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Abstract

For several years now, various researchers have endeavoured to apply arti�cial

evolution to the automatic design of control systems for real robots. One of the

major challenges they face concerns the question of how to assess the �tness of

evolving controllers when each evolutionary run typically involves hundreds of

thousands of such assessments. This paper outlines new ways of thinking about

and building simulations upon which such assessments can be performed. It puts

forwards su�cient conditions for the successful transfer of evolved controllers from

simulation to reality, and develops a potential methodology for building simula-

tions in which evolving controllers are forced to satisfy these conditions if they

are to be reliably �t. As long as simulations are built according to this method-

ology, it is hypothesised, then it does not matter how inaccurate or incomplete

they are: controllers that have evolved to be reliably �t in simulation will still

transfer into reality. Two sets of experiments are reported, both of which involve

minimal look-up-table based simulations built according to these guidelines. In

the �rst set, controllers were evolved that allowed a Khepera robot to perform

a simple memory task in the real world, and in the second set, controllers were

evolved for the Sussex University gantry robot that were able to visually dis-

tinguish a triangle from a square, under extremely noisy real world conditions,

and steer the robot towards it. In both cases, controllers that were reliably �t

in simulation displayed extremely robust behaviour when downloaded into reality.
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1 Introduction

The arti�cial evolution of control architectures typically involves the constant and

repetitive testing of hundreds upon thousands of individuals as to their ability to be-

have in a certain way or perform a certain task. In the case of real robots this testing

procedure is far from a trivial matter and (with the exception of certain hybrid ap-

proaches (Thompson, 1995; Nol�, Floreano, Miglino, & Mondada, 1994a)) can be done

in only one of two ways: control architectures must either be evaluated on real robots

in the real world, or they must be evaluated in simulations of real robots in the real

world. Both of these approaches have their problems.

As Mataric and Cli� (1996) point out, the evaluation of control architectures on

real robots must be done in real time, and this makes the entire evolutionary process

prohibitively slow. As an example, they cite the evolution of collision-free navigation on

a Khepera robot, which in the experiments reported in Floreano and Mondada (1994)

took a total of 65 hours (100 generations at 39 minutes a generation) to evolve
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; it

is hard to see how this approach can scale up, if the behaviours we are after require

thousands or even millions of generations. But even if we are resigned to an evolutionary

process that takes years rather than days, then there are di�erent problems that must

be faced. The process must be automated, which begs questions about how data is to

be collected for �tness evaluations and the robot placed at the start of �tness trials

and so on without human intervention. Power must be supplied continuously to robots

in situations where batteries have limited life-spans and tethering by a permanent

power lead is not always possible. And machines break down, especially under the sort

of continuous random battering that the real-world evaluation approach advocates.

Clearly the alternative simulation approach would be preferable, since it avoids all

these problems, and can run at faster than real time.

Several experimenters including Jakobi, Husbands, and Harvey (1995), Beer and

Gallagher (1992), Miglino, Lund, and Nol� (1995) have shown that it is possible to

evolve control architectures in simulation for a real robot. Now this is no longer in

doubt the question becomes one of whether the technique will scale up. In Mataric and

Cli� (1996), the authors argue that if behavioural transference can only be guaranteed

when a carefully constructed empirically validated simulation is used, then as robots

and the behaviours we want to evolve for them become more complicated, so do the

simulations. The level of complexity involved, they argue, would make such simulations

-

� so computationally expensive that all speed advantages over real-world evolution

are lost.

� so hard to design that the time taken in development outweighs time saved by

fast evolution.

Clearly the main challenge for the simulation approach to evolutionary robotics is to

invent a general theoretical basis and methodology upon and using which fast-running

simulators can be easily and cheaply built that guarantee the transference of evolved

behaviours from simulation to reality.
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The shape-discrimination behaviour evolved in Harvey, Husbands, and Cli� (1994) only took 36

hours to evolve, but this is still of the same order of magnitude.
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This paper puts forwards such a theoretical and methodological basis, albeit at a

preliminary stage, and outlines some notable experimental successes using the tech-

niques proposed. Section 2 undertakes a conceptual analysis of how it is possible for

control architectures that have evolved in simulation to transfer into reality in the �rst

place. Two conditions are put forwards that must be true of evolved controllers if this

transference is to be successful. Section 3 outlines a methodology for building simula-

tions within which reliably �t control architectures are guaranteed to meet these two

conditions, and are therefore guaranteed to cross the reality gap. The idea of fast,

easy to build minimal simulations is also introduced in this section. Section 4 outlines

evolutionary experiments that involve a minimal simulation of a Khepera robot, and

section 5 outlines evolutionary experiments that involve a minimal simulation of the

Sussex university gantry robot. Finally section 6 o�ers some conclusions and thoughts

for the future.

2 How is crossing the reality gap possible in the �rst

place?

As has been demonstrated in several papers (Jakobi et al., 1995; Beer & Gallagher,

1992; Nol�, Miglino, & Parisi, 1994b) it is possible to evolve control architectures in

simulation for a real robot. However, the explanations o�ered by the authors of these

papers as to why behaviours successfully transfer to reality when evolved under certain

simulation conditions while not under others fall well short of the level of understanding

necessary for the development of a general simulation building methodology. The

consensus view seems to be that control architectures will successfully transfer if the

right amount of noise is included in a carefully constructed and empirically validated

simulation of the robot and its environment
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. But there is no such thing as the perfect

simulation; some real-world features will be modelled at the expense of others. And

since my empirically validated simulationmight be your unrealistic toy-world we cannot

agree on what to put into the simulation and what to leave out of it without objective

criteria based on a sound theoretical understanding.

2.1 What counts as success?

If we are to come up with a general methodology for building simulations for evo-

lutionary robotics it is important to de�ne exactly what we mean when we say that

a behaviour has successfully transferred from simulation to reality. In Miglino et al.

(1995), the authors look at the �tnesses of control architectures in simulation and com-

pare them to the �tnesses of the control architectures in reality, but as we shall see

in section 3.4 this is not always possible and we shall not be using this criterion here.

In Jakobi et al. (1995), the authors use a more subjective approach to judge whether

control architectures behave qualitatively similar in reality to how they behave in sim-

ulation, but again, as we shall see, this is not always possible either. For the purposes

of this paper, a control architecture is said to have successfully crossed the reality gap

if it successfully displays the behaviour it was evolved to display when down-loaded
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Although the nature of the `right amount of noise', and indeed even what it means for a behaviour

to `successfully transfer from simulation to reality', varies markedly between papers on the topic
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into reality. As in Jakobi et al. (1995) this may often be a somewhat subjective mea-

sure, but should nevertheless be uncontroversial. If I use a simulation to evolve robot

controllers to move round a cluttered environment avoiding objects, for example, then

control architectures successfully cross the reality gap if, when downloaded, they do

indeed cause a robot to move round a cluttered environment avoiding objects. If I use

a simulation to evolve visually guided robot controllers that steer towards a target,

then control architectures successfully cross the reality gap if, when downloaded, they

do indeed steer the robot towards the target.

2.2 Overcoming the failings of simulation

All the worries and problems associated with getting controllers to cross the reality gap

spring from one simple fact: it is not possible to build a simulation that is a perfect

copy of the entire universe. If it was, then from the point of view of evolving robot

controllers, there would be no di�erences between simulation and reality, and we would

be surprised if they did not cross the reality gap. Unfortunately, any real-life simulation

will di�er from a perfect copy of the entire universe on two counts: it will only model

a �nite set of real-world features and processes, and those that it does model, it will

model inaccurately. Both of these failings have fundamental implications for how we

should think about simulations for evolutionary robotics, and the conditions that must

be satis�ed if evolved robot controllers are to cross the reality gap. We will look at

them both in turn.

Simulations can't accurately model everything

Since a simulation can only model a �nite set of real-world features and processes, the

�rst thing that we must decide upon when building one is exactly what this set should

consist of. Obviously, for the purposes of evolutionary robotics, we are only interested

in those real-world features and processes that have some bearing on a particular robot

or robots and a particular environment. The question still arises, however, as to which

of these we must model, and which we can get away with leaving out, in order that

evolved controllers will cross the reality gap. There is little point in modelling the

colour of a robot or the objects in its environment, for example, if that robot is only

�tted with sonar range sensors.

The approach advocated in this paper is very di�erent to the conventional one. It

is based on the observation that the only aspects of a simulation that have to be accu-

rately modelled, if we are to guarantee that a particular robot control architecture will

cross the reality gap, are those that it uses and relies upon to perform its behaviour. In

other words, if we accurately model only a subset of all the possible robot-environment

interactions, then provided the behaviours of evolving robot controllers can be con-

strained to depend upon the members of this subset, and this subset alone, then from

their point of view there will again be no di�erence between simulation and reality. If

this subset is su�cient to underly a particular behaviour we are interested in evolv-

ing, then robot controllers that evolve in this way to perform the task in question will

successfully transfer from simulation into reality.

The conventional approach is to try and model, as accurately as possible, all of

the real-world features and processes that could conceivably a�ect a robot's behaviour.

The rationale behind this being that again (ignoring the inevitable inaccuracy of the
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modelling process for the time being), there will be no di�erences between simulation

and reality from the point of view of evolving robot controllers; we can therefore give

evolution a free rein, safe in our knowledge that whatever aspects of the simulation

evolving controllers come to depend upon, they will also be present in the real world.

In practice, however, no matter how comprehensive the model, there will always be

real world features that have been left out. Even with extensive and time-consuming

empirical validation, simulations built according to this approach can only hope to

capture a subset of the totality of possible robot-environment interactions. They should

therefore be thought of in the same way as the simulations discussed above.

Because these concepts are central to the ideas put forwards below, we will give them

a special terminology. Throughout the rest of the paper, the set of robot-environment

interactions that we decide to model as a basis for the behaviours of evolving controllers

will be referred to as the base set of robot-environment interactions. Such a base set

might include the way in which infra red sensors interact with nearby objects to return

values, for example, or the way in which wheel speeds respond to motor signals to move

the robot around the environment, or the way in which a camera returns an image when

pointed at a particular feature in the environment. Those aspects of the simulation that

correspond to members of this base set, and that evolving controllers can safely depend

upon and use without encountering any di�erences between simulation and reality, will

be referred to as the base set aspects of the simulation. It is also likely that there will be

aspects of the simulation which behaviours of evolving controllers can depend upon but

that have no basis in reality. These will derive from the simple fact that a simulation

must be a coherent whole from the point of view of evolving control architectures. In

other words, if only a few robot-environment interactions are accurately modelled in

the simulation, then those that are not modelled will often leave `gaps' that must be

�lled in by arbitrary values and processes in order that the simulation constitutes a

complete virtual reality. Those aspects of the simulation that are not base set aspects,

but that evolving control architectures can come to depend upon nevertheless, will

be referred to throughout the rest of the paper as the implementation aspects of the

simulation. We will examine concrete examples of all of these terms in Section 3.

To see why this is important, consider a hypothetical simulation in which we have

decided upon a particular base set of robot-environment interactions and modelled

them 100% accurately. In other words, we have created a simulation whose base set

aspects are 100% accurate. What are the conditions under which controllers evolved in

such a simulation will transfer to reality? The answer is that if a control architecture

evolves to depend on the base set aspects of the simulation to perform its behaviour,

and those base set aspects alone (either implicitly or explicitly), then it will successfully

cross the reality gap. This is for the simple reason that from the point of view of such

a control architecture, there will be no di�erence between this simulation and one that

is a perfect copy of the entire universe.

Control architectures whose behaviours are exclusively grounded in the base set

aspects of a particular simulation will be referred to throughout the paper as being

base set exclusive. Those controllers that are not base set exclusive but depend upon

implementation aspects of the simulation that have no counterpart in reality will, more

likely than not, fail when down-loaded. Their behaviours will depend on things that

may or may not be true of the real world.
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Simulations can't accurately model anything

Even if we know the conditions under which robot controllers will cross from a sim-

ulation whose base set aspects are 100% accurate into reality, we are only half way

towards a general explanation. It just is not possible to model a base set of robot-

environment interactions with 100% accuracy. To explain how control architectures

can and do cross the reality gap, we need something extra to the exclusivity condition

laid out above. We must state the conditions under which a control architecture will

transfer into reality from a simulation whose base set aspects are inaccurate.

Consider �rst that, as de�ned above, for a control architecture to cross the reality

gap does not mean that it performs the task identically in the real world to the way

that it does in simulation but only that it does indeed perform the task in the real

world. Thus small inaccuracies in the base set features of a simulation may result in

slight di�erences between a controller's behaviour in simulation and its behaviour in

reality, but as long as it continues to behave satisfactorily in reality then we may say

that the control architecture has successfully crossed the reality gap. This is akin to

hitting a barn door with a shot-gun at �ve paces. If your aim is o� by a metre or so,

you'll still hit it and this is all we are after. Of course in more complicated and involved

situations there will not be so much room to manoeuvre, but it should be kept in mind

that even for the most delicate of behaviours there will normally be a little bit of slop

that can soak up small discrepancies.

Some control architectures, however, will be more robust to inaccuracy than others.

The level of base set inaccuracy that an evolved control architecture can tolerate before

it ceases to perform satisfactorily in the real world will depend on exactly how it uses

the base set aspects of the simulation to perform the task. For example, it has long

been appreciated in the engineering world that processes which employ feedback or

similar techniques will be far more robust to inaccuracy and noise than those that don't

(Brogan, 1991), and this is true here also; non-brittle control strategies and behaviours

that constantly correct themselves as they go, either through explicit feedback loops or

implicitly via the environment (as in Braitenberg's vehicles (Braitenberg, 1984)), lend

themselves to the handling of the di�erences between simulation and reality. However,

in certain situations even the most brittle, ballistic of control strategies will perform

the task satisfactorily in reality, as in the shotgun example given above.

Unfortunately we cannot say anything much stronger than that control architectures

must be robust to the di�erences between the base set aspects of a simulation and the

base set itself if they are to cross the reality gap. This is because there are so many

ways of handling these di�erences depending on the behaviour, what we demand of

it, the nature of the robot-environment interactions and real-world features that make

up the base set and so on. As we shall see, however, there may be ways of forcing

the evolution of this type of robustness (in whatever form evolution cares to come up

with), in which case there is no need to focus too hard on exact mechanisms by which

control architectures may be robust, since this job may be left to the evolutionary

process itself. All that is important for our present purposes is to say that this type of

robustness is a necessary property of behaviours if they are to perform satisfactorily in

reality. Throughout the rest of the paper, we will refer to controllers that display this

property as being base set robust.
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3 A new methodology for building simulations

In the previous section, two properties were put forward that together are su�cient

for the successful transfer of robot controllers across the reality gap: they must be

base set exclusive, and they must be base set robust. In this section ways of forcing

the evolution of these two properties by placing certain restrictions on the simulation

itself are put forward. First of all we will examine ways of ensuring that successful

evolved behaviours are base set exclusive, and then we will examine ways of ensuring

that successful evolved behaviours are base set robust.

3.1 Ensuring that reliably �t controllers are base set exclusive

When evolving control architectures in simulation to perform a speci�c task, a �tness

criterion is used (usually an explicit function tailored to the task) to tell which con-

trollers are �tter than others. If this �tness criterion is set up correctly, then all control

architectures that are able to consistently and robustly perform the task we are after

will also be reliably �t and vice versa. If a single �tness evaluation consists of taking

the average score from several independent trials, then we may say that a behaviour

that is reliably �t is one that scores a high �tness value on all such trials. In such a

situation, a control architecture that is base set exclusive is one that uses the base set

aspects of the simulation, and those aspects alone, to be reliably �t. In order to ensure

that successful evolved behaviours are base set exclusive, therefore, we need to ensure

that reliably �t individuals do not rely in any way on implementation aspects of the

simulation to achieve reliable high �tness, but only on base set aspects.

This can be done by making all the implementation aspects of a simulation unre-

liable by varying them randomly from trial to trial. In such a situation, the only way

in which a control architecture can be reliably �t, trial after trial, is by using those

aspects of the simulation that are in themselves reliable ie. the base set aspects. If

the behaviour of a particular control architecture depends on an unreliable aspect of

the simulation then it too will be unreliable. Since a single �tness evaluation involves

several independent trials, reliably �t individuals will score more highly, in the long

run, over those that are less reliable, and we may expect them to be selected for by

the evolutionary process. If the process succeeds, and reliably �t individuals evolve,

then we can be con�dent that they will rely exclusively on the base set aspects of the

simulation to perform their behaviour, and will therefore be base set exclusive.

The hardest part of making the implementation aspects of a simulation unreliable

is identifying what these aspects are in the �rst place. Mostly they will arise as an

incidental artefact of the modelling process, in which case they can be quite subtle and

hard to spot. For example, one of the robot-environment interactions we might chose

to include as a member of our base set is the fact that a particular sensor returns a

value in the interval 0 to 13 when pointed in a certain direction. In implementing this

interaction as a base set aspect of the simulation, however, we must chose a particular

way in which values are returned between 0 and 13. Values could be returned from

across the whole interval, or they could all equal 7. The point is that unless the way in

which values are returned within this interval in simulation is the same as the way in

which they are returned in reality, then it is an implementation aspect of the simulation

and has no real-world basis. If the way in which values are returned within the interval

0 to 13 is randomly varied from trial to trial, however, then evolving controllers can
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not rely on how they arise within this interval (the implementation aspect), but only

on the fact that they do (the base set aspect).

In other cases, the implementation aspects of a simulationwill be obvious to us since

we have put them in especially to make the modelling process easier or to reduce com-

putational overheads. For example, we may note that certain of the robot-environment

interactions we would like to include in our base set are very simple to model when

the robot is located within certain areas of its environment, and very hard in others.

In order to make the job of building our simulation easier, therefore, we might model

the real robot-environment interactions for when the robot is situated in the easy to

model areas, and implement arbitrary interactions for when the robot is situated in the

hard to model areas. In this case, the interactions between the virtual robot and its

environment when it is situated in the easy to model areas are base set aspects of the

simulation, and the interactions between the virtual robot and its environment when

it is situated in the hard to model areas are implementation aspects of the simulation.

By randomly varying these implementation aspects from trial to trial in a way that

makes them completely unreliable, reliably �t controllers must employ strategies that

rely on the robot-environment interactions in the easy to model areas, while completely

ignoring any interactions between the robot and its environment in the hard to model

areas. Extra care must be taken in this sort of situation to ensure that the base set

aspects of the simulation are comprehensive enough to allow reliably �t controllers to

evolve, however. There is a real danger, if we are over-zealous in our lust for compu-

tational expediency, that we may e�ectively exclude so many real-world features from

the simulation that what we are left with is insu�cient for successful behaviour.

Once made explicit, we must then tackle the task of injecting randomness into

the implementation aspects of the simulation. In many cases it will be tempting to

just add large amounts of noise to everything which is not a base set aspect and to

leave it at that. However, if this noise is in itself reliable in the sense that evolving

controllers can always count on it being there, then they can and will (see Jakobi et al.

(1995)) evolve to use it to achieve high �tness. The secret is to randomly vary the

implementation aspects of the simulation from trial to trial as opposed to just during

each trial. Since a �tness evaluation consists of several trials, each controller will be

subjected to several di�erent instances of each implementation aspect: noisy, absolute,

black, white, big, small or whatever, depending on the nature of the particular aspect

and the ways in which it can be varied. As long as there is nothing that all instances

of a particular implementation aspect have in common, then reliably �t controllers

will be totally independent of that aspect, or they will not be reliable. In some ways

this is a problem of generalisation, but the point is not to subject evolving controllers

to every possible case of every implementation aspect, so that controllers evolve to

deal with each one in turn. It is su�cient to make these aspects unreliable enough

in order that successful controllers ignore them altogether, employing strategies which

are independent of them, and achieving high �tness by exclusively using the base set

aspects of the simulation.

3.2 Ensuring that reliably �t controllers are base set robust

In order to ensure that reliably �t control architectures are base set robust, we must

be able to ensure that they are able to cope with the di�erences between the base set

of robot-environment interactions upon which a particular simulation is founded and
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the base set aspects of that simulation. We may do this by adapting ideas borrowed

from Husbands and Harvey (1992) (with further elaborations in Husbands, Harvey,

and Cli� (1993)). The idea is that by randomly varying the base set aspects of a

simulation by a small amount, from trial to trial, reliably �t individuals will have to

be able to cope with a certain amount of variation in order to be reliable. There will

therefore be a selection pressure in favour of controllers that are better able to cope

with slightly di�erent versions of each base set aspect, and thus in favour of controllers

that are better able to cope with the di�erences between the base set aspects of the

simulation and the base set of robot-environment interactions in reality. So in order to

ensure that reliably �t individuals will be base set robust, all we need is some way of

knowing how much random variation it is necessary to apply to the base set aspects of

the simulation, and the best way in which to apply it.

As has already been said, it is rarely possible to simulate even the smallest portion

of the world completely accurately. However, it is also rare that the simulation builder

will not have at least some idea of how inaccurate their simulation is, and this seems a

sensible way to work out limits on the amount of random variation we need to apply to

the base set aspects of a simulation in order to ensure that successful evolved controllers

will be base set robust.

As to how this variation should be applied, there are lessons to be learnt from

experiments reported in Jakobi et al. (1995). In these experiments extra noise was

added to the simulation over and above that present in reality and controllers were

able to evolve that made use of the extra noise in such a way that they were reliably �t

in simulation but failed miserably when down-loaded onto the real robot. However, this

extra noise was reliably present during every trial, so evolving controllers that relied on

its presence were still able to be reliably �t. In other words, evolving controllers were

faced with the same base set aspects of the simulation at every �tness trial, and these

base set aspects were signi�cantly di�erent to the real base set of robot-environment

interactions ie. they were much more noisy. Given this fact, it is unsurprising that

evolved controllers were unable to cross the reality gap since they had not evolved to

be able to cope with lots of di�erent instances of each base set aspect, but only with a

single instance that had no basis in reality.

In order for their to be a selection pressure in favour of controllers that can cope

with slightly di�ering versions of each base set aspect of a simulation, they need to be

varied between trials, and not during them. There should of course be noise on sensors

and actuators during each trial, since there will also be noise on sensors and actuators

in the real world. However, this noise should be regarded as an integral part of the

base set of robot-environment interactions upon which the simulation is founded, and

not something extra to it. Noise levels should be altered between trials along with all

the other base set aspects of a simulation. They should not be left steady throughout

the evolutionary process at unrealistic levels.

3.3 The radical envelope of noise hypothesis

The suggestions outlined above together add up to what we shall call the radical en-

velope of noise hypothesis. As opposed to a single bold statement of fact which may

be proved true or false by empirical testing, it is rather a proposed methodology using

which we can build simulations that are posited to display certain properties. Whether

or not the hypothesis is true (or, more pragmatically, useful), depends on whether reli-
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ably �t control architectures, that have evolved in simulations built using the methods

and techniques outlined above, transfer across the reality gap.

To sum up the methodology:

� A base set of robot-environment interactions (that are su�cient to underly the

behaviour we want to evolve) must be identi�ed and made explicit. A basic

simulation should then be constructed that includes a model of these interactions.

This simulation will display base set aspects, that have a basis in reality, and

implementation aspects, that do not.

� Every implementation aspect of the simulation must be randomly varied from

trial to trial so that reliably �t controllers are base set exclusive. In particu-

lar, enough variation must be included so that the only practicable evolutionary

strategy is to actively ignore each implementation aspect entirely.

� Every base set aspect of the simulation must be randomly varied from trial to

trial so that reliably �t controllers are base set robust. The extent and character

of this random variation must be su�cient to ensure that reliably �t controllers

are able to cope with the inevitable di�erences between the robot-environment

interaction model and reality, but not so large that reliably �t controllers fail to

evolve at all.

Of course these guide-lines are very general, and not a step by step recipe using

which one can be guaranteed success every time. It is hoped, however, that together

with the example simulations of section 4 and section 5 the reader is left with at least

some idea of how they might go about constructing good simulations for evolutionary

robotics.

3.4 Minimal simulations

A careful inspection of the last two sections will reveal that nowhere is it implied that

the base set aspects of a simulation should re
ect reality as closely as possible, nor

that the number of implementation aspects of a simulation should be kept to a bear

minimum. This is where the potential power of the radical envelope of noise hypothesis

lies. A reliably �t controller that evolves in a simulation containing very inaccurate

base set aspects, and lots of implementation aspects is just as likely as any other to

cross the reality gap provided that the right amount of random variation is included in

the simulation in the right way according to the methodology laid out above. What

is much more unlikely in this situation, is that reliably �t controllers will evolve at

all. There will always be limits to the amount of randomness that the evolutionary

machinery can �nd ways of coping with, no matter how this machinery is set up. If the

amount of variation necessary to ensure that reliably �t controllers cross the reality

gap surpasses this limit, then reliably �t controllers will just fail to evolve.

However, if the evolutionary machinery is su�ciently powerful we can evolve com-

plex control architectures, capable of performing non-trivial real world tasks, using

surprisingly inaccurate and simple simulations. In such a situation, how one chooses

the members of the base set of robot-environment interactions, and builds a model of

them, may be governed in the main by considerations of computational expense rather

than those of �delity. In other words, if we are interested in evolving a particular
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Figure 1: The Khepera robot.

4

0 5

1
32

67

Figure 2: A plan of the Khepera robot

showing the positions and numbers of the

infra red sensors and the two wheels.

behaviour, we can build the minimal base set of robot-environment interactions neces-

sary into a model optimized for speed rather than accuracy. Using this, we can then

construct a minimal simulation, which may include implementation aspects that lead

to further run-time savings, that is very computationally e�cient indeed.

Both of the experiments described below involve minimal simulations of this type.

In the �rst, a rough and ready simulation of a Khepera robot is used to evolve controllers

that are capable of reliably solving a T-maze in the real world, and in the second, a

simulation of the Sussex University gantry robot is used to evolve controllers that can

robustly perform the task described in Harvey et al. (1994) - consistently telling a

triangle apart from a square using real vision.

4 A minimal simulation of a Khepera robot

This section describes experiments in which neural network controllers were evolved

for a Khepera robot using a minimal simulation. This robot, shown in �gure 1, is 5.8

cm in diameter and about 3 cm high. It has eight infra red sensors, which respond to

nearby objects, placed around the robot body as shown in �gure 2. In a di�erent mode

these sensors may also be used to detect ambient light levels in the vicinity of the robot

with very rough directional sensitivity (see K-Team (1993)). Several di�erent groups

(Jakobi et al., 1995; Miglino et al., 1995; Michel, 1995) have built Khepera simulators

on which they have successfully evolved control architectures that cross the reality gap.

For this reason, the Khepera is an ideal platform on which to test the radical envelope

of noise hypothesis.

4.1 The aim

The aim of the experiments was to evolve a behaviour for the Khepera robot that

was at least one step up from the simple reactive behaviours that have been prevalent
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Figure 3: The task in the real world.

phase 2

phase 1

noise zone

light zone

Figure 4: The task in simulation.

in the Evolutionary Robotics literature so far. The behaviour that was decided on

is shown diagrammatically in �gure 3. As a Khepera robot begins to negotiate a T-

maze, it passes through a beam of light shining from one of the two sides, chosen at

random. To score maximum�tness points the control architecture must `remember' on

which side of the corridor the light went on and, on reaching the junction, turn down

the corresponding arm of the T-maze. This behaviour involves several elements: not

only must controllers guide the robot down the corridors without touching the sides

and negotiate the junction at the end of the �rst corridor (simple reactive behaviours

both), but they must also involve some internal state that allows them to `remember'

which side the lamp was on so that they can take the correct turning at the junction.

4.2 The minimal simulation

The minimal simulation used in the experiments was designed with low computational

overheads �rmly in mind. To give some idea of its simplicity, it contains two look-up-

tables, one containing 72 values and one containing 80, and about 300 lines of com-

mented C code that employ nothing more mathematically complicated than 
oating

point arithmetic. In fact, it does not model a T-maze at all - or rather it does not model

all aspects of a T-maze - but only a su�ciently large base set of robot-environment

interactions for the evolution of successful behaviours. This particular minimal base set

was chosen because its members are easy to model; the robot-environment interactions

in question are the same whether the robot is in a T-maze or in a simple, continuous,

straight corridor, and as we shall see this allowed considerable simpli�cation of the

simulation. The base set consisted of the following interactions:

1. the way in which the robot moves in response to motor signals.

2. the way in which the infra-red sensors return values in response to those sections

of the walls of the T-maze that can be regarded as if they were sections of the

walls of a continuous, in�nite corridor.

3. the way in which the ambient light sensors respond to bright verses ambient light

levels.
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At �rst glance number 2 of the above list seems totally counterintuitive since a T-

maze has nothing to do with in�nite corridors. However, with respect to the infra-red

sensors of a Khepera which have a maximum range of only about 8cm, a T-maze is

identical to an in�nite corridor almost everywhere. Where a T-maze di�ers from a

corridor, at the T-junction, the interactions between the sensors and the corridor walls

were treated as implementation aspects of the simulation, and randomly varied from

trial to trial according to the methodology laid out above. In this way, reliably �t

controllers were forced to use strategies that depended on the interactions between the

infra-red sensors and the sections of the walls of the T-maze that could be regarded

as straight and continuous corridor walls, and those interactions alone. First we will

describe the way in which the simulationof a T-maze was constructed from two di�erent

phases of a simple continuous corridor model, and then we will describe how the corridor

model itself was put together.

Simulating a T-maze with two corridors

Figure 4 shows the two phases of the T-maze simulation. In the �rst phase, the virtual

robot had to travel down a simple corridor where it received a light signal from either

one side or the other. After it had travelled a predetermined distance, it was suddenly

popped out of the �rst corridor, rotated through ninety degrees, and popped into the

middle of a second corridor for phase two. It then had to chose whether to turn left

or right, depending on which side the light had been on, in order to gain maximum

�tness points.

Now although this twin corridor set-up varies signi�cantly from a T-maze, it has

enough in common that evolving control architectures which are prohibited from relying

on any of the di�erences are still able to sense enough of their environment to perform

the task successfully. In particular, the robot-environment interactions governing the

way in which the robot, travelling down a straight corridor, is confronted with a wall

straight across its path and a second corridor stretching o� to either side were all

modelled.

The di�erences between the simulation and the real world T-maze all occur around

the T-junction. When the virtual Khepera suddenly appears in the second corridor

facing the wall at the start of phase 2, there is a continuous wall directly behind it

(see �gure 4). In reality, when the Khepera is confronted with a wall across its path

and forced to make its decision on which way to turn, there is a complicated junction

in the wall behind it (see �gure 3). Because of this, the simulated robot's infra red

sensor interactions with the simulated back wall, in an area corresponding to where the

corridors meet in reality and about 5cm to either side, were regarded as implementation

aspects. If this section of the wall fell within range of the infra-red sensors then how

these sensors reacted varied randomly from trial to trial - sometimes they returned

maximum values, sometimes low values, and sometimes totally random values. In this

way reliably �t controllers were forced to employ strategies that, at the decision point,

were oblivious to this di�erence between the simulation and reality, relying only on the

fact that there was a straight continuous wall in front of them and space to either side.

Ensuring that reliably �t controllers were base set exclusive

To ensure that reliably �t controllers were base set exclusive all the implementation

aspects of the simulation were identi�ed and rendered unreliable. In addition to those
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Figure 5: A look up table contains the

perpendicular distances to the walls of a
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ten possible orientations.

dx

dy
θ

Figure 6: A look up table holds horizontal

and vertical increment values for 36 dif-

ferent orientation values and an average

speed of 1.

implementation aspects concerned with the di�erences between the simulation and

reality around the area of the T-junction, there were also several others:

� The side of the corridor that the light signal came from.

� The width of the two corridors: between 13cm and 23cm.

� The exact starting orientation of the robot: between �22:5 degrees of facing

straight down the corridor.

� The length of the illuminated section of the corridor: between 2cm and 12cm.

� The total length of the corridor in phase 1: between 40cm and 60cm

These were attributes of the simulation that it was necessary to give values to in

order that the simulation was a consistent whole, but that we did not want evolving

behaviours to be able to rely upon. Random values, from within the ranges shown,

were assigned to each implementation aspect at the start of each trial. Reliably �t

controllers were therefore forced to be independent of exactly where each value fell

within the relevant range, and were thus base set exclusive.

Simulating an in�nite corridor

A simple model of a Khepera's robot-environment interactions within an in�nite cor-

ridor was responsible for generating the base set aspects of the simulation. At each

iteration two main functions were called: one that updated the virtual Khepera's po-

sition, and one that calculated the values returned by the infra-red sensors. The third

robot-environment interaction listed above, namely the way in which the ambient light

sensors react to bright verse ambient light levels, was actually handled by a single

line of code. We will look at the way all three robot-environment interactions were

computed in turn.
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The simulation was updated the equivalent of ten times a second. Figure 6 shows

how the new position of the virtual Khepera within its environment was calculated at

each iteration. The orientation was used as an index to a look-up-table with 36 pairs

of values: horizontal and vertical increments for a Khepera travelling at a speed of 1cm

per second. To work out its new position, the values returned from this look up table

were multiplied by the average wheel speed in cm per second. The speed of each wheel

was calculated directly from multiplying the motor signals by the constant 0.8 cm per

motor unit per second. The change in orientation at each iteration was equal to the

di�erence between the distances the two wheels moved divided by the radius of the

robot (about 5.2cm). There was no allowance for momentum and the noise inherent in

the real-world situation was not modelled.

Calculating the infra-red values was a slightly more involved process and proceeded

in three stages. Firstly, the robot's orientation was used to generate rough distance to

wall metrics for each sensor, as if the robot was in the centre of a 20cm wide in�nite

corridor. Secondly, these vales were scaled according to the actual width of the corridor

in the simulation, and the distance from the robot to each wall. And thirdly, the scaled

distance to wall metrics were used to calculate infra red sensor values by way of a simple

linear relationship. This process is described in more detail below.

Figure 5 demonstrates what the values held in the infra-red look-up-table repre-

sented. There were 10 sets of 8 values, each set corresponding to one of 10 di�erent

robot orientations from facing straight down the corridor to perpendicularly facing one

of the walls. The values themselves were based on the distances from the centre of

the robot (which is 10cm away from each wall), along the lines of the corresponding

sensors, to the walls of an in�nitely long corridor. If the distance from the centre of

the robot, along the line of a sensor, to a wall of the corridor is d, then the warped

distance value wdv stored in the look-up-table was given by:

wdv = 10+ (d� 10)=3

This warped distance value, which was always shorter than the line of sight distance,

accounted in a very approximate way for the fact that the infra-red sensors of a Khepera

are sensitive over a whole arc rather than just along the direct line of sight extending

out from each sensor (K-Team, 1993).

The minimum possible value stored in the table, therefore, for a sensor directly

facing the wall, was 10cm. The maximum possible value, for a sensor directly facing

down the corridor, was in�nity. Now although there were only 10 sets of values stored

in the table (one set of 8 for each multiple of 10 degrees between 0 and 90 degrees

inclusive), it was a simple matter to calculate sets of values for any other multiple of

10 degrees. This was done by taking the particular orientation angle in question and

rotating it by the appropriate multiple of 90 degrees until it lay in the correct quadrant.

The look-up-table was then used to ascertain a set of values and these were re
ected

across the mid-line of the robot if necessary (ie. if the angle was between 90 and 180

or between 270 and 360). If the robot was in the centre of a 20cm wide, in�nitely long

corridor, therefore, warped distance values could be calculated for any sensor at any

orientation.

In practice, the perpendicular distance from the centre of the robot to a particular

wall of the corridor was variable. Values were scaled appropriately, however, by mul-

tiplying all values returned from the look-up-table (for sensors that pointed at that

particular wall) by the fraction attained by dividing the actual distance to the wall by
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10cm. For example, if the distance from the robot to a wall was actually 5cm instead

of 10cm, then look-up-table values for sensors that pointed at that wall were halved.

In this way, the 80 values of the look-up-table were su�cient to �nd the approximate

distance, warped according to the equation given above, from the centre of the robot in

any position and any orientation, along the line of any sensor, to the wall of an in�nite

corridor of any width.

Having ascertained warped distance values wdv for each sensor, the actual value

that each simulated sensor returned, V , was given by a simple linear function:

V =

8

<

:

0 wdv > a

1024� (7�wdv)=2 a > wdv > b

1024 b > wdv

(1)

where a and b were the maximum and minimum extent, respectively, of the linear

part of the response function. This meant that a sensor would saturate at maximum

value if its warped distance value was less than b (typically about 5), would return zero

if its warped distance value was greater than a (typically about 9), and would respond

linearly in between.

A simple random number generator was used to generate uniformly distributed

random deviates in the range �50. These were added to returned sensor values at each

iteration. In addition, the lowest value an infra-red sensor could return was a random

background value between 0 and 20. These noise levels roughly approximate the levels

observed in the real world, and as such were as much a part of the robot-environment

interaction model as any other aspect.

The way in which ambient light sensors respond to bright versus ambient light levels

was modelled by a single line of code. When the robot entered a particular section of

the corridor in phase 1 (that was randomly prede�ned in terms of length and position

relative to the starting point), the values returned by the ambient light sensors on one

side of the robot dropped from their normal background value of around 450 to a value

of around 100, as if they had been illuminated by a bright light. When the robot left

the special light zone the values returned to their background levels. Whether the right

side of the robot or the left side was illuminated depended on which side of the corridor

the light source was placed, and which of the two directions directly down the corridor

the robot was closest to pointing. Random deviates in the range �50 were added to

each ambient light sensor value at each iteration.

Ensuring that reliably �t behaviours were base set robust

According to the methodology laid out in section 3, the base set aspects of a simulation

must themselves be varied slightly from trial to trial in order to ensure that reliably

�t controllers are robust to the di�erences between the model and the real world. This

was done in two ways in the simulation under discussion. Firstly, random o�sets of

between �1cm per second were generated at the beginning of each trial, and added to

wheel-speeds during position update calculations. This had the e�ect of causing the

virtual robot to move in a randomly prede�ned curve when it would normally have

gone in a straight line, and thus forced controllers to come up with ways of coping

with and being robust to a variety of di�erent movement characteristics. Secondly, the

constants a and b of equation 4.2 were randomly set at the beginning of each trial. The

former in the range 7.1 to 10.1 and the latter in the range 4.1 to 6.1. This had the
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e�ect of forcing reliably �t controllers to come up with strategies that were robust to

a range of infra-red sensor characteristics.

Summary of the simulation

The overall shape of the simulation originated from the observation that a T-maze is like

an in�nite continuous corridor (from the point of view of a Khepera`s all important

infra red sensors) almost everywhere. With this in mind, a simulation of a T-maze

was constructed whose base set aspects could be generated using a simple model of

a Khepera's interactions with the walls of a continuous in�nite corridor. The nature

of these modelled interactions was varied slightly and randomly, from trial to trial, in

order to ensure that reliably �t controllers were base set robust. Those aspects of the

simulation that corresponded to sections of the T-maze which could not be modelled

by a continuous corridor were regarded as implementation aspects of the simulation.

All implementation aspects of the simulation were varied randomly from trial to trial

in order to ensure that evolving controllers were base set exclusive.

4.3 The evolutionary machinery

The experiments described here were designed to test the radical envelope of noise

hypothesis ie. whether control architectures that have evolved to reliably perform a

task in a simulation created according to the methodology outlined in section 3 would

successfully transfer to reality. However, for the T-maze task described above, it is no

simple matter to evolve reliably �t controllers in the �rst place, and careful attention

had to be paid to the choice of evolutionary machinery. This machinery is brie
y

described here.

The controllers themselves were arbitrarily recurrent neural networks. The number

of neurons in a network was �xed for each evolutionary run (usually ten neurons), but

all the links to a neuron from other neurons (up to a maximumof three) were genetically

determined. Networks were forced to be bilaterally symmetrical by e�ectively evolving

only half the network and re
ecting it across the midline
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simple step threshold activation functions of the form:
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where A
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was the activation of the j-th neuron, T
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was the threshold of the j-th

neuron, and w

ij

was the weight on the connection from the i-th neuron to the j-th

neuron. The activations of motor neurons were calculated using a slightly di�erent

output function:
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Thresholds were real numbers in the range �1:0 and weights on links were real

numbers in the range �2:0. Figure 7, a diagram of a typical evolved neural network,

shows how sensor value inputs were applied to networks, and how motor values were

3

For a justi�cation of why symmetry was enforced rather than allowed to evolve, see Jakobi (1996).
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Figure 7: A typical evolved network. The solid arrows are excitatory links and the

dashed arrows are inhibitory links; exact weight values are not shown. Threshold

values appear next to each neuron.

output. All sensor values were normalised in the range 0 to 1 and motor outputs were

multiplied by a factor of 10 to give motor signals in the range �8cm per second. The

network, sensor values and motor outputs (in fact the entire simulation) were updated

the equivalent of 10 times a second.

A direct encoding scheme was used; there was a one to one mapping between

genotype and phenotype. Each genotype was a string of 140 bits, consisting of 5 �elds

or genes, one for each neuron of the left hand side of the network. The neurons on the

right hand side of the network were the exact mirror image of those on the left hand

side. Each gene was itself divided into �elds. The �rst 4 bits of each gene, a binary

number between 0 and 16, de�ned the threshold of that neuron by normalising between

�1. The next 3 sets of 8 bits de�ned the three possible links to that neuron from other

neurons in the network: the �rst 4 ascribing one of 16 possible values for the weight

of the link between �2 and the next 4 bits de�ning which of 16 neurons the link was

from. Because there were only 10 neurons in total in the network, if a link indexed

a non-existent neuron, then it did not connect, thus placing the number of links to a

neuron under genetic control.

The �tness function returned the average value scored by an individual in a total
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of ten �tness trials, each lasting the equivalent of �fteen seconds. At the end of each

trial, the �tness value was equal to the total distance travelled through the corridor

system plus a bonus of 100 if the virtual robot went the right way at the T-junction.

Thus if the virtual robot travelled a distance d

1

in the �rst corridor, and a distance d

2

at the second corridor, then the �tness score T for that particular trial was calculated

by:

T =

�

d

1

+ d

2

+ 100 right way at lights

d

1

+ d

2

wrong way at lights

The genetic algorithm was a steady-state distributed genetic algorithm (Collins &

Je�erson, 1991) with a population of 100 individuals arranged on a virtual 10 by 10

grid. At each iteration, a random location was chosen on the grid and a breeding pool

constructed from the nine individuals of the 3 by 3 square centred on that location.

Two probabilistically �t parents were chosen from this breeding pool according to a

linear rank-based selection procedure, and an o�spring constructed by a process of

crossover and mutation. This o�spring then replaced a probabilistically un�t member

of the same breeding pool according to an inverse linear rank-based selection procedure.

Single point crossover was applied with probability 0.7 and the expected number of

mutations per genotype, according to a Poisson distribution, was 2. At each o�spring

event, not only was the o�spring's �tness evaluated, but both parents were reevaluated

as well.

4.4 Experimental results

Figure 7 shows a typical example of the sort of neural network that consistently evolved

within around 1000 generations (where a generation was taken to be 100 o�spring

events). This is the simulated equivalent of 300 � 15� 10 � 100 = 45000000 seconds

or over 17 months of continuous real-world evolution, and takes around 4 hours to run

as a single user on a SPARC Ultra. The network reliably achieved near-optimal �tness

within the simulation. In order to see whether it would successfully transfer across the

reality gap, the network was downloaded onto a Khepera robot and tested as to its

ability to perform the task in the real world. Sixty di�erent trials were performed one

after another, twenty in each of three di�erent widths of corridors, with the light on

the left for ten trials and the light on the right for the other ten. The consequent robot

behaviours were �lmed from above so that the exact path taken by the Khepera on each

trial could be extracted using basic image-processing techniques and overlayed upon

aerial views of the set-up. The results of this process are the six images of Figure 8.

In the top pair of images, the corridor is only 11cm wide and the paths taken by

the Khepera on all twenty occasions are tightly constrained. In the second pair of

images, where the corridor is 18cm wide, and especially in the bottom pair of images,

where the corridor is 23cm wide, the paths taken by the Khepera are less constrained.

The Khepera still turns the correct way at the T-junction, however, even though on

several occasions it must turn through greater than ninety degrees in order to do so.

Note that the path taken in most cases was near-optimal, and that in every case the

task was performed satisfactorily: the criterion put forwards in section 2 for a control

architecture to successfully transfer from simulation to reality.
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Figure 8: These six pictures together show the paths taken by a Khepera robot in

sixty consecutive trials of the control architecture shown in �gure 7. These sixty trials

were performed in consecutive batches of ten, and each picture shows ten trials for

a particular corridor width and torch orientation. The pictures were created using

an overhead camera, a videodisc, and simple computer vision techniques to �nd the

position of the robot in each frame.
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Figure 9: The gantry arena, with obsta-

cles.

Figure 10: A close up of the gantry robot.

5 A minimal simulation of the gantry robot

This section describes experiments in which neural network controllers were evolved

for the gantry robot. The gantry, shown in �g 9, was developed at Sussex University

for research into the evolution of visually guided behaviours. It is best thought of as a

hardware simulation of a small wheeled mobile robot with a camera placed on top, that

has been speci�cally designed so that control architectures can be tested automatically

and safely in a highly controlled manner (Husbands, Harvey, Jakobi, Thompson, &

Cli�, 1997).

Figure 10 shows a close-up of the actual robot. A camera points vertically down-

wards at a 45

o

inclined mirror to return a view from the robot looking straight out

horizontally at the environment. The mirror is attached to a stepper motor that en-

ables it to rotate around the vertical axis under computer control and a dedicated

vision PC then rotates the image array in software so that `down' in the picture cor-

responds to `down' in reality. The image array available for use by evolving control

architectures is therefore equivalent to that produced by a camera pointing outwards

along the horizontal component of the mirror's orientation. The frame of the gantry

itself is connected to two further stepper motors that together allow the entire robot

assembly to move in any horizontal direction within a rectangular arena (see �gure 9).

All three stepper motors are controlled by a single board computer (SBC) that is

controlled, in turn, by a dedicated brain PC running the control architecture software.

The brain PC sends commands to the SBC in the form of left and right wheel speeds,

as if the gantry were a wheeled mobile robot. The SBC then calculates and issues

stepper motor pulses so that the gantry moves in the appropriate fashion. From the

point of view of control architectures running on the brain PC, therefore, the gantry

robot behaves exactly as a small wheeled mobile robot, controlled via the SBC, with a

camera on top whose image is accessed via the vision PC.
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Figure 11: A diagrammatic view of the gantry arena from above showing the four

possible starting positions of the gantry robot. The dashed line in front of the triangle

marks the area that the gantry must reach in order for a trial to count as a success for

testing purposes.

5.1 The aim

In Harvey et al. (1994), the authors report experiments in which both neural network

control architectures and the visual morphologies of their inputs were evolved side by

side to perform a simple shape discrimination task. Evolution occurred within an all-

black rectangular arena, 150cm by 100cm, with 22.5cm high walls. Stuck onto one

of the long walls were a near-square (20cm wide by 22.5cm high) and an equilateral

triangle (20cmwide by 22.5cmhigh), both of which were cut fromwhite paper. Starting

from several di�erent positions and orientations, evolving individuals were tested as to

their ability to make the gantry robot move towards the triangle as opposed to the

square (see Figure 11). After several generations, which took approximately 36 hours

to perform in the real world, control architectures evolved that were able to perform

the task. These controllers were around 80% reliable within certain constrained sets of

lighting conditions (Husbands, 1997): if the blinds of the laboratory were opened during

the day, or if the overhead lighting was not on in the right way, they failed. In order

to remedy this sensitivity to di�ering lighting conditions a set of lamps were strung up

above the gantry, each turning on and o� at di�erent frequencies, to provide extreme

real-world noise for evolving controllers to cope with. The previously �t controllers

failed completely when the `disco lights', as they are known at Sussex, were switched

on. As yet, no new controllers have been evolved on the gantry (using real-world

evolution) that are able to cope with the extra uncertainty that these lights provide.

The control architectures evolved in Harvey et al. (1994) remain amongst the most

behaviourally complex that have ever been evolved, even though they were extremely

sensitive to lighting conditions and only 80% reliable at the best of times. In addi-

tion, the shape discrimination task involves real vision which is an inherently di�cult
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Figure 12: A typical image returned by the camera of the gantry robot. The robot

is facing the corner of the arena and the triangle can be seen on the left. The white

circles labelled a, b and c are examples of pixels that project onto the triangle, ceiling

and wall respectively. Pixel a will return a value between 14 and 15, pixel b will return

a value between 0 and 15 and pixel c will return a value between 0 and 13. In the

experiments reported below, each visual input was made up of exactly one pixel whose

coordinates within the camera image was genetically determined.

modality to simulate. It was therefore decided that evolving reliably �t control archi-

tectures in a simulation built according to the methodology laid out in Section 3, and

seeing whether they would be able to perform the shape discrimination task satisfac-

torily when downloaded into the real world, would provide a good test of the radical

envelope of noise hypothesis.

5.2 The minimal simulation

In the experiments reported in Harvey et al. (1994) both the neural network control

architectures and the morphology of their visual inputs were genetically determined.

In the simulation experiments reported here, a di�erent type of control architecture

was used (see below), although both neural networks and the visual morphology of

their inputs were again genetically determined. The main di�erence between the two,

as far as a simulation is concerned, is that in Harvey et al. (1994), each visual input to

the neural network consisted of the average grey-level value of a genetically speci�ed

circular sub-region of the camera image, whereas in the experiments reported here,

each visual input consisted of the grey-level value of exactly one genetically speci�ed

pixel of the camera image (Figure 12). In fact, these are not so di�erent with respect
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to a simulation, since the average value of each circular visual �eld in Harvey et al.

(1994) was just the average value of 25 randomly sampled pixels from within the �eld.

A simulation of either, therefore, must contain a model of how speci�c pixels of the

camera image acquire values in response to the orientation and position of the robot

within its environment.

Under the `disco lights' suspended above the gantry, the values returned by pixels

of the camera-image vary widely both with respect to time, and with respect to the

direction of the camera. Even if we know the exact location within the arena that a

particular pixel projects onto, there is not that much we can say about exactly what

the value of that pixel will be. However, there are a few general things that hold true

except in exceptional circumstances: if a pixel projects onto a wall but not onto a

shape then it will return a value within the range 0 to 13, if a pixel projects onto either

the triangle or the square then it will return a value between 14 and 15, and if a pixel

projects onto either the 
oor or the ceiling of the arena it will return a value between

0 and 15. Since these facts about pixel values within the `disco light' environment are

almost always the case, and since they are enough to distinguish the white triangle and

square from the black walls of the arena (for those pixels that project onto a wall of

the arena), they are all we needed to model.

In fact, the only visual aspect that it was essential to include in the model in order

that evolving control architectures were able to perform the shape discrimination task,

was the way in which pixels that project onto the walls of the arena acquire grey-scale

values in response to the orientation and position of the robot. If a pixel projects

onto the 
oor or ceiling, the value it returns will be nothing to do with squares or

triangles, there is no point in allowing evolving control architectures to rely on it. This

is especially true when one considers the extra modelling required. For example, if the

strategy employed by a control architecture that is reliably �t within the simulation

depends upon a pixel that projects onto the 
oor, then the simulated value of that pixel

would have to be reasonably true to life, or the control architecture would fail when

downloaded into reality: it would have evolved to rely on something that was true of the

simulation but not true of the real world. For this reason the values returned by pixels

that projected onto the 
oor or ceiling of the arena were treated as implementation

aspects of the simulation.

The base set of robot-environment interactions upon which the simulation was

founded, therefore, had just two members:

1. The way in which pixels of the camera image, that project onto the walls of the

arena, return grey-scale values within certain intervals: 14 to 15 for pixels that

project onto either the triangle or the square, and 0 to 13 for pixels that project

onto the walls of the arena (but not onto either the triangle or the square).

2. The way in which the robot moves in response to motor signals.

The model of the way in which the gantry robot moves in response to motor signals

was adapted from the movement model for the Khepera robot explained in Section 4.

The simulation was again updated at a rate equivalent to ten times a second and the

same look up table was used but with di�erent constants to update speed, orientation

and position variables at each iteration of the simulation. The radius of the virtual

robot (that the gantry robot is a hardware simulation of) is 15cm and the constant

multiplied by the motor signals to give the current speed of the robot is 4.17 cm per
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motor unit per second. In addition there was also a momentum term, m, such that at

each iteration, the increment �v to each wheel speed v in terms of the required wheel

speed u was:

�v =

u� v

m

(3)

This momentum term was added for the simple reason that in the case of the gantry,

momentum plays a signi�cant role since it is a heavy robot which takes time to slow

down and speed up. In the case of the Khepera, the robot is small enough and light

enough that momentum e�ects can be regarded as modelling inaccuracies, and can be

coped with by reliably �t control architectures that are base set robust (see 3.2). at

every iteration, a random deviate in the range �0:2 cm per second was added to each

wheel speed to approximate the noise inherent in the way the gantry robot moves.

To work out the location in the arena that a particular genetically speci�ed pixel

projects onto was done using simple trigonometry. Look-up-tables were employed in

place of the computationally expensive standard C library functions of cos, sin and

tan. Each table contained 360 values covering 360

o

. In addition there was a �ner-

grained look-up-table for tan containing 200 values, one for every 0:1

o

between 0

o

and

20

o

.

After rotation by the vision PC, the image available to evolving control architectures

on the gantry robot is a circular portion of a two dimensional pixel array, 40 pixels in

diameter and with an angle of acceptance of around 50

o

(see Figure 12). The horizontal

and vertical angular o�sets of any particular pixel from the orientation of the robot

were calculated from its x and y coordinates within the image, and were then used to

work out the horizontal and vertical angles at which the pixel projected out from the

gantry robot's mirror relative to the �xed arena environment. Since the coordinates

of the robot's position within the arena were always known, and the height of the

mirror above the 
oor of the arena was �xed (around 19.5cm), the exact horizontal

and vertical coordinates of the spot that any particular pixel projected onto could be

easily worked out. Firstly, the simulation established which of the four walls of the

arena a particular pixel would project onto if the vertical angle was in the correct

range, and calculated the horizontal coordinate of the pixel projection onto that wall.

Secondly, the vertical coordinate of the pixel projection onto the wall was calculated.

The way this was achieved is demonstrated in �gure 13. For calculations of Px (the

horizontal coordinate of the point a pixel projects onto), the course-grained tan look-

up-table was used, and for calculations of Pz (the vertical coordinate of the point a

pixel projects onto), the �ne-grained tan look-up-table was used. This is because  

will always be a small angle somewhere between 0

o

and 25

o

whereas � can be anything

between 0

o

and 360

o

.

Having worked out Px, Pz, and the relevant arena wall, the actual value attributed

to a particular pixel depended on one of three possible scenarios. Either the pixel did

not project onto a wall, in which case it returned a totally unreliable value that varied

from trial to trial, or it projected onto a wall but not onto the triangle or square, in

which case it returned a value between 0 and 13, or it projected onto the triangle or

square, in which case it returned a value between 14 and 15. The ways in which values

were retuned from within these intervals are described below. If Pz was less than

0cm or Pz was greater than 22.5cm then the pixel was judged to have projected onto
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Figure 13: The left-hand picture shows the gantry arena as seen from above; if the

horizontal angle at which a pixel projects from the mirror onto the back wall is �, then

Px = x +

100�y

tan�

and d =

100�y

sin�

. The right-hand picture shows a cross-section of the

gantry arena; if the vertical angle at which a pixel projects from the mirror onto a wall

is  , then Py = d� tan + 19:5.

either the ceiling or the 
oor. If Pz was between 0cm and 22.5cm it was judged to

have projected onto a wall. If the wall in question was the one with the triangle and

the square on it, then simple geometric relationships between the coordinates of the

pixel projection point and the vertices of the two shapes were used to �nd if the pixel

projection point lay inside either of the shapes. At every iteration, a random deviate

in the range �1:2 grey-scale units was added to each pixel value.

Ensuring that reliably �t controllers were base set exclusive

As reported above, if a pixel projected onto a wall but not onto a shape then it returned

a value between 0 and 13, and if it projected onto either the triangle or the square then

it returned a value between 14 and 15. Exactly how this was done is crucial, however,

since the base set of robot-environment interactions did not include the way in which

values are returned between 0 and 13 for black walls and between 14 and 15 for white

shapes, but only the fact that they are. For this reason, the way in which pixel values

are returned within these intervals was treated as an implementation aspect of the

simulation and varied from trial to trial according to the methodology outlined in

Section 3. This ensured that control architectures that had evolved to be reliably �t

within the simulation worked independently of the way in which actual pixel values

arose - as long as they arose within the speci�ed intervals - and therefore that they

were robust to the `disco lights'.

At the beginning of each trial, one of three ways of generating pixel values within

the appropriate intervals was chosen:

1. Each pixel returned a di�erent random value within the appropriate interval and

values varied randomly over time. This meant that whatever the behaviour of the

robot, values could change. The average time interval between changes in value

for any particular pixel was taken from a Poisson distribution with an average

length of 2 simulated seconds.

2. Each pixel returned a di�erent random value within the appropriate interval and

values varied randomly in response to changes in robot-orientation. this meant
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that if the robot proceeded in a straight line, or remained still, then pixel vales

remained steady. If the robot turned, then pixel values could change. Angular

distances between changes in value for any particular pixel averaged 25

o

and were

uniformly distributed between 0

o

and 50

o

.

3. Each pixel returned the same random value within the appropriate interval. Val-

ues for each interval were kept constant throughout the trial.

Pixels that projected onto either the ceiling or the 
oor were treated in a similar

fashion that ensured they were totally unreliable: random values were returned in a

random way between the minimum and maximum values (0 and 15) instead of some

sub-interval. In this situation reliably �t control architectures were not even able to

depend on the interval within which returned values would lie.

The other implementation aspects that reliably �t controllers were prevented from

depending on were the starting position of the robot at the beginning of each trial, and

whether the triangle was on the left and the square on the right or vice versa. There

were four possible starting positions that varied from trial to trial, see �gure 11, and

half of the trials that made up the �tness test had the triangle on the left, and half on

the right.

Ensuring that reliably �t controllers were base set robust

Various aspects of the model were varied from trial to trial in order to ensure that reli-

ably �t control architectures were base set robust (see Section 3.2). This was especially

important with a robot such as the gantry which is extremely noisy and imprecise in

its operation. In particular, the mirror that re
ects the horizontal image up into the

camera is not set at exactly 45

o

and is slightly warped. This means that objects appear

di�erently depending on where they are in the camera image, and that as the robot

approaches an object its image will deform and distort, appearing to move upwards.

Because of this:

� A vertical angular o�set of between �1

o

and �8

o

was produced at the beginning

of each trial. This was then added to the vertical angle of projection of every

pixel throughout the trial.

� A horizontal angular o�set of between �3

o

was produced at the beginning of each

trial. This was then added to the horizontal angle of projection of every pixel

throughout the trial.

� The horizontal coordinates (with respect to the wall) of the four corners of the

square and the three corners of the triangle were o�set by a random amount

within the range �5cm throughout each trial.

The stepper motors move the gantry supporting the robot along rollers using drive-

chains. The rollers slide rather than role along their rails (due to a design fault), with

more friction in some places than others, and the drive belts are loose so that rapid

sequences of motor commands can get lost in the extra `slop'. Because of this the robot

can only approximate travelling at a constant speed, and neither accelerates nor breaks

evenly in response to motor commands. It will often cease completely half way through

a run. In order that reliably �t individuals evolved to cope with these problems:
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� The momentum term, m, of equation 5.2 was randomly set at the beginning of

each trial to a value between 1 and 4.

� Random o�sets of between �0:5cm per second were generated at the beginning

of each trial, and added to required wheel-speeds during position update calcu-

lations.

Together these random variations ensured that reliably �t control architectures were

able to cope with a wide variety of slightly di�erent robot-environment interaction

models. Included in this range were models that involved misshapen and mal-aligned

mirrors as well as noisy and unpredictable motors - such as the model instantiated by

the real gantry robot.

5.3 The evolutionary machinery

Evolving control architectures that visually discriminate between triangles and squares

in a noisy real-world environment is a non-trivial task independent of which currently

available evolutionary techniques are employed. Evolving such behaviours using the

simulation described above, furthermore, was even harder, since in order to be reliably

�t, controllers had to evolve to cope with a whole variety of slightly di�erent base

set aspects of the simulation, rather than just the one base set of robot-environment

interactions present in the real-world situation. This is why, although the evolutionary

machinery used in Harvey et al. (1994) (control architectures, genetic algorithm, �tness

function and so on) was initially reimplemented for the experiments described here in

order to provide a direct comparison, it was later abandoned; reliably �t individuals

failed to evolve run after run, and the implication was that the control architectures

used in the original experiments were just not capable of displaying the level of robust-

ness necessary to cope with the uncertainty inherent in the simulation.

Figure 14 shows a typical example of the type of control architecture used in the

experiments reported here. Functionally they are very similar to those used in the

Khepera experiments described in section 4: weights on links are in the range �2 and

thresholds are in the range 0 to 1. The activation function of every unit including

the motor neurons was that of equation 4.3. In addition to a genetically determined

number (with a maximum of 3) of connections to each neuron from other neurons in

the network, neurons could also receive normalized input, in the range 0 to 1, from a

camera image pixel. Motor signals were calculated from the output values of the four

larger corner neurons of �gure 14 according to the relation signal = 2 � (A

1

� A

2

),

where A

1

and A

2

are the output values of the appropriate forwards and backwards

neurons. The whole network including inputs and outputs, and therefore the whole

simulation, was updated at a speed of 10 times per simulated second.

The encoding scheme was chosen to allow genotypes to grow under genetic control

with a minimum amount of phenotypic disruption, thus allowing arbitrary levels of

complexity to evolve according to SAGA-like principles (Harvey, 1992).

Development took place in a two dimensional space, with the position of each neuron

(apart from the four motor neurons, see �gure 14) genetically determined within that

space. Each link within the network to any particular neuron was genetically speci�ed

in terms of the desired position of the neuron from which the link originated. The

nearest neuron to this desired position, within a certain radius, was then alloted as the

originator of the link. If no neurons lay within this radius, which was set at around
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left forwards

camera image

neural network

left backwards right backwards

right forwards

Figure 14: An example of a typical neural network evolved for the triangle/square

discrimination task. On the left, the circular camera image, three pixels of which have

been genetically speci�ed as inputs to the neural network. On the right, the square box

contains the seven neurons of the network. Solid lines denote excitatory connections

and dashed lines denote inhibitory connections. The slightly larger units in each of the

four corners are motor neurons.

an eighth of the width of the space, then the link failed to connect. In this way, the

resultant network was independent of the exact order in which the connectivity of each

neuron was worked out and developed. Since each neuron was encoded by a single gene

on the genome, its connectivity was independent of the exact location of its gene on

the genome, and was therefore minimally disrupted by changes to this location due to

the addition or deletion of extra genetic material.

Each gene was 15 integers long, each integer lying between 0 and 99. Apart from

the �rst four genes, which speci�ed the characteristics of the four positionally �xed

motor neurons, the �rst two numbers of each gene speci�ed the x and y coordinates of

the corresponding neuron's position within the developmental space. The next number

speci�ed whether a neuron received input from a pixel of the camera image or not, with

a probability of 1 in 4, and the next two numbers speci�ed the x and y coordinates

within the camera image of any pixel input. The sixth number of each gene speci�ed

the threshold, between 0 and 1, of the corresponding neuron. The last nine numbers

speci�ed the characteristics of up to three possible links to the relevant neuron from

other neurons in the network: three number per link. The �rst two governed which

neuron the link originated from by encoding the x and y coordinates of a point within

the developmental space. The link was then judged to have originated from the nearest

neuron to this point, or not at all if there were no neurons within a range of about one

tenth of the width of the space. The third of the three numbers speci�ed the weight

on the link between �2.

The genetic algorithm used in the experiments was extremely simple. After testing
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every member of a population of 100 individuals, the �ttest 25 were used to produce

the next generation by randomly picking parents and producing o�spring until the new

population was full. Crossover was applied with a frequency of 0.7 and the expected

number of mutations per genotype, according to a Poisson distribution, was 1. There

was a probability of 0.02 at each o�spring event that a random gene would be introduced

into the o�spring genotype, as well as a probability of 0.02 that an already existing

gene would be deleted.

The �tness function returned the average value scored by an individual in a total of

eight �tness trials, each trial lasting a maximum of twenty simulated seconds. For the

�rst set of four trials, the triangle was on the left and the square was on the right, and

for the second set of four trials, the triangle was on the right and the square was on

the left. For both sets, the robot was started at each one of the four starting positions

shown in Figure 11 in turn. At the end of each trial, when either the time had run out

or the robot had hit a wall, the �tness function returned 100� d as the �tness score,

where d was the distance from the centre of the robot to the centre of the triangle.

5.4 Experimental results

Figure 14 shows a typical example of the sort of network that evolves to be reliably �t

within the simulation. This particular network is the result of around 6000 generations

of the genetic algorithm (around 12 hours as a single user on a SPARC Ultra), which

is the simulated equivalent of 6000� 100� 8� 20 = 96000000 seconds, or over 3 years

worth of real-world evolution. When placed in one of the four starting positions in the

arena, the network initially causes the robot to turn in a tight circle clockwise. If the

square comes into the view of the camera, the rotational speed of the robot actually

increases until the square is out of view. When the triangle hoves into view, the robot

`locks on' and precedes directly towards it, adjusting its course as it goes.

In order to see whether it would cross the reality gap, the network was downloaded

onto the gantry, and tested continuously

4

and automatically on the triangle/square

task in the real world under full disco lighting. In total, 200 trials were performed: 100

for the triangle on the left and the square on the right, and 100 for the triangle on the

right and the square on the left. At the beginning of each trial the robot was started

in one of four di�erent starting positions, corresponding to those of the simulation,

and these were run through in cycle from trial to trial. On each trial, the robot was

automatically judged to have successfully achieved the task if, by the end of the trial,

it was stationed within a rectangular area extending about 10cm either side of the

triangle and 15cm out into the arena (see Figure 11). Inspection revealed that this

automatable criterion corresponded well with more subjective notions of success and

failure on the task.

With the triangle on the right and the square on the left the robot performed the

task successfully 98 times out of 100. Of the two failures, one occurred when the gantry

rails were being polished (to try and prevent the motors from jamming) and the lights

were temporarily obscured by the author's body. The other failure is harder to account

for, since the gantry robot just headed o� into a wall under otherwise unremarkable

4

In practice, because of the propensity of the mechanics of the gantry robot to cease and the

software controlling it to crash, the testing procedure had to be watched continuously, and restarted

(from where it had crashed) on a number of occasions.
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circumstances. This may have been due to freak noise, but may also have been due to

a mechanical or software error.

With the triangle on the left and the square on the right, the robot performed

the task successfully 97 times out of 100. All three failures occurred from the same

starting position furthest from the triangle and in each case the circumstances were

similar. Having turned away from the wall, the robot failed to lock on to the triangle

but continued spinning on the spot. It would spin past the square, past its original

starting orientation, and back round to face the triangle. In two out of three of the

cases it then locked on to the triangle, and started to move directly towards it, running

out of time before it reached the success zone. In the third case it failed to lock on

again, and ran out of time before it could spin right round to face the triangle for

a third attempt. In all three cases, if more time had been allowed, the robot would

almost certainly have reached the target.

6 Conclusions

In the �rst part of this paper, a theoretical investigation was carried out into the

circumstances under which evolved robot controllers are able to cross the reality gap.

It was suggested that a su�cient condition is that evolved controllers are both base

set exclusive and base set robust. The radical envelope of noise hypothesis was then

stated: if random variation is applied in speci�c ways to all aspects of the simulation,

then control architectures that evolve to be reliably �t within the simulation will be

base set robust and base set exclusive, and will therefore successfully cross the reality

gap. It was further argued that if the hypothesis were well-founded, then the creation

of minimal simulations would be possible that were easy to build and computationally

cheap.

The second part of the paper detailed two sets of experiments that together pro-

vide some evidence for the hypothesis. In the �rst set, controllers with internal state

were evolved to solve a simple T-maze task using a minimal simulation of a Khepera

robot. In the second set, controllers were evolved to visually discriminate between two

shapes using the Sussex university gantry robot. In both cases, evolved controllers were

able to successfully cross the reality gap, exhibiting extremely robust behaviours when

downloaded onto the real robots. In particular, the controllers evolved for the gantry

robot performed signi�cantly better than any others that had been evolved previously

using alternative evolutionary methodologies.

In Mataric and Cli� (1996), the authors suggest that as robots and the behaviours

we want to evolve for them become more and more complex, simulations will become

either so computationally expensive that all speed advantages over real-world evolution

will be lost, or so hard to design that the time taken in development will outweigh the

time saved in reality. This paper has gone some of the way to showing that for certain

types of robots and/or behaviours, at least, this will not be the case.

To illustrate this, we o�er two examples, one that demonstrates the possibility of

creating minimal simulations that support the evolution of complex behaviours, and

one which demonstrates the possibility of creating minimal simulations for complex

robots. Firstly, consider a slightly extended version of the minimal simulation of the

Khepera robot described in Section 4. In this version, instead of a single light signal, the

Khepera is presented with a whole series of light signals that together communicate
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the solution to a complex maze, with many hundreds of junctions, in morse code.

This would be an extremely complicated behaviour by today's standards of what can

and cannot be evolved, and yet the minimal simulation remains simple and fast. It is

therefore possible to build minimal simulations for the evolution of complex behaviours.

Secondly, we need only look at the experiments of section 5 to realise that it is possible

to create minimal simulations for complex robots, or at least robots which employ

complex sensory modalities such as vision. The radical envelope of noise hypothesis

has yet to be tested on robots with complex motor modalities, such as insect robots.

The point is that whether a minimal simulation is easy to construct and runs fast

depends not on the complexity of the behaviour we want to evolve using it, nor on the

complexity of the robot that it simulates, but only on the complexity of the base set

of robot-environment interactions necessary to underly the behaviour. Provided these

are simple enough, then the behaviour and/or robot can be arbitrarily complex.

Worries as to whether minimal simulation techniques will scale up can therefore

be reduced to worries about whether the robot-environment interactions employed by

the robots and control architectures of the future will be prohibitively complex. It

is too early to say whether this will or will not be the case, but consider two points.

Firstly, that results in insect and invertebrate neuroscience suggest that many complex

behaviours are often accomplished by way of simple interactions with the environment

rather than complicated ones (Collett, 1996; Wehner, 1987; Horridge, 1992). And

secondly, that control strategies grounded in complex robot-environment interactions

can lead to prohibitively heavy real-time processing requirements (Brooks, 1991): a

fact that has fuelled the trend in mobile robotics over the last few years from the

internal world model making robots of the seventies (Nilsson, 1984) to the current low

level behaviour based robotics of the present day (Chiel, Beer, Quinn, & Espenschied,

1992).
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