, in that it uses more negative than positive evidence. It is included in the tests to show

whether this additional information would give the network better discrimination from the negative

classes than the single anti arrangement. This characteristic will be more important as the number

of classes in the dataset increases, as the number of negative classes will become proportionately

greater.

We can compare the relative sizes of the face unit network and the standard RBF network. The

standard RBF network uses cn hidden units, where c is the number of identity classes and n is the

number of training examples per class. This gives 10n hidden units in total when using the Sussex

database, as shown in Figure 5.1. The single anti face unit network has only two classes for training

(for and against a single person) and a single anti hidden unit for every pro unit, and therefore

has 2n hidden units in total (however many identity classes there are). The double anti face unit

network uses two anti hidden units for every one pro, and therefore has 3n hidden units in all. The

outcome of this is that as c, the number of identity classes, increases, the face unit network required

for a particular task will becomes much smaller relative to the standard RBF network needed for

the same task.

Once the number of examples is chosen, we then use two different strategies for the selection

of the anti evidence. This gives two further types of network:

‘Single best negative’ (sbn) face unit networks These use an average of all vector distances

between the pro image and all anti images, within each pose angle, averaged over all pose

angles to compare whole classes rather than individual images from classes. The lowest overall

average value was used to select one anti class, which then represented all negative evidence

at all pose angles.

‘Multiple best negative’ (mbn) face unit networks These use the closest anti image to the

pro image for each pose angle, so that several anti classes may be used for a face unit network

with more than one training example.

It was anticipated that sbn face unit networks would be superior to mbn face unit networks, as

a more coherent 3-D class boundary would be given by a single negative person-class for all pose

angles. On the other hand, the mbn approach may utilise local class differences to learn a more

efficient solution.

5.1.3 Face Unit Network Terminology

As the face unit networks are arranged differently to the standard RBF networks, they are labelled

slightly differently. The face unit network size is denoted here by ‘p+ a’, where p is the number

of pro hidden units, and a is the number of anti hidden units. Tests were made on a range of
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Figure 5.2: Example of the range of negative classes that can be selected during the training of a

5+10 double anti, multiple best negative (mbn) face unit RBF network.

The top line shows the supporting, ‘pro’ evidence, the middle and bottom lines the differentiating,

‘anti’ evidence (middle line is the closest to the pro class, bottom line the second closest).

network sizes from 1+1 to 6+12 on the standard 100-image Sussex database (if these networks

had been labelled in the standard ‘train/test’ form, this would correspond to a range between 2/98

and 18/82 networks). To give an optimal spread of the image data for training, fixed selections of

pose angle were used for each size of network, as used in Chapter 4 (see Table 4.2). For instance,

the 5+5 and 5+10 networks used poses 10�, 30�, 50�, 70� and 90�, where the pose range was

0� (frontal)–90� (profile).

Figure 5.2 shows how the images used for training were selected for a 5+10 mbn face unit

network in the experiment. This illustrates not only how several anti classes are used in the mbn

scheme, but also how they are ranked for the double anti arrangement.

5.1.4 Results

As in the previous chapter, for clarity, our tests use two standard preprocessing methods only: the

single-scale DoG and the Gabor A3 with four scales and three orientations (details in Section 3.3

and Appendix C).

Figure 5.3 summarises the overall results for the various types of face unit networks, with differ-

ent pro/anti ratios and different strategies for selection of anti images. To simplify the information,

these graphs do not show the rates after discard, but these gave a consistent improvement of about

7–15% over rates before discard for all networks.

The face unit networks are essentially working in a two-class classification problem, so a random

level of generalisation would be 50%. Interestingly, the double anti network arrangement did not

appear to give radically better performance than the single anti, except for the 5- and 6-example

networks using Gabor preprocessed data. This indicates that the selection of appropriate anti images

is efficient enough by itself to create a division in image space between the class and all others

without requiring additional negative examples.

Table 5.2 shows specific generalisation rates for the 5-example (5+5 and 5+10) face unit net-

works before and after discard. It can be seen here that the Gabor preprocessed data allowed the
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Figure 5.3: Comparing single and double anti training for face unit networks, with average gener-

alisation for all face units shown, but no discard results: (i) Single best negative (sbn) networks (ii)

Multiple best negative (mbn) networks.

Pre-processing Network Initial % % Discarded % After Discard

DoG 5+5 74 75 87

5+10 71 49 81

Gabor 5+5 77 50 84

5+10 91 39 98

(a) Single best negative (sbn) networks

Pre-processing Network Initial % % Discarded % After Discard

DoG 5+5 79 73 97

5+10 73 42 75

Gabor 5+5 90 47 97

5+10 90 40 99

(b) Multiple best negative (mbn) networks

Table 5.2: Test generalisation for 5-example face unit networks (5+5 and 5+10) using the Sussex

database.
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Variation Pre-processing Network Initial % % Discarded % After Discard

Shift DoG 25+25 70 67 82

25+50 69 46 69

Gabor 25+25 83 35 92

25+50 86 27 92

Scale DoG 25+25 78 50 89

25+50 79 40 84

Gabor 25+25 88 29 94

25+50 90 23 96

Table 5.3: Generalisation for 5-pose-example multiple best negative (mbn) face unit networks

(25+25 and 25+50) with shift and scale varying data.

RBF network to perform more efficiently than the DoG preprocessed data, both in lower discard

rates and generalisation before and after discard.

Summary

The mbn strategy for selecting anti evidence seemed slightly better than the sbn, indicating that

dealing with local (at a pose level) confusions was more efficient that trying to identify one global

class with which the main class should be contrasted.

5.1.5 Shift and Scale-Varying Data

To assess learnt invariance to the shift and scale-varying Sussex data, introduced in Section 4.3, tests

were made using 5 pose example face unit networks. Single and double anti networks were tested

to check which reacted best to the more demanding datasets.

Table 5.3 shows that the networks were able to learn shift and scale invariance very similarly

to the standard RBF network, in that the scale-varying data was learnt more easily than the shift-

varying data, and the Gabor preprocessing allowed both higher generalisation and lower discard

rates than the DoG preprocessing. The double anti networks did not give higher generalisation

overall, but did give lower discard rates on all tests.

5.1.6 Discussion

From the results, the most useful configuration of face unit RBF network should have:

� more than one training example for both pro and anti data. This is a similar conclusion to

that arising from the interpolation test in Chapter 4.

� use equal numbers for pro and anti, although exceptions for particular conditions can be

seen.

� use the multiple best negative (mbn) strategy to identity the most useful anti evidence to

match each pro example on a pose-by-pose basis.

This section has shown that the face unit network can operate to a high level of performance

when used in isolation. The next section will show how cooperation with a standard RBF network

can be accomplished, and assess the usefulness of such combined information.

5.2 Face Unit Networks as Adjudicators

One potential drawback to using face unit networks is that the processing required to input the test

image to every network may become excessive for large number of classes. It would be possible
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Multi-Class RBF Face Unit Network Confidence

Network Confidence Output Confidence to Accept

High Yes High 1

Low 2

No High 6

Low 5

Low Yes High 3

Low 4

No High 8

Low 7

Table 5.4: Possible outcomes given a particular classification from a standard RBF network when

used to index into one specific face unit network, based on the outputs of the two networks. These

can be combined to give levels of cooperative confidence in accepting the initial classification,

ranging from 1 (the highest) to 8 (lowest).

to take advantage of the specialised training characterised by each individual face unit network by

using them in cooperation with other networks.

For instance, a single face unit network could be used to confirm or dispute a classification from

a standard RBF network trained on all individuals. The initial output from the multi-class network

would be used to index into the group of face unit networks to identify which one was needed,

and the outputs from the two networks could then be used in conjunction. It is anticipated that

this will give a more reliable result.

5.2.1 Confidence Measures

The standard confidence measure, which has been used in all tests so far for both face unit and

standard RBF networks, is based on the difference between the highest and second highest output

values. Classifications with a large difference (generally a ratio of 1.8:1 or above) are labelled as high

confidence, all the rest as low confidence. See Section 3.2.3 and Figure 3.2 for more details.

The outputs of face unit networks and standard RBF networks can be combined, using this

standard confidence measure for both networks. Several levels of classification confidence are then

possible, shown in Table 5.4. These range from 1, the highest, where both networks have high

confidence, to 8, the lowest, where the standard RBF network has low confidence and the face

unit network has high confidence against the classification.

Confidence Rating Thresholds

A threshold based on these cooperative ratings can be used to control which classifications are

thought of as high confidence. All classifications rated above the threshold are accepted, all below

are discarded.

If the multi-class and face unit network concur, even if both are low confidence, then we might

say that it is reasonable evidence for a correct classification. According to how confident we want

our networks to be in this agreement, we can set a threshold on the confidence ratings between 1

and 4.

It is harder to decide on heuristics for where the two networks disagree. Thresholds set at levels

5 and 6 might still leave useful classifications undiscarded. Some conflicts could be decided on the

basis of accepting the decision of which ever network had the higher confidence.

5.2.2 Results

The face unit and standard RBF networks were tested together, the face unit chosen to test each

image according to the output of the standard RBF network, and the results were arranged accord-
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Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 78 52 100 24/24

Network Only

1 78 66 100 17/17

2 78 52 100 24/24

3 78 46 93 25/27

Cooperative 4 78 6 79 37/47

Threshold 5 78 6 79 37/47

6 78 6 79 37/47

7 78 0 78 39/50

8 78 0 78 39/50

(a) DoG preprocessing

Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 96 20 98 39/40

Network Only

1 96 38 97 30/31

2 96 20 98 39/40

3 96 20 98 39/40

Cooperative 4 96 2 96 47/49

Threshold 5 96 2 96 47/49

6 96 2 96 47/49

7 96 0 96 48/50

8 96 0 96 48/50

(b) Gabor preprocessing

Table 5.5: Generalisation and discard rates for different discard measures: ‘Standard RBF Net-

work Only’ is the result using a simple discard measure applied to the output of a standard 50/50

multi-class RBF network by itself, the ‘Cooperative Threshold’ is a threshold value applied to

the confidence rating arising from cooperating 50/50 multi-class standard RBF networks and 5+5

single anti multiple best negative (mbn) face unit RBF networks.

ing to the cooperating confidence rating thresholds from 1 to 8. Tests were made with both single

and double anti networks.

Tables 5.5 and 5.6 show that the cooperating networks are able to give a much finer gradation

of confidence levels than the normal confidence measure based on the standard RBF network only.

Although the single anti face unit networks discarded less when in combination with the stan-

dard RBF networks than with the double anti networks, their performance was worse on the whole.

The double anti networks gave more useful results, giving a good increase in performance com-

pared to no discard at all, and generally equivalent generalisation performance to the conventional,

one network discard, with lower discard rates.

Summary

Threshold levels of 1 and 6 on the cooperative confidence rating scale were found to be useful in

practice. The highest confidence rating threshold discard level, 1 requires both standard and face

unit network to have high confidence for the same class. This threshold value can be used to give

better, or at least as good, generalisation performance, after discard, as that provided by the original

confidence measure used with the standard RBF network alone. This superior performance is at
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Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 78 52 100 24/24

Network Only

1 78 86 100 7/7

2 78 58 100 21/21

3 78 58 100 21/21

Cooperative 4 78 54 91 21/23

Threshold 5 78 48 92 24/26

6 78 48 92 24/26

7 78 6 81 38/47

8 78 0 78 39/50

(a) DoG preprocessing

Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 96 20 98 39/40

Network Only

1 96 64 100 18/18

2 96 20 98 39/40

3 96 20 98 39/40

Cooperative 4 96 14 98 42/43

Threshold 5 96 14 98 42/43

6 96 14 98 42/43

7 96 6 96 45/47

8 96 0 96 48/50

(b) Gabor preprocessing

Table 5.6: As Table 5.6, except the ‘Cooperative Threshold’ measure uses a 5+10 double anti

multiple best negative (mbn) face unit RBF network.
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Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 85 35 98 159/163

Network Only

Cooperative 1 85 49 98 126/128

Threshold 6 85 13 91 197/217

(a) Shift-varying data

Discard Initial % % after Ratio after

Measure % Discarded Discard Discard

Standard RBF 90 26 97 178/184

Network Only

Cooperative 1 90 42 98 141/144

Threshold 6 90 10 94 212/226

(b) Scale-varying data

Table 5.7: Generalisation and discard rates for different discard measures with shift and scale varying

data: ‘Standard RBF Network Only’ is the result using a simple discard measure applied to the

output of a standard 50/50 RBF network by itself, the ‘Cooperative Threshold’ is a threshold

value applied to the confidence rating arising from cooperating 250/250 multi-class standard RBF

networks and 25+50 double anti multiple best negative (mbn) face unit RBF networks, using Gabor

preprocessing.

the cost of higher proportion of discarded classifications.

The confidence rating threshold level 6, which ignores low-confidence output from the face

unit network, gives roughly equivalent generalisation to that given using the normal confidence

measure with output from the standard network only, but with much lower discard rates. This

could well be the most useful configuration for general use.

Stages 4 and 8 on the confidence rating threshold scale were not found to be useful, but are

worth mentioning to clarify the coordinating confidences threshold process. The confidence rating

threshold level 4 is equivalent to not using the normal confidence measure for either network,

relying on the values of the two ‘raw’ network classifications. This does not appear to be a useful

arrangement, giving no advantage over the use of the standard confidence measure with standard

RBF network alone.

A confidence rating threshold of 8 is not useful, as it allows no discard at all. This is because

all face unit network output and the confidence rating of the standard RBF network are both

effectively ignored. This is demonstrated by the 0% discard levels shown for the threshold set to 8

in Tables 5.5 and 5.6.

5.2.3 Shift and Scale-Varying Data

As in Section 5.1.5, tests were made to assess learnt invariance to the shift and scale-varying Sus-

sex data, this time using 5-pose-example face unit networks in cooperation with standard RBF

networks, as in the previous section.

Table 5.7 shows a similar gradation of performance, controlled by confidence rating threshold,

to that found in the previous section.

5.2.4 Discussion

The cooperative use of the face unit network with the standard multi-class RBF network shown

in this section can be seen as a more subtle approach to assessing classification confidence than the
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simple, one-network threshold used previously.

Different rating threshold levels can be used with the cooperative scheme to give either high

confidence with high discard (using a rating threshold of 1), or moderate confidence with low discard (rat-

ing threshold 6), compared to the moderate confidence with moderate discard provided by the original

confidence measure using the standard RBF network alone. Intermediate threshold levels (from 2

to 7) provide other combinations of confidence and discard ratios. This ability to vary the system

behaviour via the threshold level would be useful for real-life applications, as it allows the user to

engineer the solution required.

5.3 Updating Face Units

This section is about how face unit networks can be retrained during use. Face unit networks

allow a flexible approach to learning in dynamic environments compared to other neural networks

models which have to be completely retrained if the training data is altered in any way.

The face unit network only uses a few of the total number of classes in a problem to train, so

operations on any of the other classes not used for training will leave it unaffected. As the number

of classes increases, the chance of each face unit network needing retraining due to an operation on

another class will become less.

5.3.1 Adding Face Units

To add a new person-class, vector differences need to be compared for all training images, just as for

the initial training. Distance calculations for all classes each time a change is made can be avoided,

however, by saving the Euclidean distance information, so that only the values for the new class

need to be calculated.

Any face unit where an image from the new class is closer than its existing anti evidence would

need to be re-trained. All other face units would not require further training. In the worse case,

this would mean the entire system of face unit networks being re-trained, but this is less likely as

the number of classes increases.

5.3.2 Removing Face Units

Removal of a particular face unit is simpler, as it just requires a check for other face units currently

using that face class as anti evidence. Only those that did use the removed face unit would require

retraining.

To update an old face unit would require two steps, as it would first need to be removed and

then the new data added.

5.3.3 Discussion

This section has tried to address the issue of long-term use of face recognition systems. Task

Requirements 3(d)iii and 3(d)iv specify a tolerance to middle-term (makeup, facial hair, etc) and

long-term (ageing, etc) changes in appearance. This implies that potential systems will need to be

flexible enough to update their training data for such changes.

Although our standard RBF network is fairly fast in retraining completely, this might not be

the case if many more examples for each class are used (representing x- and z-axis movement, for

example).

It is an open issue how an automatic system would determine that a known individual required

retraining due to change in their appearance - could the system itself monitor how confident it was

recognising that person and retrain when this fell below some limit, or would it require manual

intervention from the user to initiate the process? A system that could be aware of these changes

automatically would be more useful than one which simply failed to recognise a previously known

person.
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5.4 General Discussion

This chapter has presented experimental work using a novel variant of the RBF network model,

the face unit network, which learns to distinguish a single class from a range of other classes. This

can be used either in groups, one for each class, or singly in conjunction with a multi-class network

to give greater reliability to classification.

The most useful configuration of face unit RBF network overall seems to be the single anti

multiple best negative (mbn) face unit network, which selects the most useful anti evidence to

match each pro example on a pose-by-pose basis.

The standard RBF network will give similar positive and negative information about classes,

because of the fully interconnected hidden to output unit layer, but the face unit network, by

concentrating only on distinguishing one class at a time, allows the negative influences of such non-

class connections to be more specialised, indeed optimised, to give the most effective ‘one class

against all others’ partitioning in image space.

The modular approach presented in this chapter using face unit RBF networks to learn identity

is especially attractive for the unconstrained recognition task, as it allows the modification of the

learned element of the system during use, and can give a secondary classification decision which

can either confirm or dispute the primary RBF network output.

Although the face unit network allows finer control in the recognition process with the standard

RBF network than can be provided by the latter alone, it is not used for the next two chapters,

which deal with image sequences and the recognition of temporal patterns. This is because it is

felt that the results will be more understandable if the common baseline of system configuration

from chapters 3 and 4, comprising of the standard RBF network with simple discard measure, is

maintained for this later experimental work.

Chapters 3 and 4 and this chapter have explored the behaviour of the RBF network in the

narrow context of training with the Sussex database. The next chapter applies a more realistic test

to the network, using image sequences from a less tightly constrained environment.
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Face Recognition using Image Sequences

This chapter presents experiments using the Radial Basis Function (RBF) network to tackle a more

unconstrained face recognition problem using low resolution video information. The work on

static images presented in previous chapters is extended here to the time varying case, where an

individual is to be recognised in an image sequence. We first consider training and testing on

images from a seated subject where scale and shift are quite constrained. We then go on to consider

the case where the subject is free to walk about and is tracked (imperfectly). Training and testing in

this unconstrained situation is much more problematic, as the data contains a much greater degree

of variability in scale, shift, pose, and expression. As in previous chapters, the simple confidence

measure, based on relative output magnitudes, is used to discard low-confidence classifications.

Because each frame in an image sequence is related to preceding and succeeding frames, the final

section of the chapter considers schemes to enforce temporal consistency through the use of time

‘windows’.

Initial research often requires restrictions on the variability of test data in order that fundamen-

tal principles can be investigated in isolation. However, this means that such applications are far

removed from real-world environments, where data is noisy and unpredictable. Besides the theo-

retical desire to remove such constraints, there is also a real commercial demand for a system that

can rapidly identify a person from a small group of users.

Face recognition is a computationally expensive process and to obtain real-time performance

requires certain trade-offs. A police record application would require access to enormously large

amounts of data but accuracy would have priority over speed, as instantaneous recognition would

not be the primary factor. To cope with hundreds of thousands of individuals, views may be

limited to face-on or profile only with the face at a specific region of the image, allowing precise

pin-pointing and measurement of feature points. In our application, however, we are considering a

less constrained environment, where people can move around freely, and so we need to recognise

the person from the full range of views where the face is visible.

In addition, the example police application would require extremely low error rate, and only

very few (maybe even just one) image of each individual would be available. We have opted for

a lower accuracy method that is considerably faster, and provides a reasonable discarding of low-

confidence output. Looking at an image sequence, such as in Figure A.14 (Appendix A), it can be

seen that there is an abundance of data, and if the current image is ambiguous, it can be discarded

and the next considered. The temporal coherence of human faces allows the matching of series of

frames linked by movement information with the use of ‘time windows’ to combine information

from several frames.

Previous chapters have shown that the RBF network can learn to be invariant to certain types

of variations that can be expected in real-life face images. The experiments presented in this chapter

use these abilities in a less constrained environment using image sequences. As mentioned before,
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we are computationally constrained to the inter-frame period (of the order of tens of milliseconds)

determined by the frame grabber and the localisation software. Offsetting this limitation is the vast

quantity of data from image sequences, which suits any technique that can discard low-confidence

output to leave a high ratio of correct classifications. In the context of videos of people moving

around a room, where large numbers of images of each person in the environment will be produced

and changes in the identities present will not be abrupt (from one frame to the next), even quite

high discard ratios of 80-90% may be acceptable if the remaining output is of sufficiently high

quality.

6.1 Specification for Image Sequences

The image sequences used in the tests reported here are the result of collaboration with Stephen

McKenna and Shaogang Gong at Queen Mary and Westfield College (QMW), London, who are

researching real-time face detection and tracking (McKenna et al., 1996). This work is still at a

preliminary stage, and many issues are still unresolved, such as the nature of appropriate training

data: how constrained does it need to be, and how automatic its original collection from the data

source should be in a useful real-world application.

The experiments presented here address the situation where the training data is more con-

strained than the test data, as this is assumed to be the most efficient method of learning identity-

specific information. It might be argued that training data should not be constrained, but contain

any anticipated test variation, in the light of results from Chapter 4 where it was shown that most

variations need to be trained for explicitly. However, it is not obvious how examples of the whole

range of variations can be automatically collected from data where free movement is allowed and,

therefore, it is not guaranteed that all possible variations will be seen during any particular period.

The face images in the sequences used here are different from those in the Sussex database

used in previous chapters, in that they are centred on the head (head-centered), rather than nose-

centered (compare Figures A.5 and A.7 in Appendix A). This is because the face pose would need

to be known before segmentation if the nose is to remain centered for all face views. Currently,

the QMW head tracker does not extract such information (though such an ability is a priority for

the future). Tests in Sections 3.1.3 and 3.2.3 showed that the choice of centering algorithm has a

marked effect on training and generalization.

We have two types of sequences to simulate a typical unconstrained environment, termed ‘Pri-

mary’ and ‘Secondary’, see Section A.3 in Appendix A for specific details. The intention is to

train the network with a controlled set of data – the Primary image sequences – known to include

the types of variability which we want our trained system to generalize over (including 180� range

of pose angles, taken against a blank background), and to test on totally unrelated data – the Sec-

ondary image sequences. As mentioned in Section 2.3.1, such total separation of training and test

data insures against the system using spurious environmental details, such as lighting or background

features, to classify individuals. Such problems can always appear in databases where test and training

data are collected at the same time and each taken in the same manner. The lack of differentiation

between training and test data will also appear in any approach that selects both arbitrarily from a

central database. As these studies are still at an initial stage, however, we will start by training and

testing just with the Primary sequences in order to get a clearer idea of how the selection of training

images from sequences affects subsequent test generalisation.

6.1.1 Preprocessing of Segmented Data

Two main techniques are again used for the preprocessing of the images: Difference of Gaussian

(DoG) filtering and Gabor wavelet analysis at a range of scales. In contrast to methods using warping

based on registration of features, such as Craw et al. (1995), our approach uses simpler preprocessing,

but learns to discriminate using the RBF networks to overcome self-occlusion arising out of head

rotation (Task Requirement 3(d)ii).
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Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/276 96 12 98

5 114/440 88 30 99

10 60/494 75 50 90

20 33/521 58 68 90

30 24/530 48 81 93

50 16/538 40 81 86

(a) DoG preprocessing

Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/276 99 2 100

5 114/440 98 7 100

10 60/494 95 16 98

20 33/521 87 35 94

30 24/530 73 55 94

50 16/538 67 62 94

(b) Gabor preprocessing

Table 6.1: Effect of preprocessing methods on test generalisation before and after discard of low-

confidence output for a standard RBF Network trained with images taken at differing selection

intervals from eight Primary image sequences, and tested on those frames from the Primary se-

quences not used for training.

The experiments presented here again concentrate on two specific applications of these tech-

niques:

DoG convolution with a scale factor of 0.4, with a reduced range of grey-levels, with threshold-

ing to give zero-crossings information. A 25�25 image gave 441 samples per image.

Gabor ‘A3’ sampling with a full range of grey-levels. Four non-overlapping scales were used

with three orientations including sine and cosine components. A 25�25 image gave 510

coefficients per image.

6.2 Single Frame Tests

This section presents experiments that treat all the frames in the image sequences as separate points

in time, unrelated to frames before and after. This should provide a comparison with the earlier tests

on the Sussex database, where the static images were much more constrained in pose and lighting.

6.2.1 Tests with Primary Sequences

To test the ability of the RBF network to classify test images after training with the Primary

sequences, experiments were done initially by dividing the Primary sequences into training and

test groups (see Table 6.1). To allow the training images to be automatically selected, images at set

intervals were extracted from the Primary sequences, all the others were used for testing.

Figures A.14 and A.15 in Appendix A show that for the case of our Primary sequences, this

arrangement gives reasonable spread of poses, although the first frame is sometimes not correctly

localized. The ratio of frames in each of these two groups is shown in the Train/Test column in the

tables.
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Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/169 43 69 42

5 114/169 32 76 19

10 60/169 44 75 35

20 33/169 23 76 21

(a) DoG preprocessing

Training Train/Test Initial % % After

Selection Interval Frames % Discarded Discard

2 278/169 61 41 77

5 114/169 56 45 77

10 60/169 60 43 81

20 33/169 54 42 66

(b) Gabor preprocessing

Table 6.2: Effect of preprocessing methods on test generalisation before and after discard of low-

confidence output for a standard RBF Network trained with images taken at differing selection

intervals from eight Primary image sequences, and tested with a separate Secondary sequence.

The RBF Network trained on eight Primary image sequences was able to generalise very

well when tested with the remaining images from the Primary sequences not used for training

(Table 6.1). Although the initial results tailed off as the sampling interval increases, the confidence

discard allowed a high standard of performance to be maintained, even at the sparser sampling

intervals. The network could still recognise 94% of the images with a pose angle range of 180�,

having been trained with only four of each class (at a sampling interval of 20). From Figure A.14(a)

in Appendix A, it can be seen that this corresponded to the first, third, fifth and seventh images

with white boxes, and as noted before, the first one was incorrectly localized. The network was

performing well above random performance, and yet each RBF hidden unit was then generalizing

over a range of at least �23�, given that some examples were at the extreme end of the pose range.

It is significant, in terms of the task requirements detailed in Chapter 2, that the discard measure

gave such high levels of generalization after discard, even if the actual proportion discarded were

quite high. This is less important than where static images are used, as data from image sequences

is cheap and plentiful.

6.2.2 Tests with Secondary Sequences

The Secondary sequences are still in development, but encouraging results have been collected

from preliminary experiments, see Table 6.2, where the RBF network is trained with the Primary

sequences and tested with a provisional Secondary sequence. What was immediately apparent was

that the Gabor preprocessing was essential for this inherently more variable data in the Secondary

sequence.

6.2.3 Discussion

The blind selection of training examples at fixed intervals was used, because no prior knowledge

about pose or localization accuracy was available. Figures A.14 and A.15 in Appendix A show that

a reasonable spread of poses is provided because of the constrained nature of the Primary sequences.

Obviously, labelled data would allow a more systematic structuring of the training group required

for each individual: how many images in total are needed, what pose angles and whether expression

and/or lighting are also represented. However, the labelling of frames requires analysis modules,
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Figure 6.1: Output values for a typical section of the Gabor preprocessed Secondary sequence

containing class steve (H). Top row of letters shows initial output, lower row output after discard of

low-confidence values (‘.’ indicating where a value has been discarded).

such as pose estimation, at an earlier stage in the face data extraction process.

These results can be used to estimate the likely number of training images needed for a more

general system under similar conditions, bearing in mind that no attempt has been made here to

address other variations, such as x-axis movement or lighting and expression changes, and it is

expected that extra training examples would be required to accommodate such image variations.

With the maximum number of classes at around 50, the use of around 20 training examples per

class would give a network of about 1000 hidden units with 1000�50 trainable parameters, which

would not be prohibitively slow to train (no longer than a minute on current systems).

6.3 Temporal Integration

The next stage of development in our use of image sequences was with a ‘time window’ integration

level using the raw output. When using image sequences from real life, where individuals will be

present for significant periods, it is appropriate to use techniques which take advantage of temporal

coherence to improve performance. The idea here is that periods of low confidence output can be

“patched” into a coherent stream by some kind of moving average rather than a full belief-based

mechanism (for example, Buxton and Gong (1995a)).

An on-line source of data cannot be evaluated like a conventional database, as not all of the

data is yet present, nor is it known who will be present in the environment or for how long. If

an assumption of temporal coherence is made, in other words that one person will not transform into

another instantly, high-confidence information in a ‘time window’ can be utilised in periods of

low-confidence output to lend support to the current output (assuming it is the same classification,

though conflicting output could also be useful). In this environment, a running total of output

values for a time window can be kept, and a expression for the individual currently in view given.

For this to work, fairly low (above random) success rates will suffice.

To illustrate this technique, consider Figure 6.1, which shows a section of the test Secondary
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Time Window Initial % % After Discard

1 66 86

3 72 86

5 68 89

10 68 100

Table 6.3: Results for the TDRBF network using temporal integration through varying time win-

dows in output for the sequence shown in Figure 6.1.

sequence. Table 6.3 shows how use of time windows to re-assess the output value can affect

performance. Periods of correct output followed by random values can be interpreted as all correct,

using the last stable output as a type of memory.

6.3.1 Discussion

Although the testing here was by no means exhaustive, it can be seen that such techniques which

take advantage of temporal coherence can be used to improve performance.

6.4 General Discussion

It must be emphasised that this research is at a preliminary stage but that the technique shows

promise for scaling up to large databases. Although only a few individuals are shown in our image

sequences, this type of network has been shown to work well with larger numbers of classes. For

example, the Olivetti Research Laboratory database of faces (see Section 2.6 for details), with 400

images of 40 people can be distinguished with a high level of performance.

Several points can seen from the results:

1. The RBF network is shown to generalise well from samples in classifying faces in real-time

sequences.

2. Gabor preprocessing is shown to give a more generally useful input representation than the

DoG preprocessing, especially for the more difficult Secondary sequence.

3. The confidence measure used in discarding uncertain classifications is shown to be important

for handling sequences especially where a small training set is used.

If it can be assumed that only one person is present in an image sequence throughout the

period of tracking, a simple total for each class can be used to determine identity. This cumulative

evidence can be gathered during the duration of the sequence. The results shown in Table 6.2b

would certainly be sufficient for such a scheme, as the correct class was identified in more than 50%

of the frames.

In conclusion, the locally-tuned RBF networks showed excellent performance in the simpler

face recognition task when trained and tested on images from Primary sequences. This is a promis-

ing result for the RBF techniques, considering the high degree of variability due to the varying

views (mostly rotations) of a person’s face in these data sets. The results so far from the Secondary

sequences also show considerable promise, especially with the additional use of temporal coherence

to improve performance. In these sequences, the face detection scheme (McKenna et al., 1996)

currently selects and re-scales faces in near face-on views but does not discard the others. Gong

and McKenna are currently working on closer segmentation over view and the provision of face

detection confidence for each frame, which should be able, for instance, to remove many of the

more anomalous frames in our current Secondary sequence. It is expected that further develop-

ment of this scheme will allow improvements in the reliable and consistent labelling of faces in



6.4. General Discussion 85

unconstrained image sequences. It is clear that the ability of the RBF networks to give a measure

of confidence, which allows temporal integration over image frames where the visual evidence is

poor, is essential for this development.

Work is progressing together with colleagues at QMW in refining the face detection scheme

and automated on-line learning of new classes of individual. The next stage of development will

integrate this refined on-line face detection and localisation with the trained RBF networks to cope

with real-time image sequences including the usual variations in illumination as well as position,

scale, view and facial expression. It is clear from the work of Bishop (1995) and others that using

statistically based techniques is the key to good performance. The RBF techniques are mathe-

matically well-founded, which gives a clear advantage in engineering a solution to our application

problems.



Chapter 7

Recognition of Simple Behaviours using

Time-Delay RBF Networks

This chapter presents experiments using a Radial Basis Function (RBF) variant of the Time-Delay

neural network (TDNN) with image sequences of human faces. The main purpose of this is to

show that the network is able to learn simple behaviours based on y-axis head rotation and generalise

on different data.

The recognition of simple behaviours is an important capability for many computer vision

applications, such as visual surveillance (Buxton & Gong, 1995a) or biomedical sequence under-

standing (Psarrou & Buxton, 1993). The behaviour in the experiments presented here was simple

head rotation to the left or right or the head held still. However, the work raises important is-

sues for connectionist techniques: 1) time, 2) representation, and 3) learning with generalization.

Multi-layer perceptrons with supervised learning are very popular for applications which use static

representations, but time is important in many domains such as vision, speech and motor control.

Dynamic neural networks can be constructed by adding recurrent connections to form a contex-

tual memory for prediction in time (Jordan, 1989; Elman, 1990; Mozer, 1994). These partially

recurrent neural networks can be trained using back-propagation but there may be problems with

stability and very long training sequences when using dynamic representations. Instead, we use a

simple Time-Delay mechanism in conjunction with an RBF network, which we term a TDRBF

network, to allow fast, robust solutions to our problem of recognising head turning behaviour.

In learning to recognise behaviour with a TDRBF network, it is again important to use an input

representation (now ordered in time) that allows generalisation over variations in lighting, scale

and translation (shift). The results presented in Chapters 3–6 indicate that complex 2-D Gabor

filters (Daugman, 1988), which approximate the receptive fields of simple cells in the primary

visual cortex, provide just such a representation. In this chapter we show how this work can be

adapted from face recognition from a single image frame to the problem of behaviour recognition in

extended video sequences. With our approach, images containing pre-segmented faces in a typical

motion sequence can be analyzed to obtain the appropriate Gabor representation for each time

frame in the motion sequence.

7.1 The Time-Delay RBF Model

The Time-Delay Neural Network (TDNN) model (for an introduction, see Hertz et al. (1991)),

incorporates the concept of time-delays in order to process temporal context, and has been success-

fully applied to speech and handwriting recognition tasks (Waibel et al., 1989). Its structured design

allows it to specialise on spatio-temporal tasks, but, as in weight-sharing network, the reduction of

trainable parameters can increase generalisation (Le Cun et al., 1989).
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Figure 7.1: Structure of a single class for a TDRBF network with time window of 3 and a integra-

tion window of 5 (after Berthold (1994)).

We adapted our RBF network model to use time-delays in order to process temporal context.

This Time-Delay version of the RBF network, the TDRBF network, is similar to that used by

Berthold (1994) and combines data from a fixed time ‘window’ into a single vector as input, see

Figure 7.1. Berthold, however took a constructive approach, combining the idea of a sliding input

window from the standard TDNN network with a training procedure for adding and adjusting

RBF units when required. We have used a simpler technique, successful in previous work with

RBF networks, which uses a fixed number of units, one for each example, and the pseudo-inverse

process to calculate weights, see Appendix B for details.

The integration layer used in Berthold (1994) is not used for the tests presented in the first

section, as the images in the training and test sequences are not situated in a real sequence. For

these experiments, we treat each time window as separate moments in time because of this synthetic

nature of the temporal version of the Sussex database. However, Section 7.3 tackles this issue by

using real image sequences, where classification over time is significant, and investigates the use of

an integration layer.

7.2 Learning Actions Through Time

Simple experiments were made with the TDRBF network using image sequences to train it to

identify types of y-axis head rotation. The data used was from the Sussex database of 10 people

each in 10 different poses at 10� intervals from face-on to profile, see Appendix A for specific

details. The identity contained in each frame was discarded and classes were reassigned to groups of

frames in terms of the direction of pose change within the frame sequence, effectively treating the

database as 10 image sequences of a person rotating their head from side to side. As each image for a

particular person in the Sussex database varies by 10�, the effect of head rotation can be synthesized

by concatenating several adjacent frames. The TDRBF network can then be trained to distinguish

the presence and direction of movement in these simple fixed sequences.

For all experiments presented here, half of the database was used to train the network, and the

other half used to test it, and each sequence was taken from a fixed ‘window’ from within the ten
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frames 0–9 for each person. Two schemes were devised to split the data up:

� the Alternate Frames (AF) tests, illustrated in Figure 7.2, used alternate frames from each

person, so that training and test data contained all ten people and the window size range was

2–5 frames, and

� the Alternate Person (AP) tests, illustrated in Figure 7.3, which used all the frames from 5

people for training, and the other 5 for testing. The window size range for the AP tests was

2-9 frames.

It can be seen that the two types of selection process and the varying window sizes gave a wide

range of numbers of sequences that could be used as data. In addition to this, the variety of data

will be increased by the type of head rotation.

Head Rotation Classes

Three classes were used for training the TDRBF network, corresponding to three types of rotation

present in the image sequence:

LR sequences These simulate a left to right head rotation in a ‘window’ within the ten frames

0–9 for each person, such as shown in Figure 7.2(a). Sequences were interleaved with each

other to use all the frames for each person. For example, if the window size was 4, the

sequences used would be, for the AF tests, 0,2,4,6 and 2,4,6,8, and for the AP tests, 0,1,2,3,

1,2,3,4, 2,3,4,5 up to 6,7,8,9.

RL sequences These are identical to LR, except that the rotation is in the opposite direction

(from right to left), as shown in Figure 7.2(b), so the frame numbers go from 9 to 0. For

example, if the window size was 4, the sequences used would be, for the AF tests, 8,6,4,2

and 6,4,2,0, and for the AP tests, 9,8,7,6, 8,7,6,5, 7,6,5,4 down to 3,2,1,0.

Static sequences These simulate a fixed head position through time, illustrated by Figure 7.2(c).

They were created by repeating the middle frame of the time window.

Preprocessing

Gabor wavelet analysis at a range of scales was used for preprocessing of the images. The ‘A3’

scheme was used, where data was sampled at four non-overlapping scales from 8�8 to 1�1 and three

orientations (0�, 120�, 240�) with sine and cosine components, see Section 3.3 and Section C.2

in Appendix C for specific details. The Samples column in the tables show the total number of

Gabor coefficients contained in each input vector. A discard measure was used on some of the tests

to exclude low-confidence output; the proportion discarded and the subsequent generalization rate

are shown for these tests.

7.2.1 Alternate Frame Tests

The Alternate Frame (AF) tests used alternate frames from all ten people for training and testing

(see Figure 7.2). Three types of network training were used, using either two or three classes:

Static/LR Here, two classes were trained and tested for: left to right movement and static, illus-

trated by Figures 7.2(a) and (c). The network was trained with a window from frames 0, 2,

4, 6 and 8 of all ten people, and tested on a window from frames 1, 3, 5, 7 and 9, thus using

20� intervals between frames. Static sequences were simulated by repeating the middle frame

of the time window.

Static/RL This was similar to LR, except that the rotation was in the opposite direction, illustrated

by Figures 7.2(b) and (c). This meant that the network was trained with frames 8, 6, 4, 2 and

0, and tested on 9, 7, 5, 3 and 1.



7.2. Learning Actions Through Time 89

(a) (b) (c) (d)

Figure 7.2: Example data sequences for Alternate Frame (AF) tests with a time window of three

frames: (a) LR Training - Frames 2, 4 and 6 (b) RL training (frames 6, 4 and 2) (c) Static training

(frame 4 repeated) (d) LR Test - Frames 3, 5 and 7 of same person. Data from all 10 people in the

Sussex database was used for both training and testing, each taken from alternate frames.

Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 20/20 100 5 100

4 2040 40/40 95 5 100

3 1530 60/60 100 8 100

2 1020 80/80 90 8 92

(a) 2 Classes, distinguishing LR and static sequences.

Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 30/30 100 7 100

4 2040 60/60 97 8 100

3 1530 90/90 93 8 100

2 1020 120/120 83 25 96

(b) 3 Classes, distinguishing LR, RL and static sequences.

Table 7.1: Effect of time window size on generalization rates for TDRBF network trained and

tested on image sequences from alternate frames (AF testing). The test sequences contain alternate

frames from those seen during training.
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Static/LR/RL This was a mixture of the above two schemes, as the network was trained and

tested with three classes: left to right movement, right to left movement and static, illustrated

by Figures 7.2(a), (b) and (c).

Note that the LR sequence vectors are mirror-images of the RL in Euclidean space, so the

Euclidean distance of LR sequence 3-5-7 to 2-4-6 is the same as the RL sequence 7-5-3 to 6-4-2.

For this reason, the results for the Static/RL tests are identical to those for the Static/LR tests, and

therefore not shown here.

Table 7.1 shows that the TDRBF network can learn the different types of head rotation and

generalize with sequences from alternate frames to those used for training. The longer time win-

dows gave the best generalization performance and lowest discard proportions.

Summary

In light of the findings of Section 4.2.2, where the level of pose invariance provided by each RBF

hidden unit was at least �15� , it was not surprising that these AF TDRBF networks could perform

well. This was because each test sequence frame had a training sequence frame available that was

only 10� away in pose angle.

7.2.2 Alternate Person Tests

For the Alternate Person (AP) tests, the TDRBF network was trained with sequences of images

from five people and tested with sequences of images from the other five people, so that general-

isation will reflect learning of the temporal task rather than identity. This is a harder test for the

network, as it is tested with images of people not seen during training (see Figure 7.3). Three types

of AP network training were used, as with the AF tests, using either two or three classes:

Static/LR As for the AF tests, using two classes, but trains with a window from all ten frames

from 0 to 9 of five people, and tests on a window from all ten frames from 0 to 9 of the other

five, illustrated by Figures 7.3(a) and (c). As all the frames available are used, the sequences

use 10� intervals between frames.

Static/RL As for the AF tests, using two classes, but trains and tests with all ten frames from 9 to

0, illustrated by Figures 7.3(b) and (c).

Static/LR/RL As for the AF tests, using three classes, but trains and tests with all ten frames from

five people each, illustrated by Figures 7.3(a), (b) and (c).

Table 7.2 shows that the TDRBF network can learn the different types of movement and

generalise with sequences from individuals not encountered during training. As in the alternate

frame (AF) tests shown earlier, the longer time windows gave the best generalization performance

and lowest discard proportions.

Summary

The AP tests were similar to the pose learning tests done in Chapter 3, in that the data from a

particular individual is used to train the network about non-identity information. The TDRBF

network was able to learn the movement more easily than the RBF network could learn the pose

differences. This could be due to different levels of subtlety in the two tasks, as movement over

several frames characterized in Euclidean space will be more distinctive than solitary pose examples.

7.2.3 Discussion

The TDRBF network has been shown to be able to learn the simple behaviour recognition task, dis-

tinguishing both single- and two-direction movement sequences from static sequences constructed

from the Sussex database.

The alternate frame (AF) and alternate people (AP) tests were different in terms of the rotation

speed of the head. The AF test sequences, using every other frame, are effectively moving twice
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(a) (b) (c) (d)

Figure 7.3: Example data sequences for Alternate Person (AP) tests with a time window of 3 frames:

(a) LR training (frames 2, 3 and 4) (b) RL training (frames 4, 3 and 2) (c) Static training (frame 3

repeated) (d) LR test (frames 2, 3 and 4 of different person).

Data from five of the 10 people in the Sussex database was used for training and from the other five

for testing.

Window Samples Train/Test Initial % % Discarded % after Discard

10 5100 10/10 100 0 100

8 4080 30/30 100 3 100

6 3060 50/50 96 10 100

4 2040 70/70 94 13 97

2 1020 90/90 89 13 92

(a) 2 Classes, distinguishing LR and static sequences.

Window Samples Train/Test Initial % % Discarded % after Discard

10 5100 15/15 100 7 100

8 4080 45/45 100 11 100

6 3060 75/75 93 19 100

4 2040 105/105 90 31 100

2 1020 135/135 67 48 97

(b) 3 Classes, distinguishing LR, RL and static sequences.

Table 7.2: Effect of time window size on generalization rates for TDRBF network trained and

tested on image sequences from alternate people (AP testing). The test sequences contain people

not seen during training.
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Figure 7.4: The real image sequence from QMW, used to test TDRBF networks trained on se-

quences from the Sussex database. Note the wide variation in head position and gaze direction.

Time Samples Training/ Integration Layer Size (% Correct)

Window Test 1 3 5 7 9

6 3060 75/57 54 53 53 53 54

5 2550 90/58 62 62 67 64 69

4 2040 105/59 64 61 76 83 75

3 1530 120/60 63 60 73 80 78

2 1020 135/61 56 56 52 57 48

Table 7.3: Test generalization with TDRBF networks trained with Static/LR/RL (3 class) se-

quences from alternate people (AP) in the Sussex database, tested on the QMW real image sequence

shown in Figure 7.4, varying both the input time window and the output integration layer size.

as fast as the sequences for the AP tests. In this case, this did not matter, as the networks were not

required to learn any time base invariance for these two task.

7.3 Use of Real Image Sequences

To investigate the TDRBF network model further, networks trained with 3 alternate people (AP)

classes from the Sussex database were tested on previously unseen image sequences containing a va-

riety of head movement (see Figure 7.4). These image sequences are the result of collaboration with

Stephen McKenna and Shaogang Gong at Queen Mary and Westfield College (QMW), London,

who are researching real-time face detection and tracking. Chapter 6 has shown how the standard

RBF network can work well with this type of data.

Although the amount of test data from the real image sequence remained constant, there were

more test sequences as the window size became smaller. A simple majority decision was used to

apply rotation classes to windows where more than one type of movement was present, for instance

where the head reached full profile and started to move back towards frontal position.

As the network was being tested on a real image sequence, an integration layer was introduced

for these tests. The integration layer takes the classifications from a range of time steps and sums

output for each class, giving an overal classification on a ‘winner-take-all’ basis. This is effectively

an extra time window over the TDRBF output layer (the input to which was from an original time

window).

7.3.1 Results

Table 7.3 shows that the TDRBF network trained with sequences from the Sussex database can

generalize to test data taken under very different conditions and containing people not seen in the

training data. The integration layer did have an effect on performance. The optimum size for this

layer seems to be around 7 time steps (with a input time window of 4 steps), reflecting the slow

speed of head rotation present in the data.
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7.3.2 Discussion

The issue of the ‘time base’ of actions, that is, how fast or slow actions occur, would have to be taken

into account in any real-life image sequences, as any movement would occur at a variety of speeds

quite naturally. Although Berthold (1994) used the integration layer to cope with shifts of event

position in time, the scale of events was not discussed. As mentioned before, the rotation present in

the alternate frame (AF) test sequences was twice as fast as that in the alternate people (AP) tests.

Variations in time scale and pauses within the overall gesture can be handled by a recurrent

network, or training data which explicitly demonstrated the different classes of motion-based be-

haviour at a variety of speeds, for example, using time-warping. Taking this into account, the

original image sequence was subsampled to match the rotation speed of the original data, which

was 10� per time step.

Figure 7.4 highlights the problems encountered when trying to assign fixed behaviours to real-

life data. Not only will some time windows contain the end of one and the beginning of other

movements, but the acceleration of rotation will be changing. This shows that left to right head

movement is much more complex than a simple, fixed speed change in pose.

7.4 General Discussion

Several points can seen from the results:

� The TDRBF network is shown to be able to learn certain simple behaviours based on y-axis

head rotation.

� The TDRBF network maintained a high level of performance even on data containing indi-

viduals not seen during training (the alternate person (AP) tests).

� An integration layer in a TDRBF network can allow the extraction of behaviour information

even with quite markedly different data to that with which the network was trained.

The main points here are 1) the simple, deterministic ‘training’ of the TDRBF networks means

that they are highly suited to on-line learning, 2) the shift invariance and ability to recognise features

in time means they are capable of recognising simple behaviours, and 3) high levels of performance

on the generalisation to new datasets that behave in similar ways means they are very useful for such

practical dynamic vision tasks. The limitations of this technique are 1) the problem of the time-base

which was not fully overcome even with the addition of an integration layer, and 2) the problem

of defining the simple behaviours. The TDRBF networks are capable of distinguishing a ‘quick

turn’ from a ‘slow turn’ as well as distinguishing whether the turn was to the right or the left, but

it seems that more qualitative definitions of behaviour would best be tackled using more general

recurrent networks. This issue is discussed further by Mozer (1994) and by Psarrou and Buxton

(1994). In addition, Cleeremans (1989) shows that partially recurrent networks together with a

qualitative input representation can be successfully used even for the demanding task of predicting

state to state transitions in finite state automata. It is clear, however, that the TDRBF networks are

able to perform extremely well where there is a straightforward quantitative relationship between

the data and the simple behaviour pattern to be learnt.

The temporal task we used is very simplistic, as each image sequence only contains one standard-

length movement. We have tested our trained network on a less constrained sequence, similar to

those used in previous section, with some success. It is difficult to assess the performance using

such data at present, as it is not yet clear how real-life behaviours will need to be segmented for

meaningful analysis. Most human gestures consist of combinations of movements of several part of

the body. To make things harder, these are not necessarily in unison, but choreographed with each

other at specific times. To signal that a specific gesture has occurred recognition will have to occur

over time, linking output from multiple recognisers.
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The tests presented in this chapter have shown that the TDRBF network has useful temporal

recognition properties, which could be of use in real-life applications, due to its rapid learning and

operation, in comparison to more general, but slower, recurrent networks.



Chapter 8

Conclusion

The aim of this thesis has been to explore the practicalities of computer-based face recognition in

everyday environments, such as living-rooms or offices. This chapter summarises the main results

and contributions from the thesis and outlines directions for future work.

Chapter 2 described the task of face recognition in unconstrained environments in detail and

drew up specific requirements to fulfill it. A review of general theories of object recognition and

psychological evidence was then followed by a more detailed discussion of current approaches to

face recognition, with specific emphasis on three aspects of the recognition process – acquisition,

representation and reasoning. This allowed us to establish a suitable approach, using filter-based

preprocessing with a radial basis function (RBF) network, to fulfill our task requirements. This

scheme was then tested on a standard database in order that it could be compared to other published

results using the same data.

Chapter 3 introduced our pose-varying Sussex database, and used it to discuss methods for face

representation, normalisation and preprocessing. Resolution and pose variations in face images

were studied to analyse how they affect recognition performance in term of Euclidean distance

measurements in image comparisons. The contributions of particular elements of the RBF network

towards its overall generalisation behaviour are also analysed and compared with related classifiers,

in order to assess how the RBF network was able to generalise in the presence of complex 3-D

transformations, such as head pose.

Chapter 4 explored the generalisation properties of the RBF network, looking specifically at

pose, scale and shift invariance. We were able to establish significant advantages of using Gabor

filter preprocessing over the Difference of Gaussians preprocessing, both for generalisation and

confidence of classification. The invariance provided by the preprocessing determined the accuracy

of face segmentations and amount of training data required for effective learning or recognition.

This, together with the results from Chapter 3, laid the experimental foundation for work in later

chapters.

Chapter 5 presented a novel variant of the RBF network, the ‘Face Unit’ network, which

learnt to distinguish one particular individual only from the known group. We then were able to

demonstrate how it can be used to give an alternative method of learning tasks which can then

provide additional evidence for identity.

Chapter 6 explained how the RBF network can be applied to image sequences. The data used

here was much taken from a much less ‘constrained’ environment than the other face recognition

databases. We were able to establish the suitability of the filter-based preprocessing and RBF net-

work approach for classifying individuals in uncertain and ambiguous test data, even in the presence

of large lighting and pose variation.

Chapter 7 explored the temporal learning abilities of the RBF network. We used a TDRBF
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network, previously used for speech recognition, to recognise simple image-based behaviours based

on head rotation. We were able to show that such actions can be easily learnt and generalised to

even with simple training methods.

8.1 Contributions of the Thesis

There are four main contributions made by the thesis:

1. Gabor filter representation. We have developed an efficient sparse-sampled Gabor filter repre-

sentation suitable for extraction from low resolution face images. We have been able to establish

that this can, in contrast to a Difference of Gaussians representation, provide some inherent scale

invariance (that is, without the provision of explicit scale varying images) which is not present for

other variations, such as translation (lateral shift).

2. Radial basis function (RBF) network scheme for image sequences. We have developed a fast RBF

network scheme which has been shown to provide robust generalisation when used with pose-

varying face data in image sequences.

3. Face Unit RBF network scheme. We have developed our own novel Face Unit RBF network

model that can be used either alone to classify individuals in a known group, one for each person,

or to accompany standard RBF network output for a cooperating classification.

4. Image-based Time-Delay RBF network scheme. We have established the suitability of the Time-

Delay RBF model, previously only used for speech recognition, for image analysis. We were able

to show that the network could recognise simple head-turning behaviours in image sequences in

an extension to our previous, static frame training methods.

8.2 Discussion

Section 2.1 devised four main areas of requirements for our target task: Group 1) general re-

quirements that need to be satisfied by all parts of the system, Group 2) acquisition requirements

concerned with monitoring and extraction of useful information, Group 3) face recognition re-

quirements for the recognition stage and Group 4) identity requirements which are concerned with

how the recognition information is used. As mentioned in that section, those from Group 2 are

assumed to have been previously fulfilled via existing technology and those from Group 4 are the

subject for future work.

We believe the Group 1 General Requirements, 1a and 1b, are addressed appropriately in our

RBF network scheme with filter-based preprocessing. We have been able to show rapid preprocess-

ing, training and classification (in Section 2.6) and robust generalisation of trained RBF networks

to test image sequences containing significantly different examples of everyday lighting and pose

variation (in Section 6.2.2).

For Group 3, the Face Recognition Requirements, the following requirements have been ful-

filled in the thesis (with the sections where this was demonstrated shown in brackets): 3a – Fast

learning and real-time recognition of up to 50 individuals (Section 2.6); 3b – ability to work

with low-resolution face images (Chapters 3 and 4); 3(c)i – minor translation (shift) and scale in-

variance (Section 4.3); 3(c)ii – moderate illumination invariance (Sections 3.3 and 6.2.2); 3(c)iv

– background invariance (Section 6.2.2); 3(d)ii – head pose invariance, including self-occlusion

(Chapter 3, Section 4.2 and Chapter 6); 3e – confidence available for output (Section 3.2 and

Chapter 5).

The following Group 3 Requirements were not demonstrated in the thesis and would need

to be addressed in future work: 3(c)iii – tolerance to occlusion by other objects (although the

suitability of similar approaches to tackling both this and self-occlusion (3(d)ii) has been shown by

results in Edelman and Poggio (1992) and Ahmad and Tresp (1993)); 3(d)i – moderate expression

variation; 3(d)iii – tolerance to everyday changes, such as hair-styles and glasses; 3(d)iv – tolerance
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to longer-term changes, such as aging and weight change; 3f – ability to detect (not classify) a

person who is outside the known group.

8.2.1 Limitations of Approach

The approach we have taken is extremely robust in terms of handling noisy, low-resolution images.

In such conditions, there is always going to be ambiguity and uncertainty, and the RBF network

will be able to make the most of this. This is not to say that it is the perfect solution for all types of

face recognition, indeed, we cannot make any claims for tasks outside our current requirements. In

particular, any neural network scheme may not be suited to classifying particularly large numbers

of people or using high-resolution images, because of an exponential computational load related

to the dimensionality of the problem. The low resolution of the images may well create problems

if used to discriminate large numbers of people, due to a limit being reached on the number of

different patterns actually possible with the pixels available.

We do not have a method of detecting people outside our known group at present, which makes

it hard to give robust classification when using real-life image sequences. A further complication

is that such detection would ideally need to distinguish between genuine unknown people and

non-face images, such as shown in the Secondary test sequence used in Section 6.2.2. However,

this may be easier in the future, as McKenna and Gong (1997) are now able to provide a level of

confidence of face being present in a segmented frame, which would immediately allow non-faces

and strangers to be kept separate.

We cannot use the approach as it stands for more general testing of image sequences, as it is not

known how to train the network effectively to recognise each individual. The only strategies we can

use currently are 1) use all frames from a sequence, 2) use a selection taken at a fixed interval, and

3) take a random selection. The ideal solution would be to provide a range of views of each person,

regularly spaced with respect to head pose (y-axis variation), as this can be expected even due to

camera angle alone. In addition, we have not addressed the other other axes of head movement,

which are also present if the head is nodded or inclined or if the camera is subject to roll or yaw

(rather than being passive). Although the y-axis head pose will vary most, as it is linked to body

orientation most closely, there will always be some x- and z-axis variation, so explicit examples of

this will be required for efficient recognition.

8.3 Future Work

We have left the Group 2 Acquisition Requirements to be fulfilled by others, particularly the QMW

Vision Group (McKenna & Gong, 1996, 1997), who have been making rapid progress in real-

time face tracking and localisation. Significant recent work has allowed more robust segmentation

through colour detection, and confidence levels can now be provided with each segmented frame to

denote the likelihood of a face being present in the image. Research to incorporate such advances

in our own work will obviously lead to improvements in our system, especially as our results

in Section 6.2.2 included classifications for spurious frames which contained no face and could

therefore never obtain high performance. In spite of this, if the criterion for successful recognition

in such sequences is the correct class being identified for the majority of frames, then the system is

already working. However, the serious lack of test data weighs against such optimism to sound a

note of caution against thinking that our approach is already useful for real-life applications. Clearly,

much work remains to be done.

A particular problem for the research is the lack of suitable databases of test image sequences.

Standard databases, such as M2VTS and FERET, are designed for different purposes. There is an

urgent need for a structured, freely available database with wide ranges of examples of both head

and body movement.

We identified above those Group 3 requirements which had not been fulfilled within the thesis.

Attention would need to be focussed on these areas before any useful application could be produced.
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Specifically, in terms of invariance, more precise limits need to be established for the system for

translation (shift) and scale variation, and research needs to be done to establish limits on expression

and lighting variation.

As mentioned in Section 2.1, the Group 4 requirements were were not included in the frame-

work for the thesis and were to be addressed in future work. This group of requirements was

concerned with adapting the known group of individuals the system could recognise. This is ob-

viously an important ability for any application that is needed to continue working for more than

a day or so. A key requirement for these higher-level processes is Requirement 3f, the ability to

detect a person from outside the known group of individuals. Such a capability is therefore the

highest priority for future work if any progress is to then be made with the Group 4 requirements.

It is not clear what the best approach would be to detecting individuals from outside the group,

but techniques may include analysis of network confidence levels or developing a ‘group detector’

network similar to the Face Unit network, the output of which would be either ‘yes, a member of

the group’ or ‘no, a stranger’. Of course, providing negative evidence for such a task might be as

difficult as providing ‘non-faces’ for face detection schemes.

Although we are particularly interested in using image sequences, it has not been possible to

do a useful number of tests with sequences up to this point, and a lot of questions relating to their

use still remain open, such as how to select canonical views for training. We want an even spread

of pose views - should we start off with a few, extracting ‘on the fly’ and add to these as they

become available? The issue of training for dynamic environments is difficult, as it is not clear

what representative views of a person really are. It is clear that humans use cues such as clothes and

hairstyles for everyday recognition – is this an efficient way for a computational system to train, and

if so, how are suitable data determined? In addition, people change from week to week, so it may

well become necessary to re-collect training examples to show their new appearance – how would

this be decided and should an archive of previous hairstyles, for example, be kept as a ‘memory’ in

case they return to a similar style later?

Our work with temporal behaviour and gestures within image sequences is also at a preliminary

stage. We have been able to establish the suitability of the TDRBF network for certain limited

actions, but for more complex gestures and to obtain robust performance, we will need to expand

the training regimes to encompass different and variable ‘time bases’ for the same behaviour at

different speeds, especially when the data contains lengthy actions or simultaneous combinations of

learnt behaviours. Solutions to this problem may require either subdividing the behaviours into fast

and slower versions and/or merging these in a second stage of behavioural analysis. Such flexibility

may turn out to be an advantage in practice, as the interpretation of a fast pointing action may be

different from a slower action. We also wish to develop body movement and gesture models for

the user-specific interpretation of behaviour and intention. Together with the QMW group, we

hope to develop real-time ‘intentional tracking’ techniques that exploit such behavioural models by

estimating and predicting expected head and body movement and primitive gestures.

This thesis has been able to make good progress towards a solution for our task requirements.

To be able to expand face recognition techniques to tackle everyday environments has been a

fascinating problem, encompassing a wide range of disciplines. We look forward to taking the

approach further to address more general behaviour.
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Appendix A

Face Database Information

This appendix gives specific details on the face databases used for the experimental chapters. Sec-

tion A.2.2 contains Euclidean distance comparisons for the Sussex database.

A.1 The ORL Database

The Olivetti Research Laboratory (ORL) database of faces (ORL, 1994) has been used for the initial

experiments in Section 2.6. It is valuable, as there are a wide range of published face recognition

results based on the database which can be used for comparison. It contains 400 greyscale images of

40 people at a resolution of 92�112, see Figure A.2. Each individual is represented by 10 images,

and for some, these have been taken at different times.

Variations allowed in the image included lighting, facial expressions (such as open or closed

eyes and smiling or not smiling) and facial details (such as glasses or no glasses). All the images were

taken against a plain background, with tilt and rotation up to 20�, and scale variation up to 10%.

A.2 The Sussex Database

The Sussex Database is designed to assess how the performance of a particular face recognition

technique will be affected by significant pose variations. It only contains data for ten people, which

is a relatively small number by current face database standards. However, the main purpose of the

database is not to test how many individuals a recognition system can discriminate, as there are

Figure A.1: Set of 10 images for one person in ORL database, illustrating moderate x-, y- and

z-axis rotation with expression and illumination variation.
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Figure A.2: The complete ORL Database.
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many publically-available databases that could be used for this purpose. The use of ten people is

sufficient that the task is not trivial, but not so large that computation is excessive.

For each of the ten individuals in the database, ten images of the head and shoulders were taken

in ten different positions from about 2 metres away in 10� steps from face-on to profile of the left

side, 90� in all. This gave a data set of 100 8-bit grey-scale 384�287 images (see Figure A.3) from

ten individuals. Lighting and facial expressions have been kept fairly constant to focus more clearly

on pose variation.

A.2.1 Localization

A 100�100-pixel ‘window’, containing all required facial information, was located manually in

each image, see Figure A.4(a), and extracted for further processing. This size of window was large

enough to give all of the main face features (if visible) without large areas of hair (Task Requirement

3(d)iii) or background (Task Requirement 3(c)iv), both of which are transient and may mislead

recognition at a later date. Figures A.4(b-e) show this window subsampled to a range of resolutions.

Figures A.5 and A.6 show all 10 views for all 10 people in the Sussex database. The image

window is centred by hand on the tip of the person’s nose, so that visible features on profiles, for

instance, should be in roughly similar locations to face-on. This means that some images, such as

the profiles, do contain some background information. The background was a uniform plain white

wall, and is anticipated to be a neutral component of the data. Figure A.7 illustrates an alternative

face segmentation technique to the one used above.

(a) (b)

Figure A.3: Two examples of original 384�287 images from the Sussex database, showing pose

angles (a) 10�, (b) 60�.
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(a) Class 4, 100�100

(b) Class 4, 50�50

(c) Class 4, 25�25

(d) Class 4, 12�12

(e) Class 4, 6�6

Figure A.4: Examples of all ten images for one person (class 4) from the Sussex database, nose-

centred and subsampled before preprocessing, showing a y-axis rotation of 90�.
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(a) Class 0, 25�25

(b) Class 1, 25�25

(c) Class 2, 25�25

(d) Class 3, 25�25

Figure A.5: All ten images for classes 0–3 from the Sussex database, nose-centred and subsampled

to 25�25 before preprocessing.
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(a) Class 5, 25�25

(b) Class 6, 25�25

(c) Class 7, 25�25

(d) Class 8, 25�25

(e) Class 9, 25�25

Figure A.6: As for Figure A.5, but for classes 5–9.
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(a) Class 2, 25�25

(b) Class 4, 25�25

Figure A.7: As for Figure A.5, but using face-centering, rather than nose-centering, for localization

of faces and only showing classes 2 and 4.

Note that this face-centering technique only attempts to fill the image with as much surface area

from the face as is possible. A true, ‘pose-free’ centering algorithm would use head mass for

localization, and the face area extracted would therefore contain the entire head.
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A.2.2 Euclidean Distance Comparisons

These figures refer to experiments in Chapter 3, and illustrate Euclidean distance comparisons for

the face images in the Sussex database. In all the graphs, one image is compared to all the others

(including itself), and all 100 distances are shown, connected by lines according to class. The zero

value can be seen where the image is compared to itself.

Figures A.8 and A.9 each show how the Euclidean distances vary through resolution for one

specific image. Figures A.10 is similar, except the face-centering technique was used for segmenta-

tion, rather than nose-centering. Figures A.11 uses pose classes rather than identity classes.

Figure A.12, which shows all Euclidean distances for six individual images using DoG prepro-

cessing at the 25�25 resolution from the Sussex Database, three each from classes 0 and 1 using

pose angles of 0� (frontal), 40� and (a) 90� (profile). Figure A.13 is the same, except using Gabor

preprocessing.
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(c) 25�25

0 10 20 30 40 50 60 70 80 90
Pose Angle (degrees)

0.0

0.5

1.0

E
uc

lid
ea

n 
D

is
ta

nc
e

Same Class
Other Classes

(d) 12�12

0 10 20 30 40 50 60 70 80 90
Pose Angle (degrees)

0.0

0.5

1.0

E
uc

lid
ea

n 
D

is
ta

nc
e

Same Class
Other Classes

(e) 6�6

Figure A.8: Euclidean distances from one reference face image (pose 40� from class 0) to all others

from the Sussex database, at varying resolutions using single scale DoG preprocessing.

Each line denotes distances from the reference image to comparison images from one class: the thin

lines showing inter-class distances (where the class for the comparison image is different to that for

the reference image), the thick line showing intra-class distances (same class as reference image).
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(b) 50�50
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(c) 25�25
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Figure A.9: As for Figure A.8, but for pose 50� from another class (5) of face images.
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(c) 25�25
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Figure A.10: As for Figure A.8, but using face-centering rather than nose-centering during face

localization.
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Figure A.11: As for Figure A.8, but using classes based on pose, rather than identity.

Each line represents a pose class, each point on x-axis an identity class (person).
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(ii)
(a) Pose angle 0� (frontal)
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(ii)
(b) Pose angle 40� (mid-angle view)
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(c) Pose angle 90� (profile)

Figure A.12: Euclidean distances from single 25�25 face images to all others from the Sussex

database with single scale DoG preprocessing.

Comparing images at specific pose angles from (i) class 1 and (ii) class 8 to all others. Each line

denotes one class: the thin lines showing inter-class distances, the thick intra-class distances. For

comparison, Figure A.13 shows the distances for the images using in (ii), but using Gabor prepro-

cessing.
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(a) Pose angle 0� (frontal)
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(b) Pose angle 40� (mid-angle view)
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(c) Pose angle 90� (profile)

Figure A.13: Euclidean distances from single 25�25 face images to all others from the Sussex

database with ‘A3’ Gabor preprocessing.

Comparing images at specific pose angles from class 8 to all others. Each line denotes one class:

the thin lines showing inter-class distances, the thick intra-class distances. For comparison, Fig-

ure A.12(ii) shows the distances for the same images, but using DoG preprocessing.
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A.3 QMW Image Sequences

The image sequences used in the tests reported here are the result of collaboration with Stephen

McKenna and Shaogang Gong at Queen Mary and Westfield College (QMW), London, and are

split into two types of sequence: Primary and Secondary.

A.3.1 Primary Sequences

The Primary image sequences are intended to provide suitable data to train the system for the on-

line classification, see Figures A.14 and A.15. They consist of a person moving from one profile

view to the other whilst sitting on a chair, to limit body movement. All sequences are taken against

a plain, mid-grey background to limit background effects, such as recognition based on distinctive

background.

Eight Primary sequences have been collected so far, each featuring a different person. They are

variable in length, depending on how fast the person moved from one side to the other, ranging in

length from 62 frames to 94 frames, 554 images in total.

A.3.2 Secondary Sequences

The Secondary image sequences are intended to simulate an on-line source of test images, and are

several times longer and much more variable in pose and lighting than the Primary image sequences.

Their main purpose is to simulate tracking in an unconstrained environment that could easily be

encountered by a real-life application.

They consist of one person moving around a room, allowed to arbitrarily move from side to

side and stop and start movement against a cluttered, changing background. This mean that lighting

and background detail for a Secondary sequence for a particular person will be radically different

to that in the Primary sequence for the same person. Only one preliminary Secondary sequence

has been collected so far; this has 169 frames, see Figure A.16. This typical sequence of images

from a motion-based head tracker illustrates that perfect registration of the head and face can never

be guaranteed, except by manual methods. Future developments of the face detection scheme can

be expected to discard any non-face frames, improving recognition, whilst maintaining temporal

continuity.

It is also hoped that closer cropping of the faces will be feasible. The image sequences have not

been hand-optimised – all data used for this chapter is exactly as output by the QMW processing

stages to give an accurately as possible a simulation of an automatic tracking system providing real-

life data.
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(a) Class aleka

(b) Class carla

(c) Class gill

(d) Class jj

Figure A.14: The first four of eight complete QMW ‘Primary’ image sequences, after segmentation

but before preprocessing (boxes indicate frames used for training with a selection interval of 10).

Figure A.15 shows the second four sequences.
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(a) Class jon

(b) Class lorna

(c) Class sean

(d) Class steve

Figure A.15: As Figure A.14, but the second four of the eight QMW sequences.
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Figure A.16: A complete Secondary sequence for class steve, after segmentation but before pre-

processing. This shows the high level of lighting and pose variation which was designed to test the

RBF network’s generalization to conditions different to those used for training. As only front-view

face detection has been implemented at this stage, some non-face frames are included and profile

views, although segmented, are incorrectly scaled.
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Radial Basis Function Network Specification

We employ a Gaussian radial basis function (RBF) neural network model as proposed by Moody

and Darken (1988, 1989) (also proposed similarly by Broomhead and Lowe (1988), Poggio and

Girosi (1990a, 1990b)). This combines a supervised layer from the hidden to the output units with

an unsupervised layer from the input to the hidden units, see Figure B.1. The network model is

characterised by individual radial Gaussian functions for each hidden unit, which simulate the effect

of overlapping and locally tuned receptive fields.

The size of our RBF network is determined by 1) the size of the face data, as the number of

pixels gives the number of input units, 2) the number of training examples, which gives the number

of hidden units, and 3) the number of individuals to be distinguished (the number of classes), which

gives the number of output units.

The RBF network’s success in approximating non-linear multidimensional functions is depen-

dent on sufficient hidden units being used and the suitability of the centres’ distribution over the

input vector space (Chen et al., 1991). Each training example is assigned a corresponding hidden

unit, with the image vector used as its centre, as is common with Regularization Networks (Beymer

& Poggio, 1996). This approach should not lead to over-fitting because each image in the dataset

contains unique 3-D information. Normalisation of hidden unit outputs means that a ‘bias’ hidden

unit is not required (Musavi et al., 1992).

Table B.1 gives the notation used in equations in this appendix to describe the RBF network.

The rest of the appendix is split into two parts, the first describing the training and activation of the

hidden unit layer, and the second the output unit layer.

B.1 Unsupervised Learning

The unsupervised part of the training procedure for the RBF network is concerned with determin-

ing centre vectors and widths for the hidden units. For this implementation of the network, it is

simple to find the centre vectors, as we assign one hidden unit to each training example so that each

training vector becomes the corresponding centre vector. Therefore, our main discussion in this

section is about methods for determining the width values for the hidden unit Gaussian functions.

B.1.1 Hidden Unit Widths

Each hidden unit (Gaussian basis function) is given an associated width or scale value, σ, which,

signifying the standard deviation of the function, defines the nature and scope of the unit’s receptive

field response (Saha & Keeler, 1990). This gives an activation that is related to the relative proximity

of test data to the centre vector associated with the hidden unit, allowing a direct measure of

confidence in the output of the network for a particular pattern. In addition, patterns more than

slightly different to those trained will produce very low (or no) output.
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Output Units - Linear

Input Units

RBF Units -

Non-Linear

Unsupervised

Supervised

Figure B.1: General layout of a radial basis function (RBF) neural network.

Term Meaning

L Number of training patterns

l Index for pattern

N Number of input units

j Index for input unit

j Input in vector notation

H Number of hidden units

h Index for hidden unit

ch Centre vector for hidden unit h

φl
h Activation of hidden unit h with pattern l

I Number of classes and output units

i Index for output unit

t l
i Target activation for output unit i with pattern l

ol
i Actual activation for output unit i with pattern l

Table B.1: Notation used in equations to describe the RBF network.
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Heuristic for Initial % % After

σ Values % Discarded Discard

Individual 1-NN 92 44 96

Individual Mean/16 80 2 81

Individual Mean/4 82 22 89

Individual Mean/2 84 48 100

Individual Mean 92 48 100

Individual Mean�2 82 52 100

Individual Mean�4 72 58 95

Individual Mean�16 70 62 94

Global 1-NN 88 50 96

Global Mean 92 54 100

Table B.2: Effect on test generalisation of changing heuristic for calculating σ values for the hid-

den units for standard 50/50 RBF networks with ‘E3’ 3-orientation Gabor preprocessing (see

Appendix C for details).

‘Individual’ indicates that each hidden unit has a separate value, whilst ‘Global’ indicates the mean

of all the individual values was used for all hidden units. ‘1-NN’ indicates that the distance to the

single closest hidden unit only (the ‘nearest neighbour’) was used, whereas ‘Mean’ indicates that the

average distance to all other hidden units is used. The Individual Mean results also show where the

values were factored by a constant value.

Moody and Darken (1988) used an adaptive P-nearest neighbour heuristic to determine the

centre σ values. We calculate individual σ values for each of the H hidden units from the mean

Euclidean distance between the centre c of each hidden unit α and all others h in the global form

of the formula from Stokbro et al. (1990, p.606):

σα =

1

H
p

2
∑
h

q

(cα
� ch

)

2 (B.1)

As mentioned, an alternative would be to use a fixed number P of closest distance values

to determine the mean value, but this would require an extra parameter (which would require

optimisation). Although the values in Equation B.1 may become closer to the overall mean value

for large numbers of hidden units, it was felt this was a better approach than to have such extra

parameters, which can interrupt automatic operation.

Generalisation performance for RBF networks is dependent on the appropriate choice of the

σ centre width values for the hidden units (Musavi et al., 1992). However, Table B.2 shows that

in practice, the precise form of σ calculation was found not to affect generalization greatly (for our

particular task, at least), particularly after discard, but the use of individual mean values did give the

best results. RBF networks using very small σ values tended to lose performance because of less

effective discard (due to hidden units’ outputs becoming more polarised), whereas those with larger

σ values also lost performance but this time with a high proportion of discarded classifications. This

table also shows that the use of a single nearest neighbour gave slightly worse results than obtained

with mean values.
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B.1.2 Hidden Unit Activations

The (unnormalised) output u for hidden unit h (for a pattern l) uses a Gaussian function, which

can be expressed as

ul
h = exp[�

(rl
h)

2

2σ2
h

] (B.2)

where, in this case, r is the Euclidean distance:

rl
h = dE(j

l
;ch);

dE(j;c) =

s

N

∑
x=1

( jx� cx)
2
: (B.3)

This is the distance between the N-dimensional input vector j and hidden unit centre c. Note

that the calculation of ul
h in Equation B.2 does not require the square root of the expression in

Equation B.3 to be calculated.

The hidden layer output is then normalised (Moody & Darken, 1989):

φl
h =

ul
h

∑h ul
h

(B.4)

The input-to-hidden weight connections wh j shown in Figure B.1 are fixed and equivalent to

the elements of the centre vector cx for Equation B.3.

B.2 Supervised Learning

The supervised part of the training procedure for the RBF network is concerned with determining

suitable values for the weight connections wih between the hidden and the output unit layers. The

output o for the output unit i for a pattern l is

ol
i = ∑

h

wihφl
h: (B.5)

There are two main techniques for determining these weights, which can both be seen as

minimising the error measure (cost function) E of the network

E = ∑
l

E
l
= ∑

l
∑

i

[t l
i �ol

i]
2 (B.6)

where t l
i is the target output value for output unit i when the network is presented with training

pattern l. The first is an iterative method using gradient descent, whilst the second is a ‘one-shot’

method using Singular Value Decomposition.

B.2.1 Gradient Descent Calculation

Weight adjustment for the hidden-to-output layer can be made with the Widrow-Hoff delta learn-

ing rule (Widrow & Hoff, 1960), also known as LMS (least mean square) rule. Convergence of

the RBF network during training is defined as the point when the error measure for the network

(Equation B.6) goes below a pre-determined ‘error limit’ value, which needs to be established by

trial and error. The error δ for output unit i (for a pattern l) is

δl
i = t l

i �ol
i: (B.7)
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This is combined with two more fixed parameters which control the speed of change, η, the

learning rate, and γ, a momentum term, to give the change in weight value ∆wih

∆wl
ih = ηδl

iφ
l
h + γ∆wl�1

ih (B.8)

Hertz et al. (1991) suggested initialising the weights wih to the target output values to speed training,

so that wih = t l
i .

The gradient descent method can be slow, requiring many iterations, and uses several arbitrary

parameters – the error limit, learning rate and momentum term. Direct methods of calculation, as

discussed below, do not require such parameters and can be calculated quickly.

B.2.2 Pseudo-Inverse Calculation

An alternative method to calculate the weights between the hidden and output layers is to use

the matrix pseudo-inverse method (Poggio & Girosi, 1990a), using Singular Value Decomposition

(SVD) (Press et al., 1986), which allows an exact solution to finding wih in a single processing stage.

This process is best explained by rerepresenting the training equations for the network in vector

notation. It has already been shown that the error E of the network in Equation B.6 will be zero

when ol
i = t l

i , that is, the actual output of the network matches the target values. Equation B.5 in

this case becomes

∑
h

wihφl
h = t l

i ; (B.9)

As Bishop (1995) shows, the values wih can be estimated from this equation using the singular

value decomposition to find the pseudoinverse of the matrix whose elements are φl
h. This approach

is more useful than gradient descent, as it allows almost instantaneous ‘training’ of the network,

regardless of size.
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Preprocessing Techniques

This appendix describes the specific implementation of the two preprocessing techniques used:

Difference of Gaussians and Gabor wavelet filtering.

Preprocessing of the images is an important intermediate step, as the input representation con-

tributes a great deal to the learn-ability of the task. Highlighting relevant parts of the information

(leading to reduction in the dimensionality of input) and providing moderate invariance to normal

environmental illumination (Marr & Hildreth, 1980) are important to us here. This is in contrast

to tackling strong, incidental lighting, which is very much more difficult (Moses et al., 1994).

C.1 Difference of Gaussians (DoG) Preprocessing

Where there is a change of intensity in an image, peaks or troughs are found in the first derivative

of the intensity, and zero-crossings in the second derivative. To isolate the latter, Marr and Hildreth

(1980) suggested the ∇2G, or Laplacian of the Gaussian, operator.

The Laplacian of the Gaussian can be closely approximated by a computationally efficient Dif-

ference of Gaussians (DoG) operator, which is constructed from two different Gaussians G of the

form

G(x;y) =
1

σ2 exp(�
x2

+ y2

2σ2 ) (C.1)

where the space constants σ usually have the ratio of 1:1.6 to give the best approximation to the

Laplacian.

We have constructed DoG filter masks using the POPVISION convolve gauss 2d library

routines (further details in Popvision (1994)), which were also used to control the convolution of

the image.

Figure C.1 shows the masks produced in this way at varying DoG scales. Figure C.2 shows the

result of convolution of these filters with a 25�25 face image from the Sussex database. Because of

the low resolution of the image, the number of convolved samples was quite low when the larger

DoG filters were used.

C.1.1 Varying Face Resolution

Table C.1 shows the different DoG scale values used for different image resolutions.

The smallest size of image (6�6) does not have a correspondingly small scale factor, due to the

low resolution of the data in general. The scale value cannot be less than 0.15, as this gives a 3�3

filter mask. 3�3 is the smallest mask size there can be, as the mask has to be an odd number of

pixels across, and a 1�1 mask would obviously not be much good.
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(a) Scale 0.15 (Mask 3�3) (b) 0.4 (5�5) (c) 0.8 (7�7)

(d) 1.2 (11�11) (e) 1.6 (15�15)

Figure C.1: Filter masks created from a range of DoG scales used for preprocessing.

(a) Scale 0.15 (23�23

sampled values)

(b) 0.4 (21�21) (c) 0.8 (19�19)

(e) 1.2 (15�15) (g) 1.6 (11�11)

Figure C.2: Convolved vales from a 25�25 image using DoG preprocessing at different scales.
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Original DoG Convolved Samples

Resolution Scale Resolution per Image

100�100 1.3 90�90 8100

50�50 0.8 44�44 1936

25�25 0.4 21�21 441

12�12 0.15 10�10 100

6�6 0.15 4�4 16

Table C.1: Resolutions of face data used from the Sussex database, and the DoG preprocessing

values for each image size.

(i) (ii) (iii)

(a) full range of grey-levels

(i) (ii) (iii)

(b) reduced range of grey-levels

Figure C.3: Effect of different ranges of grey-levels for DoG preprocessing using a 25�25 image.

(i) before preprocessing (ii) after non-thresholded DoG preprocessing (iii) after thresholded DoG

preprocessing.

C.1.2 Image Grey-Level Range

The range of grey-levels present in the images can be reduced, if it is considered that the areas of

low and high pixel values are not useful areas of face information (that is, the skin tones will be

represented by mid-values). To see how useful this would be, the 8-bit grey-level range of 0–255

present in the images was reduced to 20–65. All values outside this range were set to the minimum

or maximum values, effectively removing all detail from these pixels. Such an approach may also

reduce the effect of specular reflectance and strong shadows. Figure C.3 shows the effect of such

reduction in grey-level range both before and after DoG preprocessing.

C.1.3 DoG Gradients vs. Zero-Crossings

With a typical, grey level image, such as Figure C.3(a)(i), DoG convolution will give continuously-

valued (with both positive and negative gradient values) gradient information, as shown in Fig-

ure C.3(a)(ii). Where these values change from one sign to the other is the ‘zero-crossing’ point;

if the values are thresholded at 0 into either 0 (for negative) and 1 (for positive), the boundaries

between black and white are the zero-crossings for the image, as shown in Figure C.3(a)(iii). To test

how useful it was to explicitly concentrate only on this boundary point, preprocessing was carried
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out with and without this thresholding stage, producing two forms of processed information:

Gradient DoG This is non-binarized.

Zero-crossings DoG This is the binarized form of the information.

It may be possible to remove noise during the binarisation process by ignoring zero-crossings

which only have small values on each side, but we have not been able to try this yet.

A third type of information, the zero-crossings contours, as illustrated in Marr (1982, p.69), are

the lines following the zero contour around the gradients. Such gradient line formation requires

high resolution data, so that the areas on either side of the lines are accurately separated. For the

low resolution face data used here, these zero-crossing contour lines were found to be almost the

same as the binarized data, and so tests were not done on this type of data. It should also be noted

that such bare zero-crossings lines are not as informative as the binarized data, as they have lost the

sign of the gradient value. The retention of the areas of positive and negative values in the binarized

data makes explicit whether the change-over at the zero crossing is from positive to negative or the

reverse.

Moreover, there is evidence that plain line drawings (which look quite similar to zero-crossings)

are not a good representation for face recognition (Bruce et al., 1992). The provision of shading

information, for example by filling in darker areas with solid black, allows greatly improved recog-

nition. The binarized form of the DoG preprocessed data we use gives a similar effect. Euclidean

distance comparisons using such areas of light and dark ought to be more robust than those be-

tween pure zero-crossings contour information (which consist of narrow black lines on white) and

therefore provide greater test generalization.

To see why this is, one has to imagine the Euclidean distance between two images which are

identical except one has been shifted across by one pixel. For a representation of general areas of

light and dark, many pixels in both images will still be the same, whereas for the zero-crossings

representation (each zero gradient line is one pixel wide), even a shift of one pixel will be sufficient

to make most pixels be out of registration and so no longer have the same value when compared.

The latter representation will have a very much larger Euclidean distance between the two images

than the former, which will make them harder to distinguish from truly different images in a more

general classification task, and therefore will not allow good generalization.

C.2 Gabor Filter Preprocessing

We have selected 2-D Gabor filters (Daugman, 1988) as an alternative preprocessing method, as it

provides oriented information, which, we hope, will provide input information for the network in

a more useful form than the previous methods. One disadvantage of isolated orientation-specific

value is that if a full convolution of the image is carried out, more values are output than input (as

there is a data value for each pixel for each orientation required). In addition, there are sine and

cosine components of the Gabor filter, which doubles the number of coefficients produced.

C.2.1 Gabor Scales and Orientations

The Gabor masks were constructed using the POPVISION gabormask library routines, using the

parameters σ for width and φ the orientation of the mask. σ is based on p the period of the

harmonic component:

σ =

p

2
p

2
:

The real (cosine) component, C, of the Gabor mask is calculated as

C(x;y) = N exp(�
x2

+ y2

2σ2 ) cos(x0ω); (C.2)
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(i) (ii) (iii) (iv) (v) (vi)

(a) 25�25 masks created from a Gabor function of period 13.

(i) (ii) (iii) (iv) (v) (vi)

(b) 7�7 masks created from a Gabor function of period 3.

(i) (ii) (iii) (iv) (v) (vi)

(c) 3�3 masks created from a Gabor function of period 1.

Figure C.4: Gabor filter masks of different orientations, created by Gabor functions of three differ-

ent oscillation periods.

(i) 0� real (cosine) element (ii) 0� imaginary (sine) element (iii) 30� real (iv) 30� imaginary (v)

45� real (vi) 45� imaginary.
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Scheme Orientations Scales Over- Matrix Coefficients

(degrees) lapping per Image

A1 90 4 No Square 170

A3 0, 60, 120 4 No Square 510

B1 90 4 Most Square 170

B2 0, 90 4 Most Square 340

B3 0, 60, 120 4 Most Square 510

B4 0, 45, 4 Most Square 680

90, 135

B6 0, 30, 60, 4 Most Square 1020

90, 120, 150

C3 0, 60, 120 4 Less Square 510

D3 0, 60, 120 4 No Circular 420

E1 90 3 No Square 42

E2 0, 90 3 No Square 84

E3 0, 60, 120 3 No Square 126

Table C.2: Types of Gabor sampling schemes tested, with filter orientations and number of coeffi-

cients sampled per image.

where

x0 = x cos(φ)+ y sin(φ);

and

ω =

2π
p
;

and N is a real normalisation constant. The imaginary (sine) component, S, is

S(x;y) = N exp(�
x2

+ y2

2σ2 ) sin(x0ω): (C.3)

C.2.2 Gabor Sampling Schemes

In order to reduce the number of coefficients calculated for each image, sparse sampling schemes

were constructed, with a range of scales. Each sampling point will have a number of coefficients,

one each for the sine and cosine component, multiplied by the number of orientations used. Each

scheme is referred to by a letter and an optional number denoting the number of orientations used,

for example, ‘B3’ is the B sampling scheme with 3 orientations.

The ‘A’ and ‘E’ square matrix sampling schemes had the least amount of overlap on sampling

points. Others were tested which used large amounts of overlap on the sampling receptive fields,

or circular sets of sampling points; Table C.2 summarises the different sampling schemes used.

Tables C.3(a) and (b) show the sampling arrangements for the ‘A’ and ‘B’ square matrix sampling

schemes, with Figures C.5(a) and (b) showing how these masks were positioned to cover the image

area. Note that the ‘A’ scheme only covers 24�24 at the 8�8 scale and the some overlap was

needed to fit the 2�2 and 4�4 sampling levels.

The ‘C’ square matrix sampling scheme (Table C.3(c) and Figure C.5(c)) has a midway level of

overlap between ‘A’ and ‘B’, the scales used intended to retain fine detail from the original image.

The ‘D’ circular matrix sampling scheme was devised in order to reduce the number of coefficients

still further and is described in Table C.3(d) and Figure C.5(d).
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Number of Period Mask

Samples Size

1�1 13 25�25

2�2 7 13�13

4�4 3 7�7

8�8 1 3�3

(a) ‘A’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 10 19�19

4�4 5 11�11

8�8 3 7�7

(b) ‘B’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 9 17�17

4�4 4 9�9

8�8 2 5�5

(c) ‘C’ sampling

Number of Period Mask

Samples Size

7 4 9�9

7 3 7�7

19 2 5�5

37 1 3�3

(d) ‘D’ sampling

Number of Period Mask

Samples Size

1�1 13 25�25

2�2 7 13�13

4�4 3 7�7

(e) ‘E’ sampling

Table C.3: Sampling and filter masks used for different Gabor preprocessing schemes.

Scale Sampling Coefficients

Combination 1�1 2�2 4�4 8�8

1 � 6

2 � 24

21 � � 30

4 � 96

41 � � 102

42 � � 120

421 (E3) � � � 126

8 � 384

81 � � 390

82 � � 408

821 � � � 414

84 � � 480

841 � � � 486

842 � � � 504

8421 (A3) � � � � 510

Table C.4: Numbers of coefficients for different A3 Gabor filter scale and sampling combina-

tions: The ‘8421’ arrangement is equivalent to standard A3 sampling, ‘421’ to E3 sampling. See

Table C.3(a) for details of filter masks at each sampling level.
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(a) ‘A’ least overlap, square matrix (b) ‘B’ most overlap, square matrix (c) ‘C’ less overlap, square matrix

(d) ‘D’ least overlap, circular

matrix

(a) ‘E’ least overlap, 3-scale square

matrix

Figure C.5: Sampling positions for Gabor sampling schemes.

The fairly coarse alignment to pixel boundaries in the low resolution 25�25 image area means

that some actual sampling positions do not coincide with their exact mathematical position.

Table C.4 shows the number of coefficients used in each combination of filter scales. Each

number in the combination title refers to one scale, so ‘1’ has only one scale: 1�1, whereas ‘81’ has

two: 8�8 and 1�1.


