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Abstract

Traditionally, a classical AI model of intelligence has informed the design of Expert

Systems and Intelligent Tutoring Systems for medical applications. This paper
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argues that such a model of intelligence produces educationally atypical results in

that it intrinsically reduces the capacity of such systems to deliver an educational

product { the e�ective learning of a medical domain { with human-like e�ciency.

Systems based on an adaptive model of intelligence, one which emphasizes intelli-

gence as adaptation to dynamic environments and as distributed, can help

(a) transform Intelligent Systems into more human environments, and (b) establish

educational robustness { the reliability, durability, and utility of educational

software in a given educational sphere. The paper provides evidence for this claim

through the discussion of a case study: an adaptive dual system for teaching di-

agnosis of spinal injuries. The system contributes to the establishment of general

principles for the design of adaptive educational software for medical diagnosis.

Central to these are that an adaptive system functions as a cognitive model; and

that the concept of the Intelligent Agent is likely to be importantly implicated.

Key concepts: software adaptivity, knowledge environment, user environment,

educational typicality, educational robustness, Intelligent Agent, dual system.
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A revised version of this paper, entitled \Toward dual adaptive expert and intelligent tutoring

systems: case study in medical AI" appears at the Proceedings of the International Conference

on Cognitive Systems, 1996.
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PART ONE: THEORETICAL FOUNDATIONS

1 Introduction: educational robustness and soft-

ware adaptivity

The system discussed in this paper is a piece of educational software designed to

teach GPs and medical students to successfully identify the symptoms of spinal

injuries, make correct diagnoses, and suggest appropriate treatments; as well as

performing these functions automatically. The major motivating issue is whether

educational robustness { the ability of an educational service provider to reliably and

repeatedly deliver an educational product, here medical training { can be achieved,

where the provider is a piece of software, through software adaptivity; that is, the

ability of software to �t itself to individual user needs and characteristics, as well

as to a dynamically changing knowledge base. The assumption is that educational

robustness necessarily involves adaptivity, since educational robust human teach-

ing routinely involves addressing individual learning needs as well as continuous

retraining in the knowledge domain.

2 Theoretical principles of software adaptivity

2.1 Cognitive model of diagnosis

How do doctors actually make diagnoses? Literature suggests that this is a process

of di�erential. For a given set of presenting symptoms, there may be more than one

consistent diagnosis. This diagnostic under-determination can be reduced with an

increase in data. However, it is often the case that data is ambiguous or incomplete;

or that the data is unique. In such cases, diagnosis can be made through analogy

with other known cases which more or less nearly conform to the current data

[12]. This means that diagnosis is both data-driven and analogy-based. Analogy-

making appears to be based on implicit rules [9]. A system which automates such a

process, then, should be a cognitive model of data-driven analogy-making. Such a

model would elucidate the cognitive processes involved in expert diagnosis as well as

assisting educational robustness in that the model would accurately represent the

human diagnostic methodology, with the implication that it is humanly learnable.

2.2 Classical AI theory of intelligence

Educational software involves systems regarded as intelligent. Therefore, such sys-

tems are informed by a theory of intelligence. Marr [10] discusses three levels in

theory-building: the computational level, concerned with the purposes of the theory;

the level of the algorithm, at which the theory is operationalised; and the hardware
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level, which speci�es the physical base that instantiates the algorithm. In terms

of theories of intelligence, cognitive modelling in classical AI has tended to neglect

Marr's \hardware" level, since it has often been argued that the psychological level

of analysis is irreducible to the physical [6]. This has tended to mean that cognitive

models of intelligence are algorithmic theories, not hardware theories. Tradition-

ally, the model dominating theories of intelligence has been the physical symbol

system hypothesis, [4], [5]. Fodor's Language of Thought Hypothesis (LOT) is a

paradigm example: it claims that there are cognitive tokens in the mind which

carry meaning, physically instantiated, which combine in rule-governed, law-like

ways. In other words, intelligence is seen as arising out of the operation of rules

over a database of static information atoms.

There are three major drawbacks with the application of a symbol system theory

of intelligence to educational software in medicine; that is, Expert Systems (ESs)

and Intelligent Tutoring Systems (ITSs). First, schematic ossi�cation. According

to schema theory [11], [2], [1], schemas are 
exible information packs that develop

dynamically in relation to new experience. This means that an ITS built on such a

theory is unlikely to make a 
exible teacher. Second, explicit rule operation over a

static database is not a good model of analogy-building on the basis of implicit rules

and a dynamic knowledge base, which means that an ES built on such theory would

not routinely feature such capabilities. Third, the downgrading of the importance

of a hardware level of theorising means that the theory does not provide hardware

principles in the design of educational software: principles which might usefully

constrain, or even de�ne, algorithms.

2.3 Adaptive theory of intelligence

For Michael Wheeler [13], intelligence is a function of adaptive potential: \On evo-

lutionary grounds, it seems reasonable to suppose that human linguistic competence

and deliberate though are overlays on a prior ... capacity for adaptive behaviour".

Wheeler argues that \we should identify a system as an adaptive system only in

those cases where it is useful to attribute survival-based purpose ... to that sys-

tem" [13]. Clearly, many computer systems are not evolved. Therefore, given this

constraint, adaptiveness is rede�ned as \a matter of surviving long enough in an

environment to achieve certain goals" [13]. This view of intelligence, then, implies

that any intelligent system must �rst be adaptive: it should \survive in an en-

vironment long enough to achieve certain goals". This suggests that one test of

adaptivity is that software is survivable; that educational software is educationally

robust enough to remain in use.

Added to this, the dynamical systems view of intelligence regards it as dis-

tributed. Hutchins [7], [8] argues that the accomplishment of a cognitive task in-

volves the interaction of agents. This suggests that the value of a piece of edu-

cational software lies in its contribution to an educational outcome also involving
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the user. This means it should interface to the user in such a way that the task is

achievable. This implies social and communicative abilities.

Intelligence as adaptation points up the fact that software exists in an envi-

ronment - in fact, multiple environments: an environment of knowledge; and an

environment of users. To be survivable, the implication of this is that software

develop in tandem with those environments, responding to dynamic change. This

immediately raises the question, again, of whether a 
exible system inhabiting dy-

namic environments can be achieved if it consists of a �xed algorithm (rule-set)

operating over a �xed set of symbols, as on the classical AI theory of intelligence.

2.4 Adaptation to a knowledge environment

The assumption here is that, like the environment of an organism, the knowledge

domain inhabited by a piece of software is dynamic. This seems highly plausible

given volatile domains where there is a knowledge turnover with new data-collection

methods and an expanding and changing cases corpus. Hence, adaptive software

should readily accommodate change in its knowledge base. This would contribute to

educational robustness in that curriculum was continually and relevantly updated.

2.5 Adaptation of user environments

Each user is conceived as a unique environment and the adaptation is that the

software should be capable of addressing individual users on the basis of their needs.

This should contribute to educational robustness in that a system is optimally

`tuned' to the speci�c users it starves. Adaptation to user environments would

help address two problematic issues with educational software:

1. System load. Educational software requires that users be able to operate it

in order to learn from it: this is frequently not addressed, which increases

the cognitive load incurred by a user. Hence, software should act as a sys-

tem tutor, interpreting the user in terms of expertise in operating the system,

and o�ering relevant guidance. In addition, a system should feature a cogni-

tively transparent interface: one whose functions are easy to understand and

operate.

2. Educational load. ITSs have been criticised in that they often feature re-

stricted and schematic ways of representing users, which means that users

are forced into particular learning styles, increasing cognitive load. An adap-

tive system should reverse the need for the user to adapt to the system by

featuring an architecture which allows the system to adapt to the users.
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2.6 Architecture of software adaptivity

Intelligent Agents: Intelligent Agents (IAs) are software entities which have

been recognised as importantly implicated in software adaptivity. They have been

de�ned in terms of four criteria [14]:

1. Autonomy

This means the Agent is self-monitoring; it has self-created control; it acts on

behalf of the user without any human intervention.

2. Social Ability

Agents are capable of interaction with other Agents and with humans.

3. Reactivity

Agents perceive an environment and react to it \in a timely fashion"[14].

4. Pro-activity

Agents are not just reactive to an environment. They can \exhibit goal-

directed behaviour by taking the initiative" [14]. This implies that they can

change an environment.

These criteria have a strongly adaptive favour. The criteria of reactivity and

pro-activity are concerned with the �tness within environments; autonomy suggests

that software be able to self-develop in response to environmental situatedness;

and sociality implies the communicative potential discussed above. This suggests

that we can use Intelligent Agents in designing adaptive software. However, the

de�nition is functional not operational; there is no given hardware or algorithm

speci�cation. Thus, it may be that where software satis�es these functional criteria,

the results will be useful as algorithm and hardware theories of intelligence.

Neural implementation of Expert Systems: Neural nets are intrinsically

non-symbolic and so there is no cross-referencing or other issue in updating a dy-

namic knowledge base. At the same time, neural nets are automatic classi�ers,

both in the sense that patterns can be coupled to targets in a highly robust way

and that any pattern within a certain tolerance of the original will retrieve the tar-

get; and in that nets build implicit schemas which can be used to access analogies,

where analogies are similar patterns. At the same time neural nets are data-storage

engines. This suggests that on model of data-driven and analogy informed diagno-

sis on the basis of `intuitive' or implicit rules discussed above, neural architectures

might make good models of intelligence in that they would, in principle, feature the

adaptive potentials required. Since neural nets are hardware hypotheses of intelli-

gence inspired by the structure of the brain, their usefulness as adaptive ESs might

suggest that adaptive software is neurally implemented and the hardware level of

theorising.
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Neural Intelligent Tutoring Systems: A common criticism of symbolic ITSs

is that they are over-schematic and restrictive in the way they assess users [3].

Users are interpreted according to �xed system schemata. This means that ITSs

are often schematically ossi�ed, placing both system load and educational load on

users. While educational load is not educationally atypical, good teaching ought

to routinely reduce it; but such teaching is adaptive and based on 
exible schemas.

However, system load is educationally atypical, and therefore should not feature if

a system is to be educationally robust. We have seen that neural nets are spon-

taneous schema builders. This means that user schemas could be built through

neural implementation of ITSs. Such schemas would be adaptive to users, so might

remove the problems of schematic ossi�cation and system load associated with

non-adaptivity.

Dual Systems: Functional discreteness of the ES and ITS modules of a piece of

educational software would increase the survivability and educational robustness of

the software in that the system could be used by users at any level of expertise.

Non-experts could use the ITS with the ES as an embedded component, while

experts would be able to make use of the decoupled ES.

PART TWO: METHOD

The system, which will be referred to as ADS - Adaptive Dual System -, is housed

by a graphical user interface (GUI) in which an expert system and an Intelligent

Tutoring System are functionally discrete graphical objects. The ADS is designed

to make diagnoses on the basis of data and analogy, and to suggest treatments

given a case corpus. At the same time, it teaches the principles involved in deriving

and interpreting data, and in suggesting appropriate treatments.

3 The Expert System

The Expert System is designed to store correlations between sets of symptoms

(`symptomsets') and diagnoses; and to retrieve an optimal treatment given a diag-

nosis.

3.1 Symptomset-to-diagnosis knowledge engineering

The �rst set of correlations is achieved in the following way. Symptomsets are

de�ned as the presence or absence of a symptom over a complete set of known vari-

ables. This binary representation means that the resulting pattern can be input to

a three-layer backpropagating neural network. This net trains symptomsets to di-

agnoses, represented as arbitrary binary patterns. To retrieve a diagnosis, the users

6



input symptoms represented as pushbuttons; if a button is pressed the symptom is

present. Blocks of related symptoms (for example, related to resisted movement or

passive movement) are separated and represented as di�erent graphical objects for

cognitive transparency. The user can input new symptomset-to-diagnosis relation-

ships by using the same process. The user inputs the diagnosis in natural language

and this is automatically translated into a binary representation. This means that

these correlations are easily updatable, and that the system is equipped with the

means of dynamically updating its knowledge base.

3.2 Neural classi�cation

Neural nets spontaneously group similar patterns. This has two implications. First,

partial patterns that are similar to stored patterns will retrieve the target for the

stored pattern at some level of tolerance. Second, highly di�erent patterns will not

interfere. In this way, patterns can be more or less proximal, which has implications

for analogical transfer.

3.3 Neural analogical transfer

Problem-solving has been recognised to involve analogical transfer [9]. Analogical

transfer means that a new problem is solved in terms of an existing analogous

problem. For diagnosis, this means that a novel symptomset might be interpreted

in terms of the nearest analogy. Because neural nets group similar patterns as

schemas, this means that the nearest analogy { a stored pattern { will automatically

be retrieved. This means that the content addressability of neural nets makes them

intrinsically e�ective analogy-makers. Analogical transfer where there is more than

one analogy can also be modelled. This is because of the ability of nets to train

correlations at di�erent levels of salience. For example, if correlation a�b is trained

�ve times (that is, there are �ve occurrences of the correlation in the training set),

while the correlation a

2

� b is trained twice, this means that pattern a, since it is

more highly trained than a

2

, will be more salient as a trigger for target b. This

implies that analogy-making is done on the basis of data but also on statistical

weighting: the chosen analogy is most heavily represented in terms of the current

data.

The system, then, makes analogies in the case of unknown symptomsets. The

system provides a natural language record of the selected diagnosis to one of the GUI

text-display modules, and also informs the user of the di�erence between the net

output and the diagnosis selected on analogy or directly. Tolerance is interpreted

as an index of soundness of the analogy.
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3.4 Diagnosis-to-treatment knowledge engineering

Once a diagnosis is retrieved by the ES, the user has the option of instructing the

system an appropriate treatment.

3.5 Many-to-one training restriction by backpropagation

Standard backpropagation architectures limit training to many-to-one. What this

means is that the number of di�erent patterns can be trained to a single target,

but not vice versa: it is not possible to train one pattern to di�erent targets. This

means that the advantages of neural nets { di�erential salience through weighting,

schema-building, analogical transfer { are lost when we wish to choose between

competing treatments. Often in di�erential diagnosis there is no way to enrich the

data and reduce the under-determination. If more than one treatment is available,

we need to know which one to administer. Here, case-based reasoning can be used.

This simply means, choose the treatment that has been most successful given the

same diagnosis; or given an analogous diagnosis. However, if the same diagnosis

cannot be trained to di�erent targets, this means that we cannot neurally represent

such case-based reasoning. To fall back on a symbolic paradigm is an unsatisfactory

solution since we risk losing the adaptive advantages of neural implementation.

3.6 The many-to-many training protocol and neurally im-

plemented case-based reasoning

This problem has been addressed through an original `many-to-many' training pro-

tocol developed as part of the research. This protocol simply involves representing

a correlated diagnosis and a target as a single `spliced' pattern where the diagnosis

is the �rst section and the treatment is the second. The target for the pattern is the

pattern itself. Salience levels are retrieved through presenting the retrieved diagno-

sis together with the numerical average of all correlated treatments. This results in

the derivation of the most salient treatment. Thus, case-based reasoning, that is,

the selection of the most statistically salient treatment, is achieved automatically

through the architecture of the neural net.

3.7 Adaptation to dynamically changing knowledge envi-

ronment

As the system generates new diagnoses and treatments of these, it adds these cases

to the case corpus it access in order to select treatment. Periodically, when the

information becomes available, the user inputs a success rate for the treatment. At

this point, the net prepares to retain itself: the rate is compared with others for

the same diagnosis-treatment correlation and the result, a general success rate is
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used to decide the number of presentations of the correlation in the new training

set. This is one form in which the system creates and responds to a dynamically

changing knowledge environment.

4 The Intelligent Tutoring System

The ITS is designed to teach the principles of diagnosis for the domain of spinal

injuries. It does not explicitly teach how treatment should be recommended since

it is based on accessing a case corpus which develops as a function of user's medical

experience. The ITS is built around two main engines: �rst, a symbolic query- and

level-switching architecture that generates implicit student models and dynamic

curricula; and second, a schema-building neural architecture.

4.1 Behavioural/Cognitive teaching methodologies and user

level

The ITS features two teaching levels. This �rst is based on a behaviourist method-

ology. This teaches the ability to group complete symptomsets for commonly oc-

curring cases and link these to diagnoses. This is entirely text-based. The second

features a cognitivist methodology designed to teach users how to derive symp-

tomsets independently and to recognise the underlying reasons for relationships of

symptoms. This is done by visual display of animations representing the physical

manipulations from which diagnoses are derived. These displays are linked to a

symptomset so that, for example, a given manipulation is accompanied by a text

message indicating pain; then the next by spasm, and so on. The behavioural level

is regarded as a necessary precursor to the cognitive.

4.2 Query-switching

A dynamic user-adaptive curriculum which also acts as an implicit student model

can be built through the use of parallel query types over the two levels. At the be-

havioural level, this query type is a `Starter' multiple-choice question format. Users

are presented with an `anchor' set of three de�nite symptoms from the symptomset

being taught, printed as their natural language forms to one of four text presen-

tation windows of the relevant GUI ITS module. A set of correlated symptoms is

printed to a di�erent, randomly chosen presentation window; and two distractor

sets are also displayed in randomised windows. The user chooses the correlated

set. If the user is highly successful, the system switches to the second query-type,

`Intermediate' multiple-choice format. This resembles the `Starter' format but the

anchor set is randomised so that the detection of the correlated set is less easy and

requires greater familiarity with the symptomset grouping. Success on this query
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type means the user is switched to `Open' query type. Here, the user is required to

input all the symptoms for the symptomset by means of the ES pushbutton mod-

ules. The system then provides a breakdown of the total symptomset, the number

of correctly identi�ed symptoms, and the success rate. If this is high the user is

switched to the cognitive level on the same symptomset; if not, the system repeats

the same protocol for the remaining symptomsets. At the cognitive level, the visual

displays replace the anchor set at the behavioural level; otherwise, the method is

the same.

4.3 User schemas

The query-switching method means that a given resource { a query type and a

level { is matched to the user at every stage dependent on the level of success of

the user on that query type. The methodology means that levels and query types

can be dynamically switched. For example, if the user is consistently unsuccessful

on the `Starter' query type at the behavioural level s/he remains at that level; but

if successful, s/he is switched up. Equally, progress can be followed by regress.

For each symptomset being taught, responses are logged as vectors and saved to

a �le. For each symptomset, a di�erent vector exists, re
ecting that some may

be easier to learn than others. These �les are records of user responses which are

then analysed as a curriculum pro�le through unsupervised neural learning. This

produces a generalised user pro�le. Next time the user logs in and registers his/her

identity, the system invokes a user schema to de�ne the new curriculum. The user

schema is de-feasible at any point and is a heuristic for curriculum than de�nitive

of it. From the new run, a new set of vectors is derived, and a new run pro�le is

produced and integrated with the existing pro�le; and so on. At the point where

the pro�le indicates completely correct responses, the suer is de�ned as Expert and

the ES ceases to be relevant, unless the user wishes to defeat the operation of the

schema and re-use the ITS.

PART THREE: DISCUSSION

In Part One several claims were made. First, that doctors make diagnoses on the

basis of implicit rules based on data and analogy. This should mean that an ES

which automates this process should be a cognitive model. Classical AI systems,

it was claimed, are limited in making such a cognitive model since the underlying

model of intelligence is not well-suited to modelling implicit rules and analogy-

making; and because they often fail to address a hardware level. It was claimed

that systems founded on such a view of intelligence are educationally atypical in

that they place an abnormal cognitive load on users. This means that the dissection

of an intelligent process in classical AI terms has meant that a human environment
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has been lost; especially one in which educators routinely adapt to a knowledge

domain and to learners to reduce cognitive load. Therefore, more human educa-

tional software ought to involve an alternative theory of intelligence. An adaptive

theory of intelligence has several important implications. First, that an intelligent

system is survivable and adaptive to dynamic environments; that such a system

should be more human and educationally typical/robust by virtue of its adaptive

potential; and that the implementation of adaptive algorithms as a working model

should provide a hardware theory of adaptive intelligence; and that this could be

provided through neural implementation. How far do these claims stand up? Is

software adaptivity related to more human-like decision-making and educational

processes? Does this produce more educationally robust systems? Are these sys-

tems neurally implementable; and do they provide a hardware theory of adaptive

intelligence which might constrain future algorithmic theorising? What role do

Intelligent Agents play in software adaptivity ?

4.4 Assessment of the Expert System

The Expert System reliably retrieves stored targets when stored patterns are in-

put; it also retrieves analogies. When presented with diagnoses the system has been

shown to be reasonably robust in retrieving the most successful treatment over a

given case corpus. These results suggest that a neurally-implemented Expert Sys-

tem can adapt to a dynamic knowledge environment to produce reasoning similar

to that practiced by doctors.

The neural implementation of case-based reasoning, achieved through the many-

to-many training protocol, does involve some problems. At present, averaging of

all treatment representations for a given diagnosis can produce anomalous results

by virtue of the way treatments are represented; as vectors of four numbers only.

Treatment representations are insu�ciently di�erentiated using such a compressed

representation, which can mean that the resulting average retrieves inappropriate

treatments. Currently this problem is overcome by using an anomaly-checker; this,

however, is an inelegant add-on. More extended representations should enable the

required di�erentiation and the removal of this checker. However, despite this limi-

tation, the suggestion is that an ES for medical diagnosis can be achieved neurally,

and this lends weight to the claim that adaptive intelligence might, at hardware

level, be implemented neurally, since the result is more human than a symbolic

counterpart. The fact that such systems might produce human-like reasoning sug-

gests a capacity of conformance with human medical decisions. However, such tests

have not yet been run; therefore this is conjecture.
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4.5 Assessment of the Intelligent Tutoring System

The ITS schema-building capability means that each user is directly modelled. In

this sense, the system adapts to unique user environments. This helps address the

issues of schematic ossi�cation and reduction of cognitive load. However, adaptive

potential is restricted in that the system simply applies the same methodology in

di�erent ways. This raises the whole question of how systems can be built which

spontaneously generate new methods in the light of `teaching experience'. A short-

term solution is to expand the range of available methodologies. This raises the

whole question of how autonomy can be built into adaptive systems: how systems

can spontaneously develop new educational methods. At the same time, the sys-

tem is only adaptive in a theoretical sense since no large-scale user evaluation has

been carried out to see how far users are successful in learning by means of the

system, so that actual robustness and survivability are only theoretical. However,

despite this, the system does build implicit student models and lay out curriculum

appropriately given a speci�c user, and despite the lack of comprehensive testing,

the fact that the system works outside a classical paradigm which insists on ex-

plicit student modelling and level allocation does not appear to demonstrate that

adaptive intelligence in ITSs can be modelled; and that at a hardware level the

implementation is at least partly neural.

4.6 Intelligent Agents

In Part One it was pointed out that Intelligent Agents are attempts to implement

adaptive intelligence computationally, and that Agents should feature four criteria

of autonomy, sociality, reactivity and pro-activity. However, architecture for Intel-

ligent Agents has not been speci�ed; at the same time it is unclear at what level an

Intelligent Agent should be characterised. Is an Agent the entire piece of software,

for example, or subroutines? It seems most useful for our purposes to conceptualise

an IA as the total software, although further research needs to be conducted so that

this thesis could be implemented in practice. The results suggested that reactivity

and pro-activity can be modelled neurally. The issue of sociality is ambiguous in

the context of distributed cognition, since any piece of software could be seen as

social if it communicates with a user. This can be achieved through transparent

interfaces which reduce system load and constrain interactions in sensible ways.

Currently the system tutor is simply a help system which does not di�erentiate

between users; and so this could not be conceived as an adaptive capability of

the system. However, such a system ought to involve that same schema-building

and implementation processes used by the ITS. The result would be more or less

�ne-grained help systems. Perhaps the main issue for the system developed here

in terms of its status as an Intelligent Agent is whether it is really adaptive in the

sense that it can take independent decisions about the form it takes: whether it
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can become autonomous. We saw that the ITS was limited to the set of algorithms

it can carry out; there is no way for the system to increase its adaptivity through

spontaneous redevelopment. This means that a teleological view must logically

be taken: one which anticipates various learning styles of the users it serves and

provides algorithms to meet these needs.

5 Conclusions

The system discussed here attempts to operationalise an adaptive theory of in-

telligence to produce adaptive software that aims educational robustness, which

implies human-like and human-friendly characteristics. It was hoped that the im-

plementation of human-like characteristics in both expert reasoning and tutoring

might logically suggest a hardware theory of adaptive intelligence. It was found

that it is possible to implement a system which is adaptive to an extend by us-

ing non-symbolic architectures. This suggests that adaptive intelligence does not

necessarily use or need explicit rules or complete information. The relationship

of software adaptivity to educational robustness has only been demonstrated in

principle and requires user evaluation; at the same time the system is constrained

by its omissions (for example the system tutor) and certain outstanding problems.

The most signi�cant of these is the resolution of the many-to-many training prob-

lem to remove anomalies. This in itself is an interesting �nding in that it suggests

that trainable neural nets for cognitive modelling are limited in a psychologically

implausible way; and that more substantial work on the many-to-many training

problem needs to take place.
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