
Gaining access to Internet Quality of Service

from an Application(Netbase)

Nicholas Sharples

School of Cognitive and Computing Sciences

University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom

April 1997

Abstract

This paper is intended as an overview of my recent work toward the

construction, of a globally distributed database of WAN connectivity pat-

terns. It is the intent of such a system to provide client applications with

prior knowledge as to the Quality of Service(QoS), a path between two

host can provide, over a speci�ed period of time.

Using remote objects and native methods now available with the lat-

est release of Java 1.1, a stable framework for development has been con-

structed. Remote objects provide potential developers with an API into

the system, while allowing client applications easy access to the data.

Native methods provide access to the �ner grained platform dependent

timers; required for accurate network performance measures.

The main components of the system have been produced including

administration tools, a remote database server and information gathering

probes. Having now reached a point from which I can look at the work

undertaken, I wish to study it's weakness and decide a strategy for future

development.

1 Introduction

The goal of the project is to provide an approximate measure of host to host

network connectivity, for speci�c time periods. It is hoped that over time,

continued analysis will reveal patterns in the networks usage which can be used

to predicted a base line QoS measure. At this stage in the development of the

system, no mechanisms has been established to deal with multiple paths between

hosts. Rather, through continual measurement the system should predict the

approximate average of the most commonly used paths between the test site

and the host.

The following sections decompose the problem into three areas, measuring

the network performance, the database used for data storage, and statistical

analysis of the obtained measurements.

My primary consideration when designing the structure of the system was to

develop, not just a complete application, but an environment for future devel-

1

> # >

Database

Remote
Probes

Remote
Hosts

Probe
Scheduler

> # >

Remote
Users

Local

Remote

Network

Remote

Network
Connection

Clients

Probe Scheduler

Administration

Connection

R
em

o
te

 In
te

rf
ac

e

Figure 1: System architecture

opment. To this end, the �nal system produced has been implemented using re-

mote objects. Using this approach the various information retrieval components

and statistical analysis functions of the system can be developed independently.

While still passing information back to a central database ready for distribution

to peer servers. See Java RMI documentation for a full discussion of Remote

method invocation

2 System architecture

The schematic diagram in �gure 1 gives an architectural overview of the main

system components. The central database provides a remote interface to allow

client applications access to it's data across a network. Information is provided

to the database via remote probes(remote objects) which can be situated any-

where on the Internet. Allowing independent development of network analysis

tools, while still maintaining a central repository. This also o�ers a light-weight

approach to data gathering, remote from the main system.

To qualify as a remote probe, a class must implement the following Java

remote interface.

public interface Probe extends Remote {

public TimeSeries probe(InetAddress internetAddress,

short packetSize,

short seriesLength,

short failedProbes) throws RemoteException;

}

2

The probe method must return a valid TimeSeries object which contains

the results of seriesLength successive probes with packets of packetSize, see the

TimeSeries class 4.4.1. If failedProbes probe attemps fail to return packets, the

method returns the timeSeries as is i.e. with the number collected or an empty

TimeSeries object. The internetAddress parameter speci�es the destination end

of the path to be measured, the sending end of the path set by the location of

the probe object itself.

3 Measuring network performance

Before discussing the method used to analyse network load, it is important to

clearly de�ne the information a user will require, and thus the information a

network analysis tool must provide. However, this is rather circular as the com-

pleted system will allow its users to customize the analysis functions to extract

information particular to their needs. To allow for this we must separate the per-

formance measures from the process of numerical analysis. Any measurement

tool developed, must provide the raw data rather the processed information.

This scheme provides a front end for statistical analysis and allows for a
exible

and extend-able environment for the end user. As a baseline goal, to begin

development, we have set ourselves the task of constructing a system capable

of calculating a QoS �gure composed of three values throughput(bandwidth),

round trip time(rtt) and packet loss. When a user requests information on a

given host, along with the address of the host requested they must also provide

the start time and length of time they want the estimation for.

3.0.1 Bandwidth

Bandwidth(measured in bits per second) is the number of bits a 'connection'

can transmit in a single second. This de�nition is by know means complete,

a connection is made up of an arbitrary number of links each having varying

amounts of available bandwidth. It is the overall route bandwidth we require,

which is depended on the link with the least available bandwidth, known as the

bottle neck bandwidth.

3.0.2 Round trip time

The time taken for a packet to complete the journey from the local host to the

remote host in milliseconds. This can be used to prime the retransmition timers

used in adaptive protocols.

3.0.3 Packet loss

The percentage chance that a packet will be lost, either through corruption or

dropped by a router.

3.1 Network probes

To attain the required QoS elements a simple tool was developed using the

Packet-Pair technique developed by Keshev see [Kes95]. The original technique

involves sending two packets back to back, and measuring the delay between the

3

Local Host

Local Host

Bottle Neck

bandwidth = 1

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote Host

Router Buffer

Bottle Neck

bandwidth = 1

bandwidth = 3

Remote Host

Local Host

bandwidth = 3 bandwidth = 3

Remote Host

Both packets, received by host

First packet sent, traveling at 3 bits per second.

bandwidth = 3

First packet hits bottle neck.

Figure 2: The remote host returns the two UDP packets. For this example the

packets are 12 bits.

returning acknowledgments. The inter-packet delay is the time taken to write

the second packet through the smallest bottleneck connection, on its return

journey. All delay sustained on the outward journey is negated when the �rst

packet hits the bottleneck in its return path. This technique can be simpli�ed

with the use of ICMP ping packets, which every Internet host must return to the

sender. Using these we can send two packets of arbitrary size and measure the

inter-packet delay as the packets are return to their source. For a full description

of the ICMP protocol see [W.S94].

Shown in �gure 2 are two ping packets on their return journey to the local

host. As can be seen from the diagram the bandwidth is 3 bits per second, so

each packet moves 1 vertical column each second. In �gure 3 the �rst packet has

hit the bottle neck, its progress is now reduced to 1 bit per second. The second

packet is still travelling at 3 bits per second, and has to wait for the �rst packet

to go through the bottle neck before it can proceed any further. In the �nal

�gure 4, the �rst packet is through the bottle neck and moves away at 3 bits per

second. While the second packet is transmitted across the slower link at 1 bit

per second. For the remainder of this paper I shall refer to this as probing. This

form of probing is imprecise as are many network analysis techniques, however

it is hoped the imprecision can be reduced through continually probing over

time.

3.2 Probe scheduling

An important consideration is the amount of network tra�c caused by the

probes as they analyse the connection to a host. An arbitrary maximum of one

probe per minute, was decided upon early in the project. It should be stressed

4

Local Host

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote Host

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote Host

Each packet 12 bits

Time to fill buffer 12 seconds

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote Host

Local Host

Local Host

First packet travels through bottle neck at 1 bit per second

Router starts receiving first packet

Figure 3: First packet transmitted across slower link

that any network performance measure which adds to the network tra�c will

in some way e�ect the measure taken. However, it is hoped that restricting the

probes to only once a minute will cause little excess pressure on the path.

This raised a problematic issue, how to decide which hosts to probe and

when. As time progresses new hosts added to the system would require a larger

number of probes than hosts which had been on the database for some time.

To avoid this issue, simple scheduling classes were produced with the aim of

suppling a potential Netbase developer with a simple extendible class. This

postpones the construction of complex scheduling algorithms in favour of light

weight customizable classes.

4 The Database

The primary role of the database is to provide persistence across all the data

objects it maintains. It's secondary function is to satisfy queries from its users,

during which it must e�ciently extract and analysis speci�c records within its

system. Thirdly, once the database has been developed, it must be initiated

with suitable data.

For the purposes of this project, it is enough to produce a system which

maintains a single repository, or database, of information. Later work, if un-

dertaken, will aim at a globally distributed database much like the architecture

employed in the Domain Naming Service.

4.1 Persistence

Using Java, object persistence is easily achievable by serializing the object as a

stream of bytes, and writing these to a �le. This does have the disadvantage

5

Local Host

First Packet assembled

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Delay between packets increases

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote Host

First packet through bottle neck

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Router starts receiving second packet

First traveling at 3 bits per second

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Bottle Neck
bandwidth = 3

bandwidth = 1

bandwidth = 3

Remote HostLocal Host

Second packet assembled
12 seconds after first packet

Figure 4: As the second packet is being transmitted across the slower link, the

�rst packet travels away faster introducing a time delay between the packets.

Bottleneck =

r

1

�r

2

b

6

that if the class is altered the objects cannot be de-serialized. So, object seri-

alisation should only be considered once the system is reasonable stable, and

an upgrade solution has been established. However, during development, the

database stored object state in simple text �les. These �les, designed more for

readability than performance, became the preferred method for data storage.

Allowing easy manipulation via text editors for test purposes and construction

of reports.

4.2 Data structure

To e�ciently handle a query, the information must be stored in an optimal

structure. For the purposes of this system, a query will relate to a single host

over a time period i.e. Extract and analyse all the information for host x, from

9am till 10am.

The dynamical nature of the Internet makes accurate load predication ex-

tremely di�cult. However, it is not the intent of this system to provide highly

accurate information, rather rough estimates provided by information taken

over extended periods of time. To minimise the in-accuracy a single result will

consist of n consecutive samples, compiled into a single time series. Each time

series represents the performance of the path for a single second of a 24 hour pe-

riod. Any subsequent tests performed at that second are added to those already

gathered. Each time series is assigned a minute key, by which it is grouped into

minutes, and minute summary values calculated. A host record on the database

contains a vector of minute summary values, it is these values which are extract

during a query.

4.3 Priming the database

To initiate the system a number of host address records must be established

on the database. It was my original intention to extract the address records

from the network access logs maintained by my local host. However, a more

exible approach adopted later in the project was to perform a zone transfer

from the DNS using nslookup or DIG. For information on performing DNS zone

transfer see [AL97] page 229. Additional hosts will be added to the system as

user queries are unsatis�ed. Speci�cally the following information is stored per

host.

4.4 The Host class

As well as the host information, an object of this class also acts as a container

for all the network performance data relating to it.

� The IP address of the host.

� The date the host entered the system.

� The date and time the host was last probed.

4.4.1 The TimeSeries class

This class acts as a container class for individual probe results. It also maintains

totals for all the ProbeResult objects it contains.

7

� The IP address of the host.

� The time and date the probe took place.

� A vector of probe results

� Number of probes which make up the series.

4.5 The ProbeResult class

This class represents the performance measure of the path from the probe to

the host.

� The IP address of the host.

� The time and date the probe took place.

� The size of the packet used.

� The measured bandwidth.

� The measured round trip time.

� The number of packets lost.

5 Database analysis

Users of the system will on the whole access the database across a network,

using remote objects. This o�ers two signi�cant advantages. Client side anal-

ysis tools can be developed independently, and the CPU intensive analysis can

carried out by the client. For development and testing some simple schemes

were constructed, which through object inheritance can easily be extended by

future developers and users.

For each probe the bottleneck bandwidth can be calculated using the equa-

tion given in 1 where Q

b

is the queueing delay at the bottleneck and �B is the

bandwidth at the bottleneck. The bottleneck estimate can contain an amount

of noise, due to
uctuations in network tra�c, to overcome this an average is

taken over several successive probes, and the bandwidth recalculated using the

equation 2. To calculate the average round trip time we use the equation 3

where r

n

is the round trip time for packet n. Using this method does have

problems in that a lost packet has 0 round trip time, and cannot therefore be

included in the averaging calculations. The percentage chance of packet loss

can be calculated using 4. For a full discussion of the packet pair estimation

technique see [Jac88]

Q

b

=

b

�B

(1)

Q

b

=

1

n

n

X

i=1

Q

b

n (2)

R =

1

n

n

X

i=1

r

1

� r

2

n (3)

8

L =

l

n

(4)

5.1 User Interface

Although the system was primarily build to allow applications access to data,

during construction it became advantageous to have an overview of the data

collected. This requirement lead to development of a graphical front end which

provides a graph like display showing the information collected per host. This

feature has survived through out development and now provides database ad-

ministration as well as simple client access to the current database.

9

References

[AL97] Paul Albitz and Cricket Liu. DNS and BIND. O'Reilly and Associates

Ltd, 1997.

[Jac88] Van Jacobson. Congestion avoidance and control. In Proc. ACM SIG-

COMM 88, University of California, August 1988. Sigcomm.

[Kes95] Srinivasan Keshev. A control-theoretic approach to
ow control. In

Computer Communication Review, pages 188{201. ACM press, 1995.

[W.S94] Richard W.Stevens. TCP/IP Illustrated Volume 1. Addison-Wesly

Publishers Ltd, 1994.

10

