
CSRP 477: Architectural Requirements of a

System Retrieving Adaptive Image Objects

Malcolm McIlhagga, Ian Wakeman

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1

9QH

September 29, 1998

Abstract

We provide a number of design choices which should be addressed when designing an adaptive

application. These choices are common to all adaptive applications, and are fundamental

in determining how the application is adapting to changing resources, while providing user

utility. We have illustrated their use in the design of an Image Proxy for the WWW (Wakeman

et al, 1997).

1 Introduction

There are a number of adaptive applications, ranging from those attempting to reduce congestion

and limited bandwidth, such as vat (Van Jacobson and McCanne, 1992), vic (McCanne and Van

Jacobson, 1995), ivs (Bolot, Wakeman and Turletti, 1994) and rat (Perkins, Hardman, Kouvelas

and Sasse, 1997), to User Interface Management Systems such as Amulet (Myers, McDaniel,

et al., 1997) which attempt to adapt to the display capabilities through battery management

schemes within the operating system. The rise of middleware has generated renewed interest in

providing generic adaptation policies, but we believe that the interfaces to manipulate resource

requirements are phrased in the wrong vocabulary (Wakeman, McIlhagga and Ormsby, 1998).

Recently there has been an attempt at de�ning object design patterns (Posnak, Lavender, Vin,

1997), but these do not address the application holisticly. The work on the Glomop architecture

(Fox, et al., 1996) is closest in approach to our work. We have focused on developing a policy

control architecture rather than developing a scaleable solution, and in particular in generalizing

to an adaptive applications architecture.

2 Adapting to Constraints: Choices in Application Design

An adaptive application is one in which the application changes its behaviour according to the

perceived constraints in the environment, so as to maintain the semantics of the application for

the user.

If we take the above de�nition as our starting point, we can break the problem of designing an

adaptive application into stages. The constraints in the environment should �rst be determined.

1



E.g. for mobile computing applications, the likely constraints are network quality of service, bat-

tery power and display capabilities.

We must next de�ne the semantics of the application. What is the application trying to achieve?

Having made a best guess at the semantics, our design goal is to ensure that the semantics of the

application remain invariant across the constraint-reacting behaviours of the application, thus the

utility of the application remains high. This leads us to a solution in which the implementation

of the application should be opened up so as to allow the choice of some equivalent but less

resource-hungry implementation. We thus come to our �rst design point -

3 Providing an Open Implementation of Components

The software engineering concept of open implementation (IO) (Kiczales, 1996) enables the de-

signers of components to open up the implementation of their component so that it can be adapted

to suit various needs. The behaviour of the component should be described by its interface ab-

stractions, however the implementation is generally hidden. Following the design guidelines of

Maeda (1996), the component must o�er other meta-interfaces through which the programmer

can adjust the implementation. If we are aiming to produce distributed applications which scale

across networks and display capabilities, then OI o�ers an approach to enable scalability. Simply

put, the OI part of a software component exposes the network requirements of a particular compo-

nent's implementation. By allowing the adaptation controller to manipulate the implementation

of a component, the controller can adjust the network requirements of the component and thus

adapt the component to prevailing network conditions. Kiczale, et al. (1997) suggests that the

designer of an open implementation interface should attempt to:

1. De�ne an abstract 'black box' interface, which instantiates the useful behaviour of the

component.

2. Using the domain knowledge of both the inherent implementation of the component and

of how clients will use the component, de�ne interfaces which allow the client to control

implementation strategies. The inherent implementation of the component is based around

the abstractions that will be used to interface the component. In the case of the �le caching

mechanism described in (Maeda 1996), it is the disk bu�ers and caches of a �le system.

For our network retrieval architecture discussed later, the abstractions are the compression

schemes and representations of the various forms of multimedia. Since the abstractions

used in understanding the implementation of a component are closer to the domain of the

application, the designer will be able to better tune the adaptation of the application.

3.1 Degrees of Freedom in Degradation Trajectories

The OI interfaces of the components will normally provide a discrete set of implementations

upon some variation. Imagine a simple speech tool which provides a set of encodings to use for

speech. As the degree of compression in the encodings gets higher, the bandwidth requirements

decrease but the quality of the resultant speech is decreased, thereby decreasing the utility of

the application. For more complex applications, each component may provide other choices of

implementation which are orthogonal to each other; they reduce resource usage di�erently. If we

were to add redundancy to the speech encodings, using some of our bandwidth to provide data

to repair lost packets at the expense of greater latency, we would provide choices about how to

use valuable bandwidth.

2



If we regard each component as supplying an OI interface which can be adjusted independently

of the other components, the designer has a choice over each component of an implementation.

The number of independent axes which contain implementation choices is the degree of freedom

of the application. Adjusting the OI of a component can be viewed as placing the it at some

new point in the implementation choice, resource usage, application utility space. As we select a

new implementation choices to decrease a component's resource usage, we generally decrease the

utility of the overall application.

Thus for each of the possible component implementation, we could in theory measure the utility of

the resultant application. The designer must understand this space of possible implementations,

for it is from it that they choose a degradation path matching resource variations.

3.2 How Transparent Should the Degradation be?

Having plotted the implementation space, the designer must next decide how the resource usage is

to be monitored and controlled. For networked applications, this has generally been a congestion

signal such as packet loss. Processor sensitive applications monitor, by examining the process

queue size (Kouvelas and Hardman, 1997). The designer must next assess the availability of

resources upon which to switch implementations, and whether to include the user within the

loop. Systems which exclude the user and use closed loop feedback need to worry about the

stability of the control loop, and the e�ect that varying utility will have on the user. Systems

which include the user must ensure that the user is educated about the need for their collusion

in adapting the application. Systems in the latter category include battery monitors asking the

user about closing applications, or video conferencing system whose adaptation would reduce the

quality to less than the minimum demanded (Bolot et al., 1994).

3.3 Run-time versus Design-time Behaviour Speci�cations.

Having investigated the implementation space and decided upon how degradation should be con-

trolled, the designer must now determine when the possible trajectories through the implemen-

tation space are decided - when designing the application or through interpreting some set of

instructions later on.

Design-time behaviours include the use of reactive protocols for congestion, such as those in the

video conferencing tools vic and ivs. These have �xed trajectories through the implementation

space. In general design-time policies are easier to encode.

However, as the applications become more generic and are used for more disparate tasks, the

semantics of the application are increasingly determined by the context of their use, and the

utility of the application is di�cult to pinpoint. An application which simply reports the state of

some object has simple semantics and will only be used in a very limited set of contexts can have

it's behaviour pre-determined. Conversely, a web browser is used in many di�erent ways (Light,

1998) and the semantics of the retrieved pages depend highly upon context. As designers, we can

only make best guesses about the utility of various implementations, and so we can only select

trajectories through implementation space that approximate the pro�le of some imaginary user.

In real situations, we must allow users to override a generic pro�le to determine which aspects of

the application semantics are important to them at run-time.

3



3.4 Selecting Fixed Trajectory Behaviours.

Users of applications don't care about the subtleties of network and display performance - they

just want the software to work. Thus whether the behaviours are �xed at design-time or run-time,

the user should be able to use the application without �ddling with editors to set-up values. The

designer must determine and install trajectories through the implementation space that corre-

spond to some expected path through resource availability. In doing so determine likely contexts

in which the application is to be used, approximate the semantics, and then experiment with

selecting behaviours.

The choice of �xed trajectories has a large impact on whether users will use an application and so

is a very important part of the design process. We believe that the context and semantics can only

be determined by users, so as designers we must bring users into the design process. If possible,

we should study them in situ., but if it is not feasible they should be studied in experimental

mock-ups.

3.5 Designing Appropriate Interfaces for Customization.

Traditionally, customization of network and distributed applications has been through dialogues

which provide direct access to program variables. However, this is of limited use when the ab-

stractions are themselves complex and have little or no meaning to the user.

The OI of the components provides abstractions in the application domain to allow manipulation

of behaviour. However, these abstractions may be far removed from the experience of the user.

In particular, the nuances and abstractions of network and distributed applications are rarely

understood by programmers; it is unlikely users will grasp speci�cations in terms of network ab-

stractions.

Instead, the abstractions of the applicationmust be mapped from the system image onto metaphor-

ical controls which build upon the experiences of the user. By using such metaphors we can

educate the user to have an appropriate and useful mental model of the application (Clark and

Sasse, 1997).

4 Run-time Policies: The Media Policy Description Lan-

guage.

Win our image proxy server we have chosen to implement the policy of degradation at run-time

for the following reasons:

� The underlying technology has four main methods through which the implementation of

the transferred media can be manipulated. The application thus has at least four degrees

of freedom in which we can change the implementation, and so providing a wide choice of

trajectories of degradation.

� The application using the media is very generic - the Web model of documents is being

pushed by Microsoft and others as the basic metaphor for the next generation of machine

interfaces. Since the uses of the application are legion, we as designers cannot constrain the

choice of policy degradation.

� The ability to transform the media entirely across types forms an even wider implementation

space. Since transformations may be chosen as more convenient by the user, e.g. a partially

4



sighted user may want text to audio, we believe that users determining adaptation policies

provide an exciting use of the technology.

� There are two associated actors interested in how a media instance is downloaded and

displayed - the reader and the author of the media. Each of these actors may have preferences

on how media should arrive, users may want it as fast as possible, yet authors may require

colour. It is easier to resolve con
icts at run-time.

Our policy degradation objects are written in the Media Policy Language mpl and are interpreted

within the application and the server. They can be merged to form new policies representing the

combined needs and experience of user, author and system designer.

The policies have been used to control the preferences users have as to how images are viewed

across the Web. However, the principle applies equally to other multimedia application (net-

worked or otherwise) and indeed to any application that wants to scale it's interface in some way.

User, authorial and default policies could be devised to allow an application's widgets to present

themselves in a sensible manner on di�ering platforms and visual displays.

mpl is a rule based language that allows the mapping of certain actions to speci�ed groups of

media according to the current networking and display conditions.

The general format is:

path : condition : action [, submission]

It means "apply action to the speci�ed media type (path) if the condition is true and some rule

belonging to a di�erent rule group doesn't override the path". Conditions are legal Boolean ex-

pressions.

We use environment variables to hold values of networking and display conditions and attributes

of the media, as determined by the run-time environment (Sharples 1997). Each environment

variable has a unique name and has an associated type. Currently variables are:

FILESIZE - int

MEDIA-HEIGHT - int

MEDIA-WIDTH - int

MEDIA-DEPTH - int

DISPLAY-WIDTH - int

DISPLAY-HEIGHT - int

DISPLAY-DEPTH - int

BANDWIDTH - int (in Bytes/s)

RATE - int (flow rate)

MIME - string

META - string (used for passing any other info.)

Actions are compress (lossless), reduce (quality: lossy compression), scale (dimension), and trans-

form (from one media to another) etc.

For instance, if a user wishes to compress all objects over 10k:

media.* : SIZE >= 10*1024 : compress;

or if a user has a monochrome browser:

5



media.image.* : true : toMono;

When the browsers is always used over low bandwidth links:

media.image.jpeg : meta(progressive) == false :

toProgressive, submit default;

media.* : true : scale 75, submit author;

media.* : true : reduce 50, submit author;

media.* : true : compress 10;

Policies can be combined with environmental information to select paths of degradation depend-

ing upon the available constraints, so if the user wishes to ensure that all download times are less

than �ve seconds, they �rst attempt to reduce the quality, then if this fails, they scale the object,

using the resolution described in the next section.

media.* : SIZE/BANDWIDTH>5 : reduce 50;

media.* : SIZE/BANDWIDTH>5 : scale 75;

media.* : true : compress 10;

An author's policy to make a JPEG �t in the available space:

media.image.jpeg."www.site.org/pics/mypic.jpeg":

MEDIA-WIDTH > DISPLAY-WIDTH : scale (MEDIA-WIDTH

/ DISPLAY-WIDTH);

4.1 Policy Resolution

Policy scripts are compiled together to create a single executable policy. The policy can act on

the multimedia object with which it is associated through the various interfaces discussed earlier.

When the policy is activated (asked to transform its media), it goes through a number of parsing

and resolution phases. These determine which rules are relevant to the multimedia object, which

rules can be removed or overridden by others and they establish a de�nitive precedence order

between rules from di�erent policy sources.

Initially any rule which applies to media other than that of the attached multimedia object are

removed. Then rules which clash are resolved according to the following criteria:

1. user rules have precedence over authorial and default rules, except when 3. or 4. is in place,

2. authorial rules have precedence over default rules, except for 3.

3. user and authorial rules can specify submition to default rules.

4. user rules can specify that they submit to authorial rules. Four phases of multi-pass rule

activation then take place:

� Transformation involves �ring rules that transform the object to another type in the

media hierarchy. Rules that utilize the transformation interface are key to the writing

of policies that cope with di�cult display attributes and location dependant data.

6



� Reduction involves �ring rules that utilise the reduce interface; thus reducing the qual-

ity of the attached multimedia object and so improving down load time. The reduction

phase is a multi-pass operation. Each pass of the rules further reduces the multimedia

object. Passes are repeated until no rule is �red, that is, all of the media's size and

quality requirements are met. Of course this may never happen! So, the multi-pass

mechanism is constrained by a set of heuristics which can identify looping, the exhaus-

tive limits of compression and rules which reduce the multimedia object to the edge of

our perception.

� Scaling is the process of altering the dimension of the Media. Images are scaled in

the X,Y dimension, as is Video. For some media types scaling is not meaningful. It

is not meaningful to scale ASCII and it is only meaningful to scale Audio in terms of

amplitude or tone, qualities that can be adjusted to suit the user, but do not e�ect

download time.

� Compression is a simple one-pass non-lossy compression. Media that bene�t from this

are those which, unlike JPEG and MPEG, do not support their own compression.

E.g. any mime:text/*, can bene�t from non-destructive compression. This multi-

phase multi-pass process of resolution is at the heart of what makes the policy work.

It combines the disparate needs of user, author and the system designers.

5 Fixed Trajectories: Determining a Default User Policy

There are three good reasons for the existence of a default policy. First, it is necessary to provide

a reasonable behaviour for an object if no policy is provided by user or author. Second, it is

sensible to insist on certain behaviours unless the user or author overrides them. It is sensible

to use lossless compression on objects that implement no compression of their own, such as text,

HTML, postscript, etc. We want to be able to provide default policy decisions that only e�ect the

quality of the media slightly but massively improve download time or display usability, such as a

small reduction in the quality of a JPEG or the frame rate of video. Finally, the default policy is

the basis from which the user can incrementally develop their own policies.

6 Policy politics: Use and Usability

As system designers, we expected that developing an application that attempted to maximise

utility under resource constraint would unconditionally be "a good thing". However, for shared

applications in which the parties do not necessarily share the same goals, issues arise about which

of the parties should retain power.

The degree of control that authors of Web pages have over presentation compares unfavourably

with that in most other media, as the standard layout tool, HTML, is a logical mark-up language.

HTML is changing slowly to take in more optical factors, such as speci�ed fonts and styles, be-

cause of producers' dissatisfaction with this state of a�airs. However, due to variation in browser

interpretations these tags do not guarantee what is produced is what we see. And users continue

to have the opportunity to override some of the layout tags, to switch o� images and Java Applets.

As originally intended the balance of power between user, technology and author is a negotiable

feature of the Web; and in continual 
ux. On the face of it, policies strengthen the user's hand

and contribute to an uncertain environment for the author. If some authors continue to show the

same cavalier attitude to image �le size and the provision of "Alt" tags as a text alternative, then

7



at least users have redress now.

But policies have been designed to allow either side to claim or relinquish control. An author

must defer to user preferences where they exist and can only request certain standards of pre-

sentation. Conversely, a user may de�ne a policy that is in part overridden if an author has

produced a policy and in part de�nes their de�nite display and download needs. Thus, they can

receive something close to the intentions of the author (if they so wish) or something that is "now

readable" on their palm top. In the �nal analysis, if both parties have con
icting policies, then

the user's must triumph. After all, it is the user that must wait while images download and the

user who has such special needs as small displays or disabilities that necessitate di�ering poli-

cies. Our prototype software is a workable alternative to browsing with the images disabled and

therefore goes a long way to ensuring that the author's vision is delivered, if only slightly modi�ed.

An interesting philosophical perspective of the con
ict between the author and user policies is

that we are seeing a concrete representation of the post-modern clash over control of the text.

Distribution of media over networks has provided another form of distance between the author and

the reader, where the network and display may change the experience wished for by the author

into something completely di�erent, even before the reader brings themselves to bear. By making

the changes forced by networked delivery explicit and con�gurable, we enable the author and the

user to enter into a dialogue about what the media is intended for, and use policy precedence

to resolve the asynchronous dispute harmoniously. But this dialogue can only occur if authors

account for various alternate representation to their work.

7 To Conclude

In the development of an adaptive application following some sort of design criteria that incorpo-

rates the user is fundamental to the success of that application in optimising it utility in the face

of an uncertain environment. The use of open implementation in our component design allowed

integration of policy code into the application; the application now has a mutable trajectory

through implementation space. This maintains the utility of the application to the user through

the optimal use of available resources.

We are currently extending the Image proxy to a general proxy architecture in which any media

can become active. We are also investigating authoring tools that encourage the generation of

alternate representations of multimedia presentations, and that allow authors to express their

policies.

8 Bibliography

L. Clark and M. A. Sasse (1997). Conceptual Design Reconsidered - the Case of the Internet

Session Directory Tool. In: People and Computers XII: Proceedings of HCI'97, August 1997, pp.

67-85, Bristol.

Armando Fox and Steven D. Gribble and Eric A. Brewer and Elan Amir (1996). Adapting to

Network and Client Variability via On-Demand Dynamic Distillation. In: Proc. Seventh Intl.

Conf. on Arch. Support for Programming Languages and Operating Systems (ASPLOS-VII)",

October 1996, Cambridge Ma.

8



Ian Wakeman, Malcolm McIlhagga and Andy Ormsby (1998). Signalling in a Component Based

World. In: Proceedings of the First IEEE Open Architectures for Signalling. April 1998, San

Francisco, Ca. Van Jacobson and Steve McCanne (1992). Visual Audio Tool - vat Manual Pages.

G. Kiczales (1996). Beyond the Black Box: Open Implementation. In: IEEE Software, January

1996. Gregor Kiczales and John Lamping and Cristina Videira Lopes and Anurag.

Mendhekar and Gail Murphy (1997). Open Implementation Design Guidelines. In: Proceedings

of International Conference on Software Engineering, May 1997, Boston Ma.

Isidor Kouvelas and Vicky Hardman (1997). Overcoming Workstation Scheduling Problems in

a Real-Time Audio Tool. Proceedings of Usenix Annual Technical Conference, 1997, Anaheim Ca.

Ann Light (1998). Interactivity on the Web. http://www.cogs.susx.ac.uk/users/annl/tax.html.

Chris Maeda (1996). A Metaobject Protocol for Controlling File Bu�er Caches. In: Proceedings

of ISOTAS '96.

Steven McCanne and Van Jacobson (1995). vic: A 
exible framework for packet video. In: Pro-

ceedings of ACM Multimedia, November 1995, San Francisco Ca.

Brad A. Myers and Richard G. McDaniel and Robert C. Miller and Alan S. Ferrency and Andrew

Faulring and Bruce D. Kyle and Andrew Mickish and Alex Klimovitski and Patrick Doane (1997).

The Amulet Environment: New Models for E�ective User Interface Software Development. In:

IEEE Transactions on Software Engineering, June 1997, 23 6, pp. 347-365.

Colin Perkins and Vicky Hardman and Isidor Kouvelas and Angela Sasse (1997).Multicast Audio:

The Next Generation. In: Proceedings of INET 97, June 1997, Kuala Lumpur, Malaysia.

Edward J. Posnak and R. Greg Lavender and Harrick M. Vin (1997). An Adaptive Framework

for Developing Multimedia Software Components. In: CACM, October 1997, 40 10, pp. 43-47.

Nick Sharples and Ian Wakeman (1998). Netbase: Gaining access to Internet Quality of Service

from an Application. Technical report: CSRP 476. School of Cognitive and Computing Science,

University of Sussex.

Jean Bolot, Ian Wakeman and Thierry Turletti (1994). Multicast Congestion Control in the

distribution of Variable Bit Rate Video in the Internet. In: Proceedings ACM SIGCOMM94,

August 1994.

9


