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Abstract

Wilson's \zeroth-level" classi�er system, sug-

gested as a minimalist system that would allow

a better understanding of the inner workings of

classi�er systems, has been shown to su�er perfor-

mance breakdowns in simple Markovian environ-

ments due to its inability to support long chains

of actions. Cli� and Ross [1] suggested some pos-

sible explanations as to why this may happen. In

this paper, their conclusions are re-examined and

extended to include covering as the fundamental

mechanism that causes the bad performance to be

sustained for several trials.

1 Introduction

Wilson's \zeroth-level" classi�er system (ZCS)[5], was

proposed as an attempt to produce a simple system

which, though maintaining much of the original frame-

work by Holland, strips it from some of the more complex

mechanisms that obscured the understanding of the in-

ner workings of the system. Wilson showed some similar-

ities between his system and Q-Learning([3], [4]). More

recently, Cli� and Ross implemented an extension to ZCS

suggested by Wilson; they describe ZCS' performance

breakdowns in simple Markovian environments for which

large reinforcement chains need to be sustained. The

problem of large chains in classi�er systems has been

well known for some time know, [6], but Cli� and Ross

showed that it was present in even such a simple system

as ZCS.

In this paper I review the causes proposed for the

breakdowns in performance in ZCS and suggest why cov-

ering, previously thought to have only a partial e�ect on

this phenomenon is in fact central to it.

The paper is organised as follows, section 2.1 briey

describes ZCS to enable the reader to follow the subse-

quent discussions. Section 3 describes hitherto proposed

explanations for the breakdowns as well as introducing

a new alternative. Section 4 describes some experiments

that were carried out to investigate the validity of the

new alternative. A detailed account of the mechanisms

at work is presented.
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2 Classi�er Systems

Classi�er Systems (CS), originally proposed by Holland

[2], are learning systems in which a set of condition-

action productions learn to solve a certain control task

by use of reinforcement obtained from the environment

that is shared among useful productions. A classi�er's

strength reects the usefulness that a given production

has shown in the past and is used as a basis for a compe-

tition against other classi�ers for the right to determine

the action of the agent at any one time. On a greater

time scale, an evolutionary process breeds new classi�ers

allocating a greater chance of reproduction to stronger

productions, and replacing weaker individuals in the clas-

si�er population.

The complexity inherent to the framework proposed

by Holland led to obscurity that prevented a thorough

understanding of the inner workings of CS. ZCS was con-

ceived as a simpli�ed framework that would still retain

the main characteristics, yet simpler to understand.

2.1 ZCS: Zeroth-level Classi�er System

Although ZCS is described in much detail in both Wil-

son's and Cli� and Ross' papers, a small description is

needed in order to more fully understand the arguments.

Any interested reader is referred to any of the mentioned

references for further information.

ZCS consists of a population of condition-action pro-

ductions coded in a ternary alphabet f0,1,#g, where #

acts as a wild card in the conditions and occurs with some

�xed probability. The system has no internal message list

and behaves thus in a reactive way. In cycles, the sys-

tem will undergo one trial in which classi�ers matching

environmental messages are �rst grouped in the match

set. Based on a roulette, an action advocated in the

match set is selected so that those classi�ers that sug-

gest it, form the action set. Once the action is carried

out, the credit assignment cycle will update the strength

of the classi�ers in a manner reminiscent of Q-learning.

Each classi�er in the action set has its strength decreased

by a fraction determined by the learning rate, �. They

also receive a fraction of any immediate reward as well

as a discounted part of the strength of the maximally

strong action advocated in the next step. Thus an im-



plicit bucket brigade is carried out in which a discounted

fraction of the strongest action in the next time step is

passed onto those classi�ers in the action set. Finally,

matching classi�ers that suggest a di�erent action are

taxed in order to achieve de�niteness in the actions pro-

posed as the experiment progresses.

To cope with cases in which the match set is either

empty or contains a weak and therefore unconvincing set

of rules (this is determined by requiring that the strength

in the matching set be greater than a fraction � of the

average strength in the population), covering will take

the environmental message and generate a new, possibly

more general rule, that matches it and proposes a ran-

dom action. This rule is the inserted back in the popu-

lation with a strength set to be equal to the average of

the population.

3 The Breakdowns

In their paper, Cli� and Ross describe some experiments

on simple Markovian environments, the woods14-p set

of worlds. It is a set of simple two-dimensional grid

worlds. Those worlds have one food F which produces

a �xed valued reward upon being eaten. There are p

empty locations. At any such location, there is only one

movement that will lead the animat to the food. Figure

1 shows one such world.
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Figure 1: woods14-9 simple grid world.

Given the simplicity of the world, one would expect

any learning system to score well on it. It turns out,

though, that ZCS fails to produce reliable behaviour.

Unexpected breakdowns in performance appear even af-

ter the animat has learnt to cope with it. The greater

p, the more often this breakdown is observed. Cli� and

Ross suggest two di�erent mechanisms that together are

accountable for this behavior, greedy classi�er generation

and over-generalisation in some classi�ers.

3.1 Greedy Classi�er Creation

In a woods14-p environment, given that the animat has

to go through all cells between its starting point and the

food, classi�ers that match cells closer to the food will

be used more often. In addition, Cli� and Ross argue,

given that only a discounted reward is passed down the

chain, those classi�ers matching the environment of less

visited cells, are also those that will have smaller rein-

forcement. Thus, in the extreme case, death is forced

upon all those classi�ers that apply to some far cell by

the genetic algorithm and thus, next time the animat vis-

its that cell, it will be up to the covering mechanism to

produce a correct action. Cli� and Ross, suggest that, al-

though this may happen several times in a row, any trial

only �nishes when reward is obtained, and thus, even

though this mechanism may account for some isolated

breakdowns, it can't explain the fact that the perfor-

mance is a�ected during several simulation cycles after

the observed breakdowns.

3.2 Over-general Classi�ers

Wild cards in classi�er systems enable rules to cap-

ture generalisations over certain environmental condi-

tions that suggest some common action. This can lead,

though, to classi�ers that match di�erent environmental

messages for which the adequate actions di�er. These

classi�ers grow strong in highly rewarded locations and

are then applied to incorrect situations.

This is especially critical in woods14-p worlds, Cli�

and Ross argue, where cells situated further away from

the food tend to be covered by less strong classi�ers. The

Hamming distances between the environmental messages

corresponding to cells close to the reward and those more

distant are small. Thus, over-general classi�ers that

match cells nearer to the food grow stronger compared

to those that might be only applicable to less visited cells

and tend to impose their actions there too.

Cli� and Ross summarise \the worse-than-random per-

formance times for the system when initially adapting

and when re-adapting after a collapse seem to be due

mainly to the large number of steps required to dimin-

ish the strength of inappropriate over-general classi�ers

to such a degree that covering can take e�ect in the F-

distant cells."

3.3 The Rest of the Story

Although both mechanisms described in [1] do take place,

the phenomenon is somewhat more complicated as I

will show later. Over-general classi�ers do not produce

sustained breakdowns in performance. The way over-

general classi�ers a�ect the system is by competing with

those that though proposing the correct action are less

strong. This continues until the strength of both falls

below the limit in which covering is invoked. As de-

scribed above, ZCS invokes covering when there is ei-

ther no matching classi�er in some situation, something

which is fairly infrequent given the size of the popula-

tion of classi�ers and a su�ciently high probability of

2



wild cards, and when the total strength of the matching

set is smaller that a fraction � of the average strength

of the population. Thus, an over-general strong classi�er

that suggests the wrong action, will normally decrease

its strength through the bucket brigade mechanism until

the total strength of all classi�ers in the match set falls

below that threshold upon when the covering is invoked.

The match set normally will include classi�ers that sug-

gest the appropriate action though less strongly, being

therefore ignored. Thus the real e�ect of an over-general

classi�er is depleting the strength of appropriate ones

until covering is �red.

Whatever the cause for it, covering will in woods14-

9 produce an incorrect classi�er with a probability of

7

8

,

and thus, in general, it will take some successive invoca-

tions of covering before the correct action is found. This

has a double e�ect. On the one hand, if a classi�er sug-

gesting an appropriate action is still in the match set, its

associated strength will be further depleted until it disap-

pears. On the other hand, we have that every newly cre-

ated classi�er will be assigned the average strength in the

population. Given that it was created through covering,

it will be the strongest classi�er within the match set. It

would be fair to say that the total strength of the match

set will almost be that of the newly created classi�er.

Unsuccessful attempts by the animat to apply it, will

decrease its strength until it is about half its value. At

this point, the strength in the matching set will be again

below half of the average of the population and a new

covering process starts. The classi�er to be replaced will

be selected using a roulette in terms of the reciprocal of

the strength. Thus weak classi�ers, possibly associated

with other food-distant cells will be deleted. The inap-

propriate classi�er though, is still much stronger, about

half the average strength of the population. In general,

it will therefore be kept. Thus every covering operation

disrupts the population even further. The longer it takes

for the correct classi�er to be found, the more signi�cant

the proportion of the population disrupted will be.

We should note that classi�ers applying to cells both

somewhat closer or further away from the food may be

destroyed. The �rst will cause further covering to be

produced within the same trial while the latter will mean

that in following trials, the animat will need to re-learn

appropriate actions in those cells. Thus the disruption

caused by a chain of covering operations will a�ect sev-

eral trials while the animat painfully re-learns how to

deal with less visited cells. We expect though that the

average of trials won't grow to be as big as in the be-

ginning of the experiments given that only distant cells

have to be re-learned.

It is important to note that Cli� and Ross do point out

that \it is not inconceivable that this process (of cover-

ing generating a sole inappropriate action which requires

many steps to be `deselected') could be repeated several

times in succession within a particular trial, leading to a

very large number of steps to F on that trial" but they

seem to overlook the fact that the more successive cover-

ings in one trial, the more disruption in the population

and therefore the more trials it takes for the animat to

re-learn the knowledge contained in those lost classi�ers.

4 Experiments

To investigate the process described in 3.3, experiments

in various of the woods14-p were carried out, maintain-

ing the parameters as in [1].

First, the inuence of covering in the disruptions in the

performance was investigated. To that end, the amount

of covering that took place at any one time as well as the

associated change in mean steps to food were recorded.

By plotting the changes in steps to food against the num-

ber of covering operations that provoked those changes,

it was expected that this would show a de�nite tendency

indicating that greater disruptions would happen as a

consequence of a greater amount of covering. The re-

sults in Figure 2 were obtained out of ten di�erent runs

in several woods14-p environments. During the �rst

trials, the animat uses covering to \seed" the classi�er

population with appropriate conditions. To avoid con-

fusing those trials with any breakdowns in performance,

once an adapted behaviour is reached, the �rst one hun-

dred trials are not shown.

It can be seen that, as expected, there is a de�nite,

almost linear dependency between the amount of cover-

ing operations performed and the changes in the aver-

age steps to food taken by the animat. The greater the

value of p, i.e. the more likely it is that food-distant

cells are dealt with by weak classi�ers, the greater the

chance that a large chain of disruptive covering invoca-

tions takes place. So, woods14-06, which was found

by Cli� and Ross to be very stable, only shows a small

amount of signi�cant covering taking place in the whole

of the ten runs. On the other hand, woods14-14 and

woods14-18 seem to be quite prone to covering chains

which result in more signi�cant disruptions and thus ex-

plain why the performance of ZCS in those environments

is unsatisfactory.

When a straight line is �tted, all environments show

the same slope of 0.34. This might be due to the fact

that the bucket brigade reduces the strength of newly

covering-generated rules by the same amount in all envi-

ronments and therefore, the expected time that it takes

for some incorrect classi�er to lose enough strength so

that a further covering operation may take place is more

or less the same.

We can also see that large amounts of covering in-

evitably result in a great disruption in the population.

In particular, we see that when covering is invoked 40

times, which, given the parameters in ZCS means that

we expect 10% of the population to be replaced, the dis-
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Figure 2: Coverings vs. changes in steps to food in woods14-p
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Figure 3: One run of woods14-12 in which we can see

how big chains of invocation of the covering operations

cause disruptions that last for several simulations.

ruption causes some 15 steps more until the animat ob-

tains the reward. Further, Figure 3, shows one run in

woods14-12 in which we can see that the duration of

the breakdowns is more signi�cant the greater the dis-

ruption.

4.1 Discussion of a typical Run

In this section I will describe the speci�c mechanisms by

which the chains of covering are �red, outlined above in

section 3.3. The speci�c examples used are taken from a

run in woods14-15, shown in Figure 4. This �gure also

shows the coordinates used in the explanations.
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Figure 4: Coordinates used for woods14-15

As for the conditions in the rules, the encoding used

represents an empty space as 00, a tree T as 10 and the

food as 11. The sensory strings are formed by concate-

nating the sensory information in the following order:

1 2 3

8 * 4

7 6 5

so that

T T _

_ * T

T T _

is represented as:

1010001000101000

.

First we have the case in which covering generates a

classi�er, because the total strength in the matching set

is less than a fraction � of the average of the population.

As we can see in Figure 5, the system is in the cell (1,9),

i.e. 15 steps away from the food. The appropriate action

as seen from Figure 4 would be to go to the southwest.

This is suggested by rule 214. Unfortunately, its strength

is not enough because it is far from the reward and cov-

ering has introduced a new fairly strong rule, 119. This
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rule clearly dominates the set. The action set will there-

fore only include it and the strength of all the rules in

the matching set will decrease until, seven steps later,

by chance the appropriate action is selected. Although,

in this case, the system is able to continue, the match

set for the cell is still inappropriate and will cause some

disruption next time the animat lands on it.

>Environment: (1,9) ->[1010101010100010]<

MatchSet:

35:< [10#01#1#1010##10]->[ N] 1.41 >

87:< [##1###10##100010]->[NW] 2.32 >

119:< [10#0##1#1##00###]->[ E] 16.99 >

181:< [10###0#01#1000#0]->[ W] 1.19 >

214:< [#010101##0100010]->[SW] 2.55 >

Actionset:

119:< [10#0##1#1##00###]->[ E] 16.99 >

...

>Environment: (1,9) ->[1010101010100010]<

MatchSet:

35:< [10#01#1#1010##10]->[ N] 0.75 >

87:< [##1###10##100010]->[NW] 2.40 >

119:< [10#0##1#1##00###]->[ E] 8.03 >

181:< [10###0#01#1000#0]->[ W] 0.57 >

214:< [#010101##0100010]->[SW] 2.51 >

Figure 5: Covering is �red by an insu�ciently strong

match set. The rule, 119 is assigned the average strength

of the population and thus is stronger than the rest of

the members of the match set. This includes a rule,

214 which is only second strongest and does suggest the

appropriate action.

The second example illustrates the case in which the

disruption is �red by an over-general classi�er that is

being used in a cell for which the action it suggests is

inappropriate. Rule 363 also matches the environmen-

tal conditions of the cell c

5

in (1,4). Thus it is much

stronger than the rest of the match set. Even though the

appropriate action is the strongest alternative action in

the match set, its strength is smaller than of the rules

advocating to go west. We can see that the strength of

those over-general rules is depleted by the bucket brigade

mechanism until they are no longer signi�cant. At the

same time, rule 353 which did suggest the correct action

in the �rst match set, has also lost much of its strength so

that by the last step shown in this example, it is actually

replaced, through covering, by a new rule with the wrong

action associated to it. Thus a more serious disruption

through successive coverings is caused.

5 Limiting the Amount of Disruption

caused by Covering

In order to reduce the disruptions caused by covering,

two di�erent mechanisms were tried. On the one hand,

the strength assigned to a newly generated classi�er

was reduced so that instead of being that of the aver-

age strength in the population, it would just be barely

enough to successfully become the matching set, next

time around it matches the environmental message. The

idea is that reinforcement will strengthen messages if

they turn out to suggest a suitable action but will weaken

non suitable productions so that the system doesn't dis-

rupt other weak classi�ers unnecessarily. The second

technique evaluated was to put an arbitrary but reduced

limit to the amount of classi�ers that can be a�ected

by covering to some percentage of the population. This

would be activated once the system had already con-

verged to some more or less adapted behavior.

5.1 Limiting the strength of Classi�ers created

through Covering

In detail, this mechanism is actually very simple. We

know that covering will be �red if the strength in the

matching set is bellow a fraction of the average strength

in the population. We assign each newly generated clas-

si�er a strenth equal to

S

jCj

=

�

�

S

1� �

(1)

where S

jCj

is the strength of a classi�er generated

through covering,

�

S is the average strength in the popu-

lation and � and � are respectively the minimum fraction

of the average strength of the population required in the

matching set and the learning rate. In this way, after a

reinforcement cycle is completed, the strength is just �

�

S,

the threshold for it to still be a valid matching set on its

own next time around.

5.2 Limiting the amount of Classi�ers deleted

through Covering

This mechanism would limit the amount of classi�ers

that covering can replace to a 2% of the population so

that repeated covering would not destroy valuable but

weak productions. Once the simulation has converged

1

,

every trial will only be allowed to replace up to a 2%

of the classi�ers. Any further covering invocations will

replace one of the classi�ers within that reduced group.

1

This was set arbitrarily at 1000 trials in the case of the envi-

ronment studied in detail. This value was deemed appropriate to

the environment but is nevertheless an arbitrary threshold.
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>Environment: (3,7) ->[1000001000101010]<

MatchSet:

158:< [100#0##0#0#0#010]->[ N] 2.80 >

164:< [100#00100##0#01#]->[ W] 6.09 >

263:< [1#00##100010###0]->[ S] 0.06 >

353:< [100000100##010##]->[SE] 4.68 >

363:< [10#0#0100#1010#0]->[ W] 21.45 >

381:< [10000#1#####1##0]->[ S] 0.03 >

Actionset:

164:< [100#00100##0#01#]->[ W] 6.09 >

363:< [10#0#0100#1010#0]->[ W] 21.45 >

.....

MatchSet:

158:< [100#0##0#0#0#010]->[ N] 2.45 >

164:< [100#00100##0#01#]->[ W] 1.18 >

353:< [100000100##010##]->[SE] 0.04 >

363:< [10#0#0100#1010#0]->[ W] 1.19 >

381:< [#000001#0010#0##]->[SW] 4.14 >

Actionset:

381:< [#000001#0010#0##]->[SW] 4.14 >

>Environment: (3,7) ->[1000001000101010]<

MatchSet:

158:< [100#0##0#0#0#010]->[ N] 2.21 >

164:< [100#00100##0#01#]->[ W] 1.32 >

353:< [10000##00#101010]->[ W] 16.78 >

363:< [10#0#0100#1010#0]->[ W] 1.33 >

381:< [#000001#0010#0##]->[SW] 3.31 >

Actionset:

164:< [100#00100##0#01#]->[ W] 1.32 >

353:< [10000##00#101010]->[ W] 16.78 >

363:< [10#0#0100#1010#0]->[ W] 1.33 >

Figure 6: An over-general classi�er, 363, competes

against 353 which, though much weaker, proposes the

correct action in this situation. Several steps later, the

strength of both rules has decreased so that the over-

general classi�er is no longer as relevant but enough so

that in the end, 353 is substituted by a randomly gener-

ated rule as a result of covering.

This way, it was hoped, an unsuccessful candidate clas-

si�er would be much more likely to be selected for re-

placement and the overall disruption would be limited.

6 Empirical Study

To investigate the e�ects of the di�erent mechanisms,

three further sets of experiments were carried out on

woods14-14. For control purposes, the results were

compared to that of the traditional ZCS in the same

environment.

The objective here was to determine the inuence of

any of the above mechanisms, or the combination of both

together, on the duration and the magnitude of the dis-

ruptions, ie. on the capability of the system for recovery

from a breakdown. To study the durations, we studied

those periods in which the system's moving average steps

to food would go over a certain limit or threshold. Given

a \perfect" rule base the average steps in this environ-

ment would be 7.5.

Figure 7 shows the result of the experiments. The

number of times that a disruption of a certain length has

happened within ten runs is plotted against the length

of the disruptions and the threshold or limit, such that

any trial for which the average steps to food is greater

than that limit is considered to be part of a disruption.

We can see that considering as disruptions, those

scores higher than 14, the traditional ZCS would still

have disruptions of up to 400 and certainly many be-

tween 100 and 200 steps. We also see that the strategy

of limiting covering to only a 2% of the population is

far too simplistic and does not produce the hoped im-

provements. In fact what we see is that convergence is

a�ected and there are a greater number of long lasting

disruptions. In fact, as the limit increases, the duration

of disruption decrease and thus the performance also in-

creases. This shows that the system is incapable of im-

proving the performance through learning once it has

more or less converged, as it did for the traditional ZCS.

In other words, there seems to be a trade o� between

allowing covering to a�ect a greater part of the popula-

tion and the capacity of the system to improve at latter

stages of the learning process. Overall, even with an in-

creased lower bound, there is almost no signi�cant gain

over the traditional ZCS.

Limiting the initial strength after covering, on the

other hand seems to produce a much stronger di�erence

on the behavior of the population. Even for lower lim-

its the durations of the longest breakdowns are reduced

compared to those found in ZCS. Increasing the limit

further reduces them.

Finally, a set of experiments in which a combination

of both mechanisms was tried out, turns out to produce

a much worse result than that originally in ZCS. Again,

we can see that there is a tendency of having very long

disruptions in which the actual steps that the system
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takes to �nd the food on average are not very far from

the limit we are setting and thus, it seems, we �nd again

a trade o� between the amount of disruption that we

allow covering to cause and the speed of convergence in

the learning process.

It seems that the strategy of limiting the amount of

covering to a 2% of the population is too simplistic. We

are allowing covering to randomly select some classi�ers

and delete them according to the inverse of the strength.

It seems that we need a more powerful heuristic to select

which classi�ers to replace and maybe even how many to

allow.

7 Conclusions

In this paper, the causes of the poor performance of

ZCS in simple Markovian environments are investigated.

Previous attempts at explaining this behaviour are de-

scribed. It seems that although those mechanisms de-

scribed in [1] are present in the system, they are only one

of the causes of a more deeper disruption. This is mainly

caused by chains of covering invocations that force death

upon a signi�cant proportion of the classi�ers in the pop-

ulation thus making the re-learning process to take place

more slowly.

Some attempts at solving the situation are proposed

and investigated. In particular a simple strategy for lim-

iting the amount of classi�ers replaced proved to be too

simplistic but shows a trade o� between the percentage of

the population that we let covering change and the speed

at which the system learns re�ned behaviours. Limiting

the initial strength of classi�ers produced through cover-

ing, on the other hand, seems to produce better results.
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9 Appendix

This appendix reproduces the means and standard devi-

ation of the traditional ZCS compared with that of each

of the proposed mechanisms to reduce the disruptions.

The \limit" refers to the threshold for considering some

number of steps as a disruption as described in the main

section of the paper (Section 6).

Traditional ZCS Restricted Cover. t-test

Limit Mean Std.Dev. Mean Std.Dev.

10 60.79 62.38 66.96 65.34 -1.27

11 60.79 62.38 66.96 65.34 -1.27

12 60.79 62.38 66.96 65.34 -1.27

13 60.79 62.38 66.96 65.34 -1.27

14 43.37 53.49 45.96 52.46 -0.73

15 44.26 49.39 40.58 43.95 1.13

16 47.52 39.81 36.63 40.25 4.12

17 40.73 38.62 37.28 38.77 1.25

18 41.22 37.69 39.44 34.18 0.62

19 39.60 34.23 36.72 33.08 1.09

20 38.96 31.18 36.39 30.32 1.02

21 38.44 29.29 34.89 29.29 1.47

22 34.63 29.04 33.77 28.97 0.35

23 35.54 28.77 37.88 28.25 -0.88

24 34.36 29.39 37.85 27.09 -1.25

25 36.34 29.64 37.11 25.94 -0.27

Traditional ZCS Reduced Strength t-test

Limit Mean Std.Dev. Mean Std.Dev.

10 60.79 62.38 54.51 42.47 0.90

11 60.79 62.38 54.51 42.47 0.90

12 60.79 62.38 54.51 42.47 0.90

13 60.79 62.38 54.51 42.47 0.90

14 43.37 53.49 37.26 37.27 1.18

15 44.26 49.39 31.60 35.03 2.67

16 47.52 39.81 27.61 30.42 5.19

17 40.73 38.62 31.50 28.64 2.17

18 41.22 37.69 32.92 26.92 1.86

19 39.60 34.23 30.72 27.77 2.13

20 38.96 31.18 36.72 28.46 0.51

21 38.44 29.29 40.59 28.67 -0.48

22 34.63 29.04 37.93 29.15 -0.74

23 35.54 28.77 39.32 27.36 -0.81

24 34.36 29.39 43.67 24.14 -1.82

25 36.34 29.64 42.34 25.64 -1.15
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Traditional ZCS Combined t-test

Limit Mean Std.Dev. Mean Std.Dev.

10 60.79 62.38 77.46 133.64 -2.65

11 60.79 62.38 77.46 133.64 -2.65

12 60.79 62.38 77.46 133.64 -2.65

13 60.79 62.38 77.46 133.64 -2.65

14 43.37 53.49 45.89 83.20 -0.58

15 44.26 49.39 33.42 68.04 2.95

16 47.52 39.81 43.24 74.09 1.19

17 40.73 38.62 37.85 62.23 0.82

18 41.22 37.69 40.13 55.05 0.29

19 39.60 34.23 37.10 54.45 0.73

20 38.96 31.18 34.19 42.05 1.50

21 38.44 29.29 40.01 42.25 -0.46

22 34.63 29.04 32.39 38.22 0.69

23 35.54 28.77 27.40 35.64 2.58

24 34.36 29.39 30.10 30.42 1.20

25 36.34 29.64 27.75 29.71 2.35

This are the results of the T-student test statistic to

check whether the mean is signi�cantly di�erent in the

Traditional ZCS and the other. Given the degrees of

freedom, the statistics have to be greater than t

�

2

, where

for � = 0:05, t = 1:645, and for � = 0:025, t = 1:960.

In order to analyse this results, there are to things that

need to be taken into account. Firstly, peformances

where the number of steps goes over the 14 require that

the animat is producing at least some inadequate move-

ment. So, the greater the limit, the more real disruptions

and less pure randomly long performances are included

in the statistic. Secondly, to understand why the mean

can increase with the limit, consider the situation when

the current limit is just enough so that a great number

of very small peaks are included when working out the

statistics. This will lower the mean as there will be a

great number of small peaks. By increasing the limit

slightly, all those peaks are removed and only big signif-

icant disruptions are left over, thus the mean increases.

Looking at the t-student statistics, there is no clear

veredict as to whether there is a signi�cant statistical

di�erence between the traditional ZCS and the solutions

attempted. For some cases, specially for a low limit in

the combined solution, the performance is actually worse

with the solutions proposed. But for higher limits, if

there is some signi�cant di�erence, it points to a better

performance under the solutions proposed

3

. The results

are inconclusive but encouraging.

3

The only exception is the mean found for a limit of 24 in the

case where the newly generated classi�ers are assigned a reduced

strength.
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