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SUMMARY

The vast majority of work in machine vision em-

phasizes the representation of perceived objects and

events: it is these internal representations that in-

corporate the `knowledge' in knowledge-based vision

or form the `models' in model-based vision. In this

paper, we discuss simple machine vision systems de-

veloped by arti�cial evolution rather than traditional

engineering design techniques, and note that the task

of identifying internal representations within such sys-

tems is made di�cult by the lack of an operational

de�nition of representation at the causal mechanis-

tic level. Consequently, we question the nature and

indeed the existence of representations posited to be

used within natural vision systems (i.e., animals). We

conclude that representations argued for on a priori

grounds by external observers of a particular vision

system may well be illusory, and are at best place-

holders for yet-to-be-identi�ed causal mechanistic in-

teractions. That is, applying the knowledge-based vi-

sion approach in the understanding of evolved systems

(machines or animals) may well lead to theories and

models which are internally consistent, computation-

ally plausible, and entirely wrong.

1 INTRODUCTION

The vast majority of work in machine vision em-

phasizes the representation of perceived objects and

events: it is these internal representations that are the

`knowledge' in knowledge-based vision and the `mod-

els' in model-based vision. In this paper, we argue that

such notions of representation may have little use in

explaining the operation of simple machine vision sys-

tems which have been developed by arti�cial evolution

rather than traditional engineering design techniques;

and hence are of questionable value in furthering our

understanding of vision in animals, which are also the

product of evolutionary processes.

This is not to say that representations do not exist

or are not useful: there are many potential applica-

tions of machine vision, of practical engineering im-

portance, where signi�cant problems are alleviated or

avoided altogether by use of appropriate structured

representations. Examples include medical imaging,

terrain mapping, and tra�c monitoring (e.g., Taylor,

Gross, Hogg, & Mason, 1986; Sullivan, 1992).

But the success of these engineering endeavours may

encourage us to assume that similar representations

are of use in explaining vision in animals. In this pa-

per, we argue that such assumptions may be mislead-

ing. Yet the assumption that vision is fundamentally

dependent on representations (and further assump-

tions involving the nature of those representations)

is widespread. We seek only to highlight problems

with these assumptions; problems which appear to

stem from incautious use of the notion of `represen-

tation'. We argue in particular that the notion of rep-

resentation as the construction of an internal model

representing some external situation is probably not

applicable to evolved systems. This paper is intention-

ally provocative; the arguments put forward below are

o�ered for discussion, rather than as unquestionable

truths.

We start, in Section 2, by brie
y reviewing two key

in
uences in the development of the view of vision as

a process that forms representations for subsequent

manipulation. Then in Section 3 we discuss simple

visual machines; �rst summarising the process of ar-

ti�cial evolution; then reviewing work where arti�-

cial evolution has been used to evolve design speci-

�cations for visual sensorimotor controllers; and then

discussing the issue of identifying representations in

these evolved designs. Following this, Section 4 ex-

plores further the issue of de�ning the notion of repre-

sentation with su�cient accuracy for it to be of use in

empirically determining whether representations are

employed by a system. Finally, in Section 5 we ex-

plore the implications of these issues for the study of

vision in animals, before o�ering our conclusions in

Section 6.

2 BACKGROUND

Although it is beyond the scope of this paper to pro-

vide a complete historical account of the key in
u-

ences on the development of present knowledge-based

vision techniques and practices, there are two major

works which permeate almost all knowledge-based vi-

sion with which we are familiar. These are the Phys-

ical Symbol System Hypothesis of Newell and Simon

(1976) and Marr's (1982) work on vision.

2.1 The Physical Symbol System Hypothesis

Newell and Simon (1976) were instrumental in estab-

lishing the belief that systems which engage in the syn-

tactic manipulation of symbols and symbol structures

have the necessary and su�cient means for general

intelligent action. For Newell and Simon the symbols

are arbitrary but their interpretation and semantics

(i.e., what the symbols represent) are socially agreed

between observers of the symbol system. Under this
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hypothesis, intelligent action involves the receipt of

symbols from symbol-generating sensory apparatus,

the subsequent manipulation of those symbols (e.g.

using techniques derived from mathematical logic, or

algorithmic search), in order to produce an output

symbol or symbol structure. Both the input and the

output have meaning conferred on them by external

observers, rather than the meaning being intrinsic to

the symbol (Harnad, 1990).

In the �eld of arti�cial intelligence, Newell and

Simon's hypothesis licensed a paradigm of research

concentrating on intelligence as the manipulation

of symbolic representations, and on perception as

the generation of those symbols and symbol struc-

tures. Specialised symbol-manipulating and logic-

based computer programming languages such as Lisp

(e.g., Winston & Horn, 1980) and Prolog (e.g.,

Clocksin & Mellish, 1984) (from \list processing" and

\programming in logic" respectively) were devel-

oped to ease the creation of `knowledge-based systems'

(e.g., Gonzalez & Dankel, 1993). In due course, under-

graduate textbooks appeared that essentially treated

the hypothesis as an axiomatic truth (e.g., Nilsson,

1982; Charniak & McDermott, 1985), paying little at-

tention to criticisms of the approach (e.g., Dreyfus,

1979, 1981).

In the �eld of machine vision, the Physical Sym-

bol System Hypothesis underwrites all research on

knowledge-based vision, where it is assumed that the

aim of vision is to deliver symbolic representations (or

`models') of the objects in a visual scene: in the words

of Pentland (1986), to go \from pixels to predicates".

This mapping from visual images to predicate-level

representations was studied in depth by David Marr.

2.2 Marr's Theories of Vision

Marr's (1982) work on vision had an enormous im-

pact on practices in machine vision. He argued force-

fully and coherently for vision to be treated as a data-

driven, bottom-up process which delivers representa-

tions of 3-dimensional (3-d) shape from 2-dimensional

(2-d) images. Marr cites studies of vision in humans

as being in
uential in the development of his theories:

in particular the mental rotation experiments of Shep-

ard and Metzler (1971) and the parietal lesion data of

Warrington and Taylor (1973, 1978).

In Shepard and Metzler's experiments, human sub-

jects were shown pairs of line-drawings of simple ob-

jects and were asked to discriminate whether the two

images were projections of the same 3-d object viewed

from di�erent poses, or images of two di�erent but

mirror-symmetric objects viewed from di�erent poses.

Their results (which remain the subject of debate) in-

dicated that the length of time taken for subjects to

identify that the two images di�ered only in pose (i.e.,

were of the same object) was linearly related to the de-

gree of 3-d rotation involved in the di�erence in pose.

From these results (and, indeed, via introspection if

one attempts to perform this discrimination task) it

is compelling to conclude that the nervous system gen-

erates some internal representation of 3-d shape from

one 2-d image and then somehow manipulates it to

determine whether it can match the second 2-d im-

age.

Warrington and Taylor's results concerned human

patients who had su�ered brain lesions in the left or

right parietal areas. Left-lesioned patients could per-

ceive the shape of an object from a wide variety of

poses, but could o�er little or no description of its

\semantics": its name or its purpose. Meanwhile,

right-lesioned patients could describe the semantics of

an object, provided it was presented from a \conven-

tional" pose or view-angle; if the view was somehow

\unconventional", such as a clarinet viewed end-on,

the right-lesioned patients would not be able to recog-

nise the object, and in some cases they would actively

dispute that the view could be one of that object.

These results, and other considerations, led Marr to

conclude that the main job of vision is to derive repre-

sentations of the shapes and positions of things from

images. Other issues (such as the illumination and re-


ectances of surfaces; their brightness and colours and

textures; their motion) \ . . . seemed secondary"(Marr,

1982, p.36).

In Marr's approach, vision is fundamentally an

information-processing task, attempting to recover 3-d

information hidden or implicit in the 2-d image. Marr

proposed that such information-processing tasks, or

the devices that execute them, should be analysed us-

ing a three-level methodology:

\[there are three] di�erent levels at which

an information-processing device must be

understood before one can be said to have

understood it completely. At one extreme,

the top level, is the abstract computational

theory of the device, in which the perfor-

mance of the device is characterized as a

mapping from one kind of information to an-

other, the abstract properties of this map-

ping are de�ned precisely, and its appropri-

ateness and adequacy for the task at hand

are demonstrated. In the center is the choice

of representation for the input and output

and the algorithm to be used to transform

one into the other. And at the other extreme

are the details of how the algorithm and rep-

resentation are realized physically { the de-

tailed computer architecture, so to speak."

(Marr, 1982, p.24)

Application of this three-level methodology to the

problem of analysing vision led Marr and his col-

leagues to develop a theory of vision involving a

pipeline of processes applying transformations to in-

termediate representations derived from the initial im-

age (Marr, 1982, p.37): the ambient optic array is

sampled to form a 2-d image, which represents inten-

sities; the image is then operated on to form the \pri-

mal sketch", which represents important information
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about the 2-d image such as the intensity changes and

their geometrical distribution and organisation. Fol-

lowing this, the primal sketch is processed to form the

\2

1

2

-d sketch", which represents orientation and rough

depth of visible surfaces, and any contours of disconti-

nuities in these quantities, still in a viewer-centred co-

ordinate frame. Next, the 2

1

2

-d sketch is processed to

form an internal \3-d Model", which represents shapes

and their spatial organisation in an object-centred co-

ordinate frame; including information about volume.

Hence, the 3-d model is an internal reconstruction of

the external physical world.

Within Marr's framework, formation of the 3-d

model is the end of the visual process, and the model is

then passed to `higher' processes, such as updating or

matching against a stored library of 3-d shapes. Since

the initial development and publication of these ideas,

much knowledge-based vision has been based on this

approach.

Over the last decade, the increasing research activ-

ity in `active vision' (e.g., Ballard, 1991), where the

camera that forms the image is under dynamic control

of the vision system, has led to a number of criticisms

being levelled at Marr's approach (see e.g., Nelson,

1991; Horswill, 1993).

3 SIMPLE VISUAL MACHINES

Traditional modular engineering design techniques,

based on dividing a given problem into a number of

sub-problems such that each sub-problem can be re-

solved using a separate computational module, require

intermediate representations for inter-module commu-

nication. The task of each computational module is

to receive input data in a pre-speci�ed representation,

apply some required transformation, and pass on the

result of the transformation as the output of the mod-

ule. The Marr pipeline is a �ne example of this ap-

proach: to go from image to 3-d model in one step is

unrealistically ambitious; instead, a sequence of oper-

ations is applied to the image, generating successive

internal representations, leading to the �nal desired

representation. Given that such techniques are well-

established in engineering design and manifestly suc-

cessful in a number of potentially very problematic

task domains, it is di�cult to conceive of alternatives.

However, recent work in Adaptive Behavior

1

re-

search has employed arti�cial evolution (i.e., genetic

algorithms) as an alternative to traditional design

techniques. In these studies, simple visual machines

(either real robots or simulated agents existing within

virtual realities) have been evolved to perform a va-

riety of behaviors mediated by vision or other distal

sensing (e.g., sonar; IR proximity detectors). Typi-

cally the sensorimotor `controllers' of these machines

1

See the journalAdaptive Behavior published by MIT Press,

or the proceedings of the biennial conference on simulation of

adaptive behavior (Meyer & Wilson, 1991; Meyer, Roitblat, &

Wilson, 1993; Cli�, Husbands, Meyer, & Wilson, 1994; Maes,

Matari�c, Meyer, Pollack, & Wilson, 1996).

are parallel distributed processing systems: com-

monly, arti�cial neural networks simulated on a fast

serial computer, but also in at least one case (Thomp-

son, 1995) real parallel asynchronous analog electronic

circuits. In these studies there is no precommitment

to any particular representational scheme: the desired

behavior is speci�ed, but there is minimal speci�cation

of the mechanism required to generate that behavior.

In the following three sections we give a brief intro-

duction to arti�cial evolution; give some examples of

arti�cially evolved simple visual machines, and then

discuss further the issue of representation in these sys-

tems.

3.1 Arti�cial Evolution

Arti�cial evolution encompasses a number of compu-

tational optimisation or satis�cing techniques which

draw inspiration from biological evolution. Only the

simplest form of `genetic algorithm' will be explained

here, with speci�c reference to developing sensorimo-

tor controllers for simple visual machines; for further

details, see e.g. Goldberg (1989).

In order to apply a genetic algorithm it is necessary

to �rst formulate an encoding scheme and a �tness

function. The encoding scheme is a method of en-

coding the designs of sensorimotor `controller' mech-

anisms (and possibly also the sensor and motor mor-

phology) as strings of characters from a �nite alpha-

bet, referred to as `genomes'. The �tness function

takes the spatiotemporal pattern of behavior of a given

individual controller (decoded from a given genome)

over one or more trials, and assigns that individual a

scalar value which is referred to as its �tness; such that

desirable behaviors are awarded higher �tness than

less desirable behaviors.

The system is initialised by creating a `popula-

tion' of individuals, each with a randomly generated

genome. The system then enters a loop: all individu-

als are tested and assigned a �tness score. Individuals

with higher �tness values have a greater chance of be-

ing selected for breeding. In breeding, the genomes of

two parents are mixed in a similar manner to recom-

binant dna transfer in sexual reproduction, and extra

variation is introduced by `mutations' where charac-

ters at randomly-chosen positions on the genotype are

randomly `
ipped' to some other character from the

genome-alphabet. Su�ciently many new individuals

are bred to replace the old population, which is then

discarded. Following this, the new population is tested

to assign a �tness to each individual. Each cycle of

testing the population and breeding a replacement is

referred to as one generation, and generally a genetic

algorithm runs for a pre-set number of generations,

or until the best or average �tness in the population

reaches a plateau.

If parameters such as the mutation rate, �tness

function, and selection pressure are all set correctly,

then typically �tness increases over a number of gen-

erations: at the end of the experiment, the best indi-
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vidual genome encodes for a useful design. The �nal

evolved design can then be implemented and analysed

to determine how it functions.

In evolving sensorimotor controllers, a variety of

possible `building blocks' can be employed: for a com-

prehensive review and critique, see Matari�c and Cli�

(1995). In many of the systems discussed in the

next section, continuous-time recurrent neural net-

works (ctrnns) are employed: these are arti�cial neu-

ral networks composed of `neuron' units with speci�ed

time-constants giving each neuron an intrinsic dynam-

ics. The primary reason for employing such neural

networks is that their sigmoidal activation function

allows them to approximate a very wide class of math-

ematical functions; their recurrent connections allow

them to maintain internal state; and there is a theoret-

ical result which suggests that, appropriately con�g-

ured, they can approximate a very large class of con-

tinuous dynamical systems with arbitrary accuracy:

see Beer (1995b) for further details.

The evolved simple visual machines described be-

low are all both embodied and situated within an en-

vironment: the emphasis is on the evolution of en-

tire sensory-motor coordination mechanisms or pro-

cessing pathways, constrained only in terms of the �t-

ness of the observable behavior of the agent. This

contrasts with many arti�cial neural network models,

where the constraint is that (either by learning or evo-

lution) the network is capable of making appropriate

mappings from a given input representation to a given

output representation: modelling entire sensorimotor

pathways has a signi�cant impact on the semantics of

any representations within the system; see Cli� (1991,

1995).

3.2 Examples

As far as we are aware, the �rst case of an evolved

arti�cial agent using distal sensing was the simula-

tion study by Cli�, Husbands, and Harvey (1993) (see

also Cli�, Harvey, & Husbands, 1993). In this work,

ctrnns were evolved, along with the speci�cation of

the angle of acceptance and physical arrangement of

the visual sensors on the robot body. Only two simu-

lated photodetectors (i.e., two `pixels') were used, but

the robot was successfully evolved to visually navigate

its way to the centre of a simple arena: a closed cir-

cular room with white 
oor and ceiling, and a black

wall.

Subsequently, Harvey, Husbands, and Cli� (1994)

evolved ctrnns for real-time control of a robot cam-

era head moving in another visually simple environ-

ment. The head was mounted with touch sensors and

a low-bandwidth ccd video camera. Networks with

three circular receptive �elds sampling the input video

stream were evolved, with the position and radius of

the receptive �elds under genetic control. The net-

works were selected on the basis of their ability to

approach a triangular visual target, and avoid a rect-

angular target: a simple visual categorisation task.

Floreano and Mondada (1994) evolved feed-forward

neural networks for a simple robot with an 8-pixel

input `image' formed by the inputs of photodetector

cells placed around the perimeter of its body (an up-

right cylinder of height 4cm and radius 3cm). These

network controllers were evolved to guide the robot

through a maze-like environment, attempting to max-

imise the distance travelled without colliding with the

walls of the maze.

Thompson (1995) developed a genetic encoding for

electronic circuits composed of digital logic gates,

which were asynchronous and recurrently connected,

so that the analogue properties of the circuits could

be exploited by evolution. The distal sensors were

ultrasonic sonars, rather than visual; economical cir-

cuits were evolved to allow the robot to guide itself

to the center of a rectangular enclosure using sonar

responses.

Jakobi (1994) and Jakobi, Husbands, and Harvey

(1995) reported the development of a simulator for the

same type of 8-pixel robot used by Floreano and Mon-

dada, evolving ctrnns in simulationwhich could then

be successfully transferred to the real robot, generat-

ing behaviors which guided the robot towards a light

source, while avoiding collisions with obstacles (a task

similar to that studied by Franceschini, Pichon, and

Blanes (1992)).

Cli� and Miller (1996) evolved ctrnns for simu-

lated 2-d agents using projective geometry to give a

`
atland vision' approximation to visual sensing, with

up to 14 pixels in the sensory input vector. Sepa-

rate populations of `predator' and `prey' agents were

evolved. The predators were selected for on the ba-

sis of the their ability to approach, chase, or capture

individuals from the prey population; and prey indi-

viduals were selected for their ability to avoid being

captured by the co-evolving predators.

Finally, Beer (1996) evolved ctrnns for simulated

agents with distal sensing using either �ve or seven di-

rectional proximity detectors: the agents had to per-

form what Beer refers to as minimally cognitive tasks,

i.e., behaviors that would usually be assumed to re-

quire some form of internal representation or categori-

sation, such as orienting to objects of one particular

shape, distinguishing between di�erent shapes, and

pointing a `hand' at certain shapes.

3.3 The search for internal representations

All of the evolved simple visual machines discussed

above perform tasks that are trivial by the standards

of most machine vision research. There is little or

no doubt that these tasks could all be solved using

a knowledge-based approach, involving a sequence of

transformations on appropriate internal representa-

tions. Yet the signi�cance of these machines is not the

complexity of the problems they solve or the behav-

iors they exhibit, but rather the way in which their

design was produced. In contrast to traditional en-

gineering design techniques, the use of an evolution-
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ary approach with minimalpre-commitments concern-

ing internal architecture or representations makes the

question \what types of representation do these ma-

chines use?" an empirical one. That is, we must

examine or analyse the evolved designs, generate hy-

potheses about the representations employed, and test

those hypotheses in an appropriate manner. Possi-

bly the evolutionary process will have resulted in a

knowledge-based or model-based solution, in which

case appropriate representations will be found; or pos-

sibly not.

And it is on this issue that the true signi�cance

of these simple visual machines is revealed: as far as

we are aware, no analysis of the evolved systems de-

scribed above has identi�ed the use of representations

or knowledge in the conventional (physical symbol sys-

tem) sense. That is, none of these systems operate by

forming a representation of the external environment,

and then reasoning with or acting upon that represen-

tation (e.g. by comparison with or reference to in-built

or acquired representations). This is in spite of the

fact that a machine-vision engineer, conversant in the

methods of knowledge-based vision, could (trivially)

develop an appropriate computational theory for any

of these tasks, identify appropriate representations

and transformation algorithms to act on them, and

specify an implementation in some physical hardware.

Evolution, working with primitive building blocks to

construct parallel distributed processing architectures

for these tasks, just doesn't do it the knowledge-based

way.

This is not to say that the operation of these sys-

tems is a mystery. Full causal mechanistic explana-

tions of the evolved systems can be o�ered via analy-

sis, typically using the tools and language of dynami-

cal systems theory.

2

Causal mechanistic explanations

are also the ultimate aim of much work in analysing

evolved biological systems (Horridge, 1977).

For example, the two-pixel controllers evolved to

guide a simulated robot to the centre of a circular

room (Cli� et al., 1993) have been analysed both qual-

itatively (Cli�, Harvey, & Husbands, 1997) and quan-

titatively (Husbands, Harvey, & Cli�, 1995). The be-

havior of the robots can be explained and predicted

by reference to the dynamics of the agent-environment

interaction: the ctrnn's can maintain internal state,

and the state-space of the networks has certain identi-

�able attractors which correspond to (or are correlated

with) certain situations or relationships between the

agent and the environment, such as the robot being

at the center of the room. There is a closed sensory-

motor loop, in the sense that the changing state of

the network is a�ected by the current and past in-

puts to the sensors, which are determined by the path

the robot takes through the environment, which is in

2

For further discussion of the rationale for and use of

dynamical systems theory as an alternative to computa-

tional/representational accounts of cognition, see Smithers

(1992), Thelen and Smith (1994), Port and van Gelder (1995),

Smithers (1995), and Beer (1995a).

turn determined by the changing state of the network.

When the robot is released into the environment at a

particular orientation and location, the sensors receive

certain light values, which can perturb the state-space

trajectory of the ctrnn, which a�ects the motor out-

puts, possibly moving the robot, and hence altering

the light-values subsequently sampled by the sensors.

As this state-space trajectory unfolds, the robot can

be observed to be moving toward the center of the

circular room, and staying there once it arrives, but

there is nothing within the ctrnn that can usefully be

described as a representation: nothing, for example,

corresponding to a stored version of a `goal state' such

as the sensory inputs received when at the center of

the room, or a method for determining, on the basis

of comparison with stored values, whether the robot

should turn left or right, move forward or reverse, or

stop.

Of course, it is famously di�cult to prove a negative,

and it is beyond the scope of this paper to give a full

illustrative example analysis of one of the evolved sys-

tems listed above, but a simple thought experiment,

adapted fromBraitenberg (1984), will serve as a useful

illustration. Consider the design for a simple visually-

guided wheeled robot with a body-plan symmetric

about its longitudinal axis. At the front, on the long

axis, is a single castor-wheel. At the rear left and rear

right, there are identically sized wheels, attached to in-

dependent electrical motors with co-linear axles. The

robots are di�erential-steer devices (by altering the

angular velocities of the two rear wheels, the robots

can travel in arcs of varying radii, either clockwise or

anticlockwise). At the front-left and front-right of the

robot there is a forward-pointing light-sensor. A wire

leads from each sensor into a black box where some

control circuitry and batteries are hidden. Wires lead

from the black box to the two drive motors. Two such

robots, marked A and B, are placed in a dark room

with no obstacles except for a 
oor-mounted lightbulb.

When the lightbulb is switched on, robot A (which was

initially not pointing toward the lightbulb) turns to

face the bulb and accelerates toward it, only stopping

when it hits it; meanwhile, robot B (which was ini-

tially facing the lightbulb) turns away from the bulb;

fast at �rst but then slower, coming gently to a halt.

Now ask a knowledge-based vision engineer to theorise

about what might be hidden inside the black boxes of

robots A and B. Presumably, following Marr's three

levels of analysis, the engineer will �rst formulate a

computational theory for each robot, characterising

the performance of each as a mapping from one kind

of information to another, establishing a link from vi-

sual information received at the sensors to informa-

tion concerning appropriate motor outputs; then she

will determine the representations for input and out-

puts, and any intermediate representations, and the

algorithm(s) for transforming between them; �nally

she will address issues of how the representations and

algorithms can be realized physically. Quite proba-
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bly, the solution will involve measuring the signals re-

ceived from the left and right sensors, comparing them

(or their di�erence) to some reference values, and is-

suing appropriate motor commands on the outcome

of the comparison. Given enough time and money, we

have no doubt that such controllers could be built and

would operate successfully. But, upon opening the

black-box controllers on A and B, there is a surprise

lurking. The black box in A simply has a wire con-

necting the left-hand sensor to the right-hand motor,

via an appropriate ampli�er, and a wire connecting

the right-hand sensor to the left-hand motor, again

via an ampli�er. Similarly, the black box in B has

nothing but an ampli�er sitting between a wire joining

the left sensor to the left motor, and another ampli�er

between the right sensor and right motor. All the am-

pli�ers do is ensure that the signals coming from the

light sensors are magni�ed su�ciently to drive the mo-

tors: they provide a constant of proportionality, but

essentially each motor is driven by a direct connection

from one sensor. (Readers familiar with Braitenberg

(1984, pp.6{9) will recognise A as the contralaterally

connected Vehicle 3a, and B as the ipsilaterally con-

nected Vehicle 3b.) This is all it takes to generate the

observed behaviors. And the key issue here is that, de-

spite the knowledge-based vision engineer being able

to specify representation-manipulating controllers, the

actual controllers for these two Braitenberg-Vehicle

robots use no representations. Their observable be-

havior is a result of the dynamics of interaction be-

tween the agent (robot) and the environment (
oor of

a dark room and a lightbulb). A complete account of

the behavior of either agent requires treating the agent

and environment as coupled (through a sensory-motor

loop); and there is no useful de�nition of `representa-

tion' that allows any variable with these coupled sys-

tems to be described as a representation to the agent

of any external object, situation, or event. Of course,

this argument rests on the de�nition of `representa-

tion', a point we return to below.

Just as the Braitenberg vehicles use no represen-

tations, so we argue that the arti�cially evolved sim-

ple visual machines discussed previously use no rep-

resentations. Now it should be noted that, in the

majority of cases, the researchers responsible for the

evolved simple visual machines are highly doubtful as

to whether traditional notions of representation serve

any useful purpose in explaining cognitive systems (ar-

ti�cial or natural). Their work is part of a wider move-

ment within the Adaptive Behavior research commu-

nity that questions or rejects traditional symbolic no-

tions of representation (see e.g. (Brooks, 1991b, 1991a)

for overviews).

For this reason, it is pertinent to ask whether (and

with all due respect to the researchers involved) rep-

resentation has not been identi�ed in these machines

because the researchers had a vested interest in not

�nding any. Put another way: if evolution did pro-

duce a design that used internal representations, how

would we recognise it? This requires a �rm de�ni-

tion of representation: preferably an operational de�-

nition (i.e., the speci�cation of a procedure by which

an independent third party could establish whether

representations are being used or not). It is this issue

of attempting to usefully de�ne `representation' that

we turn to in the next section: analysis may iden-

tify causal interactions, or high-order correlations, but

surely a representation is more than just an interac-

tion or correlation?

4 WHAT IS IT LIKE TO BE A REPRESEN-

TATION?

Harvey (1992, 1996) argues that the only meaning-

ful sense in which internal representations can be dis-

cussed in cognitive systems is to recognise that the

verb \represent" should be treated as a four-place

predicate: that P is used by Q to represent R to S.

For example, the character string \mast" is used by

writers of English to represent \long upright pole on

which the sails of a ship are carried" to English read-

ers. But people writing in Serbo-Croat use exactly the

same character string to represent \ointment, fat, or

lard" to Serbo-Croat readers: as Harvey emphasizes,

Q and S are necessary to allow for the same P repre-

senting di�erent R's to di�erent P-using communities.

So, to talk of representations in vision (and any-

where else), we need to determine who or what are

�lling the roles of Q and S. We, as external observers,

can safely talk of patterns of activity in the nervous

system as representing external objects/events to us

the observers: Q and S are us humans engaging in

a discourse where it is socially agreed that the neu-

ral activity patterns (P) represent some external ob-

ject(s) or event(s) (R). But to talk about the pat-

terns being representations used by the agent (robot

or animal) implies that an agent-within-the-agent is

somehow `reading' these representations: if P is some

representational pattern of activity on a de�ned set

of neurons, and we say that P represents some exter-

nal object or event R, then we should also be able to

specify Q and S. If we want to de�ne Q as the collec-

tion of neurons over which the pattern P is detected,

then what is S? Some other part of the agent's neural

system, excluding the neurons in Q? If that is the

case, then it is not the agent as a whole that is using

the representations: the agent becomes decomposed

into a community of sub-agents, forming, using, and

exchanging representations. Of course, systems de-

signed by traditional engineering techniques can be

described this way. But applying this style of descrip-

tion to an evolved agent requires care: Harvey's rea-

soning implies that, unless used carefully, explanation

of an agent's neural mechanisms in terms of repre-

sentations used \by the agent" can hide an implicit

homunculus: the (sub-)agent that reads the represen-

tation. And with this homunculus comes the manifest

danger of in�nite regress.

One means by which a representation can be dis-
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tinguished from a correlation is by noting that Har-

vey's argument implies that representations are es-

sentially linguistic (i.e., form an interlingua between

representation-using agents or entities). A represen-

tation should hence be normative: it should at least

o�er the opportunity to misrepresent; to more or less

correctly capture some external state of a�airs. In the

simple visual machines discussed above, there is no

representation because there is no possibility of mis-

representation. We, the external observers, can point

to the activity patterns and refer to them as repre-

sentations in explaining the system, and be right or

wrong to varying degrees about what those patterns

represent. But to talk of the agent using the repre-

sentations is to confuse patterns of activity which rep-

resent something else, and patterns of activity which

actually constitute the agent's perceptual or experi-

ential world, a point forcefully made by Brooks and

Stein:

\There is an argument that certain com-

ponents of stimulus-response systems are

`symbolic'. For example, if a particular neu-

ron �res { or a particular wire carries a posi-

tive voltage { whenever something red is vis-

ible, that neuron { or wire { may be said

to `represent' the presence of something red.

While this argument may be perfectly rea-

sonable as an observer's explanation of the

system, it should not be mistaken for an ex-

planation of what the agent in question be-

lieves. In particular, the positive voltage on

the wire does not represent the presence of

red to the agent; the positive voltage is the

presence of something red as far as the robot

is concerned." (Brooks & Stein, 1994, p.12:

original emphasis).

It could be argued that the simple systems studied

so far are merely demonstrations that `knowledge' and

`structured representations' are not required for such

simple tasks, but will be necessary for more complex

tasks. We disagree.

Rather, we argue that `knowledge' and its `repre-

sentation' may be nothing more than constructs from

folk-psychology. We maintain that these terms are

best viewed as place-holders for yet-to-be-identi�ed

causal mechanistic interactions: philosophically, this

is a position of eliminative materialism such as that

�rst proposed by Churchland (1979, 1989) and sub-

sequently argued for by Smithers (1992). Such a po-

sition also has clear parallels with the work of Brait-

enberg (1984) who demonstrated that mentalistic no-

tions such as \fear" and \aggression" are easily im-

puted by external observers of his Vehicle series of

simple visual machines, two of which were introduced

in the thought experiment discussed earlier. Brie
y,

Braitenberg's argument is that human observers as-

cribe mental states to the vehicles when describing

their actions (e.g. \robot A approaches lightbulbs ag-

gressively" or \robot B is frightened of light and turns

away from it"), yet these mentalistic terms have no

place in explanations of the causal mechanisms in-

volved in the generation of those behaviors.

In sum, our position is that `knowledge' and its `rep-

resentation' are useful notions at levels of explanation

higher than the causally mechanistic; and in particu-

lar are valuable when analysis has yet to uncover the

causal mechanisms involved in the visual processing

mechanisms of interest. But that when an evolved sys-

tem is fully analysed at the causal mechanistic level,

there is no useful place for these terms.

For this reason, we �nd it hard to agree with state-

ments such as:

\. . . visual systems acquire and use

knowledge in many ways. It is encoded into

. . . visual systems by evolution and perhaps

still more by individual experience." (From

the synopsis of the Royal Society Discussion

Meeting on Knowledge-Based Vision in Man

and Machine, February 12{13, 1997).

because, for evolved simple visual machines, although

it is useful for us to talk of \knowledge encoded into

visual systems" before we analyse them, once the anal-

ysis is complete and we have a causal mechanistic ex-

planation of the system, there are only the interac-

tion dynamics: there is nothing we can point to (or

wave our hands over, for fans of `distributed repre-

sentations') as the knowledge in the system. It is as

elusive as the Ghost In The Machine.

5 IS THE SAME TRUE OF ANIMALS?

Given the existence of evolved arti�cial systems which

exhibit visually guided behaviors yet employ no repre-

sentations, it is compelling to consider whether similar

systems exist in the natural world. Although there is

no animal for which a complete analysis (comparable

to the analyses of the arti�cial systems enumerated

above) is available, we discuss below some suggestive

results from phylogenetically diverse animals.

The visual systems of insects, especially the

dipteran 
ies, have been subjected to extensive stud-

ies. Examples include fruit-
ies such as Drosophila

melanogaster (e.g., Wolf & Heisenberg, 1991), hover-


ies such as Syritta pipiens (e.g., Collett & Land,

1975a), and house-
ies such asMusca domestica (e.g.,

Reichardt & Guo, 1986) or Fannia canicularis (e.g.,

Land & Collett, 1974).

These are, probably, the natural systems for which

it is most realistic to attempt a complete causal mech-

anistic explanation of the couplings between (visual)

sensors and motors. Hence, if vision by de�nition in-

volves the formation and manipulation of representa-

tions, these are also the animals in which we are most

likely to be able to identify the neural realisation of

those representations.

From the re
ex loops governing take-o� and landing

responses or optomotor 
ight stabilisation, through
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the servo systems underlying the chasing or track-

ing of one 
y by another, to the use of visual land-

marks for navigation, there exist published accounts

of information-processing or control-theoretic analy-

ses, extensive behavioral studies, and relatively rich

neurological data from identi�able individual visual

interneurons.

Yet to cast these analyses within a `model-based'

or `knowledge-based' framework would be, surely, to

reduce the notions of `model' or `knowledge' to vacu-

ity. Consider conspeci�c-chasing behaviors: for a full

causal mechanistic analysis, it is necessary to acknowl-

edge that much of the `knowledge' about chasing 
ies

of the same species is `represented' in the entire de-

sign of the animal. From the anatomy and optics of

the eye, through the neural dynamics of the relevant

sensorimotor pathways, to the kinematics of the 
ight

motor system, and indeed the aerodynamics of the

whole 
y: a full account will treat the 
y as a sub-

system within the coupled dynamical system formed

by the interaction of the agent and its environment.

3

Presumably the `knowledge' of important system pa-

rameters (e.g. the 
y's body shape, its moments of in-

ertia and coe�cients of friction for both angular and

linear acceleration, etc.) is somehow `represented' in

the neural processes responsible for sensory-motor co-

ordination. But such loosely-sketched representations

often prove elusive when we consider how the repre-

sentations might be identi�ed within the system.

Again, we do not deny that external observers can

derive elegant and useful computational-level analy-

ses of the task faced by the chasing 
y, and that

these analyses may involve variables which represent

to us (the observers) cogent factors in the environ-

ment. This is our privilege as external observers. The


y, unable to adopt the perspective of an external ob-

server, has no access to the representations or knowl-

edge that we humans might invoke when explaining

the 
y chasing system to other humans. To talk of

knowledge or representations being encoded or com-

piled by evolution into the body design of the 
y is to

homuncularise either the 
y, the evolutionary process,

or both.

To reiterate our argument: a priori, one could con-

struct a knowledge-based vision system which delivers

representations appropriate to the control of chasing

behavior, but instead it appears that real 
ies are a

collection of neat tricks that exploit the simplicities

and regularities of the environment and the required

behavior, thereby circumventing the need for a full

representation-manipulating vision system. That is, it

appears that 
ies don't actually use representations,

even though they could. A possible rejoinder to this

3

Here the agent is the chasing 
y, and the environment is

everything else: the space through which the 
y is chasing its

target, and any relevant objects in that space; the most relevant

of which is the target object, which will usually be a conspeci�c


y but might be many other things, such as 
ies of another

species, distant birds, or peas thrown by nearby biologists (e.g.,

Collett & Land, 1975b).

is to agree that 
ies use no representations, but to

argue that more complex animals will have to form

and manipulate representations in virtue of the com-

plexities of either their environments, the behaviors

required of them, or both. We have some sympathy

for this position (because it admits that there are no

representations in 
ies), but there are studies of ani-

mals more complex than 
ies which, again, we take as

indication that structured knowledge-based represen-

tations may not be involved: we brie
y review some

of these below.

Consider the numerous studies of so-called `time-to-

contact' behaviors, where the time remaining before

impact of a seeing animal with some object or surface

plays an important role in exhibiting a desired behav-

ior (often because the behavior has to be executed or

initiated some time before the moment of contact).

A clear example is Lee and Reddish's (1981) study

of wing-folding in the gannet Sula bassana: hunting

gannets dive into the sea, from considerable cruising

altitudes, to catch �sh. The gannet's speed when it

hits the water (at near-vertical angles) can be as high

as 24m � s

�1

. To avoid injury, the gannet folds its

wings into its body before impact with the sea sur-

face. But when the wings are folded the gannet has

greatly reduced aerodynamic control: it is essentially

ballistic and hence can't make any �nal adjustments to

its 
ight path, and so is unable to compensate for any

last-moment evasive moves by the �sh. In simple but

extreme terms, if it folds too late, the gannet breaks

its wings, and if it folds too early, the gannet goes

hungry. Clearly, the ability to accurately judge the

time-to-contact with the sea-surface allows the gan-

net to commence folding at a time t

fold

seconds before

impact, where t

fold

is also the time taken to fold the

wings from a steering position to a safe streamlined

pose.

Now it is certainly not impossible that the gannet's

nervous system is forming and manipulating appropri-

ately structured internal representations of the exter-

nal 3-d environment, as would be required of a model-

based account. But there is a persuasive argument

that this is not the case: Lee (1980a) argued that a

parameter � , being the quotient of the rate of expan-

sion of a point on the retinal image and the distance of

that point from the pole of the optic 
ow-�eld, gives

an accurate measure of time-to-contact of the surface.

The � measure is particularly easy to derive if there

is a log-polar sampling of the retinal image (e.g., Wil-

son, 1983). Thus, although time-to-contact could be

derived using a knowledge-based approach, the avail-

able evidence is best accounted for by reference to a

simple metric, realisable in image-space (i.e., by a suc-

cession of retinotopically projected neural sheets), be-

ing employed.

Now, once again, defenders of the knowledge-based

or representational viewpoint may want to argue that

wing-folding is su�ciently important to the survival

of gannets that evolution has `encoded' the relevant
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knowledge and representations into the gannet visual

system. Presumably the `knowledge' concerns the

utility of � as an indicator of time-to-contact, and the

ease with which it can be derived from an appropri-

ately sampled optic 
ow-�eld. But, in the absence of

clear de�nitions of Harvey's Q and S for the diving

gannet, to talk of representations within the system

is to homuncularise either the gannet or the evolu-

tionary process. Alternatively, it might be conceded

that the exploitation of regularities in the gannets'

visual environment (i.e., the numerator and denomi-

nator in � ) does not constitute a representation-using

system, and we need to look at more complex ani-

mals or agent-environment interactions. Yet there is

a growing body of comparable data from studies of

human subjects engaging in a variety of visually me-

diated behaviors which are acquired and of little evo-

lutionary signi�cance (in the sense that the behaviors

are unlikely to have played a part in selection pressures

that shaped the human visual sensorimotor system).

In tasks such as catching tennis balls (Lee, 1980b),

striking the take-o� board on a long-jump track (Lee,

Lishman, & Thomson, 1982), braking or steering au-

tomobiles (Lee & Lishman, 1977), and leaping up to

punch falling volleyballs (Lee, Young, Reddish, Lough,

& Clayton, 1983), there is evidence that the use of sim-

ple features or metrics of the 
ow �eld, including � ,

can account for the fast reaction times involved, in a

far more parsimonious manner than any account in-

volving the formation and manipulation of structured

representations. The similarities between these results

and Gibson's (1979) in
uential arguments for `direct

perception' are manifest.

Even in cases where the reaction times are not an

issue, manipulation of monolithic structured represen-

tations is questionable in several cases where su�cient

data is available to form the basis for alternative ac-

counts. We brie
y summarise here two exemplar bod-

ies of work: computational neuroethology studies of

visually mediated behaviors in frogs and toads, and

recent machine vision work on using high-order statis-

tical correlations in image space for a variety of tasks.

The �rst involves an ongoing series of experiments

involving computer simulations, behavioral studies,

and invasive neuroscience in which a team led by

Michael Arbib have developed sophisticated compu-

tational models of the neural visuomotor mechanisms

underlying predation in frogs and toads (e.g., Ar-

bib, 1987; Corbacho & Arbib, 1995; Cervantes-P�erez,

1995). In brief, behavioral studies (e.g., Lock & Col-

lett, 1979) have explored the responses of these an-

imals when faced with the task of moving to within

snapping distance of an initially distant food item (the

\prey"), given the presence of a\barrier"; often ei-

ther a paling fence or a wide deep chasm. Computa-

tional models, drawing heavily on the available neu-

roscience data (e.g., Ewert, 1987), are used to gener-

ate action sequences for `virtual frogs' situated within

simulated prey-barrier environments. The behavior of

the virtual frogs can then be compared to the real ani-

mals, thereby suggesting additional re�nements to the

model or further neuroscience experiments. For the

purposes of this discussion, the key indication from

this body of work is that separate neural pathways

are maintained for processing `prey' and `barrier' in-

formation, and that any con
icts between the desire

to approach prey and the need to avoid the barrier are

resolved very late in the neural pathway, close to the

initiation of motor schemas. This is in marked con-

trast with what would be expected from a knowledge-

based approach: presumably this would require the

frog to form an internal representation of the external

environment, including the prey, the barrier(s), and

possibly also the frog itself; some reasoning or plan-

ning mechanism(s) would then manipulate this rep-

resentation to determine one or more possible paths

to the prey, one of which would be selected for ex-

ecution. Once again, this is an internally consistent

way of doing things, and in principle a machine could

be constructed along these lines. But, unfortunately,

all the available evidence indicates that frog and toad

visual systems aren't built the knowledge-based way.

The second example comes from machine vision

studies where tasks that might otherwise be achieved

using 3-d model-based techniques, including the rep-

resentation of 3-d shape and volume, are solved us-

ing approaches which employ multivariate statistics

in the 2-d space of the the image. In summary, these

methods involve applying statistical techniques such

as principle components analysis (pca) to vectors of

points systematically taken from signi�cant contours

in the image. The statistical techniques give the pri-

mary modes of variation of these contour-points in

image space, and, crucially, these primary modes of

variation are often in close correspondence with varia-

tions in the 2-d projection of a 3-d object as the pose

of the object relative to the viewer is altered. That

is, the 2-d image statistics capture regularities in the

projected images of 3-d objects in such a way that,

to a fair approximation, the 2-d statistical model can

be used to perform tasks which might otherwise be

assumed a priori to require internal representations

of 3-d shape, volume, etc. Examples of work in this

area include (Baumberg, 1995; Baumberg & Hogg,

1996; Lanitis, Taylor, & Cootes, 1995). Again, this

is not to say that a 3-d model-based approach would

not be able to perform the task: the work of Baum-

berg (1995), using image-space statistical techniques

to track movie-sequences of walking people, comple-

ments Hogg's (1983) earlier work on using knowledge-

based vision to perform much the same task. But,

given the ease with which arti�cial neural networks

can approximate multivariate statistical techniques

such as pca, it is tempting to ask whether real neu-

ral networks perhaps employ high-order correlations

in 2-d image space to circumvent the complexity of

manipulating internal representations of 3-d objects.

We see this as a provocative question which can only
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be addressed by further research, but statistical ar-

guments have been presented as powerful alternatives

to representational accounts of lower-order visual pro-

cesses (e.g., Srinivasan, Laughlin, & Dubs, 1982).

The examples we have given here, from studies

of insects, amphibia, birds, and humans, are by no

means conclusive proof of our arguments. However,

we believe that they are signi�cant and persuasive be-

cause, although all of the visually mediated tasks in-

volved could be performed using a knowledge-based

approach, the available evidence indicates that they

are not. In situations where an a priori consideration

of the task from a knowledge-based vision perspective

might lead an external observer or designer to posit

the need for structured internal representations, re-

constructing the external world, the best a posteriori

explanation may be signi�cantly di�erent, employing

either no representations, or representations very dif-

ferent from those assumed to be useful on the basis of

successful engineering practices in machine vision.

6 SUMMARY:

VISION WITHOUT KNOWLEDGE?

It is easy to conjecture the need for knowledge and its

representation in vision either when introspecting, as

is seen in the experiments of Shepard and Metzler; or

when applying divide-and-conquer approaches to the

problem of designing a computational vision system,

as witnessed in the Marr pipeline; or when dealing

with the incomplete data o�ered by neuroscience, as

happens when Marr's three-level methodology is ap-

plied to analysing animal vision systems.

But preliminary experience with analysing evolved

arti�cial visual systems indicates that, possibly, the

utility of descriptions and explanations involving

knowledge and its representation recede as analysis

progresses. A priori hypotheses involving the repre-

sentation and manipulation or mobilisation of knowl-

edge are undoubtedly useful for motivating discus-

sion and experimentation, but as more is made known

about the mechanisms involved, so the places where

the knowledge might be represented or encoded-in re-

cede, and when the analysis is complete, knowledge

and its representation are hard to identify in mean-

ingful terms, just as `aggression' and `fear' play no

part in explaining Braitenberg's vehicles once the lid

of the black box is opened.

Our intention in this paper has simply been to

highlight the problems that arise when the language

of knowledge-based vision is applied to the analy-

sis of evolved machines, either animals or arti�cial

agents. In these systems, where there has been no

pre-commitment to any representational scheme, the

presence or absence of knowledge and its represen-

tation become empirical issues. To pursue the mat-

ter further requires at least a consensus on what is

meant by `knowledge' and `representation'; and better

still an operational de�nition of representation, such

that replicable and hence falsi�able experiments can

be proposed and conducted.

It is certainly di�cult to de�ne the notions of knowl-

edge and its representation su�ciently accurately to

provide these operational de�nitions. But until such

operational de�nitions are agreed upon, arguments

that the structured representation of knowledge plays

no part in evolved visual systems are unsound. Yet

surely, by the same reasoning, arguments that the

structured representation of knowledge does play a

part in evolved visual systems are also unsound. We

might be happy to agree that representations have a

part to play in explaining vision in animals and other

evolved machines, if only we could agree on what a

representation is, and on who or what is using those

representations.

J. N. is supported by a grant from the Commonwealth Scholar-

ship and Fellowship Plan. Thanks to Seth Bullock for valuable

discussions prior to the presentation of this paper, and to Ho-

race Barlow, Seth Bullock, and Hilary Tunley for comments on

earlier versions of the manuscript. We dedicate this paper to

the memory of Professor Geo� Sullivan, who always enjoyed an

argument; even this one.

REFERENCES

Arbib, M. A. (1987). Levels of modelling of mechanisms of

visually guided behaviour. The Behavioral and Brain

Sciences, 10, 407{465.

Ballard, D. H. (1991). Animate vision. Arti�cial Intelligence,

48, 57{86.

Baumberg, A. M. (1995). Learning deformable models for track-

ing human motion. Ph.D. thesis, University of Leeds

School of Computer Studies.

Baumberg, A. M., & Hogg, D. C. (1996). Generating spatio-

temporalmodels from examples. Image and Vision Com-

puting, 14(8), 525{532. Also available as University of

Leeds School of Computer Studies Research Report 95.9.

Beer, R. D. (1995a). A dynamical systems perspective on agent-

environment interaction. Arti�cial Intelligence, 72, 173{

215.

Beer, R. D. (1995b). On the dynamics of small continuous-

time recurrentneural networks. Adaptive Behavior, 3(4),

471{511.

Beer, R. D. (1996). Toward the evolution of dynamical neu-

ral networks for minimally cognitive behavior. In Maes,

P., Matari�c, M. J., Meyer, J.-A., Pollack, J., & Wilson,

S. W. (Eds.), From Animals to Animats 4: Proceedings

of the Fourth International Conference on Simulation

of Adaptive Behavior, pp. 421{429. MIT Press Bradford

Books, Cambridge MA.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic

Psychology. MIT Press Bradford Books, CambridgeMA.

Brooks, R. A. (1991a). Intelligence without reason. In Pro-

ceedings of the Twelfth International Joint Conference

on Arti�cial Intelligence (IJCAI-91), pp. 139{159 San

Mateo, California. Morgan Kaufmann.

Brooks, R. A. (1991b). Intelligence without representation. Ar-

ti�cial Intelligence, 47, 139{159.

Brooks, R. A., & Stein, L. A. (1994). Building brains for bodies.

Autonomous Robots, 1, 7{25.

Cervantes-P�erez, F. (1995). Visuomotor coordination in frogs

and toads. In Arbib, M. A. (Ed.), The Handbook of Brain

Theory and Neural Networks, pp. 1036{1042. MIT Press

Bradford Books, Cambridge MA.

10



Charniak, E., & McDermott, D. (1985). Introduction to Arti�-

cial Intelligence. Addison Wesley.

Churchland, P. M. (1979). Scienti�c Realism and the Plasticity

of Mind. Cambridge University Press, Cambridge.

Churchland, P. M. (1989). A Neurocomputational Perspec-

tive: The Nature of Mind and the Structure of Science.

MIT Press Bradford Books, Cambridge MA.

Cli�, D. (1991). Computational neuroethology: A provisional

manifesto. InMeyer, J.-A., & Wilson, S.W. (Eds.), From

Animals to Animats: Proceedings of the First Interna-

tional Conference on Simulation of Adaptive Behavior

(SAB90), pp. 29{39 Cambridge MA. MIT Press Brad-

ford Books. Also available as University of Sussex School

of Cognitive and Computing Sciences Technical Report

CSRP162.

Cli�, D. (1995). Neuroethology, computational. In Arbib, M. A.

(Ed.), The Handbook of Brain Theory and Neural Net-

works, pp. 626{630. MIT Press Bradford Books, Cam-

bridge MA.

Cli�, D., Harvey, I., & Husbands, P. (1993). Explorations in

evolutionary robotics. Adaptive Behavior, 2(1), 71{108.

Cli�, D., Harvey, I., & Husbands, P. (1997). Arti�cial evolu-

tion of visual control systems for robots. In Srinivisan,

M., & Venkatesh, S. (Eds.), From Living Eyes to Seeing

Machines. Oxford University Press. In Press.

Cli�, D., Husbands, P., & Harvey, I. (1993). Evolving visually

guided robots. In Meyer, J.-A., Roitblat, H., & Wilson,

S. (Eds.), From Animals to Animats 2: Proceedings of

the Second International Conference on Simulation of

Adaptive Behaviour (SAB92), pp. 374{383. MIT Press

Bradford Books, Cambridge, MA. Also available as Uni-

versity of Sussex School of Cognitive and Computing Sci-

ences Technical Report CSRP220.

Cli�, D., Husbands, P., Meyer, J.-A., & Wilson, S. (Eds.).

(1994). From Animals to Animats 3: Proceedings of

the Third International Conference on Simulation of

Adaptive Behavior (SAB94), CambridgeMA. MIT Press

Bradford Books.

Cli�, D., & Miller, G. F. (1996). Coevolution of pursuit and

evasion II: Simulation methods and results. In Maes,

P., Matari�c, M. J., Meyer, J.-A., Pollack, J., & Wilson,

S. W. (Eds.), From Animals to Animats 4: Proceedings

of the Fourth International Conference on Simulation

of Adaptive Behavior, pp. 506{515. MIT Press Bradford

Books, Cambridge MA.

Clocksin, W. F., & Mellish, C. S. (1984). Programming in Pro-

log (Second edition). Springer-Verlag.

Collett, T. S., & Land, M. F. (1975a). Visual control of 
ight

behaviour in the hover
y, Syritta pipiens l.. Journal of

Comparative Physiology, 99, 1{66.

Collett, T. S., & Land, M. F. (1975b). Visual spatial memory

in a hover
y. Journal of Comparative Physiology, 100,

59{84.

Corbacho, F. J., & Arbib, M. A. (1995). Learning to detour.

Adaptive Behavior, 3(4), 419{468.

Dreyfus, H. L. (1979). What Computers Can't Do (Second

edition). Harper and Row, New York.

Dreyfus, H. L. (1981). From micro-worlds to knowledge rep-

resentation: AI at an impasse. In Haugeland, J. (Ed.),

Mind Design: Philosophy, Psychology, Arti�cial Intel-

ligence, pp. 161{204. MIT Press Bradford Books, Cam-

bridge MA.

Ewert, J.-P. (1987). Neuroethology of releasing mechanisms:

Prey-catching in toads. The Behavioral and Brain Sci-

ences, 10, 337{405.

Floreano, D., & Mondada, F. (1994). Automatic creation of an

autonomous agent: Genetic evolution of a neural-driven

robot. In Cli�, D., Husbands, P., Meyer, J.-A., & Wil-

son, S. W. (Eds.), From Animals to Animats 3: Proceed-

ings of the Third International Conference on Simula-

tion of Adaptive Behavior (SAB94), pp. 421{430. MIT

Press Bradford Books.

Franceschini, N., Pichon, J.-M., & Blanes, C. (1992). From

insect vision to robot vision. Philosophical Transactions

of the Royal Society of London B, 337(1281), 283{294.

Gibson, J. J. (1979). The Ecological Approach to Visual Per-

ception. Houghton Mi�in, Boston.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-

mization, and Machine Learning. Addison Wesley.

Gonzalez, A. J., & Dankel, D. D. (1993). The Engineering of

Knowledge-Based Systems. Prentice-Hall International,

Englewood Cli�, New Jersey.

Harnad, S. (1990). The symbol grounding problem. Physica D,

42, 335{346.

Harvey, I. (1992). Untimed and misrepresented: connectionism

and the computermetaphor. Technical report CSRP 245,

University of Sussex School of Cognitive and Computing

Sciences.

Harvey, I. (1996). Untimed and misrepresented: connectionism

and the computermetaphor. AISB Quarterly, 96, 20{27.

Harvey, I., Husbands, P., & Cli�, D. (1994). Seeing the light:

Arti�cial evolution; real vision. In Cli�, D., Husbands,

P., Meyer, J.-A., & Wilson, S. W. (Eds.), From Ani-

mals to Animats 3: Proceedings of the Third Interna-

tional Conference on Simulation of Adaptive Behavior

(SAB94), pp. 392{401. MIT Press Bradford Books.

Hogg, D. C. (1983). Model-based vision: A program to see

a walking person. Image and Vision Computing, 1(1),

5{20.

Horridge, G. A. (1977). Mechanistic teleology and explana-

tion in neuroethology: Understanding the origins of be-

haviour. In Hoyle, G. (Ed.), Identi�ed Neurons and Be-

haviour of Arthropods, pp. 423{438. Plenum Press, New

York.

Horswill, I. D. (1993). Specialization of Perceptual Processes.

Ph.D. thesis, MIT AI Lab.

Husbands, P., Harvey, I., & Cli�, D. (1995). Circle in the

round: State space attractors for evolved sighted robots.

Robotics and Autonomous Systems, 15, 83{106.

Jakobi, N. (1994). Evolving sensorimotor control architectures

in simulation for a real robot. Master's thesis, University

of Sussex School of Cognitive and Computing Sciences.

Unpublished.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the re-

ality gap: The use of simulation in evolutionary robotics.

In Mor�an, F., Moreno, A., Merelo, J. J., & P.Chac�on

(Eds.), Advances in Arti�cial Life: Proceedings of the

Third European Conference on Arti�cial Life, pp. 704{

720. Springer-Verlag.

Land, M. F., & Collett, T. S. (1974). Chasing behaviour of

house
ies (Fannia canicularis). Journal of Comparative

Physiology, 89, 331{357.

Lanitis, A., Taylor, C. J., & Cootes, T. F. (1995). Automatic

identi�cation of human faces using 
exible appearance

models. Image and Vision Computing, 13(5), 393{401.

Lee, D. N. (1980a). The optic 
ow �eld: the foundation of

vision. Philosophical Transactions of the Royal Society

of London, Series B, 290, 169{179.

Lee, D. N. (1980b). Visuomotor coordination in space-time. In

Stelmach, G. E., & Requin, J. (Eds.), Tutorials in motor

behavior. North-Holland.

Lee, D. N., & Lishman, J. R. (1977). Visual control of locomo-

tion. Scandanavian Journal of Psychology, 18, 224{230.

11



Lee, D. N., Lishman, J. R., & Thomson, J. A. (1982). Reg-

ulation of gait in long-jumping. Journal of Experimen-

tal Psychology: Human Perception and Performance, 8,

448{459.

Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: a

paradigm of ecological optics. Nature, 293, 293{294.

Lee, D. N., Young, D. S., Reddish, P. E., Lough, S., & Clay-

ton, T. M. (1983). Visual timing in hitting an accelerat-

ing ball. Quarterly Journal of Experimental Psychology,

35A, 333{346.

Lock, A., & Collett, T. (1979). A toad's devious approach to

its prey: a study of some complex uses of depth vision.

Journal of Comparative Physiology, 131, 179{189.

Maes, P., Matari�c, M. J., Meyer, J.-A., Pollack, J., & Wil-

son, S. W. (Eds.). (1996). From Animals to Animats 4:

Proceedings of the Fourth International Conference on

Simulation of Adaptive Behavior. MIT Press Bradford

Books, Cambridge MA.

Marr, D. (1982). Vision. W. H. Freeman, New York.

Matari�c, M. J., & Cli�, D. (1995). Challenges in evolving con-

trollers for physical robots. Robotics and Autonomous

Systems, 19(1), 67{83.

Meyer, J.-A., Roitblat, H., & Wilson, S. W. (Eds.). (1993).

From Animals to Animats 2: Proceedings of the Second

International Conference on Simulation of Adaptive Be-

havior (SAB92). MIT Press Bradford Books, Cambridge

MA.

Meyer, J.-A., & Wilson, S. W. (Eds.). (1991). From Animals

to Animats: Proceedings of the First International Con-

ference on Simulation of Adaptive Behavior (SAB90).

MIT Press Bradford Books, Cambridge MA.

Nelson, R. C. (1991). Introduction. International Journal of

Computer Vision, 7(1), 5{9.

Newell, A., & Simon, H. A. (1976). Computer science as empiri-

cal enquiry: Symbols and search. Communications of the

Association for Computing Machinery, 19(3), 113{126.

Nilsson, N. J. (1982). Principles of Arti�cial Intelligence.

Springer Verlag.

Pentland, A. P. (1986). From Pixels to Predicates: Recent ad-

vances in computational and robotic vision. Ablex Pub-

lishing, Norwood, NJ.

Port, R., & van Gelder, T. (Eds.). (1995). Mind as Motion:

Explorations in the Dynamics of Cognition. MIT Press

Bradford Books, Cambridge MA.

Reichardt, W. E., & Guo, A. (1986). Elementary pattern

discrimination (behavioural experiments with the 
y

(Musca domestica). Biological Cybernetics, 53, 285{306.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-

dimensional objects. Science, 171, 701{703.

Smithers, T. (1992). Taking eliminative materialism seriously:

A methodology for autonomous systems research. In

Varela, F. J., & Bourgine, P. (Eds.), Towards a Prac-

tice of Autonomous Systems: Proceedings of the First

European Conference on Arti�cial Life (ECAL91), pp.

31{40. MIT Press Bradford Books, Cambridge, MA.

Smithers, T. (1995). Are autonomous agents information pro-

cessing systems?. In Steels, L., & Brooks, R. (Eds.), The

Arti�cial Life Route to Arti�cial Intelligence. Lawrence

Erlbaum, Hillsdale, New Jersey.

Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Pre-

dictive coding: a fresh view of inhibition in the retina.

Proc. R. Soc. Lond. B, 216, 427{459.

Sullivan, G. D. (1992). Visual interpretation of known objects

in constrained scenes. Philosophical Transactions of The

Royal Society of London: Series B, 337(1281), 361{370.

Taylor, A., Gross, A., Hogg, D. C., & Mason, D. C. (1986).

Knowledge-based interpretation of remotely sensed im-

ages. Image and Vision Computing, 4, 67{83.

Thelen, E., & Smith, L. (1994). A Dynamic Systems Approach

to the Development of Cognition and Action. MIT Press

Bradford Books.

Thompson, A. (1995). Evolving electronic robot controllers that

exploit hardware resources. In Mor�an, F., Moreno, A.,

Merelo, J. J., & Chac�on, P. (Eds.), Advances in Arti�cial

Life: Proceedings of the Third European Conference on

Arti�cial Life, pp. 640{656. Springer-Verlag.

Warrington, E. K., & Taylor, A. M. (1973). The contribution

of the right parietal lobe to object recognition. Cortex,

9, 152{164.

Warrington, E. K., & Taylor, A. M. (1978). Two categorical

stages of object recognition. Perception, 7, 695{705.

Wilson, S. W. (1983). On the retino-cortical mapping. Inter-

national Journal of Man-Machine Studies, 18, 361{389.

Winston, P. H., & Horn, B. (1980). LISP. Addison-Wesley

Publishing Co. Inc.

Wolf, R., & Heisenberg, M. (1991). Basic organization of op-

erant behaviour as revealed in Drosophila 
ight orien-

tation. Journal of Comparative Physiology A, 169, 699{

705.

12


