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Abstract

Neural networks are commonly used to model conditional probability dis-

tributions. The idea is to represent distributional parameters as functions

of conditioning events, where the function is determined by the architecture

and weights of the network. An issue to be resolved is the link between dis-

tributional parameters and network outputs. The latter are unconstrained

real numbers whereas distributional parameters may be required to lie in

proper subsets, or be mutually constrained, e.g. by the positive de�niteness

requirement for a covariance matrix. The paper explores the matrix-logarithm

parametrization of covariance matrices for multivariate normal distributions.

From a Bayesian point of view the choice of parametrization is linked to the

choice of prior. This is treated by investigating the invariance of predictive

distributions, for the chosen parametrization, with respect to an important

class of priors.

1 Introduction

Neural networks are now commonly used to model conditional probability distribu-

tions (Ghahramani & Jordan, 1994; Nix & Weigend, 1995; Bishop & Legleye, 1995;

Williams, 1996; Baldi & Chauvin, 1996; Williams, 1998). The idea is for the neural

network to output distributional parameters of the conditional distribution. These

parameters are taken to be functions of conditioning events, where the function is

determined by weights in the network, as well as by the underlying architecture.

An issue to be resolved is the link between the distributional parameters and

network outputs. The latter are primarily unconstrained real numbers, whereas
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distributional parameters may have to lie in a restricted subset. More problem-

atically, there may be mutual constraints between distributional parameters. The

case considered here is the positive de�niteness requirement for a covariance matrix,

which arises when the conditional distribution is multivariate normal. This was pre-

viously treated in Williams (1996). Here we consider an alternative unconstrained

parametrization.

From a Bayesian point of view the choice of parametrization is also closely linked

with the choice of prior. We explore this issue to the extent of investigating the

invariance of predictive distributions, for the chosen parametrization, with respect

to a class of priors of the `weight decay' type. Although this is a limited class, priors

of this type are often used in practical applications.

2 Multivariate distributions

The conditional distribution of the n-dimensional quantity Y, given X = x, is

assumed to be given by the multivariate Gaussian density

p(yjx) = (2�)

�n=2

(det�)

�1=2

exp

n

�

1

2

(y� �)

T

�

�1

(y ��)

o

(1)

where � is the vector of conditional means and � is the conditional covariance

matrix. Both � = �(x) and � = �(x) are understood to be functions of x in a way

that depends on the outputs of a neural network, when the conditioning vector x is

given as input.

It is assumed that the network has linear output units and that � and � are

determined by the activations of these units. We now discuss the link between

network outputs and the components of � and �. The mean presents no problem.

The network will be required to have n output units whose activations correspond

directly to the n components �

i

(i = 1; : : : ; n) of the mean. It is less obvious how

to represent the covariance matrix. Being symmetric � has at most

1

2

n(n + 1)

independent entries but it must also be positive de�nite, assuming we restrict to

the proper case where � is invertible. Ideally we should choose to parameterize the

class of symmetric positive de�nite matrices in such a way that the parameters can

freely assume any real values, and the correspondence is bijective.

Pinheiro and Bates (1996) discuss a number of such unconstrained parametriza-

tions, including the log-Cholesky parametrization used with neural networks in

Williams (1996). We explore here the matrix-logarithm parametrization.

1

Al-

though this has additional computational overheads, it has considerable advantages;

in particular it is invariant under permutations of variables (see x5.2.1 below). We

therefore parametrize � by the components of A = log�, which is well-de�ned for

any real symmetric positive de�nite matrix �. For example if

� =

"

1 �

� 1

#

1

This parametrization was used by Leonard and Hsu (1992) to determine a class of priors for a

covariance matrix. It also forms the basis of the generalized linear models of Chiu et al. (1996).
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with j�j < 1 then

log� =

1

2

2

6

6

4

log(1 � �

2

) log

1 + �

1� �

log

1 + �

1 � �

log(1� �

2

)

3

7

7

5

:

Conversely if A is any real symmetric matrix, then � = expA is symmetric positive

de�nite and the correspondence betweenA and� is bijective. We therefore stipulate

that the network is provided with an additional set of dispersion output units whose

activations correspond directly to the diagonal and above-diagonal elements �

ij

(i � j) of A = log�. In this way n network outputs are needed for the mean and

another

1

2

n(n+ 1) for the log covariance matrix.

3 Likelihood

Suppose N pairs of corresponding observations f(x

k

;y

k

) : k = 1; : : : ; Ng have been

made on X and Y. The negative conditional log likelihood of the data is assumed

to factorize as

P

N

k=1

E

k

where, from (1), the negative log likelihood of an individual

observation is

E

k

=

1

2

log(det�

k

) +

1

2

(y

k

� �

k

)

T

�

�1

k

(y

k

� �

k

) + constant: (2)

Recall that �

k

and �

k

are the conditional mean and covariance matrix, as deter-

mined by network outputs when x

k

is given as input. Assuming this factoriza-

tion of the likelihood function, we can concentrate on the log likelihood of a single

observation.

2

Both the log likelihood of the full data, and any of its derivatives, can

then be obtained by summation.

Omitting the subscript k in equation (2) and replacing � by expA, the negative

log likelihood of an individual observation can be written as

E =

1

2

traceA +

1

2

(y� �)

T

exp(�A) (y� �) + constant (3)

where we have used the fact that

det(expA) = exp(traceA):

Evaluation of the trace in (3) is immediate. E�cient algorithms for calculating the

matrix exponential directly, without prior knowledge of eigenvalues or eigenvectors,

can be found in Golub and Van Loan (1989) and Najfeld and Havel (1995). For

simplicity in calculating partial derivatives, however, we shall assume the spectral

representation

A = U�U

�1

(4)

2

For this factorization to be justi�ed, it is su�cient for the observation to be independent, but

not necessary (Williams, 1996).
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where U is orthogonal and � = diag(�

1

; : : : ; �

n

) is the matrix of eigenvalues. It

follows that

�

�1

= exp(�A) = U exp(��)U

�1

(5)

where exp(��) = diag(e

��

1

; : : : ; e

��

n

). The elements �

ij

of �

�1

are therefore given

by

�

ij

=

X

k

u

ik

u

jk

e

��

k

and hence, writing

�

i

= y

i

� �

i

;

(3) can be calculated directly as

E =

1

2

X

i

�

ii

+

1

2

X

i;j

�

i

�

j

�

ij

where we have discarded the constant. For e�ciency note that �

ij

, and hence the

double summation, is symmetric in i and j.

3.1 Partial derivatives

Whatever form of model �tting is used, the gradient of (3) with respect to network

weights is of interest. This is straightforward to calculate using backpropagation

(Bishop, 1995; Ripley, 1996) if we know the gradient of (3) with respect to network

outputs, i.e. with respect to each �

i

and �

ij

(i � j). Partial derivatives with respect

to �

i

are simple to calculate and given by

@E

@�

i

= �

X

j

�

j

�

ij

: (6)

To compute the partial derivatives with respect to �

ij

, we need to know e�ect on

the entire matrix exponential of perturbing a single entry in the matrix A. The

results are as follows; a proof may be found in Appendix A.

Let the n� n array elements �

ij

be de�ned by

�

ij

=

8

>

>

<

>

>

:

e

��

i

� e

��

j

�

i

� �

j

if �

i

6= �

j

�e

��

i

if �

i

= �

j

and write

�

i

=

X

j

�

j

u

ji

and

 

ij

= �

i

�

j

�

ij

:
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Partial derivatives with respect to �

ij

(i � j) are then given by

@E

@�

ij

=

8

>

>

>

>

>

<

>

>

>

>

>

:

X

k;l

u

ik

u

jl

 

kl

if i < j

1

2

�

1 +

X

k;l

u

ik

u

jl

 

kl

�

if i = j.

(7)

Expressions (6) and (7) can now be used with backpropagation to calculaterE with

respect to network weights.

3.2 Complexity

The expression of highest complexity in the formulae for E and its derivatives is (7).

This is O(n

4

) since it requires a double summation for each of the O(n

2

) parame-

ters �

ij

. Corresponding complexity for the log-Cholesky parametrization (Williams,

1996) is O(n

2

). It should be noted, however, that calculation of network output ac-

tivations alone, for this type of network, is typically already O(n

4

). This is because

there are O(n

2

) output units and each output unit requires O(n

2

) multiplications

and additions if we assume that the number of hidden units is of the same order

as the number of outputs units. Thus the inherent O(n

4

) complexity of this type

of network already arises from the decision to model the full conditional covariance

matrix, rather than from the form of parametrization.

Spectral decomposition (4) is O(n

3

). In cases where n is small, however, this

may nonetheless dominate. For example, the straightforward Jacobi method for real

symmetric matrices (Press et al., 1992) may require up to 20n

3

operations, so that

more e�cient methods would be advantageous for smaller n.

4 Model invariance

We now examine the extent to which the modelling process, using the above para-

metrization, is invariant under transformations of the target variables Y. We are

particularly interested in this question when the model is �tted using some form

of regularization to avoid over�tting. Regularization is interpreted as the use of a

Bayesian prior over model parameters, and we proceed by reviewing the modelling

process from a Bayesian point of view.

4.1 Bayesian model

The conditional distribution of Y, given X = x, is assumed to belong to a family

of distributions parametrized by quantities �, say. Presently we are considering the

multivariate normal family, parametrized by mean and log covariance matrix. These

distributional parameters � = �(x;w) are understood to be functions of x in a way

that depends on further parameters w which specify the nature of the function.

5



Speci�cally we are considering w to be the adjustable weights and biases of a neural

network. The aim is to determine the density of the predictive distribution

p(yjx;D) =

Z

p(yj�(x;w)) p(wjD) dw (8)

where D are the observed data and

p(wjD) / p(Djw) p(w) (9)

is the posterior density for w. Since both the conditional density p(yj�(x;w)) and

the likelihood p(Djw) are given by the model, the remaining problems are, �rst,

the conceptual problem of determining the prior p(w) in (9) and, secondly, the

computational problem of evaluating the integral in (8). Our considerations depend

on the �rst of these issues, namely the prior, but not on the second.

4.2 Invariance

Suppose that the target variables Y are transformed to new variables Y

0

by an

invertible and di�erentiable transform Y

0

= �(Y). Assuming that a conditional

density p(yjx;D) for Y has already been determined by (8), the density of Y

0

is

given by

p

0

(yjx;D) = J(y) p(�

�1

(y)jx;D) (10)

where J is the Jacobian of �

�1

. Note that p

0

is obtained by �rst �tting a model

to the original data D = f(x

1

;y

1

); : : : ; (x

N

;y

N

)g and then transforming the re-

sult. But a model could also be �tted directly to the transformed data D

0

=

f(x

1

;y

0

1

); : : : ; (x

N

;y

0

N

)g which would lead, via (8), to the solution p(yjx;D

0

) with

D

0

replacing D. We shall say that the model is invariant under � if

p(yjx;D

0

) � p

0

(yjx;D) (11)

identically in y. In that case, essentially the same results are obtained whether we

work in terms of Y or Y

0

(compare Bishop, 1995, x9.2.2).

3

Substituting (10) into (11) and writing y

0

= �(y), we obtain the equivalent

condition

p(y

0

jx;D

0

) � J(y) p(yjx;D): (12)

For linear transformations Y

0

= BY + c, where B is an invertible matrix and c is

a vector o�set, (12) simpli�es to

p(y

0

jx;D

0

) / p(yjx;D) (13)

since J(y) = jdetBj

�1

is then independent of y. These are the cases we consider

below.

3

It would be more correct to speak of covariance, rather than invariance, since the density

changes, but covariantly with the transformation of variables. The present terminology, however,

may seem more natural to some readers.
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4.3 Weight priors

To proceed further, we have to be more speci�c about the prior. We shall restrict

attention to prior densities essentially of the form

p(w) /

�

kwk

p

�

�

(14)

for p = 1; 2 where

kwk

p

=

�

X

i

jw

i

j

p

�

1=p

and  is a positive constant. The choice of (14) is discussed in Appendix B. The

case p = 1 will be referred to as the Laplacian prior, and the case p = 2 as the

Gaussian prior.

In fact we shall deal with a more general class of priors de�ned as follows. Let

W

1

; : : : ;W

C

be a disjoint collection of non-empty subsets of the weights and biases

in the network, and let w

1

; : : : ;w

C

be their corresponding weight vectors. Then we

consider priors taking the form of the product

p(w) /

�

kw

1

k

p

�

�

1

� � �

�

kw

C

k

p

�

�

C

(15)

where 

1

; : : : ; 

C

are positive numbers associated with each class.

4

The classes need

not be exhaustive. Weights or biases not belonging to any of these classes are e�ec-

tively governed by a uniform prior. W

1

; : : : ;W

C

will be referred to as regularization

classes, and parameters not belonging to any of these classes will be said to be un-

regularized. For de�niteness, we assume that the regularization classes are composed

as follows:

(C1) all input weights to location output units comprise a single class, W

1

say;

(C2) all input weights to dispersion output units comprise a single class, W

2

say;

(C3) output biases are not included in any of the regularization classesW

1

; : : : ;W

C

.

Other weights and biases in the network may be classi�ed freely, for present concerns,

provided they are not included in either W

1

or W

2

.

4.4 Network architecture

It is assumed that the network has location output units corresponding to the vari-

ous components of the mean �, and dispersion outputs units corresponding to the

independent elements of the log covariance matrix A = log�. Each output unit is

understood to be connected to H > 0 hidden units. For notational simplicity we

assume that the same set of hidden units serves for both location and dispersion

output units, but this is not essential.

4

Compare MacKay (1992). The norm could also di�er between classes, but we ignore this for

simplicity.
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The biases on location output units form a vector which we refer to as m

0

.

Similarly the weights on connections from a given hidden unit h, to the various

location output units, form a vector which we shall refer to as m

h

(h > 0). Writing

z

1

; : : : ; z

H

for the activations of hidden units, the conditional mean is given by the

activations of location output units as

� =m

0

+

X

h

z

h

m

h

(16)

where each z

h

is a function z

h

(x) of the conditioning value x, as well as of remaining

weights in the network. Thus the conditional mean is represented as a variable

combination of �xed components. Similarly the conditional log covariance matrix is

given by the activations of dispersion output units as

log� = A

0

+

X

h

z

h

A

h

(17)

where A

0

is the symmetric array corresponding to the biases on dispersion output

units, and A

h

(h > 0) is the symmetric array corresponding to weights on connec-

tions from the hth hidden unit to the various dispersion output units.

The norm of w

1

, the vector of input weights to location output units, can now

be written in terms of the vector norms of m

1

; : : : ;m

H

as

kw

1

k

p

p

= km

1

k

p

p

+ � � �+ km

H

k

p

p

(18)

where the superscript p indicates exponentiation. Similarly the norm of w

2

, the

vector of input weights to dispersion output units, can be written as

kw

2

k

p

p

= kA

1

k

p

p

+ � � �+ kA

H

k

p

p

(19)

where kAk

p

is the matrix norm

5

of A de�ned by

kAk

p

=

 

X

i;j

ja

ij

j

p

!

1=p

:

Note that dispersion output weights are counted in (19) according to their mul-

tiplicities in the symmetric matrices A

h

, rather than in the network itself where

o�-diagonal elements occur only once. In terms of Appendix B, this means that

diagonal elements are expected to be twice as large as o�-diagonal elements. The

reason for this assumption is that the resulting prior then has an important invari-

ance property in the Gaussian case. For consistency the same form will be used with

the Laplacian prior. In summary, the prior for w is assumed to be of the form

p(w) /

�

km

1

k

p

p

+ � � �+ km

H

k

p

p

�

�

1

=p

�

kA

1

k

p

p

+ � � �+ kA

H

k

p

p

�

�

2

=p

� � � (20)

where reference to further classes has been omitted, since we are only considering

changes in variables belonging to W

1

or W

2

.

5

This is indeed a matrix norm for p = 1; 2 in that kABk � kAk kBk (Horn & Johnson, 1985).
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5 Invariance under linear transformations

Restricting attention to linear transforms of the type Y

0

= BY + c, we can now

discuss invariance in the sense of (13). We have to consider whether p(y

0

jx;D

0

)

is proportional to p(yjx;D) when both are de�ned by (8) and (9). A rigorous

treatment follows from the rules for change of variables in multiple integrals. Our

treatment will be more sketchy, leaving the interested reader to �ll in the details.

The approach is to determine the changes of variables necessary to preserve the

likelihood function, and then to consider the consequences for the prior. Before

beginning we recall the following.

1. If the random vector Y has mean � and covariance matrix �, the random

vectorY

0

= BY+c has mean�

0

= B�+c and covariance matrix�

0

= B�B

T

.

2. If A is a square matrix, f is an analytic matrix function and B is an invertible

matrix of the same size as A, then f(BAB

�1

) = Bf(A)B

�1

. In particular, if

B is orthogonal, then log(B�B

T

) = B(log�)B

T

.

5.1 Common change of scale

Consider �rst the case B = bI, where b is a non-zero scalar and I is the identity

matrix. This means that Y transforms to

Y

0

= bY + c (21)

which amounts to a common rescaling of all components of Y followed by a dis-

placement. The transformed mean is �

0

= b� + c and the transformed covariance

matrix is �

0

= b

2

� so that log�

0

= log�+ �I, where � = log b

2

. The network will

now output the transformed conditional mean and log covariance matrix, identically

in z

1

; : : : ; z

H

, if and only if weights and biases in the output layer are transformed

by

m

0

0

= bm

0

+ c (22)

m

0

h

= bm

h

(h = 1; : : : ;H) (23)

and

A

0

0

= A

0

+ �I (24)

A

0

h

= A

h

(h = 1; : : : ;H): (25)

It is then easy to verify that

p(y

0

j�(x;w

0

)) / p(yj�(x;w)) (26)

p(D

0

jw

0

) / p(Djw) (27)

for the transformation from w to w

0

corresponding to (22){(25). It only remains to

consider the e�ect on p(w). Since biases are excluded fromW

1

andW

2

, transforma-

tions of m

0

and A

0

leave p(w) unchanged. RemainingA

h

are una�ected, hence the

9



only change to be considered is m

0

h

= bm

h

for h = 1; : : : ;H. Since kbmk = jbj kmk,

the �rst term on the right of (20) is changed only by the constant multiplicative

factor jbj

�

1

and hence p(w

0

) / p(w). The condition for invariance (13) now follows

from the fact that the Jacobian of the transformation of weights corresponding to

(22){(25) is constant.

Note that this invariance requires that biases on location outputs should be un-

regularized. It also requires that input weights to location outputs should belong

to di�erent regularization classes from input weights to dispersion outputs, or in-

deed from any other regularization class. Furthermore, biases on dispersion outputs

corresponding to diagonal elements of log� should be unregularized. However, this

invariance is independent of whether or not the biases for o�-diagonal elements of

log� are regularized (see the end of x5.3 below for further discussion).

5.2 Orthogonal transformations

Suppose now that Y is transformed to

Y

0

= BY + c (28)

where B is orthogonal.

6

The transformed mean is �

0

= B�+c and the transformed

log covariance matrix is log�

0

= B(log�)B

T

. Then (16) and (17) imply that the

network will output the transformed mean and log covariance matrix, identically in

z

1

; : : : ; z

H

, if and only if weights and biases in the output layer are transformed by

m

0

0

= Bm

0

+ c (29)

m

0

h

= Bm

h

(h = 1; : : : ;H) (30)

and

A

0

0

= BA

0

B

T

(31)

A

0

h

= BA

h

B

T

(h = 1; : : : ;H): (32)

Since (26) and (27) again hold by construction, we need only consider the e�ect on

p(w). If biases are excluded fromW

1

and W

2

, transformations of m

0

and A

0

again

leave p(w) unchanged. For the input weights m

h

to location outputs and A

h

to

dispersion outputs, we must now distinguish the cases p = 1; 2. For p = 2 we have

the following unitary invariances:

kBmk

2

= kmk

2

for any orthogonal B, and

kBACk

2

= kAk

2

for any orthogonal B and C (Horn & Johnson, 1985, x5.6). These invariances

generally fail to hold for p = 1. Putting C = B

T

, which is orthogonal wheneverB is,

it follows that p(w

0

) = p(w) for p = 2. Invariance for the Gaussian prior then follows

6

Note that (21) is a special case of (28) only if b = �1.
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from the fact that the Jacobian of the transformation of weights corresponding to

(29){(32) is constant. Note that, in this case, it is essential that the biases for

diagonal elements of log� should be treated in the same way as for o�-diagonal

elements. Because of (31), they must all belong to the same regularization class, or

else all be unregularized. Since invariance under (21) requires that diagonal elements

should be unregularized, we conclude that none should be regularized when using

the Gaussian prior.

5.2.1 Permutations

An important special case of (28) occurs when B is a permutation matrix, P say. A

permutation matrix has exactly one entry in each row and column equal to 1, with

all other entries equal to 0. Multiplication of Y by P in (28) simply renumbers the

variables. SinceP is orthogonal, log(P�P

T

) = P(log�)P

T

, so that the components

of log� are permuted in the same way. It follows that all solutions will be invariant

under such permutations, provided only that the prior is. This is certainly the

case for (20), using either the Gaussian or Laplacian priors, since the norms are

invariant under permutations. Invariance does not normally hold for the Cholesky

parametrization. If � = AA

T

is the Cholesky factorization of a symmetric positive

de�nite matrix �, with A lower triangular, then P�P

T

= PA(PA)

T

. But this is

not generally a Cholesky factorization, since PA need not be triangular.

5.3 General linear transformations

Invariance does not hold, for either the Gaussian or Laplacian priors, for a general

invertible linear transformation. In particular, consider B = diag(b

1

; : : : ; b

n

), which

corresponds to an independent rescaling of each of the variables. Unless the b

i

s are

all the same, the eigenvalues of the new covariance matrix �

0

will be di�erent, and

log�

0

will be non-linearly related to log�. The solution, for either the Gaussian or

Laplacian priors, will depend on the choice of scales for the variables.

7

It therefore

seems reasonable to use the unconditional sample variance to standardise all the

variables from the outset to have unit variance. If the Gaussian prior is used, it

makes no di�erence whether the resulting standardised variables are decorrelated or

not, in view of the invariance under (28). For the Laplace prior, it seems reasonable

to decorrelate the variables, and then to apply a \whitening" transform (Fukunaga,

1990). There is then no reason for excluding the biases on o�-diagonal elements of

log� from regularization. These should therefore be included in class (C2) of x4.3,

for the Laplace prior, on the grounds that regularization classes should be maximal

subject to enforceable invariances.

7

Compare Kendall (1980), for example, for a discussion of similar problems with conventional

principal component analysis.
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6 Conclusion

A basic requirement of consistency for a statistical model is that it should be inde-

pendent of the arbitrary labelling of variables. The matrix-logarithm parametriza-

tion discussed in Section 3 satis�es this condition for any prior which is similarly

invariant. Others, including the log-Cholesky parametrization, do not guarantee

this invariance even if, in practice, the dependency on the ordering may be small.

The matrix-logarithm approach is relatively expensive in computation, but its com-

plexity is no greater than is already inherent in models of this type.

For regularizers of the `weight decay' type, it has been shown that the matrix-

logarithm parametrization leads to solutions that are invariant under translations

and common changes of scale. Solutions are also invariant under orthogonal transfor-

mations, e.g. rotations, for the Gaussian regularizer. In general, however, solutions

may depend on the choice of units for the separate elements of the multivariate

random vector, unless suitable normalization is enforced as a pre-requisite of the

modelling process.

A Directional derivatives of analytic matrix func-

tions

If f(z) =

P

1

n=0

c

n

z

n

is an analytic function and A is a square matrix, let

f(A) =

1

X

n=0

c

n

A

n

denote the corresponding function of a matrix argument. In particular the matrix

exponential is given by

expA =

1

X

n=0

A

n

n!

:

Now letV be a square matrix of the same size asA. The e�ect on f(A) of perturbing

A in the direction V is given by

D

V

(f(A)) = lim

h!0

1

h

�

f(A + hV)� f(A)

�

(33)

which de�nes the �rst directional derivative of f evaluated at A in the direction V.

Najfeld and Havel (1995) derive a formula for evaluating (33) in the case where

A has the spectral representation A = U�U

�1

. We bring together their results

as follows, using � to denote the Hadamard (entry-by-entry) product of similar

matrices.

Theorem. If A = U�U

�1

is the spectral representation of a square matrix A,

and V is an arbitrary matrix of the same size as A, then

D

V

(f(A)) = U

�

V ��

f

(�)

�

U

�1

12



where V = U

�1

VU and �

f

(�) is the symmetric matrix with i; jth entry

f(�

i

)� f(�

j

)

�

i

� �

j

if �

i

6= �

j

f

0

(�

i

) if �

i

= �

j

.

Proof. If f(A) =

P

1

n=0

c

n

A

n

then

D

V

(f(A)) =

1

X

n=0

c

n

D

V

(A

n

) (34)

by linearity of (33). To compute directional derivatives of integer powers A

n

we

obtain

D

V

(A

n

) =

n

X

r=1

A

n�r

VA

r�1

by considering the coe�cient of h in the expansion of (A + hV)

n

in (33). If now

A = U�U

�1

so that A

s

= U�

s

U

�1

then

D

V

(A

n

) =

n

X

r=1

�

U�

n�r

U

�1

�

V

�

U�

r�1

U

�1

�

= U

 

n

X

r=1

�

n�r

V�

r�1

!

U

�1

(where V = U

�1

VU)

= U

 

n

X

r=1

V �	(r; n)

!

U

�1

where 	(r; n) is the matrix with i; jth element �

n�r

i

�

r�1

j

. Hence

D

V

(A

n

) = U

�

V �

n

X

r=1

	(r; n)

�

U

�1

= U

�

V ��(n)

�

U

�1

where �(n) is the matrix with i; jth element �

ij

(n) =

P

n

r=1

�

n�r

i

�

r�1

j

so, by summa-

tion,

�

ij

(n) =

8

>

>

<

>

>

:

�

n

i

� �

n

j

�

i

� �

j

if �

i

6= �

j

n�

n�1

i

if �

i

= �

j

.

The theorem follows by substituting the expressions for D

V

(A

n

) into (34).

To obtain the e�ect on each element of f(A) of perturbing a single entry a

ij

of

A, we have to consider the derivative in the elementary direction E

ij

, where E

ij

is

the matrix with 1 in the i; jth position and 0 elsewhere. If A is constrained to be

symmetric, then the partial derivatives of interest are given by the matrix

@f(A)

@a

ij

= D

b

E

ij

(f(A))

13



where

b

E

ij

is the symmetric elementary direction with 1 in the i; jth and j; ith posi-

tions and 0 elsewhere (hence a single 1 on the diagonal if i = j). The expressions in

(7) for the partial derivatives of the log likelihood function (3) can now be obtained

by straightforward manipulation.

B Weight prior

This appendix o�ers a justi�cation for the use of the weight priors (14) (compare

Buntine & Weigend, 1991; Williams, 1995).

B.1 Laplacian prior

Suppose that individual network weights are distributed with a Laplace or two-sided

exponential density p(wj�) = (�=2) expf�� jwjg where �

�1

is a positive scale pa-

rameter equal to the expected absolute value of w. Suppose there areW components

of the weight vector w. Assuming independence, the prior density for the full weight

vector w is then

p(wj�) =

 

�

2

!

W

exp f�� kwk

1

g (35)

where the unknown scale parameter � can be eliminated using

p(w) =

Z

1

0

p(wj�) p(�) d� (36)

if we assume a suitable prior p(�). A natural choice is the conjugate prior (Berger,

1985; Bernardo & Smith, 1994) which, for the Laplace likelihood, is the gamma

distribution

p(�) =

�

�

�(�)

�

��1

expf���g (37)

for �; � > 0. Substituting (35) and (37) into (36) we obtain another gamma integral,

hence

p(w) = K

�

kwk

1

+ �

�

�(W+�)

(38)

where

K =

�

�

2

W

�(W + �)

�(�)

:

As � and � approach zero, (37) approaches the improper 1=� ignorance prior for �.

Correspondingly, in the limit �; � ! 0, we have from (38)

p(w) /

�

kwk

1

�

�W

which is (14) with p = 1 and  = W .
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B.2 Gaussian prior

Now suppose that individual network weights are distributed with independent zero-

mean normal densities with common variance. The prior density for the full weight

vector w is then

p(wj�) =

 

�

2�

!

W=2

exp

(

�

�

2

kwk

2

2

)

(39)

where �

�1

is the unknown common variance. The conjugate prior is again the

gamma distribution (37), so that after substitution into (36) and integration, we

have

p(w) = K

�

kwk

2

2

+ 2�

�

�(W=2+ �)

(40)

where

K =

(2�)

�

�

W=2

�(W=2 + �)

�(�)

:

In the limit �; � ! 0, we have

p(w) /

�

kwk

2

�

�W

which is (14) with p = 2 and  = W .

Multiple classes. Note that the more general prior (15) can be derived similarly,

in both cases, if we suppose that there may be di�erent unknown characteristic

scales �

1

; : : : ; �

C

for di�erent groups of weights W

1

; : : : ;W

C

.
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